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Abstract. Groundwater contaminant transport problems remain challenging with respect to their computing requirements. This
often limits the exploration of conceptual uncertainty, that is mainly related to large-scale geological features, such as faults,
fractures, and stratigraphic variations, and due to limited characterization. Here, to facilitate geological conceptual uncertainty
exploration, we develop further the use of graph representation for geological models to approximate groundwater flow and
transport. We consider a faulted multi-heterogeneous-layer medium to test our approach. The existing rank correlation between
shortest path distribution from a contaminant source to the model domain outlet and cumulative mass distribution at the outlet
enables to perform scenario selection. The scenario selection approach relies on a metric combining the Jaccard dissimilarity
and the Wasserstein distance to compare binary images. Among a set combining eight alternative scenarios, where three
faults can either act as a flow barrier or a preferential path, we show that the use of graph-approximations allows to retain or
reject scenarios with confidence as well as to estimate the individual probability of a fault to act as a barrier or a path. This
methodology framework opens up possibilities to explore more thoroughly conceptual geological uncertainty for processes

affected by flow and transport.

1 Introduction

Understanding contaminant transport in subsurface heterogeneous environments is critical to predict pollutant fate and support
effective mitigation strategies. Robust modeling approaches are essential to capture the complexity of these systems and pro-
vide reliable predictions(Bear and Cheng, 2010b; Ostad-Ali-Askari and Shayannejad, 2021). Traditional approaches, such as
solving partial differential equations (PDEs) for flow and transport, have been extensively used to model groundwater systems
(Bear and Cheng, 2010a). In particular, MODFLOW 6 is a modeler and solver of differential equations for hydrogeology de-
veloped by the US Geological Survey, which is widely used in the research community. However, these methods often require
high computational resources (Karmakar et al., 2022), which restrain the exploration of heterogeneity or geological structural

uncertainty, such as faults acting as a preferential flow-path or a barrier, despite their control on flow and transport conditions.
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In recent years, new data-driven approaches have emerged as surrogates for contaminant transport simulation. On one hand,
entirely data-based structures have been developed, using various deep learning architectures like transformers (Bai and Tah-
masebi, 2022; Pang et al., 2024). On the other hand, there have been recent attempts involving hybrid models like Physics-
Informed Neural Networks (PINNs), which also include differential equations and boundary conditions as inputs (Meray et al.,
2024). In both cases, the results are promising, but the number of simulations required for model training and the lack of
transferability remains challenging (Luo et al., 2023). Additionally, tests have mainly been conducted in 1D or 2D due to the
significant complexity involved in 3D simulations (Meray et al., 2024).

Graph theory offers a promising alternative to traditional PDE-based models by simplifying the representation of complex
systems, without the costly training of data-driven methods. For this approach, the first step is to create a graph to represent
a geological model. The choice of vertices, edges, and their weights is crucial. Next, an algorithm, often for shortest path
calculation or maximum flow, is applied to the graph. In recent years, these graph-based methods have been primarily used for
studying fracture networks (Hyman et al., 2018; Karra et al., 2018; O’Ghaffari et al., 2011). In such cases, each intersection
between fractures is modeled by a node, and geometric and geological information is stored in the edge weights. The use of
graphs is particularly effective for Discrete Fracture Networks (DFN) due to their high structural complexity, with the number
of elements often being too large to be solved by traditional finite element methods.

Other studies use a graph-based method to approximate the path of minimal hydraulic resistance (or maximal hydraulic
conductivity) in a heterogeneous medium. Graphs are generated with hydraulic resistance as weights, and graph algorithms are
applied. Mishra et al. (2024) simulate random walks on a 3D graph to approximate CO4 plume spreading in a reservoir. Both
Knudby and Carrera (2006) and Rizzo and de Barros (2017) demonstrate in 2D that shortest path algorithms approximate quite
well the trajectory of the fastest particles in the plume and the drawdown signal.

The objective of this paper is to demonstrate how useful and efficient can graph-based approximations of flow and transport
can be to reduce geological concept uncertainty in groundwater applications. To do so, we adapt the approach of Rizzo and
de Barros (2017), that is limited to 2D multi-Gaussian heterogeneous medium. Here we go one step further by integrating
general flow direction information and by doing a comparison with flow and transport simulations, thus improving its consis-
tency with subsurface flow, and extending its application to a 3D case with increased complexity in terms of heterogeneous
aquifer properties, by considering a faulted multi-heterogeneous-layer medium. In particular, rather than focusing solely on
the best path between the source and a set of target nodes, we calculate the minimal distance between the source and each
node, resulting in a distance map. We compare this distance distribution to the distribution of cumulative mass passing through
the outlet, to evaluate the accuracy of our model. We also assess the robustness of the approximation under the uncertainty
of parameters controlling the heterogeneity of subsurface properties. In addition to measuring the performance of this new
method for scenario selection, as compared to using more expensive physics-based numerical solvers, we provide a way to
predict fault behavior a posteriori, based on field measurements.

