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Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny 
 
​
Reviewer (R)​
Authors (A) 
 

 
 
R:  
The paper addresses a very significant issue of load imbalances on (large) parallel runs of 
coupled ESM models. The proposed solution and the developed tool represent a 
meaningful contribution to alleviating the waste of computational resources and giving the 
users of the ESM models a better control over the coupled simulation runs and their 
overhead. 

The current version of the paper is quite polished and, with an exception of a handful of 
mostly technical errors, nearly ready for publication. 

​
A:​
We sincerely appreciate the reviewer's insightful comments, which have helped improve the 
quality of our manuscript. Below, we provide detailed responses to each point raised. 
 
Please note that when we refer to specific line numbers in our responses, they correspond to 
the latest PDF uploaded to the platform, which includes all changes made after incorporating 
the reviewers' feedback. 
 

General comments  
 
R: ​
A suggestion that the authors might want to briefly **discuss in the outlook:** How 



difficult would be an extension of the proposed methodology to heterogeneous/hybrid 
architectures (e.g. CPU-GPU systems)? 
​
A:​
We agree that this should be discussed in the manuscript. We have added it in the outlook (line 
500). Now it reads:​
​
 

At the same time, the increasing adoption of GPU acceleration in Earth System 
modelling software reflects a broader shift towards hybrid computing 
infrastructures. A good example of this trend can be found in the new EuroHPC 
systems, where 7 out of the 8 integrate both CPU and GPU resources. 
Consequently, methodologies for load-balancing must evolve to account for 
these new hybrid architectures. 
While the principles described for the auto-lb approach remain relevant, 
heterogeneous CPU-GPU codes introduce additional complexities.  
The primary challenge lies in controlling the speed at which each component 
has to run to keep the load-balance. In a pure MPI setup, resource 
redistribution is straightforward, as coupled components share a common pool 
of processing elements (PEs, physical cores) and can reallocate them while 
keeping the total amount of parallel resources used constant. 
In contrast, for components running on different hardware (e.g., CPUs and 
GPUs), the term "processing element" has different meanings, and resources are 
not directly interchangeable -a CPU core and a GPU core do not have a 
one-to-one equivalence. 
The authors believe that the overall methodology described for auto-lb could 
be extended to hybrid CPU-GPU ESMs, provided that a standardised definition of 
the computational resources is established. This would allow the optimisation 
process to account for the equivalences and differences between CPUs and GPUs, 
potentially through an application-specific equivalent compute unit metric. 
Such a metric would involve profiling the performance characteristics of each 
component on both types of hardware to guide resource allocation decisions. 

 

Specific comments: 
 
R:​
I suggest to include a column with parallel efficiency in the Table 1. 
A:​
We have updated Table 1 to include the requested column for parallel efficiency. Additionally, we 
have added some missing information to the Table’s caption. 



 

Technical comments:​
 
R: ​
'can not' should be 'cannot' at several places in text 
A:​
This has been corrected in all instances within the manuscript​
​
R: ​
lines 178-181: since a single node is taken as the baseline, processors and processes 
should be replaced with nodes 
A:​
We believe that comparing against a single node or the processors available within that node is 
conceptually equivalent. Since the granularity used in our tables, figures, and results is based 
on processors, we prefer to maintain the original terminology for consistency. 
​
R: ​
line 201: remove the multiplication dot in the denominator 
A:​
This has been corrected in the manuscript. 
 
R: ​
lines 313-314: it seems that Figures 5a and 5b should be referenced there instead of 
Figures 10a and 10b 
A:​
We confirm that there was an error in the references. This has been corrected in the appropriate 
section 5.1 (line 454). 
 
R: ​
line 332: 'worse the original...' should read 'worse than the original...' 
A:​
This has been fixed in the manuscript (line 413) 
​
R:​
Section 5.3: Figure 10 should probably be referenced somewhere within this section 
A:​
As noted in a previous comment, there were inconsistencies in figure references in section 5.3. 
We have reviewed and corrected these references accordingly, as well as some minor 
improvements to the whole paragraph. 
 
 



Answer from authors to Reviewer 2 comments 

​
Reducing Time and Computing Costs in EC-Earth: ​

An Automatic Load-Balancing Approach for Coupled ESMs 
by 

Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny 
 
​
Reviewer (R)​
Authors (A) 
 

 
 
R:  
This article presents an automatic load-balancing approach for coupled ESM runs and 
evaluates it based on EC-EARTH. The methodology can be easily understood.  

