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Abstract 29 

Fine particulate matter (PM2.5) is closely linked to human health, with its sources generally 30 
divided into local emissions and regional transport. This study combined concentration-31 
weighted trajectory (CWT) analysis with the HYSPLIT trajectory ensemble to obtain hourly-32 
resolution pollutant source results. The Extreme Gradient Boosting (XGBoost) model was then 33 
employed to simulate local emissions and ambient PM2.5 in Beijing from 2013 to 2020. The 34 
results revealed that clean air masses influencing the Beijing area mainly originated from the 35 
north and east regions, exhibiting a strong winter and weak summer pattern. Following the 36 
implementation of the Air Pollution Prevention and Control Action Plan (Action Plan) by the 37 
Chinese government in 2017, pollution in Beijing decreased significantly, with the most 38 
substantial reduction in regional transport pollution events occurring in the west region during 39 
summer. Regional transport pollution events were most frequent in spring, up to 1.8 times 40 
higher than in winter. Pollutants mainly originated from the west and south regions, while 41 
polluted air masses from the east showed the least reduction, and the proportion of pollution 42 
sources from this region was gradually increasing. From 2013 to 2020, local emissions were 43 
the main contributors to pollution events in Beijing. The Action Plan has more effectively 44 
reduced pollution caused by regional transport, particularly during autumn and winter. This 45 
finding underscores the importance of Beijing prioritizing local emission reduction while also 46 
considering potential contributions from the east region to effectively mitigate pollution events. 47 

Keywords: Fine particulate matter (PM2.5); concentration-weighted trajectory (CWT); 48 
XGBoost model; regional transport 49 
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1. Introduction 51 

Ambient fine particulate matter (PM2.5, with particle aerodynamic diameter ≤ 2.5 µm) is 52 
influenced by both natural sources, such as dust, volcanic eruptions, tsunamis, and forest fires, 53 
and anthropogenic emissions, including fuel combustion, transportation, and industrial 54 
production. Anthropogenic emissions dominate the long-term trend of air pollution (Zhang et 55 
al., 2019; Cheng et al., 2019). Numerous epidemiological studies have found that PM2.5 can 56 
significantly damage human health by exacerbating respiratory and cardiovascular diseases 57 
(Bartell et al., 2013; Brauer et al., 2012; Pascal et al., 2014), and also has an impact on weather 58 
and climate change (Wang et al., 2014; Smith et al., 2020; Kalisoras et al., 2023). China's rapid 59 
and energy-intensive development over the past several decades has led to severe air pollution 60 
and negative public health impacts (Huang et al., 2014; Geng et al., 2021). Consequently, 61 
controlling pollution and reducing PM2.5 concentrations became an urgent issue in China. While 62 
meteorological variations caused about 16% of the ambient PM2.5 decline during 2013-2017 63 
(Zhang et al., 2019), the uncertainty in reducing PM2.5 through meteorological conditions is 64 
substantial, and the magnitude of the decrease is not dominated by human actions. Thus, the 65 
primary means of controlling PM2.5 relies on reducing anthropogenic emissions. To address this 66 
issue, the Chinese government implemented the Air Pollution Prevention and Control Action 67 
Plan (denoted "Action Plan") from 2013 to 2017 and the Blue Sky Protection Campaign from 68 
2018 to 2020, which effectively controlled anthropogenic emissions and reduced ambient PM2.5 69 
concentrations (Zhang et al., 2019; Du et al., 2022). 70 

The concentration of PM2.5 can be attributed to local emissions and regional transport. Several 71 
methods, such as the HYSPLIT model (Draxler and Rolph, 2010), can be used to distinguish 72 
pollutant sources. Wu et al. used the HYSPLIT model to simulate the 24-hour backward 73 
trajectory in Zhoushan (Wu et al., 2021), and identified continental air masses that spent more 74 
than 5% of the previous 24 hours over the continent region, while the remaining air masses 75 
were identified as oceanic-influenced air masses. Ding et al. employed a backward trajectory 76 
ensemble to analyze the sources of air masses in Beijing during the study period (Ding et al., 77 
2019), finding that air masses with high concentrations of black carbon (BC) mass mainly came 78 
from the south and southeast regions. Cluster analysis on backward trajectories can be used to 79 
obtain the main direction of aerosols over a period of time, allowing for the analysis and 80 
determination of dominant air mass directions. For instance, Li et al. divided the sources of air 81 
masses in the Wuhan area from October to November 2019 into short transport distance, 82 
northbound air masses, and regional transport from the northeast and some coastal areas (Li et 83 
al., 2022). 84 

The HYSPLIT model results are mainly used to view air mass trajectories, making it difficult 85 
to directly determine the sources of pollutants. Potential source contribution function (PSCF) 86 
and concentration-weighted trajectory (CWT) analyses based on backward trajectories can be 87 
used to identify the sources of pollutants through conditional probability results. Hu et al. used 88 
weighted PSCF to analyze the sources of air masses with different levels of pollution in Beijing 89 
and found that polluted air masses from the southwest were an important source of high-level 90 
advections during the study period, while light pollution was often accompanied by the regional 91 
transport originating from the northeast region (Hu et al., 2020). Wu et al. used CWT to analyze 92 
the sources of pollution in Zhoushan and found that pollutants in Zhoushan are influenced by 93 
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both local emissions and regional transport. There are no obvious high pollution areas, while in 94 
other seasons, PM2.5 mainly originates from southern Jiangsu and Shanghai (Wu et al., 2024). 95 
However, these studies relied on standard HYSPLIT trajectory results, which have lower 96 
temporal resolution, limiting the accuracy of pollutant source identification. 97 