The manuscript is organised as follows. The methodology employed is described in Sect. 2. It starts by introducing the
synthetic experimental setting (Sect. 2.1) including a description of the medium heterogeneity and the necessary conditions to

numerically solve flow and transport equations. Then, Sect. 2.2 presents how we approximate flow and contaminant transport
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using distance computation through graphs. Section 2.3 specifies the modalities for observing data from the physics-based
model. Section 2.4 introduces metrics to allow the comparison between distance maps from graph computations and cumulative
mass maps. Section 2.5 shows to what extent this method can be applied to the selection of fault scenarios. Section 3 presents
the general results, highlighting the correlation between the distance distributions and the distribution of cumulative masses,
and the effectiveness of the method for scenario selection. Finally, the conclusion and the possibilities for future experiments

are discussed in Sect. 5.

2 Method

2.1 Experimental setting
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Figure 1. Geometry of the synthetic 3D simulation domain. The domain has dimensions L, = 7000 m, L, = 5000 m, and L. = 1000 m, and
is discretized with a structured mesh of cell size Az = 100 m, Ay = 100 m, and Az = 25 m. Three vertical fault planes are located within
the domain, and they are orthogonal to the x-y plane shown in the figure. These faults can either increase or decrease the local conductivity
by a factor of 100, acting respectively as pathways or barriers to flow. The figure also illustrates the direction of the main flow (from left to
right along the x-axis) and the approximate central location of the contaminant injection source, randomly varied within a predefined region

across scenarios.

For this paper, we consider the following synthetic case, depicted in Fig. 1: a fault zone with three vertical faults and three
geological units, each characterized by different heterogeneous property field parameterization, whose properties are detailed

below. The flow propagates primarily in the x direction, with the system’s inlet and outlet maintained at constant head. A
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contaminant is continuously injected approximately in the middle of the model, and we study the transport of this contaminant
until it exits the model at its outlet face. Flow in a heterogeneous porous medium is modeled using Darcy’s law in conjunction
with the continuity equation, which together describe fluid motion based on the principle of mass conservation. Contaminant
transport is modeled using the advection—diffusion equation (ADE), which is based on Darcy’s law for advection and Fick’s law
for diffusion and dispersion. The flow and transport equations are solved using a finite difference solver, applied on a structured
mesh. Faults influence the transport of the contaminant by locally altering the hydraulic conductivity. In this synthetic case, we
assume that the faults can either increase or decrease the conductivity by a factor of 100, with respect to the value assigned by
the underlying multi-Gaussian field in the absence of faults. As such, faults can act either as a pathway (1) or a barrier (-1).
Considering all possibilities, there are 8 possible fault scenarios, designated by a triplet (1, fo, f3) belonging to {—1,1}3. The
highly schematic geometry of the faults was chosen to maximize the variability of the plume depending on the behavior of the
faults. We add further variability by testing 10 possible source positions (Table 1), chosen randomly around a reference point
with coordinates x; = 2000 m, ys = 2500 m, z; = 512.5 m. This results in a total of 80 scenarios, numbered from 0 to 79,

where the tens digit refers to their fault scenario and the units digit refers to the source position.

Table 1. Coordinates of the 10 randomly drawn contaminant source positions.

Source ID ‘ X (m) ‘ Y (m) ‘ Z (m) ‘

2011.82 | 2950.46 | 512.50
1644.16 | 2948.65 | 512.50
1811.83 | 2423.32 | 512.50
2327.70 | 2409.12 | 512.50
2049.59 | 2027.56 | 512.50
2253.51 | 2538.14 | 512.50
1829.73 | 2788.43 | 512.50
1803.19 | 2453.50 | 512.50
1634.04 | 2403.11 | 512.50
1703.46 | 2262.31 | 512.50

O 00 9 N N kA WD = O

The model dimensions are L, = 7000 m, L, = 5000 m, and L, = 1000 m. Spatial discretization is done in cells of size
Az =100 m, Ay = 100 m and Az = 25 m. The primary direction of flow is along the x-axis: the heads at the planes x = 0 m
and z = 7000 m are constant and equal to 100 m and O m, respectively. The other boundaries of the model are constrained by
zero flux. In our study, we assume a point source (one cell) that continuously injects a contaminant at a rate of 50,000 m?/d
with a concentration of 100 units of mass per m>. Each scenario is characterized by unique aquifer properties that are produced
by combining stochastic property field realizations. The subsurface consists of three geological units with average conductivity
of 3.5 x 107° m/s, 8.0 x 10~* m/s and 2.0 x 10~° m/s respectively and constant porosity of 0.25. For each scenario, the