​
A:​
We sincerely appreciate the reviewer’s insightful comments, which have contributed to 
improving the quality of our manuscript. In particular, we are grateful for the suggestions 
regarding the state of the art section, the description of our proposed approach, its applicability 
to previously unconsidered scenarios, and the technical corrections. Below, we provide detailed 
responses to each point raised.​
​
Please note that when we refer to specific line numbers in our responses, they correspond to 
the latest PDF uploaded to the platform, which includes all changes made after incorporating 
the reviewers' feedback. 
 

Comments  
 
R1: ​
Although only EC-EARTH is used in the evaluation, the approach proposed should be 
somehow common to other ESMs. So related works (such as the following list) should be 
referenced and compared, to show why the approach in this article is novel, more 
advanced or more effective.  



1.​ D. Kim, J. W. Larson, and K. Chiu, “Automatic performance prediction for load-balancing 
coupled models,” in Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM 
International Symposium on. IEEE, 2013, pp. 410–417. 
 
​
We have improved the section citing the work by Kim et al. and explaining the 
differences with our work. The main difference is that their solution is for dynamic 
load-balancing approaches (solving the load-balance during runtime), which require 
malleability, and that they achieved that by extending the Model Coupling Toolkit (MCT). 
Thus, their solution is not available for most of the climate codes. Furthermore, the 
approach they developed is for an “integrated coupling framework”, where components 
are subroutines merged into a single binary. Instead, what we propose is for coupling 
schemes where different binaries use a coupling library as a Multi-Program Multi-Data 
(MPMD) application. Finally, opposed to our work, their proposed method has not been 
validated against any state-of-the-art ESM, but rather to a “toy” model. 
 
Specifically, now it reads (line 65):​
 

Possibly the most notable contributions to dynamic approaches have been 
done by Kim et al. 2011 to extend the Model Coupled Toolkit (MCT) to 
Malleable MCT (MMCT), enabling malleability and incorporating a 
load-balance manager module. This module decomposes the time of each 
component during a Coupled Interval (CI) into constituent computation 
and constituent coupling. The load-balance manager reallocates PEs from 
the fastest (donor) to the slowest (recipient) component until solution 
improvement ceases.  
This work was further enhanced in Kim et al. (2012b), where MMCT was 
extended with a prediction mechanism that maintains a database of 
PEs-execution times at each iteration, and a manually-generated 
heuristic optimisation to determine new resource configurations that 
reduce the coupling step execution time. Kim et al. (2012a) extended 
this approach to handle applications which have varying workloads during 
the execution. 
 
However, the manually-generated heuristic used for the prediction -based 
on static and manual inspection of coupled model interaction patterns 
and constituents’ computations- becomes impractical for more complex, 
realistic coupled models. 
To address this, Kim et al. (2013) proposed an instrumentation-based 
approach that collects runtime data from the constituents, demonstrating 
how this information can be used to improve coupling performance and 
accelerate the load-balancing decision-making process.  
 
While these approaches have demonstrated significant improvements, they 
are designed for a highly flexible coupling scheme applicable only to 
climate models that adopt the MMCT extension of MCT. As a result, they 
are not suitable for most state-of-the-art ESMs. Moreover, the method 
proposed has not been validated with production ESMs used in climate 
research, but rather with a simplified "toy" model that mimics a 
simulation of the CESM. 
 



In contrast, our proposed solution is not integrated into any specific 
coupler, making it readily accessible to most ESMs used by the climate 
research community that employs an external coupling library to link 
multiple binaries (MPMD) into a single application. 

​
 

2.​ (Nan et al. 2014) CESMTuner: An Auto-Tuning Framework for the Community Earth 
System Model 
 
Added the following in the manuscript (line 98): ​
 

Static load-balancing solutions are well suited for the climate science community due 
to the difficulties found in effectively applying dynamic approaches.​
One of the most significant contributions of static load-balancing is the work by Nan et 
al. (2019, 2014) for CESM, which introduced an auto-tuning component integrated into 
the CESM framework to optimise process layout and reduce model runtime. It 
achieves this by employing a depth-first search (DFS) method with a 
branch-and-bound algorithm to solve a Mixed Integer Nonlinear Programming (MINLP) 
problem, combined with a performance model of the model components to minimise 
search overhead. This approach improves upon the earlier method described by 
Alexeev et al. (2014), which relied on a heuristic branch-and-bound algorithm and a 
less accurate performance model. 

