
Dear Editor, 

We thank reviewers for their constructive comments which have greatly improved our 

manuscript. We have now addressed all comments reviewers raised. 

 

Referee: 1 

 

This study combined the HYSPLIT ensemble with CWT to obtain hourly resolution of pollutant 

sources and employed machine learning method to quantify the contributions of local emissions 

and regional transport in Beijing. The article highlights that local emissions were the main cause 

of pollution events in Beijing from 2013 to 2020 and that the Air Pollution Prevention and 

Control Action Plan had a more significant effect on reducing emissions through regional 

transmission. After addressing the following comments, I believe this work has excellent 

potential for publication. 

We are thankful for the valuable comments on our work from the reviewer. 

 

General Comments 

1. Line 43: “was gradually increasing” 

This is now has been revised. 

 

2. Line 44: “contributors to” 

This is now has been revised. 

 

3. Line 122-127: Compared to previous studies that relied solely on CWT analysis with 
HYSPLIT trajectories to distinguish between local emissions and regional transport, what 
specific improvements does your study introduce? In other words, after integrating 
XGBoost models, what are the advantages of your approach in enhancing the analysis? 
What specific problems or limitations of the previous methods does your study address? 
These aspects should be clearly articulated to highlight the improvements and contributions 
of your work. 

We thank reviewer to point this out. This is now added in the revision: 



 

Line 125-127: “In this study, we combined CWT analysis with the HYSPLIT trajectory 
ensemble to obtain hourly-resolution PM2.5 source results and used this approach to distinguish 
between local emissions and regional transport. Solved the problems of traditional CWT 
methods being unable to obtain hourly time accuracy and models such as NAME consuming a 
large number of computational resources.” 

 

4. Line 125: The sentence “Fig. S2 reveals that ambient pollution events (PM2.5>75 µg m−3) 
in Beijing are primarily influenced by air masses originating from the south and west, 
particularly under the control of westward air masses.” It merely presents the observed 
phenomenon that ambient pollution events in Beijing are mainly affected by air masses 
from the south and west, especially under the influence of westward air masses, but fails to 
provide in-depth analysis or explanation for why the westward air masses have a stronger 
influence in certain circumstances. It lacks speculation or reference to relevant studies to 
enhance the understanding of the underlying reasons for this phenomenon. 

We thank reviewer to point this out. This is now added in the revision: 

Line 229-241: “Numerous studies have indicated that air masses originating from the western 
region significantly contribute to regional pollution events in Beijing (Streets et al., 2007; Tian 
et al., 2019; Liu et al., 2020)” 

 

5. Line 142: “which are available every 3 hours.” 

This is now has been revised. 

 

6. Lines 148 to 160: There is an issue with the formula used to calculate the potential source 
region airflow trajectory weight concentration using CWT. Cij represents the average 
weight concentration of the ij-th grid, and Wij is the weight coefficient of grid (i,j) used to 
reduce uncertainty. Therefore, there is no need to multiply by Wij when calculating Cij; 
multiplying by Wij is for calculating WCWT.  

We thank reviewer to point this out. This is now added in the revision: 

Line 156-171: “In the CWT analysis method, each grid point is assigned a weight, and the 
contribution of each grid point to the pollutant concentration at the target site is calculated using 
the air mass residence time and pollutant concentration (Hopke et al., 1993; Polissar et al., 1999; 
Xu and Akhtar, 2010) (equation 1). The grid point resolution was set to 0.25°×0.25° for this 
study. In equations 1, 𝐶!" is the average weighted concentration at grid point (i, j), l is the 
trajectory index, M represents the total number of trajectories, 𝐶# is the PM2.5 concentration 
corresponding to the target site, and 𝜏!"# is the residence time of trajectory l passing through 
the grid point. In calculation, the number of trajectories falling on each grid point is used instead 
of the residence time. 
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To reduce the effect of small values of 𝑛!", the CWT values were multiplied by an arbitrary 
weight function 𝑊&𝑛!,"' to better reflect the uncertainty in the values for these grids (equation 
2).  