The Lagrangian air pollution dispersion model, Numerical Atmospheric-dispersion Modelling 98 
Environment (NAME) (Jones et al., 2007) can determine the source of polluted air masses by 99 
simulating particulate concentrations within each grid point using Monte Carlo methods, 100 
followed by 3-D trajectories of plume basins. Liu et al. used the NAME model to study the 101 
sources of air masses in Beijing during the winter of 2019 and divided them into local emissions 102 
and regional transport to analyze the convective mixing process of BC under the influence of 103 
local emissions (Liu et al., 2020). However, due to limitations in computing resources, the 104 
NAME model is difficult to use for obtaining long-term emission source analysis results. 105 

Multiple methods can be used to predict PM2.5 concentrations, such as statistical models (e.g., 106 
linear mixed-effect models and generalized additive models) (Fang et al., 2016; Ma et al., 2016), 107 
chemical transport model (CTM)-based algorithms (Geng et al., 2015; Kong et al., 2021), 108 
physical models (Lin et al., 2018), and recently emerging machine learning models, including 109 
Extreme Gradient Boosting (XGBoost) and Random Forest (Liang et al., 2020; Wei et al., 2021; 110 
Xiao et al., 2018; Xue et al., 2019; Huang et al., 2021). Geng et al. used satellite observations 111 
of aerosol optical depth (AOD) and meteorological data combined with the XGBoost model to 112 
explore the long-term variations of PM2.5 caused by changes in meteorological conditions from 113 
2000 to 2018 (Geng et al., 2021). Kleine Deters et al. demonstrated the relevance of statistical 114 
models based on machine learning for predicting PM2.5 concentrations from meteorological 115 
data (Kleine Deters et al., 2017). This method of predicting aerosol concentrations using only 116 
meteorological data has been widely used (Asadollahfardi et al., 2016; Zeng et al., 2021). For 117 
instance, Grange et al. used meteorological data, synoptic scale weather patterns, and time 118 
variables to explain daily PM10 concentrations in Switzerland (Grange et al., 2018). In summary, 119 
machine learning models have achieved high accuracy in estimating and predicting PM2.5 120 
concentrations and have high use value, and the rise of machine learning methods has also 121 
provided feasibility for quantifying the contribution of regionally transported air masses. 122 

In this study, we combined CWT analysis with the HYSPLIT trajectory ensemble to obtain 123 
hourly-resolution PM2.5 source results and used this approach to distinguish between local 124 
emissions and regional transport. Solved the problems of traditional CWT methods being 125 
unable to obtain hourly time accuracy and models such as NAME consuming a large number 126 
of computational resources. Predictive XGBoost models were developed for Beijing using 127 
meteorological data and time variables to explain PM2.5 concentrations. By training the 128 
XGBoost model with PM2.5 dominated by local emissions, which are separately distinguished 129 
by CWT, and generalizing the findings to all study periods, the concentration of locally emitted 130 
PM2.5 (local) can be obtained. Similarly, ambient observed PM2.5 (ambient) can be determined 131 
by training the XGBoost model with ambient PM2.5 data. The contribution of regional transport 132 
to PM2.5 in Beijing can be quantified by comparing the ambient and local PM2.5 concentrations. 133 

 134 
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2. Materials and methods 135 
2.1 Site and instrumentation 136 

The PM2.5 data (Fig. 1a) were obtained from in situ air quality monitoring conducted by the 137 
China National Environmental Monitoring Center from 2013 to 2020. The monitoring station 138 
is located in Haidian Wanliu (39.96°N, 116.29°E), situated in the central urban area of Beijing. 139 
Meteorological data, including temperature, relative humidity, pressure, precipitation, wind 140 
speed, and planetary boundary layer height (PBLH), were sourced from the European Centre 141 
for Medium-Range Weather Forecasts (ECMWF) ERA5 hourly reanalysis dataset 142 
(https://cds.climate.copernicus.eu/datasets). In this study, a year was divided into four quarters: 143 
Spring (March, April, and May), Summer (June, July, and August), Autumn (September, 144 
October, and November), and Winter (December, January, and February). 145 

 146 

2.2 Air mass source 147 

The air mass trajectory data were obtained from the 1°×1° horizontal and vertical wind fields 148 
of the Global Data Assimilation System (GDAS) reanalysis products 149 
(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1), which are available every 3 hours. The 150 
HYSPLIT trajectory ensemble was used to generate 27 equally probable 24-hour backward air 151 
mass trajectories for the target point (39.96°N, 116.29°E, 250 m a.s.l.) in every hour by using 152 
PySplit (Cross, 2015). Given the equal probability of air masses being transported to the target 153 
point for each trajectory in the HYSPLIT trajectory ensemble, a conditional probability CWT 154 
analysis was applied to determine the hourly source area of pollution. 155 

In the CWT analysis method, each grid point is assigned a weight, and the contribution of each 156 
grid point to the pollutant concentration at the target site is calculated using the air mass 157 
residence time and pollutant concentration (Hopke et al., 1993; Polissar et al., 1999; Xu and 158 
Akhtar, 2010) (equation 1). The grid point resolution was set to 0.25°×0.25° for this study. In 159 
equations 1, 𝐶!" is the average weighted concentration at grid point (i, j), l is the trajectory 160 

index, M represents the total number of trajectories, 𝐶#  is the PM2.5 concentration 161 
corresponding to the target site, and 𝜏!"# is the residence time of trajectory l passing through 162 

the grid point. In calculation, the number of trajectories falling on each grid point is used instead 163 
of the residence time. 164 

 𝐶!" =
∑ %!×'"#!$
!%&
∑ '"#!$
!%&

 (1) 165 

To reduce the effect of small values of 𝑛!", the CWT values were multiplied by an arbitrary 166 
weight function 𝑊&𝑛!,"' to better reflect the uncertainty in the values for these grids (equation 167 
2).  168 

 𝑊&𝑛!,"' =

⎩
⎪
⎨

⎪
⎧1.00, 3𝑛)*+ < 𝑛!"
0.70, 1.5𝑛)*+ < 𝑛!" ≤ 3𝑛)*+
0.4, 𝑛)*+ < 𝑛!" ≤ 1.5𝑛)*+
0.17, 𝑛!" ≤ 𝑛)*+