 
 

3.​ (Nan et al. 2019) An automatic performance model-based scheduling tool for coupled 
climate system models 
​
This work is from the same authors as the previous reference (Nan et al. 2014). We 
added the reference, and it has been included in the answer to R1.2​
 

4.​ Balaprakash et al. (2015) Machine-Learning-Based Load Balancing for Community Ice 
Code Component in CESM 

 
We have added the following to the manuscript (line 104):​
 

Later, Balaprakash et al. (2015) proposed a static, 
machine-learning-based load-balancing approach to find high-quality 
parameter configurations for load balancing the ice component (CICE) of 
CESM. The method involves fitting a surrogate model to a limited set of 
load-balancing configurations and their corresponding runtimes. This 
model is then used to efficiently explore the parameter space and 
identify high-quality configurations. Their approach had to take into 
account the six key parameters that influence CICE component 



performance: the maximum number of CICE blocks and the block sizes in 
the first and second horizontal dimensions (x, y); two categorical 
parameters that define the decomposition strategy; and one binary 
parameter that determines whether the code runs with or without a halo. 
They demonstrated that their approach required 6x fewer evaluations to 
identify optimal load-balancing configurations compared to traditional 
expert-driven methods for exploring feasible parameter configurations. 

 
 
 

5.​ (Alexeev et al. 2014) 
https://esmci.github.io/cime/versions/maint-5.6/html/misc_tools/load-balancing-tool.html​
​
This load-balancing tool is based on the Alexeev et al. (2014) paper. Please see answer 
to R1.2 and R1.3​
 

A:​
 
 
Furthermore, we added these paragraphs after discussing the various previous works on CESM 
(R1.2, R1.3, R1.4 and R1.5) to highlight how its coupling strategy differs from that of EC-Earth, 
which uses an external coupling library (line 114):​
 

Importantly, coupling in CESM follows an integrated coupling framework 
strategy (Mechoso et al., 2021), where the climate system is divided into 
component models that function as subroutines within a single executable and 
orchestrated by a coupler main program (CPL7), which coordinates the 
interaction and time evolution of the component models. The coupler also 
allows for flexible execution layouts, enabling components to run 
sequentially, concurrently, or in a hybrid sequential/concurrent mode.  
This coupling strategy differs with approaches that use an external coupler 
(such as OASIS, MCT, or YAC), where existing model codes are minimally 
modified to interface with the coupling library and executed as separate 
binaries on different physical cores, either interleaved or concurrently. 
Furthermore, the performance model used requires generating and analysing 
execution traces to characterize the computation and communication patterns of 
key kernels for each coupled component separately. While this can provide more 
accurate performance representations, it also introduces significant 
challenges in adapting the approach to new components or other ESMs. 

 
 
Moreover, we have also improved the paragraph that already appeared on static approaches 
(line 124):​
 

Other static solutions, such as those proposed by Will et al. (2017) for the 
COSMO-CLM regional climate model and Dennis et al. (2012) for CESM, 
demonstrate that load balancing in widely used ESMs can be approached in a 

https://esmci.github.io/cime/versions/maint-5.6/html/misc_tools/load-balancing-tool.html


relatively simple manner. These methods aim to identify a resource 
configuration where all individual components run at roughly the same speed, 
often constrained by a predefined parallel efficiency threshold. However, as 
we will show, this approach can easily lead to suboptimal solutions. 

 
 
And improved the sections where we presented our approach, which now better captures the 
difference with other related approaches (line 129):​
 

In this work, we present a static load-balancing method, the automatic 
load-balance (auto-lb), designed to improve resource allocation in coupled 
ESMs. Our approach is suited for coupled models that do not support 
malleability, where each component runs on separate cores as an MPMD 
application. Unlike other methods, our approach completely eliminates the need 
to modify any of the component's source codes; instead, it achieves 
load-balance by adjusting the allocation of PEs assigned to each component. To 
accomplish this, we have introduce two new performance metrics: firstly, the 
Partial Coupling Cost to quantify the cost of the coupling per component, and 
secondly, the Fittingness metric to better address the Energy-To-Solution 
(ETS, i.e. minimise the energy consumption) and Time-To-Solution (TTS, i.e. 
minimise the execution time) trade-off prevalent in all non-perfectly scalable 
applications (Abdulsalam et al., 2015).  
These advancements set our method apart from existing approaches that either 
focus exclusively on minimizing execution time (pure TTS) or enforce parallel 
efficiency thresholds that limit speed in an arbitrary manner. 
 
Moreover, the method includes a prediction phase capable of accurately 
estimating coupling performance based solely on the scalability properties of 
the individual model components. Unlike prior work, this eliminates the need 
for instrumenting the code, using profiling software, or trace generation. The 
results of the prediction phase allow our approach to significantly reduce the 
number of real simulations (and thus computational resources) required to 
determine an improved load-balancing configuration.  
 