hydraulic log-conductivity (before the effects of faults) of each geological unit is modeled by a spatial random field (SRF) with
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Figure 2. Sections of the hydraulic conductivity field (in m/s) for the fault scenario (1,1,1), where all three faults act as pathways (i.e.,
increase conductivity). The hydraulic conductivity field is generated using a multi-Gaussian spatial random field model with heterogeneous
geological units. (a) Horizontal section at depth index z/Az = 30; (b) Vertical section at lateral index y/Ay = 15. Fault planes are vertical
and orthogonal to the x-y plane. The orange dots represent the possible contaminant injection locations. The black arrow indicates the main

direction of flow (along the x-axis). Axes are labeled in terms of discretization units.

a multi-Gaussian (MG) model, with a standard deviation of 0.4, 0.5 and 0.6 respectively and a correlation length of 8Az,4Ay
and 2Az. The faults are modelled directly on the regular-grid voxet, so each fault occupies an ensemble of face connected

voxels in the model. An example of sections of the hydraulic conductivity field is shown in Fig. 2.
2.2 Graph generation and Computation

In order to take advantage of Dijkstra’s algorithm to find shortest paths between graph nodes and use such a formulation as an
approximation for subsurface contaminant flow and transport, the underlying aquifer model has to be represented as a graph.

Here we explain how the regular-grid discretization of an aquifer model can be converted into a graph.
2.2.1 Graph generation

A graph G(V, E) is defined as a pair comprising a set V of vertices and a set E of edges. Each edge e € E connects two vertices
in V and may have an associated weight. In our study, the graphs are directed, and they always have an associated geometric

dimension. Thus, for each edge e connecting vertex vy to vertex vo, we denote by the vector e the directed vector between
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the two corresponding points in 3D space. Lastly, a path is described as a sequence of vertices where each pair of consecutive
vertices is linked by an edge.

Though the graph is built as an oriented graph, it is similar to a non-oriented graph: all edges are ‘duplicated’ such that for
an oriented edge connecting vertex v; to vertex v, an oriented edge connecting vertex v, to vertex vy exists. We use oriented
edged as a way to integrate general flow information such as the main flow direction.

The hydraulic conductivity fields used by physics-based solvers like MODFLOW 6 are discrete fields, which can be defined
on both regular and non-regular grids depending on the solver settings. In this work, we focus exclusively on hydraulic con-
ductivity fields defined on regular grids within a bounded 3D space. To construct the graph, we choose the center of each cell
in the discrete field mesh as vertices. Two vertices are connected by an edge if their respective cells share a face or a corner.

For an edge e ([e,, ey, e.]) connecting two vertices v1 and v, we can calculate an approximation of the hydraulic conduc-

tivity tensor K (e) along this edge using the harmonic mean:

K(e)=2-(K(v))"' + K(v2)"")~" (D

where K (v1) and K (v2) denote the hydraulic conductivity tensors in the respective cells of vertices v; and vs.
For a given path I' within 3D space, its hydraulic resistance Rr is defined by the following formula (Rizzo and de Barros,

2017):

Re :/\K”(l) dll, @)
I

with dl the incremental length along the path I'.

The concept of hydraulic resistance to groundwater flow is important because the fluid tends to follow paths of minimal
resistance (Le Goc et al., 2010). Note also the similarity of this concept with that of electrical resistance. We can discretize this
definition to apply it to our model. For a given oriented edge e € F, its hydraulic resistance R, can be approximated by the

formula:
Ro=|K'(e)-e|, 3)

where K (e) is the simplified tensor [K 4, Ky, K ..] of the hydraulic conductivity on the oriented edge e ([e;, ey, €]).
Rizzo and de Barros (2017) use this value of hydraulic resistance for their modeling. In our case, in 3D and for a point
source, we found that the results were more conclusive by adding a corrective factor to this formula in the form of a dot

product, preventing paths from going "backwards". For a given edge e € F, its weight w, is defined as:

we = max(fair - €,0) - Re, 4

where fg;, is the main direction of the flow.
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To build the graph, we use all cells of the initial model, keep identical information and resolution, and do not perform
upscaling nor graph reduction. Thus, we obtain a graph with exactly the same resolution as the original simulation space (as
many nodes in the graph as cells in the grid representation), with edge weights that accurately approximate the cost for the

contaminant to traverse that edge.
2.2.2 Computation

The shortest path problem is a classic problem in graph theory. It has several variants, depending on the number of sources,
targets, and the nature of the weights. In our case, we aim to find the shortest paths between a single source (the contaminant
source) and all nodes in the last layer of the model. The algorithm of choice in this case is Dijkstra’s algorithm (Dijkstra, 1959).
The graph utilized is the one generated in section 2.2.1, with each edge e being assigned the weight we from Eq. (4).