 (2) 169 

where 𝑛!"  represents the number of trajectories that fall within the grid point, and 𝑛)*+ 170 

represents the average number of trajectories passing through each grid point. 171 

https://cds.climate.copernicus.eu/datasets
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The potential source contribution to PM2.5 at the target site was investigated by categorizing the 172 
backward air masses into five different source regions centered around Beijing: local (which is 173 
a region around central Beijing, 115.3~117.5°E, 39.4~41°N); north region (the northern plateau 174 
at 108~117.5°E, 41~43°N); west region (the western plateau at 108~115.3°E, 34~41°N); south 175 
region (the southern plain at 115.3~120°E, 34~39.4°N); and east region (the eastern plain at 176 
117.5~120°E, 39.4~43°N). The concentration is integrated over each grid point in each 177 
segregated region obtained from the CWT analysis, and the contributions of each air mass 178 
fraction are obtained. The region with the highest contribution is used to determine the 179 
dominant source of air masses in Beijing at each time, classifying the overall air mass sources 180 
into local emissions (Fig. 1g) and regional transport (Fig. 1h). It is important to note that local 181 
emission periods were also influenced by persistent regional transport, and vice versa. 182 

 183 

2.3 Deriving the long-term local emission and ambient PM2.5 184 

An XGBoost model is employed to derive the local and ambient PM2.5 results. The 185 
hyperparameters used in the model for local (ambient) conditions include a maximum number 186 
of boosting iterations of 6067 (13421), a learning rate of 0.1, a maximum tree depth of 7 (11), 187 
a minimum sum of instance weight needed in a child of 5 (3), a subsampling ratio of 0.8 (0.6) 188 
for training instances, and a subsampling ratio of 0.8 for columns when constructing each tree. 189 
The input parameters for the XGBoost model comprise meteorological variables (temperature, 190 
relative humidity, wind speed, surface pressure, and precipitation) and temporal parameters 191 
(year, month, day of the week, and day of the year), as referenced from Xu et al. (Xu et al., 192 
2023). Additionally, PBLH, which has been shown to significantly impact pollutant 193 
concentrations in previous observational (Su et al., 2018; Miao and Liu, 2019; Miao et al., 2019) 194 
and machine learning studies (Xiao et al., 2021; Li et al., 2017b; Shen et al., 2018), was included 195 
as an input parameter. Based on the XGBoost learning results, the most sensitive parameters 196 
for both local and ambient PM2.5 are RH, wind field, surface pressure and PBLH (Fig. S1). For 197 
the machine learning process, data from 2013 to 2019 were used for training the XGBoost 198 
models, while data from 2020 were used for model validation. Note that the 2020 analysis 199 
results may contain some uncertainties due to the impact of COVID-19. 200 

The relatively small proportion of high-concentration PM2.5 can lead to underestimation of 201 
high-concentration events in the model results (Wei et al., 2020). To address this issue, a high 202 
PM2.5 indicator was defined as a daily average PM2.5 concentration exceeding the monthly 203 
average plus twice the standard deviation. In this study, original high PM2.5 indicators accounted 204 
for 6% of the data points during the period dominated by local and ambient PM2.5. To balance 205 
the proportion of high-concentration PM2.5 in the entire database, the Synthetic Minority Over-206 
sampling Technique (SMOTE) (Torgo, 2011) was applied during data preprocessing. SMOTE 207 
artificially generates new synthetic samples along the line between high-concentration data 208 
points and their selected nearest neighbors, effectively oversampling the high-concentration 209 
data. As a result, the proportion of high PM2.5 indicators increased to 21% and 22% for local 210 
and ambient PM2.5, respectively. 211 



 
7 

Hyperparameter optimization and performance evaluation of the model were conducted using 212 
fivefold cross-validation (CV), while early stopping with a patience of 10 rounds was employed 213 
to prevent overfitting. (Akritidis et al., 2021; Zhang et al., 2020). In this approach, 20% of the 214 

data is randomly selected for model testing, while the remaining 80% is used for training. This 215 
process is repeated five times, ensuring that each record is used once as testing data. The 216 
coefficient of determination (r2) was employed to assess the correlation between the XGBoost 217 
model predictions and observed values, while the root mean square error (RMSE) was used as 218 
a performance evaluation statistic. After obtaining the relation between the input parameters 219 
and PM2.5, we are able to derive the hourly local and ambient PM2.5 once all long-term input 220 
parameters (Fig. S3). 221 

3 Results and discussion 222 

3.1 Evaluation of the XGBoost PM2.5 prediction model 223 

During the model validation process, the XGBoost model results for ambient PM2.5 (Fig. 2a2) 224 
demonstrated an r2 of 0.74 and an RMSE of 20 µg m-3 when compared to observations. The 225 
XGBoost model results for local PM2.5 exhibited an r2 of 0.78 and an RMSE of 21 µg m-3. An 226 
analysis of the PM2.5 frequency distribution in Beijing revealed an agreement between the 227 
XGBoost model results and observations for both ambient and local PM2.5. The error between 228 
XGBoost learning results and actual observed PM2.5 values is mainly concentrated in the low 229 
concentration stage. This may be attributed to the significant reduction in human activities 230 
during the COVID-19 lockdown periods, which led to a decrease in actual PM2.5 levels, making 231 
it challenging for XGBoost to learn (Fig. 2b1 and b2). As illustrated in Fig. S2, local and 232 
ambient PM2.5 in Beijing display a distinct seasonal variation, with higher values in winter and 233 
lower values in summer. However, the transport of clean air masses from the north diminishes 234 
the seasonal variation characteristics of ambient PM2.5 in Beijing, making winter pollution less 235 
prominent compared to other seasons. 236 