Finally, the method is fully integrated in a workflow manager, ensuring that 
the process of identifying the best resource configuration requires minimal 
user intervention and aligns with standard practices in climate modelling.  

 
 
R2:​
When obtaining the SYPD (i.e. execution time) for each component model under different 
parallel settings, how long of the simulation should be, and should the initialization cost 
be neglected?​
A:​
Please, see answer for R3 
 
R3: ​
There should be some conditions for using the new approach especially for prediction 
script. For example, the model run should be stable enough, which means multiple runs 



of the same model setting get adjacent runtime. If a HPC runs many applications at the 
same time, runs of the same model setting may not be stable enough. 
 
A:​
We share these concerns about model stability and the potential variability in a shared HPC 
environment, as they are crucial for the reliability of both, the collected measurements and the 
results discussed in the manuscript.​
​
To address these issues, we have already implemented several measures to ensure the 
precision of our performance metrics collection, which were not included in our original 
submission. In response to the reviewers’ feedback, we have dedicated a new section to 
explicitly discuss these topics: 3.3 Model performance stability and measurement uncertainty. 
We have added this section to the manuscript, and for reference, we include the full text below 
(line 280, after section 3.2 Time-to-Solution vs Energy-to-Solution criteria):​
 

3.3 Model performance stability and measurement uncertainty 
 
Evaluating the performance of ESMs inherently involves uncertainty due to the 
variability of HPC environments. Under an ideal scenario, repeated runs of the 
same model setup should yield identical runtimes. However, in practice, HPC 
systems experience fluctuations due to background system load, hardware 
failures, and network congestion. The HPC platform used, MareNostrum4, was 
continuously monitored, and operations receive alerts when performance falls 
below expected levels. Any jobs executed during these periods can be 
identified and discarded to prevent skewed results. Additionally, and to 
further minimise the impact of these factors and ensure the reliability of our 
performance analysis, we have followed practices described below: 
 

-​ Exclusive resource allocation: All jobs were submitted with the 
"-exclusive" clause, which ensures allocated nodes were not shared with 
other running jobs. This minimises performance noise from co-scheduled 
workloads. 

-​ Simulation length: We configured model runs to use longer simulation 
chunks, which helps smooth out machine performance fluctuations. 
Depending on the model speed, we have chosen different chunk sizes. For 
SR runs, we used 1-year chunks, whereas for HR using 3-month chunks was 
enough. IN both cases each chunk has a runtime of ~1h. 

-​ Multiple runs: Each resource configuration (chunk) was executed at least 
twice, and the results were averaged to mitigate fluctuations. 

-​ Ignore the initialisation and finalisation phases:  The initialization 
and finalization phases of an ESM run involve a higher proportion of I/O 
operations for reading initial conditions and writing outputs, making 
them less representative of sustained model performance. To account for 
this, we analysed the runtime deviation of these phases compared to the 



regular time-stepping loop and found that discarding the first and last 
simulated day was sufficient to account only for the regular timesteps. 
This was easily achieved using a dedicated parameter in the load balance 
analysis tool integrated in EC-Earth3  (Maisonnave et al., 2020). 

-​ Run on different times of the day: To account for diurnal fluctuations 
in HPC load, experiments were executed at different times. This was not 
strictly enforced but naturally resulted from using a queue that allowed 
only one job per user at a time. Combined with varying queue wait times, 
this led to experiment jobs running at different times throughout the 
day. 

-​ Manual and post-mortem validation: All reported results underwent manual 
validation. Additionally, once an optimized resource setup was 
identified, a duplicate run was performed to confirm that the observed 
performance improvement was consistent with the initial measurement. 

 
​
 
 
R4: ​
Does NEMO or IFS have different processor layouts under the same number of PEs. For 
example, many models have been parallelized based on the decomposition on both X 
and Y directions. Given 32 PEs, the processor layout can be 1x32, 2x16, 4x8, … Moreover, 
some models may use hybrid MPI and OpenMP. Should the resource configuration take 
consideration of such kind of processor layout? 
 
A:​
IFS and NEMO don’t offer the possibility of defining different processor layouts under the same 
number of PEs. However, this is available in other EC-Earth3 components and ESMs.  
When processor layout variations are considered, the solution space expands significantly, 
increasing the complexity of exploring and finding the best combinations.  
Under these scenarios, we first perform a standalone performance analysis of each component 
that allows different processor layouts. This preliminary analysis helps to identify an optimal 
configuration, which can guide whether specific parameters (e.g., keeping one dimension 
constant) or ratios should be maintained during the coupled analysis. Once determined, this 
information is used inside the load-balancing algorithm for special handling when redistributing 
PEs –particularly when the step (number of PEs to be reassigned between components) is not a 
multiple of the current processor layout. 
 
