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Abstract 29 

Fine particulate matter (PM2.5) is closely linked to human health, with its sources generally 30 
divided into local emissions and regional transport. This study combined concentration-31 
weighted trajectory (CWT) analysis with the HYSPLIT trajectory ensemble to obtain hourly-32 
resolution pollutant source results. The Extreme Gradient Boosting (XGBoost) model was then 33 
employed to simulate local emissions and ambient PM2.5 in Beijing from 2013 to 2020. The 34 
results revealed that clean air masses influencing the Beijing area mainly originated from the 35 
north and east regions, exhibiting a strong winter and weak summer pattern. Following the 36 
implementation of the Air Pollution Prevention and Control Action Plan (Action Plan) by the 37 
Chinese government in 2017, pollution in Beijing decreased significantly, with the most 38 
substantial reduction in regional transport pollution events occurring in the west region during 39 
summer. Regional transport pollution events were most frequent in spring, up to 1.8 times 40 
higher than in winter. Pollutants mainly originated from the west and south regions, while 41 
polluted air masses from the east showed the least reduction, and the proportion of pollution 42 
sources from this region is gradually increasing. From 2013 to 2020, local emissions were the 43 
main contributors of pollution events in Beijing. The Action Plan has more effectively reduced 44 
pollution caused by regional transport, particularly during autumn and winter. This finding 45 
underscores the importance of Beijing prioritizing local emission reduction while also 46 
considering potential contributions from the east region to effectively mitigate pollution events. 47 

Keywords: Fine particulate matter (PM2.5); concentration-weighted trajectory (CWT); 48 
XGBoost model; regional transport 49 
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1. Introduction 51 

Ambient fine particulate matter (PM2.5, with particle aerodynamic diameter ≤ 2.5 µm) is 52 
influenced by both natural sources, such as volcanic eruptions, tsunamis, and forest fires, and 53 
anthropogenic emissions, including fuel combustion, transportation, and industrial production. 54 
Anthropogenic emissions dominate the long-term trend of air pollution (Zhang et al., 2019; 55 
Cheng et al., 2019). Numerous epidemiological studies have found that PM2.5 can significantly 56 
damage human health by exacerbating respiratory and cardiovascular diseases (Bartell et al., 57 
2013; Brauer et al., 2012; Pascal et al., 2014), and also has an impact on weather and climate 58 
change (Wang et al., 2014). China's rapid and energy-intensive development over the past 59 
several decades has led to severe air pollution and negative public health impacts (Huang et al., 60 
2014). Consequently, controlling pollution and reducing PM2.5 concentrations became an urgent 61 
issue in China. While meteorological variations caused about 16% of the ambient PM2.5 decline 62 
during 2013-2017 (Zhang et al., 2019), the uncertainty in reducing PM2.5 through 63 
meteorological conditions is substantial, and the magnitude of the decrease is not dominated by 64 
human actions. Thus, the primary means of controlling PM2.5 relies on reducing anthropogenic 65 
emissions. To address this issue, the Chinese government implemented the Air Pollution 66 
Prevention and Control Action Plan (denoted "Action Plan") from 2013 to 2017 and the Blue 67 
Sky Protection Campaign from 2018 to 2020, which effectively controlled anthropogenic 68 
emissions and reduced ambient PM2.5 concentrations. 69 

The concentration of PM2.5 can be attributed to local emissions and regional transport. Several 70 
methods, such as the HYSPLIT model (Draxler and Rolph, 2010), can be used to distinguish 71 
pollutant sources. Wu et al. (Wu et al., 2021) used the HYSPLIT model to simulate the 24-hour 72 
backward trajectory in Zhoushan, and identified continental air masses that spent more than 5% 73 
of the previous 24 hours over the continent region, while the remaining air masses were 74 
identified as oceanic-influenced air masses. Ding et al. (Ding et al., 2019) employed a backward 75 
trajectory ensemble to analyze the sources of air masses in Beijing during the study period, 76 
finding that air masses with high concentrations of black carbon (BC) mass mainly came from 77 
the south and southeast regions. Cluster analysis on backward trajectories can be used to obtain 78 
the main direction of aerosols over a period of time, allowing for the analysis and determination 79 
of dominant air mass directions. For instance, Li et al. (Li et al., 2022) divided the sources of 80 
air masses in the Wuhan area from October to November 2019 into short transport distance, 81 
northbound air masses, and regional transport from the northeast and some coastal areas. 82 