Fig. S3 reveals that ambient pollution events (PM2.5 > 75 µg m-3) in Beijing are primarily 237 
influenced by air masses originating from the south and west, particularly under the control of 238 
westward air masses. Numerous studies have indicated that air masses originating from the 239 
western region significantly contribute to regional pollution events in Beijing (Streets et al., 240 
2007; Tian et al., 2019; Liu et al., 2020). With the exception of December (Fig. 3b1), westward 241 
air masses often bring higher monthly average PM2.5 to Beijing. Air masses originating from 242 
the south region can also transport more pollutants to Beijing (Fig. S3). However, unlike the 243 
high-frequency polluted air masses from the west, southward air masses are associated with 244 
higher PM2.5 concentrations, particularly during autumn and winter (Fig. 3c1). This 245 
phenomenon can be attributed to the higher pollution levels in Hebei and Shandong provinces 246 
compared to Beijing during these seasons, as verified by AOD observations from Moderate 247 
Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellites over Eastern China 248 
(Zhang and Reid, 2010; Hu et al., 2018) (Fig. S4). Notably, in contrast to westward transport, 249 
air masses from the south region in February predominantly exhibited a cleaning effect on 250 
Beijing, even before 2017 (Fig. S3b). This can be explained by the occurrence of these transport 251 
processes during or shortly after the Spring Festival, a period characterized by extremely low 252 
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anthropogenic emissions, resulting in lower ambient PM2.5 compared to local emissions in the 253 
megacity of Beijing. Following the implementation of the Action Plan, the polluted air masses 254 
from the south region transitioned from carrying higher PM2.5 to levels close to local emission 255 
concentrations in Beijing, leading to a more equal contribution to pollution and clean events in 256 
the area (Fig. S5c1). 257 

3.2 Impact of clean air masses from transported regions on PM2.5 in Beijing 258 

In this study, clean air masses are defined as those associated with ambient PM2.5 in the Beijing 259 
area that are lower than the concentrations resulting from local emissions, as illustrated below 260 
the dashed line in Fig. 3a1-d1. This study reveals that clean air masses predominantly originate 261 
from the east and north regions during the period 2013-2020, which is consistent with previous 262 
studies (Zhang et al., 2018; Hu et al., 2020). Clean air masses from different directions exhibit 263 
similar seasonal variations in their ability to reduce locally emitted pollution in Beijing, with a 264 
strong reduction effect in winter and a weaker effect in summer (Fig. 3a2-d2). This 265 
phenomenon is closely related to the seasonal variations in pollutant emissions. Due to the 266 
combined influence of increased residential emissions from heating activities and 267 
meteorological conditions in Beijing during autumn and winter, local PM2.5 in Beijing presents 268 
higher concentrations. Consequently, the influx of clean air masses results in a more 269 
pronounced reduction in PM2.5 during these seasons. The weaker attenuation effect of PM2.5 270 
transported from the south region during December and January can be attributed to the high-271 
frequency and high-concentration pollution contributions from air masses originating in this 272 
region during this period. 273 

Due to a significant reduction in anthropogenic emissions after 2017, the attenuation of PM2.5 274 
concentrations by clean air masses from all directions was significantly lower than before 2017 275 
(Fig. S6a2-d2). Compared to the period prior to 2017, the mean attenuation of PM2.5 276 
concentrations in Beijing decreased by 3, 10, 3, and 7 µg m-3 (p < 0.01) for air masses 277 
originating from the north, west, south, and east regions, respectively. 278 

3.3 Variations in Beijing PM2.5 concentrations under transport-induced pollution events 279 

Transport-induced pollution events in Beijing are defined as the occurrence of ambient PM2.5 280 
exceeding both local PM2.5 and the light pollution standard (75 µg m-3). Fig. 4a1-d1 demonstrate 281 
that the monthly variation of PM2.5 in Beijing generally follows a unimodal pattern, with higher 282 
values in winter and lower values in summer, except when under the influence of eastern air 283 
mass transport. This phenomenon is closely related to the seasonal variations in anthropogenic 284 
emissions in China and the characteristics of climate change (Renhe et al., 2014; Li et al., 2017a; 285 
Zhang et al., 2015). The overall PM2.5 in Beijing under the influence of eastward pollution air 286 
masses exhibits a bimodal distribution, with frequent high-concentration pollution events 287 
occurring in January and October. Even after the effective control of anthropogenic emissions 288 
in 2017, a second peak of high-concentration pollution persists in October (Fig. 4d2). Fig. 4a2-289 
d2 illustrate the effectiveness of the Action Plan in controlling pollutant concentrations in the 290 
Beijing area. Since 2017, PM2.5 in Beijing has been significantly lower than the values observed 291 
before 2017 during transport-induced pollution events. Moreover, during January and from 292 
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June to September, there were periods when the regional transport of polluted air masses from 293 
a fixed direction did not contribute to pollution events in Beijing. 294 

An analysis of the proportion of transport-induced pollution events from different regions to 295 
Beijing (Fig. 5) shows that after the implementation of the Action Plan in 2017, the number of 296 
pollution events dominated by regional transport decreased significantly. From spring to winter, 297 
the largest decrease in transport-induced pollution events occurred in the north, west, west and 298 
south regions in each season, with the lowest decrease occurring in the east region during winter.  299 

The temporal variation in the number of transport-induced pollution events from different 300 
regions (Fig. S7) revealed that air masses transported from the west region contributed to the 301 
most frequent pollution events in each season except summer. The highest number of events 302 
occurred in spring 2016 (322), autumn 2016 (375), and winter 2017 (308). Summer transport-303 
induced pollution events were mainly influenced by polluted air masses transported from the 304 
south, with a gradual decrease in the number of events over the years. Although pollution events 305 
in Beijing primarily occur in autumn and winter, this study found that after 2017, the season 306 
when Beijing was most affected by transport-induced pollution events was spring, contributing 307 
a total of 685 pollution events, while autumn and winter contributed 266 and 392 events, 308 
respectively. The impact of polluted air masses on summer transport was minimal, with only 309 
215 occurrences. 310 