 𝑊&𝑛!,"' =

⎩
⎪
⎨

⎪
⎧1.00, 3𝑛)*+ < 𝑛!"
0.70, 1.5𝑛)*+ < 𝑛!" ≤ 3𝑛)*+
0.4, 𝑛)*+ < 𝑛!" ≤ 1.5𝑛)*+
0.17, 𝑛!" ≤ 𝑛)*+

 (2) 

where 𝑛!"  represents the number of trajectories that fall within the grid point, and 𝑛)*+ 
represents the average number of trajectories passing through each grid point.” 

 

7. Line 177-180: The authors employed the XGBoost model to predict PM₂.₅ concentrations, 
using only meteorological, temporal variables and PBLH as input parameters. Considering 
that the data in this study were obtained from national monitoring stations, which typically 
provide detailed information on conventional pollutants (e.g., PM₁₀, SO₂, NOx, O₃, CO), 
would the exclusion of these pollutant data from the model input impact the model’s 
performance? 

 

This study chose to use only meteorological data to learn PM2.5 for two main reasons. Firstly, 
the learned PM2.5 values include both the ambient and the locally emitted PM2.5 values. 
Incorporating ambient PM or AOD values into the machine learning process may impact the 
local emission results. Secondly, numerous studies have confirmed that PM values can be 
obtained using meteorological data combined with machine learning method. 

It is worth noting that many studies also use meteorological data combined with PM or AOD 
values to learn and obtain actual atmospheric PM results. For example, Xiao et al. used AOD 
combined with meteorological data to learn PM2.5, achieving an r2 result around 0.8 (Xiao et 
al., 2021). Similarly, Xu et al. used model-provided PM2.5 combined with meteorological data 
to learn ambient PM2.5 values, obtaining an r2 result around 0.91 (Xu et al., 2023). However, 
despite the addition of AOD and PM parameters, there is still a significant difference in the r2 
values obtained from these studies, suggesting that sufficient training data is another important 
factor affecting the learning results. 

In this study, the ambient and local PM2.5 emissions obtained from meteorological data were 
compared with actual observations, yielding r2 values of 0.74 and 0.78, respectively. These 
learning results are considered acceptable for the purposes of this study. 

 

8. Line 185-195: I’m very interested in how the authors used the XGBoost model to separate 
local PM2.5 from ambient PM2.5, as this could be incredibly valuable for work in this field. 
However, the explanation in this section lacks sufficient detail on how this was achieved. I 



believe other readers might have similar questions. It would be both helpful and necessary 
if the authors could provide more detailed and clear explanations to make the paper easier 
to understand and more applicable. 

We thank reviewer to point this out. This is now added in the revision: 

Line 128-133: “By training the XGBoost model with PM2.5 dominated by local emissions, 
which are separately distinguished by CWT, and generalizing the findings to all study periods, 
the concentration of locally emitted PM2.5 (local) can be obtained. Similarly, ambient observed 
PM2.5 (ambient) can be determined by training the XGBoost model with ambient PM2.5 data. 
The contribution of regional transport to PM2.5 in Beijing can be quantified by comparing the 
ambient and local PM2.5 concentrations.” 

 

9. Line 303: “from the south region” 

This is now has been revised. 

 

10. Why does the manuscript divide the year into four seasons (spring, summer, autumn, and 
winter) instead of four quarters? The commonly understood seasons have time differences, 
and given the long-time span of this study, this could introduce some error. The study needs 
to clearly define how spring, summer, autumn, and winter are defined each year. 

We thank reviewer to point this out. This is now added in the revision: 

Line 143-145: “In this study, a year was divided into four quarters: Spring (March, April, and 
May), Summer (June, July, and August), Autumn (September, October, and November), and 
Winter (December, January, and February).” 

 

11. Based on the CWT combined with the HYSPLIT ensemble, the authors distinguished 
between local emissions and regional transport. However, in the subsequent machine 
learning process, the authors used XGBoost to derive locally emitted PM2.5 and then 
derived the regionally transported PM2.5. Why choose this approach instead of learning 
regional transmission to calculate local emissions? Please explain the reasoning. 

Local emission sources in Beijing have more stable pollution components compared to regional 

transmission. Thus, the results obtained from learning local emission sources are believed to be 

more consistent with actual observed values compared to regional emissions, which are 

influenced by various sources. Therefore, in this study, regional transport contributions are 

determined by subtracting local emissions from the ambient concentrations, rather than learning 

regional transport and calculating local emission values.  
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