The HYSPLIT model results are mainly used to view air mass trajectories, making it difficult 83 
to directly determine the sources of pollutants. Potential source contribution function (PSCF) 84 
and concentration-weighted trajectory (CWT) analyses based on backward trajectories can be 85 
used to identify the sources of pollutants through conditional probability results. Hu et al. (Hu 86 
et al., 2020) used weighted PSCF to analyze the sources of air masses with different levels of 87 
pollution in Beijing and found that polluted air masses from the southwest were an important 88 
source of high-level advections during the study period, while light pollution was often 89 
accompanied by the regional transport originating from the northeast region. Wu et al. (Wu et 90 
al., 2024) used CWT to analyze the sources of pollution in Zhoushan and found that pollutants 91 
in Zhoushan are influenced by both local emissions and regional transport. There are no obvious 92 
high pollution areas, while in other seasons, PM2.5 mainly originates from southern Jiangsu and 93 
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Shanghai. However, these studies relied on standard HYSPLIT trajectory results, which have 94 
lower temporal resolution, limiting the accuracy of pollutant source identification. 95 

The Lagrangian air pollution dispersion model, Numerical Atmospheric-dispersion Modelling 96 
Environment (NAME) (Jones et al., 2007) can determine the source of polluted air masses by 97 
simulating particulate concentrations within each grid point using Monte Carlo methods, 98 
followed by 3-D trajectories of plume basins. Liu et al. (Liu et al., 2020) used the NAME model 99 
to study the sources of air masses in Beijing during the winter of 2019 and divided them into 100 
local emissions and regional transport to analyze the convective mixing process of BC under 101 
the influence of local emissions. However, due to limitations in computing resources, the 102 
NAME model is difficult to use for obtaining long-term emission source analysis results. 103 

Multiple methods can be used to predict PM2.5 concentrations, such as statistical models (e.g., 104 
linear mixed-effect models and generalized additive models) (Fang et al., 2016; Ma et al., 2016), 105 
chemical transport model (CTM)-based algorithms (Geng et al., 2015; Kong et al., 2021), 106 
physical models (Lin et al., 2018), and recently emerging machine learning models, including 107 
Extreme Gradient Boosting (XGBoost) and Random Forest (Liang et al., 2020; Wei et al., 2021; 108 
Xiao et al., 2018; Xue et al., 2019; Huang et al., 2021). Geng et al. (Geng et al., 2021) used 109 
satellite observations of aerosol optical depth (AOD) and meteorological data combined with 110 
the XGBoost model to explore the long-term variations of PM2.5 caused by changes in 111 
meteorological conditions from 2000 to 2018. Kleine Deters et al. (Kleine Deters et al., 2017) 112 
demonstrated the relevance of statistical models based on machine learning for predicting PM2.5 113 
concentrations from meteorological data. This method of predicting aerosol concentrations 114 
using only meteorological data has been widely used (Asadollahfardi et al., 2016; Zeng et al., 115 
2021). For instance, Grange et al. (Grange et al., 2018) used meteorological data, synoptic scale, 116 
planetary boundary layer height (PBLH), and time variables to explain daily PM10 117 
concentrations in Switzerland. In summary, machine learning models have achieved high 118 
accuracy in estimating and predicting PM2.5 concentrations and have high use value, and the 119 
rise of machine learning methods has also provided feasibility for quantifying the contribution 120 
of regionally transported air masses. 121 