Fig. 5a shows that in spring, transport-induced pollution events in Beijing were mainly 311 
dominated by polluted air masses transported from the west and south. The highest proportion 312 
of regional transport events from the west occurred in 2016, reaching 68%, while the highest 313 
proportion of southward transport-induced pollution events occurred in 2017 (with the 314 
exception of 2020, which may have been influenced by the COVID-19 pandemic). The 315 
increased frequency of pollution air masses transported from the south after 2017 can be 316 
attributed to the effective control of anthropogenic emissions, resulting in a decrease in PM2.5 317 
transported from various regions, especially from westward sources (Fig. S7a). The decrease 318 
in the proportion of pollution events transported from the west, which originally accounted for 319 
a large proportion, led to an increase in the contribution of remaining incoming air masses to 320 
Beijing.  321 

Before 2017, transport-induced pollution events in Beijing during summer were mainly 322 
affected by polluted air masses from the south region. Even in 2015, when the proportion of 323 
transport-induced pollution events from south region was lowest during the entire period, it still 324 
accounted for 50% of the total number of transport-induced pollution events that year. However, 325 
after the implementation of the Action Plan, the proportion of transport-induced pollution 326 
events from the south region gradually decreased to 38%. In 2020, this proportion further 327 
declined to 25%, but this may have been affected by the COVID-19 pandemic. Meanwhile, 328 
pollution air masses originating from the east increasingly dominated the occurrence of 329 
pollution events in Beijing. 330 

Transport-induced pollution events in Beijing mainly originated from the west and had the 331 
highest contribution proportion in autumn before 2019 (except for 2013, when the contribution 332 
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proportion was 34%, second only to southward air masses at 35%). After 2019, the contribution 333 
of eastward air masses became dominant in autumn. In winter, polluted air masses from the 334 
west were the main source of transport-induced pollution events. Overall, as the Action Plan 335 
gradually improved, the transport-induced pollution from the east did not decrease significantly 336 
compared to other air mass sources. This may be because the eastward air masses are mostly 337 
clean. However, as the concentration of polluted air masses from other sources decreases, the 338 
potential impact of eastward air masses on Beijing's transport-induced pollution events 339 
increases. This finding may prompt Beijing to prioritize emission reduction in the east region 340 
when implementing future joint prevention and control measures. 341 

4 Conclusion 342 

This study combined a machine learning method and Concentration-Weighted Trajectory 343 
(CWT) analysis to derive local emissions and ambient observed PM2.5 in Beijing from 2013 to 344 
2020, thus the contribution of regional transport to PM2.5 in Beijing can be quantified. The 345 
impact of clean air masses (defined as those with ambient PM2.5 concentrations lower than local 346 
emissions) mainly originated from the east and north regions. These clean air masses from 347 
different directions exhibited similar seasonal variations in their ability to reduce ambient 348 
pollution in Beijing, with a stronger reduction effect in winter and a weaker reduction effect in 349 
summer. 350 

Except for the regional transport from the east region, the seasonal variation of PM2.5 in Beijing 351 
under the influence of transport-induced pollution events (ambient PM2.5 exceeding both local 352 
PM2.5 and 75 µg m-3) shows a general trend of high concentrations in winter and low 353 
concentrations in summer. The main reason for this phenomenon is related to the seasonal 354 
emissions of pollutants in China and the characteristics of climate change. Before 2019, the 355 
west region was the primary source of pollution events during autumn and winter. However, 356 
starting from 2019, the east region became the main contributor of polluted air masses in 357 
autumn. Additionally, among all regions, the east region exhibited the smallest decrease in 358 
transport-induced pollution events after 2017. 359 

From 2013 to 2020, local emissions were the main contributors to pollution events in Beijing. 360 
However, the Air Pollution Prevention and Control Action Plan, implemented by the Chinese 361 
government in 2017, more effectively mitigated pollutants caused by regional transport 362 
compared to local emissions, particularly during autumn and winter. This finding suggests that 363 
Beijing should prioritize reducing local emissions while also accounting for potential 364 
contributions from the east region in its future pollution prevention and control strategies. 365 

 366 

Code and data availability 367 

The codes used in this study are archived on Zenodo: the machine learning code at 368 
https://doi.org/10.5281/zenodo.14677125, the CWT code at 369 
https://doi.org/10.5281/zenodo.13994400, ECMWF data at 370 

https://doi.org/10.5281/zenodo.13994400


 
11 

https://doi.org/10.5281/zenodo.14353871, GDAS data at 371 
https://doi.org/10.5281/zenodo.14347277, HySplit Trajectory Ensemble at 372 
https://doi.org/10.5281/zenodo.14375567, and PySPLIT at 373 
https://doi.org/10.5281/zenodo.14354765. The meteorology and PM2.5 data used in this study 374 
can be accessed at https://dx.doi.org/10.17632/bhfktx3kz8.2. 375 

Author contribution 376 

Kang Hu, Hong Liao and Dantong Liu designed and carried out the experiments. Kang Hu 377 
wrote the code and final paper with contributions from all other authors. Hong Liao, Dantong 378 
Liu, Lei Chen and Jianbing Jin reviewed and edited the paper. 379 

 380 

Competing interests 381 

The contact author has declared that none of the authors has any competing interests. 382 

 383 

Acknowledgements 384 

This research was supported by the China Postdoctoral Science Foundation (2023M741773), 385 
Postdoctoral Fellowship Program of CPSF (GZC20231150), National Natural Science 386 
Foundation of China (42021004, 42405192). 387 

 388 

Reference 389 

Akritidis, D., Zanis, P., Georgoulias, A. K., Papakosta, E., Tzoumaka, P., and Kelessis, A.: 390 
Implications of COVID-19 restriction measures in urban air quality of Thessaloniki, Greece: A 391 
machine learning approach, Atmosphere, 12, 1500, 2021. 392 