A similar principle applies to hybrid MPI-OpenMP configurations. The ratio of OpenMP threads 
per MPI rank is generally established during the initial standalone performance analysis of each 
component and remains fixed throughout the load-balancing process.​
 



It is important to emphasize that our methodology specifically addresses load-balancing in the 
coupled system rather than optimizing the standalone performance of individual components. 
While standalone component efficiency directly influences coupled performance, its detailed 
tuning is beyond the primary scope of our approach. We opted to not include this information as 
it does not apply to the configurations discussed in the manuscript. Nonetheless, we have 
added some explanations to this in the  Conclusions section. Which now reads (line 514)*:​
 

Moreover, it is important to highlight that some climate models include 
additional parallelization parameters that influence performance but have not 
been explicitly addressed in this manuscript. These include the ability to 
define different processor layouts (e.g., for 32 PEs, possible configurations 
could be 1×32, 2×16, 4×8, etc.) and the use of hybrid MPI-OpenMP parallelism. 
At present, these aspects are not managed within the auto-lb tool. 
It is important to emphasize that our methodology specifically addresses the 
load-balancing issues rather than optimizing the standalone performance of 
individual components. In cases where processor layouts or hybrid 
configurations must be considered, we first conduct an exploratory standalone 
performance analysis of each component to determine the most efficient 
processor layout and the optimal number of OpenMP threads per MPI rank. These 
parameters are then treated as fixed throughout the load-balancing process. If 
these cases become more readily available, it is possible to update the 
workflow for better handling. 

* The Conclusions section has been significantly improved since the original version, 
incorporating feedback from Reviewer 1 as well. This paragraph appears right after a newly 
added one on how the proposed method would apply to hybrid CPU-GPU computation. For 
further details, please refer to the discussion with Reviewer 1. 
​
 
R5: ​
What is the key idea of the load-balance workflow? Is there any risk of failure in 
convergence? If there is no risk, why?​
A:​
We have extended Section “4.2 Load-balance workflow” to explain better how the iterative 
process will always converge.  Specifically, in line 367:​
 

The outcome of the current iteration is a new set of resource configurations 
which will be submitted in the following iteration. 
The workflow is designed to guarantee convergence. If, at a given iteration, 
the direction of resource transfer changes (i.e., a previously identified 
recipient now becomes a donor), the step size is reduced by half. This 
iterative refinement continues until the step size falls below a 
user-specified threshold (minimum\_step), at which point no further 
meaningful adjustments can be made. The workflow concludes when no new viable 
configurations can be explored or when further refinements produce negligible 
differences in performance. At this stage, the Fittingness (FN) metric is 



evaluated across all tested configurations to determine the optimal resource 
allocation. 

 
 
R6: ​
The word “optimal” has been used many times in the context. How to prove the “optimal” 
configuration is absolutely optimal? “near optimal” may be better.  
A:​
We completely agree that the use of “optimal” was misleading. This has been fixed in all 
occurrences of the manuscript. 
 
R7: ​
Some words in Figure 3 should be improved. For example, “ESM with poor load-balance” 
should be “ESM run with poor load-balance” 
A:​
Figure 3 has been updated, improving the text as suggested by the reviewer. We attach the new 
figure below for reference:​
 

 
​
R8:​
Couplers like OASIS-MCT support flexible coupling lags which can transform concurrent 
run among component models into sequential run where one component model will wait 
in the whole run of another component model. Can the approach in this article be 
effective for such kind of ESM run?​
A: 
Couplers like OASIS-MCT indeed allow for flexible coupling lags, enabling components running 
on separate processors to execute sequentially, where one component remains idle while 
waiting for another to complete its timestep. While this approach has been used in the past, it is 



rarely seen today due to the significant loss of parallel efficiency compared to the concurrent 
execution mode.​
​
The authors believe that auto-lb would nonetheless work in such scenarios. The core challenge 
of load-balancing does not fundamentally change: determining the appropriate parallelisation is 
key to achieving better parallel efficiency within each coupled component (handled by the 
prediction script with the individual scalability curves), as well as finding the parallelisation ratio 
between components to minimise the coupling cost (addressed by the auto-lb workflow).​
​
Even when components run on different physical cores and in sequential mode, increasing the 
processor count of one component may accelerate its execution and, therefore, reduce the idle 
time on any component waiting for its fields. However, by doing so it also increases the cost 
(core-hours) of the accelerated component itself when idle. This tradeoff is still captured by the 
Fittingness metric proposed, which balances execution speed and resource efficiency.​
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