In this study, we combined CWT analysis with the HYSPLIT trajectory ensemble to obtain 122 
hourly-resolution PM2.5 source results and used this approach to distinguish between local 123 
emissions and regional transport. Predictive XGBoost models were developed for Beijing using 124 
meteorological data and time variables to explain local and ambient PM2.5 concentrations. By 125 
combining these two methods, the contribution of regional transport to PM2.5 in Beijing can be 126 
quantified. 127 

 128 

2. Materials and methods 129 
2.1 Site and instrumentation 130 

The PM2.5 data (Fig. 1a) were obtained from in situ air quality monitoring conducted by the 131 
China National Environmental Monitoring Center from 2013 to 2020. The monitoring station 132 
is located in Haidian Wanliu (39.96°N, 116.29°E), situated in the central urban area of Beijing. 133 
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Meteorological data, including temperature, relative humidity, pressure, precipitation, wind 134 
speed, and PBLH, were sourced from the European Centre for Medium-Range Weather 135 
Forecasts (ECMWF) ERA5 hourly reanalysis dataset 136 
(https://cds.climate.copernicus.eu/datasets). 137 

 138 

2.2 Air mass source 139 

The air mass trajectory data were obtained from the 1°×1° horizontal and vertical wind fields 140 
of the Global Data Assimilation System (GDAS) reanalysis products 141 
(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1), available every 3 hours. The HYSPLIT 142 
trajectory ensemble was used to generate 27 equally probable 24-hour backward air mass 143 
trajectories for the target point (39.96°N, 116.29°E, 250 m a.s.l.) in every hour by using PySplit 144 
(Cross, 2015). Given the equal probability of air masses being transported to the target point 145 
for each trajectory in the HYSPLIT trajectory ensemble, a conditional probability CWT 146 
analysis was applied to determine the hourly source area of pollution. 147 

In the CWT analysis method, each grid point is assigned a weight (equation 2), and the 148 
contribution of each grid point to the pollutant concentration at the target site is calculated using 149 
the air mass residence time and pollutant concentration (Hopke et al., 1993; Polissar et al., 1999; 150 
Xu and Akhtar, 2010) (equation 1). The grid point resolution was set to 0.25°×0.25° for this 151 
study. In equations 1, 𝐶!" is the average weighted concentration at grid point (i, j), l is the 152 

trajectory index, M represents the total number of trajectories, 𝐶# is the PM2.5 concentration 153 
corresponding to the target site, and 𝜏!"# is the residence time of trajectory l passing through 154 

the grid point. In calculation, the number of trajectories falling on each grid point is used instead 155 
of the residence time. 156 

 𝐶!" =
∑ %!×'"#!$
!%&
∑ '"#!$
!%&

×𝑊(𝑛!") (1) 157 

 𝑊)𝑛!,"* =

⎩
⎪
⎨

⎪
⎧1.00, 3𝑛)*+ < 𝑛!"
0.70, 1.5𝑛)*+ < 𝑛!" ≤ 3𝑛)*+
0.40, 𝑛)*+ < 𝑛!" ≤ 1.5𝑛)*+
0.17, 𝑛!" < 𝑛)*+

 (2) 158 

where 𝑛!"  represents the number of trajectories that fall within the grid point, and 𝑛)*+ 159 

represents the average number of trajectories passing through each grid point.  160 

The potential source contribution to PM2.5 at the target site was investigated by segregating the 161 
region where the backward air masses had passed into five parts: local (which is a region around 162 
central Beijing, 115.3~117.5°E, 39.4~41°N); north region (the northern plateau at 108~117.5°E, 163 
41~43°N); west region (the western plateau at 108~115.3°E, 34~41°N); south region (the 164 
southern plain at 115.3~120°E, 34~39.4°N); and east region (the eastern plain at 117.5~120°E, 165 
39.4~43°N). The concentration is integrated over each grid point in each segregated region 166 
obtained from the CWT analysis, and the contributions of each air mass fraction are obtained. 167 
The region with the highest contribution is used to determine the dominant source of air masses 168 
in Beijing at each time, classifying the overall air mass sources into local emissions (Fig. 1g) 169 
and regional transport (Fig. 1h). 170 
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 171 