Asadollahfardi, G., Madinejad, M., Aria, S. H., and Motamadi, V.: Predicting Particulate Matter 393 
(PM2. 5) Concentrations in the Air of Shahr‐e Ray City, Iran, by Using an Artificial Neural 394 
Network, Environmental Quality Management, 25, 71-83, 2016. 395 

Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, 396 
ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents 397 
with coronary artery disease, Environmental health perspectives, 121, 1135-1141, 2013. 398 

Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., 399 
Krzyzanowski, M., Martin, R. V., and Van Dingenen, R.: Exposure assessment for estimation 400 
of the global burden of disease attributable to outdoor air pollution, Environmental science & 401 
technology, 46, 652-660, 2012. 402 

https://doi.org/10.5281/zenodo.14353871
https://doi.org/10.5281/zenodo.14347277
https://doi.org/10.5281/zenodo.14375567
https://doi.org/10.5281/zenodo.14354765
https://dx.doi.org/10.17632/bhfktx3kz8.2


 
12 

Cheng, N., Cheng, B., Li, S., and Ning, T.: Effects of meteorology and emission reduction 403 
measures on air pollution in Beijing during heating seasons, Atmospheric Pollution Research, 404 
10, 971-979, 2019. 405 

Cross, M.: PySPLIT: a Package for the Generation, Analysis, and Visualization of HYSPLIT 406 
Air Parcel Trajectories, SciPy, 133-137,  407 

Ding, S., Zhao, D., He, C., Huang, M., He, H., Tian, P., Liu, Q., Bi, K., Yu, C., and Pitt, J.: 408 
Observed interactions between black carbon and hydrometeor during wet scavenging in mixed‐409 
phase clouds, Geophysical Research Letters, 46, 8453-8463, 2019. 410 

Draxler, R. and Rolph, G.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) 411 
model access via NOAA ARL READY website (http://ready. arl. noaa. gov/HYSPLIT. php). 412 
NOAA Air Resources Laboratory, Silver Spring, MD, 25, 2010. 413 

Du, H., Li, J., Wang, Z., Chen, X., Yang, W., Sun, Y., Xin, J., Pan, X., Wang, W., and Ye, Q.: 414 
Assessment of the effect of meteorological and emission variations on winter PM2. 5 over the 415 
North China Plain in the three-year action plan against air pollution in 2018–2020, Atmospheric 416 
Research, 280, 106395, 2022. 417 

Fang, X., Zou, B., Liu, X., Sternberg, T., and Zhai, L.: Satellite-based ground PM2. 5 estimation 418 
using timely structure adaptive modeling, Remote Sensing of Environment, 186, 152-163, 2016. 419 

Geng, G., Zhang, Q., Martin, R. V., van Donkelaar, A., Huo, H., Che, H., Lin, J., and He, K.: 420 
Estimating long-term PM2. 5 concentrations in China using satellite-based aerosol optical 421 
depth and a chemical transport model, Remote sensing of Environment, 166, 262-270, 2015. 422 

Geng, G., Xiao, Q., Liu, S., Liu, X., Cheng, J., Zheng, Y., Xue, T., Tong, D., Zheng, B., and 423 
Peng, Y.: Tracking air pollution in China: near real-time PM2. 5 retrievals from multisource 424 
data fusion, Environmental Science & Technology, 55, 12106-12115, 2021. 425 

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest 426 
meteorological normalisation models for Swiss PM 10 trend analysis, Atmospheric Chemistry 427 
and Physics, 18, 6223-6239, 2018. 428 

Hopke, P. K., Gao, N., and Cheng, M.-D.: Combining chemical and meteorological data to infer 429 
source areas of airborne pollutants, Chemometrics and Intelligent Laboratory Systems, 19, 187-430 
199, 1993. 431 

Hu, K., Kumar, K. R., Kang, N., Boiyo, R., and Wu, J.: Spatiotemporal characteristics of 432 
aerosols and their trends over mainland China with the recent Collection 6 MODIS and OMI 433 
satellite datasets, Environmental Science and Pollution Research, 25, 6909-6927, 2018. 434 

http://ready/


 
13 

Hu, K., Zhao, D., Liu, D., Ding, S., Tian, P., Yu, C., Zhou, W., Huang, M., and Ding, D.: 435 
Estimating radiative impacts of black carbon associated with mixing state in the lower 436 
atmosphere over the northern North China Plain, Chemosphere, 252, 126455, 2020. 437 

Huang, C., Hu, J., Xue, T., Xu, H., and Wang, M.: High-resolution spatiotemporal modeling for 438 
ambient PM2. 5 exposure assessment in China from 2013 to 2019, Environmental Science & 439 
Technology, 55, 2152-2162, 2021. 440 

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, 441 
J. G., Platt, S. M., and Canonaco, F.: High secondary aerosol contribution to particulate 442 
pollution during haze events in China, Nature, 514, 218-222, 2014. 443 

Jones, A., Thomson, D., Hort, M., and Devenish, B.: The UK Met Office's next-generation 444 
atmospheric dispersion model, NAME III, in: Air pollution modeling and its application XVII, 445 
Springer, 580-589, 2007. 446 

Kalisoras, A., Georgoulias, A. K., Akritidis, D., Allen, R. J., Naik, V., Kuo, C., Szopa, S., Nabat, 447 
P., Olivié, D., and Van Noije, T.: Decomposing the Effective Radiative Forcing of 448 
anthropogenic aerosols based on CMIP6 Earth System Models, Atmospheric Chemistry & 449 
Physics Discussions, 2023. 450 

Kleine Deters, J., Zalakeviciute, R., Gonzalez, M., and Rybarczyk, Y.: Modeling PM2. 5 urban 451 
pollution using machine learning and selected meteorological parameters, Journal of Electrical 452 
and Computer Engineering, 2017, 5106045, 2017. 453 

Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H., Zhu, L., and Wang, W.: 454 
A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the 455 
assimilation of surface observations from CNEMC, Earth System Science Data, 13, 529-570, 456 
2021. 457 

Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. 458 
G., and Carmichael, G. R.: MIX: a mosaic Asian anthropogenic emission inventory under the 459 
international collaboration framework of the MICS-Asia and HTAP, Atmospheric Chemistry 460 
and Physics, 17, 935-963, 2017a. 461 

Li, S., Liu, D., Kong, S., Wu, Y., Hu, K., Zheng, H., Cheng, Y., Zheng, S., Jiang, X., and Ding, 462 
S.: Evolution of source attributed organic aerosols and gases in a megacity of central China, 463 
Atmospheric Chemistry and Physics Discussions, 2022, 1-19, 2022. 464 

Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating ground‐level PM2. 5 by fusing 465 
satellite and station observations: a geo‐intelligent deep learning approach, Geophysical 466 
Research Letters, 44, 11,985-911,993, 2017b. 467 



 
14 

Liang, F., Xiao, Q., Huang, K., Yang, X., Liu, F., Li, J., Lu, X., Liu, Y., and Gu, D.: The 17-y 468 
spatiotemporal trend of PM2. 5 and its mortality burden in China, Proceedings of the National 469 
Academy of Sciences, 117, 25601-25608, 2020. 470 

Lin, C., Liu, G., Lau, A. K. H., Li, Y., Li, C., Fung, J. C. H., and Lao, X. Q.: High-resolution 471 
satellite remote sensing of provincial PM2. 5 trends in China from 2001 to 2015, Atmospheric 472 
environment, 180, 110-116, 2018. 473 

Liu, D., Hu, K., Zhao, D., Ding, S., Wu, Y., Zhou, C., Yu, C., Tian, P., Liu, Q., and Bi, K.: 474 
Efficient vertical transport of black carbon in the planetary boundary layer, Geophysical 475 
Research Letters, 47, e2020GL088858, 2020. 476 

Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., and Liu, 477 
Y.: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 2004–2013, 478 
Environmental health perspectives, 124, 184-192, 2016. 479 

Miao, Y. and Liu, S.: Linkages between aerosol pollution and planetary boundary layer structure 480 
in China, Science of the Total Environment, 650, 288-296, 2019. 481 

Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., and Liu, S.: Interaction 482 
between planetary boundary layer and PM 2.5 pollution in megacities in China: a Review, 483 
Current Pollution Reports, 5, 261-271, 2019. 484 

Pascal, M., Falq, G., Wagner, V., Chatignoux, E., Corso, M., Blanchard, M., Host, S., Pascal, 485 
L., and Larrieu, S.: Short-term impacts of particulate matter (PM10, PM10–2.5, PM2. 5) on 486 
mortality in nine French cities, Atmospheric Environment, 95, 175-184, 2014. 487 

Polissar, A., Hopke, P., Paatero, P., Kaufmann, Y., Hall, D., Bodhaine, B., Dutton, E., and Harris, 488 
J.: The aerosol at Barrow, Alaska: long-term trends and source locations, Atmospheric 489 
Environment, 33, 2441-2458, 1999. 490 

Renhe, Z., Li, Q., and Zhang, R.: Meteorological conditions for the persistent severe fog and 491 
haze event over eastern China in January 2013, Science China Earth Sciences, 57, 26-35, 2014. 492 

Shen, H., Li, T., Yuan, Q., and Zhang, L.: Estimating regional ground‐level PM2. 5 directly 493 
from satellite top‐of‐atmosphere reflectance using deep belief networks, Journal of Geophysical 494 
Research: Atmospheres, 123, 13,875-813,886, 2018. 495 

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., 496 
Dufresne, J.-L., Nabat, P., and Michou, M.: Effective radiative forcing and adjustments in 497 
CMIP6 models, Atmospheric Chemistry and Physics, 20, 9591-9618, 2020. 498 

Streets, D. G., Fu, J. S., Jang, C. J., Hao, J., He, K., Tang, X., Zhang, Y., Wang, Z., Li, Z., and 499 
Zhang, Q.: Air quality during the 2008 Beijing Olympic games, Atmospheric environment, 41, 500 
480-492, 2007. 501 



 
15 

Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and 502 
surface pollutants derived from lidar observations over China: regional pattern and influencing 503 
factors, Atmospheric Chemistry and Physics, 18, 15921-15935, 2018. 504 

Tian, P., Liu, D., Huang, M., Liu, Q., Zhao, D., Ran, L., Deng, Z., Wu, Y., Fu, S., and Bi, K.: 505 
The evolution of an aerosol event observed from aircraft in Beijing: An insight into regional 506 
pollution transport, Atmospheric Environment, 206, 11-20, 2019. 507 

Torgo, L.: Data mining with R: learning with case studies, chapman and hall/CRC2011. 508 

Wang, Y., Wang, M., Zhang, R., Ghan, S. J., Lin, Y., Hu, J., Pan, B., Levy, M., Jiang, J. H., and 509 
Molina, M. J.: Assessing the effects of anthropogenic aerosols on Pacific storm track using a 510 
multiscale global climate model, Proceedings of the National Academy of Sciences, 111, 6894-511 
6899, 2014. 512 

Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M.: Reconstructing 513 
1-km-resolution high-quality PM2. 5 data records from 2000 to 2018 in China: spatiotemporal 514 
variations and policy implications, Remote Sensing of Environment, 252, 112136, 2021. 515 

Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., 516 
Liu, L., Wu, H., and Song, Y.: Improved 1 km resolution PM2.5 estimates across China using 517 
enhanced space–time extremely randomized trees, Atmos. Chem. Phys., 20, 3273-3289, 518 
10.5194/acp-20-3273-2020, 2020. 519 