2.3 Deriving the long-term local emission and ambient PM2.5 172 

An XGBoost model is employed to derive the local and ambient PM2.5 results. The 173 
hyperparameters used in the model include the maximum number of boosting iterations, 174 
learning rate, maximum depth of a tree, minimum sum of instance weight needed in a child, 175 
subsampling ratio of a training instance, and subsampling ratio of columns when constructing 176 
each tree. The input parameters for the XGBoost model comprise meteorological variables 177 
(temperature, relative humidity, wind speed, surface pressure, and precipitation) and temporal 178 
parameters (year, month, day of the week, and day of the year), as referenced from Xu et al. 179 
(Xu et al., 2023). Additionally, PBLH, which has been shown to significantly impact pollutant 180 
concentrations in previous observational (Su et al., 2018; Miao and Liu, 2019; Miao et al., 2019) 181 
and machine learning studies (Xiao et al., 2021; Li et al., 2017b; Shen et al., 2018), was included 182 
as an input parameter. For the machine learning process, data from 2013 to 2019 were used for 183 
training the XGBoost models, while data from 2020 were used for model validation.  184 

The relatively small proportion of high-concentration PM2.5 can lead to underestimation of 185 
high-concentration events in the model results (Wei et al., 2020). To address this issue, a high 186 
PM2.5 indicator was defined as a daily average PM2.5 concentration exceeding the monthly 187 
average plus twice the standard deviation. In this study, original high PM2.5 indicators accounted 188 
for 6% of the data points during the period dominated by local and ambient PM2.5. To balance 189 
the proportion of high-concentration PM2.5 in the entire database, the Synthetic Minority Over-190 
sampling Technique (SMOTE) (Torgo, 2011) was applied during data preprocessing. SMOTE 191 
artificially generates new synthetic samples along the line between high-concentration data 192 
points and their selected nearest neighbors, effectively oversampling the high-concentration 193 
data. As a result, the proportion of high PM2.5 indicators increased to 21% and 22% for local 194 
and ambient PM2.5, respectively. 195 

Hyperparameter optimization and performance evaluation of the model were conducted using 196 
fivefold cross-validation (CV). In this approach, 20% of the data is randomly selected for model 197 
testing, while the remaining 80% is used for training. This process is repeated five times, 198 
ensuring that each record is used once as testing data. The coefficient of determination (r2) was 199 
employed to assess the correlation between the XGBoost model predictions and observed 200 
values, while the root mean square error (RMSE) was used as a performance evaluation statistic. 201 
After obtaining the relation between the input parameters and PM2.5, we are able to derive the 202 
hourly local and ambient PM2.5 once all long-term input parameters (Fig. S2). 203 

3 Results and discussion 204 

3.1 Evaluation of the XGBoost PM2.5 prediction model 205 

During the model validation process, the XGBoost model results for ambient PM2.5 (Fig. 2a2) 206 
demonstrated an r2 of 0.74 and an RMSE of 20 µg m-3 when compared to observations. The 207 
XGBoost model results for local PM2.5 exhibited an r2 of 0.78 and an RMSE of 21 µg m-3. An 208 
analysis of the PM2.5 frequency distribution in Beijing revealed a strong agreement between the 209 
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XGBoost model results and observations for both ambient and local PM2.5. As illustrated in Fig. 210 
S1, local and ambient PM2.5 in Beijing display a distinct seasonal variation, with higher values 211 
in winter and lower values in summer. However, the transport of clean air masses from the 212 
north diminishes the seasonal variation characteristics of ambient PM2.5 in Beijing, making 213 
winter pollution less prominent compared to other seasons. 214 

Fig. S2 reveals that ambient pollution events (PM2.5 > 75 µg m-3) in Beijing are primarily 215 
influenced by air masses originating from the south and west, particularly under the control of 216 
westward air masses. With the exception of December (Fig. 3b1), westward air masses often 217 
bring higher monthly average PM2.5 to Beijing. Air masses originating from the south region 218 
can also transport more pollutants to Beijing (Fig. S2). However, unlike the high-frequency 219 
polluted air masses from the west, southward air masses are associated with higher PM2.5 220 
concentrations, particularly during autumn and winter (Fig. 3c1). This phenomenon can be 221 
attributed to the higher pollution levels in Hebei and Shandong provinces compared to Beijing 222 
during these seasons, as verified by AOD observations from Moderate Resolution Imaging 223 
Spectroradiometer (MODIS) on the Aqua satellites over Eastern China (Zhang and Reid, 2010; 224 
Hu et al., 2018) (Fig. S4). Notably, in contrast to westward transport, air masses from the south 225 
region in February predominantly exhibited a cleaning effect on Beijing, even before 2017 (Fig. 226 
S2b). This can be explained by the occurrence of these transport processes during or shortly 227 
after the Spring Festival, a period characterized by extremely low anthropogenic emissions, 228 
resulting in lower ambient PM2.5 compared to local emissions in the megacity of Beijing. 229 
Following the implementation of the Action Plan, the polluted air masses from the south region 230 
transitioned from carrying higher PM2.5 to levels close to local emission concentrations in 231 
Beijing, leading to a more equal contribution to pollution and clean events in the area (Fig. 232 
S3c1). 233 

3.2 Impact of clean air masses from transported regions on PM2.5 in Beijing 234 

In this study, clean air masses are defined as those associated with ambient PM2.5 in the Beijing 235 
area that are lower than the concentrations resulting from local emissions, as illustrated below 236 
the dashed line in Fig. 3a1-d1. This study reveals that clean air masses predominantly originate 237 
from the east and north regions during the period 2013-2020, which is consistent with previous 238 
studies (Zhang et al., 2018; Hu et al., 2020). Clean air masses from different directions exhibit 239 
similar seasonal variations in their ability to reduce locally emitted pollution in Beijing, with a 240 
strong reduction effect in winter and a weaker effect in summer (Fig. 3a2-d2). This 241 
phenomenon is closely related to the seasonal variations in pollutant emissions. Due to the 242 
combined influence of increased residential emissions from heating activities and 243 
meteorological conditions in Beijing during autumn and winter, local PM2.5 in Beijing presents 244 
higher concentrations. Consequently, the influx of clean air masses results in a more 245 
pronounced reduction in PM2.5 during these seasons. The weaker attenuation effect of PM2.5 246 
transported from the south region during December and January can be attributed to the high-247 
frequency and high-concentration pollution contributions from air masses originating in this 248 
region during this period. 249 
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Due to a significant reduction in anthropogenic emissions after 2017, the attenuation of PM2.5 250 
concentrations by clean air masses from all directions was significantly lower than before 2017 251 
(Fig. S5a2-d2). Compared to the period prior to 2017, the mean attenuation of PM2.5 252 
concentrations in Beijing decreased by 3, 10, 3, and 7 µg m-3 (p < 0.01) for air masses 253 
originating from the north, west, south, and east regions, respectively. 254 

3.3 Variations in Beijing PM2.5 concentrations under transport-induced pollution events 255 

Transport-induced pollution events in Beijing are defined as the occurrence of ambient PM2.5 256 
exceeding both local PM2.5 and the light pollution standard (75 µg m-3). Fig. 4a1-d1 demonstrate 257 
that the monthly variation of PM2.5 in Beijing generally follows a unimodal pattern, with higher 258 
values in winter and lower values in summer, except when under the influence of eastern air 259 
mass transport. This phenomenon is closely related to the seasonal variations in anthropogenic 260 
emissions in China and the characteristics of climate change (Renhe et al., 2014; Li et al., 2017a; 261 
Zhang et al., 2015). The overall PM2.5 in Beijing under the influence of eastward pollution air 262 
masses exhibits a bimodal distribution, with frequent high-concentration pollution events 263 
occurring in January and October. Even after the effective control of anthropogenic emissions 264 
in 2017, a second peak of high-concentration pollution persists in October (Fig. 4d2). Fig. 4a2-265 
d2 illustrate the effectiveness of the Action Plan in controlling pollutant concentrations in the 266 
Beijing area. Since 2017, PM2.5 in Beijing has been significantly lower than the values observed 267 
before 2017 during transport-induced pollution events. Moreover, during January and from 268 
June to September, there were periods when the regional transport of polluted air masses from 269 
a fixed direction did not contribute to pollution events in Beijing. 270 