Wu, Y., Liu, D., Wang, X., Li, S., Zhang, J., Qiu, H., Ding, S., Hu, K., Li, W., and Tian, P.: 520 
Ambient marine shipping emissions determined by vessel operation mode along the East China 521 
Sea, Science of The Total Environment, 769, 144713, 2021. 522 

Xiao, Q., Chang, H. H., Geng, G., and Liu, Y.: An ensemble machine-learning model to predict 523 
historical PM2. 5 concentrations in China from satellite data, Environmental science & 524 
technology, 52, 13260-13269, 2018. 525 

Xiao, Q., Zheng, Y., Geng, G., Chen, C., Huang, X., Che, H., Zhang, X., He, K., and Zhang, 526 
Q.: Separating emission and meteorological contributions to long-term 527 
PM&lt;sub&gt;2.5&lt;/sub&gt; trends over eastern China during 2000–2018, Atmospheric 528 
Chemistry and Physics, 21, 9475-9496, 10.5194/acp-21-9475-2021, 2021. 529 

Xu, R., Ye, T., Yue, X., Yang, Z., Yu, W., Zhang, Y., Bell, M. L., Morawska, L., Yu, P., and 530 
Zhang, Y.: Global population exposure to landscape fire air pollution from 2000 to 2019, Nature, 531 
621, 521-529, 2023. 532 

Xu, X. and Akhtar, U.: Identification of potential regional sources of atmospheric total gaseous 533 
mercury in Windsor, Ontario, Canada using hybrid receptor modeling, Atmospheric Chemistry 534 
and Physics, 10, 7073-7083, 2010. 535 



 
16 

Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., and Zhang, Q.: Spatiotemporal 536 
continuous estimates of PM2. 5 concentrations in China, 2000–2016: A machine learning 537 
method with inputs from satellites, chemical transport model, and ground observations, 538 
Environment international, 123, 345-357, 2019. 539 

Zeng, Z., Gui, K., Wang, Z., Luo, M., Geng, H., Ge, E., An, J., Song, X., Ning, G., and Zhai, 540 
S.: Estimating hourly surface PM2. 5 concentrations across China from high-density 541 
meteorological observations by machine learning, Atmospheric Research, 254, 105516, 2021. 542 

Zhang, J. and Reid, J.: A decadal regional and global trend analysis of the aerosol optical depth 543 
using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products, 544 
Atmospheric Chemistry and Physics, 10, 10949-10963, 2010. 545 

Zhang, L., Wang, T., Lv, M., and Zhang, Q.: On the severe haze in Beijing during January 2013: 546 
Unraveling the effects of meteorological anomalies with WRF-Chem, Atmospheric 547 
Environment, 104, 11-21, 2015. 548 

Zhang, L., Zhao, T., Gong, S., Kong, S., Tang, L., Liu, D., Wang, Y., Jin, L., Shan, Y., and Tan, 549 
C.: Updated emission inventories of power plants in simulating air quality during haze periods 550 
over East China, Atmospheric Chemistry and Physics, 18, 2065-2079, 2018. 551 

Zhang, Q., Wu, S., Wang, X., Sun, B., and Liu, H.: A PM2. 5 concentration prediction model 552 
based on multi-task deep learning for intensive air quality monitoring stations, Journal of 553 
Cleaner Production, 275, 122722, 2020. 554 

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., and 555 
Liu, W.: Drivers of improved PM2. 5 air quality in China from 2013 to 2017, Proceedings of 556 
the National Academy of Sciences, 116, 24463-24469, 2019. 557 

 558 

  559 



 
17 

Figures and captions 560 

 561 

Fig. 1. Temporal evolution of parameters used in the XGBoost model: (a) PM2.5; (b) U-wind, 562 

V-wind, and total precipitation; (c) 2-m minimum temperature and surface pressure; (d) 2-m 563 

maximum temperature and planetary boundary layer height; (e) 2-m temperature and relative 564 

humidity; (f) air mass fraction in contributing sources derived from the Concentration-565 

Weighted Trajectory (CWT) model for a 1-day backward trajectory. The red vertical line with 566 

arrows indicates the implementation of environmental regulations. Typical examples of the 567 

CWT model analysis are shown for (g) a local emission period (25 August 2013) and (h) a 568 

regional transport period (15 July 2013). 569 
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 571 

Fig. 2. Comparison of XGBoost model estimates and observations for (a1) ambient PM2.5 and 572 

(a2) local PM2.5 using testing samples from 2020. Frequency distributions of PM2.5 observations 573 

(black lines) and XGBoost model predictions (red lines) for (b1) ambient PM2.5 and (b2) local 574 

PM2.5 using testing samples from 2020. 575 
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 577 

Fig. 3. Monthly variations of the difference between ambient and local PM2.5 from the (a1) 578 

North, (b1) West, (c1) South, and (d1) East regions. Right panels show monthly variations of 579 

PM2.5 reductions caused by regional transport for the corresponding source regions in the left 580 

panels. The upper and lower boundaries represent the 75th and 25th percentiles, respectively, 581 

while the solid origin represents the average value. 582 
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 584 

Fig. 4. Monthly variations of transport-induced PM2.5 pollution (ambient PM2.5 exceeding local 585 

PM2.5 and 75 µg m-3) from the (a1) North, (b1) West, (c1) South, and (d1) East regions. Right 586 

panels show monthly variations of transport-induced PM2.5 pollution before (black) and after 587 

(red) 2017 for the corresponding source regions in the left panels. The upper and lower 588 

boundaries represent the 75th and 25th percentiles, respectively, while the solid origin represents 589 

the average result. 590 
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 592 

Fig. 5. Histograms depict the annual fraction of transport-induced pollution events in each 593 

direction relative to the total number of occurrences from 2013 to 2020 during (a) spring, (b) 594 

summer, (c) autumn, and (d) winter. Pie charts illustrate the proportion of transport-induced 595 

pollution events in each direction for each year within the corresponding seasons. 596 
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