An analysis of the proportion of transport-induced pollution events from different regions in 271 
Beijing (Fig. 5) shows that after the implementation of the Action Plan in 2017, the number of 272 
pollution events dominated by regional transport decreased significantly. From spring to winter 273 
(defined as January-February and December of the same year in this study), the largest decrease 274 
in transport-induced pollution events occurred in the north, west, west and south regions in each 275 
season, with the lowest decrease occurring in the east region during winter. Among all regions, 276 
the east region exhibited the smallest decrease in transport-induced pollution events. This is 277 
likely due to the fact that eastward air masses have already been contributing a significant 278 
amount of clean air to the region. 279 

The temporal variation in the number of transport-induced pollution events from different 280 
regions (Fig. S6) revealed that air masses transported from the west region contributed to the 281 
most frequent pollution events in each season except summer. The highest number of events 282 
occurred in spring 2016 (322), autumn 2016 (375), and winter 2017 (308). Summer transport-283 
induced pollution events were mainly influenced by polluted air masses transported from the 284 
south, with a gradual decrease in the number of events over the years. Although pollution events 285 
in Beijing primarily occur in autumn and winter, this study found that after 2017, the season 286 
when Beijing was most affected by transport-induced pollution events was spring, contributing 287 
a total of 685 pollution events, while autumn and winter contributed 266 and 392 events, 288 
respectively. The impact of polluted air masses on summer transport was minimal, with only 289 
215 occurrences. 290 
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Fig. 5a shows that in spring, transport-induced pollution events in Beijing were mainly 291 
dominated by polluted air masses transported from the west and south. The highest proportion 292 
of regional transport events from the west occurred in 2016, reaching 68%, while the highest 293 
proportion of southward transport-induced pollution events occurred in spring 2020. The 294 
increased frequency of pollution air masses transported from the south after 2017 can be 295 
attributed to the effective control of anthropogenic emissions, resulting in a decrease in PM2.5 296 
transported from various regions, especially from westward sources (Fig. S6a). The decrease 297 
in the proportion of pollution events transported from the west, which originally accounted for 298 
a large proportion, led to an increase in the contribution of remaining incoming air masses to 299 
Beijing.  300 

Before 2017, transport-induced pollution events in Beijing during summer were mainly 301 
affected by polluted air masses from the south. Even in 2015, when the proportion of transport-302 
induced pollution events from south region was lowest during the entire period, it still 303 
accounted for 50% of the total number of transport-induced pollution events that year. However, 304 
after the implementation of the Action Plan, the proportion of transport-induced pollution 305 
events from the south region gradually decreased from 57% to 25%. Meanwhile, pollution air 306 
masses originating from the east increasingly dominated the occurrence of pollution events in 307 
Beijing. 308 

Transport-induced pollution events in Beijing mainly originated from the west and had the 309 
highest contribution proportion in autumn before 2019 (except for 2013, when the contribution 310 
proportion was 34%, second only to southward air masses at 35%). After 2019, the contribution 311 
of eastward air masses became dominant in autumn. In winter, polluted air masses from the 312 
west were the main source of transport-induced pollution events. In 2020, the east region, 313 
previously believed to contribute significant amounts of clean air, substantially contributed to 314 
transport-induced pollution events across various seasons. This finding may prompt Beijing to 315 
prioritize emission reduction in the east region when implementing future joint prevention and 316 
control measures. 317 

4 Conclusion 318 

This study combined a machine learning method and Concentration-Weighted Trajectory 319 
(CWT) analysis to derive local emissions and ambient observed PM2.5 in Beijing from 2013 to 320 
2020, thus the contribution of regional transport to PM2.5 in Beijing can be quantified. The 321 
impact of clean air masses (defined as those with ambient PM2.5 concentrations lower than local 322 
emissions) mainly originated from the east and north regions. These clean air masses from 323 
different directions exhibited similar seasonal variations in their ability to reduce ambient 324 
pollution in Beijing, with a stronger reduction effect in winter and a weaker reduction effect in 325 
summer. 326 

Except for the regional transport from the east region, the seasonal variation of PM2.5 in Beijing 327 
under the influence of transport-induced pollution events (ambient PM2.5 exceeding both local 328 
PM2.5 and 75 µg m-3) shows a general trend of high concentrations in winter and low 329 
concentrations in summer. The main reason for this phenomenon is related to the seasonal 330 
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emissions of pollutants in China and the characteristics of climate change. Before 2019, the 331 
west region was the primary source of pollution events during autumn and winter. However, 332 
starting from 2019, the east region became the main contributor of polluted air masses in 333 
autumn. Additionally, among all regions, the east region exhibited the smallest decrease in 334 
transport-induced pollution events after 2017. 335 

From 2013 to 2020, local emissions were the main contributors to pollution events in Beijing. 336 
However, the Air Pollution Prevention and Control Action Plan, implemented by the Chinese 337 
government in 2017, more effectively mitigated pollutants caused by regional transport 338 
compared to local emissions, particularly during autumn and winter. This finding suggests that 339 
Beijing should prioritize reducing local emissions while also accounting for potential 340 
contributions from the east region in its future pollution prevention and control strategies. 341 

 342 
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Figures and captions 509 

 510 

Fig. 1. Temporal evolution of parameters used in the XGBoost model: (a) PM2.5; (b) U-wind, 511 

V-wind, and total precipitation; (c) 2-m minimum temperature and surface pressure; (d) 2-m 512 

maximum temperature and planetary boundary layer height; (e) 2-m temperature and relative 513 

humidity; (f) air mass fraction in contributing sources derived from the Concentration-514 

Weighted Trajectory (CWT) model for a 1-day backward trajectory. The red vertical line with 515 

arrows indicates the implementation of environmental regulations. Typical examples of the 516 

CWT model analysis are shown for (g) a local emission period (25 August 2013) and (h) a 517 

regional transport period (15 July 2013). 518 
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 520 

Fig. 2. Comparison of XGBoost model estimates and measurements for (a1) ambient PM2.5 and 521 

(a2) local PM2.5 using testing samples from 2020. Frequency distributions of PM2.5 observations 522 

(black lines) and XGBoost model predictions (red lines) obtained through fivefold cross-523 

validation for (b1) ambient PM2.5 and (b2) local PM2.5. 524 
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 526 

Fig. 3. Monthly variations of the difference between ambient and local PM2.5 from the (a1) 527 

North, (b1) West, (c1) South, and (d1) East regions. Right panels show monthly variations of 528 

PM2.5 reductions caused by regional transport for the corresponding source regions in the left 529 

panels. The upper and lower boundaries represent the 75th and 25th percentiles, respectively, 530 

while the solid origin represents the average value. 531 
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 533 

Fig. 4. Monthly variations of transport-induced PM2.5 pollution (ambient PM2.5 exceeding local 534 

PM2.5 and 75 µg m-3) from the (a1) North, (b1) West, (c1) South, and (d1) East regions during 535 

2013-2020. Right panels show monthly variations of transport-induced PM2.5 pollution before 536 

(black) and after (red) 2017 for the corresponding source regions in the left panels. The upper 537 

and lower boundaries represent the 75th and 25th percentiles, respectively, while the solid origin 538 

represents the average result. 539 
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 541 

Fig. 5. Histograms depict the annual fraction of transport-induced pollution events in each 542 

direction relative to the total number of occurrences from 2013 to 2020 during (a) spring, (b) 543 

summer, (c) autumn, and (d) winter. Pie charts illustrate the proportion of transport-induced 544 

pollution events in each direction for each year within the corresponding seasons. 545 
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