Starting from the weighted and directed graph generated in the previous section, we aim to apply a shortest path algorithm
(Dijkstra’s algorithm) between the source and the graph nodes corresponding to the model outlet face (for which the hydraulic
head is set to Om on Fig. 1). Here, the source is a single point, and the model outlet face includes 2000 nodes. Rizzo and
de Barros (2017) calculate only the shortest path between the source and the target set. In contrast, we calculate the minimum
distance between the source and each node in the model outlet face. This process is not costly because, in general, Dijkstra’s
algorithm needs to compute all distances to obtain any particular one. We thus obtain a distance value for each vertex in the
last layer, resulting in a 2D array that can be visualized as an image. An example is provided in Figure 3 (b). In practice, we
used the function "get_shortest_paths" from the Python igraph library (Csardi and Nepusz, 2005), which is compiled in C++.

In the following content, the distance map returned by Dijkstra’s algorithm is denoted as I.
2.3 Observation time

Equivalent simulations were performed with MODFLOW 6 to compare the shortest paths with concentrations calculated nu-
merically. To make the comparison possible, an observation time for the simulation must be chosen. Indeed, while modeling the
geological environment as a graph and calculating shortest paths does not depend on time, the model outlet face concentrations
calculated by MODFLOW 6 can vary considerably depending on the chosen observation time. The question is which value
and at which observation time to compare with the values returned by the Dijkstra algorithm. Logically, one can expect that the
shortest path algorithm will better approximate the path taken by the fastest particles of the fluid rather than the slowest ones.
Therefore, it seems reasonable to choose a relatively short observation time, a First Time of Arrival (FTA). Here, we define it
as the time in the numerical simulation at the point when the cumulative mass that has passed through the last layer reaches
1% of the injected mass during the first time step, similarly as in Rizzo and de Barros (2017). For our observations on the last
layer of the model, we have chosen to examine the cumulative mass that has passed through it since time ¢ = 0 rather than the
concentration, to be less sensitive to this observation time. An example is given in Fig. 3 (a). In what follows, the cumulative
mass map returned by MODFLOW 6 at FTA is denoted as I,,,.
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Figure 3. (a) : Map of the cumulative mass at FTA for scenario 32, (b) : Map of distances between the source and the model outlet face for
scenario 32. Both maps are plotted on the outlet face located at z = 7000 m, using discretized coordinates y/Ay and z/Az. (c) and (d) :

Histogram and mean of two correlation coefficients between the negative of the distances and the cumulative mass over all the 80 scenarios.



2.4 Metrics

160 Comparing briefly the distances map and the cumulative mass map (Fig. 3 (a) and (b)) over the 80 cases, one can see that the

distributions look quite dissimilar. The histograms displaying Pearson and Spearman correlations between the two distributions

have been calculated and can be found in Fig. 3 (c) and (d). The average values for these correlations are around 0.2 for Pearson

and above 0.9 for Spearman. This suggests that while there is a relatively weak correlation between the distributions themselves,

the rankings of the pixels exhibit a strong correlation. What interests us more than the correlation between the two entire arrays

165 are the pixels in [,,, with significant cumulative mass. The preservation of rank correlation enables to compare areas displaying

high values of cumulative mass with areas displaying shortest distances, and suggest that the proposed proxy is relevant. We

want to find a metric that spatially compare the pixels in I, to the pixels in I with low Dijkstra distances. Ideally, given a

number n of pixels in I,,, displaying the highest values of cumulative mass, for a perfect proxy, the pixels in I; displaying the

n shortest distances would share the same locations in the images. This inspires the following method, represented in Fig. 4:
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Figure 4. Method to compare cumulative mass and distance maps. The cumulative mass maps are obtained from a numerical solver (in our

case, MODFLOW 6), while the distance maps are generated by our model using the shortest path to the outlet, computed with Dijkstra’s

algorithm.

170 1. we identify pixels in I,,, where the cumulative mass exceeds a certain threshold, denoting them as significant concentra-

tion zones, defining a set of n points X,,,

2. the n pixels with the smallest distances are selected in /4, defining a second set of points Xy,
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3. for a certain similarity metric p, p(X,,, Xq) is computed.

For step 1., the Otsu thresholding method is utilized (Otsu, 1979). This thresholding method minimizes the intra-class
variance for a distribution. It has the strong advantage of being non-parametric and is considered a reference in computer
graphics. For step 3. of comparing between the two sets of points, the problem is reduced to comparing two binary images,
assigning label 1 to points in the sets of interest and O to others. Numerous metrics exist in the machine learning literature
for segmentation problems. We have chosen to employ two complementary metrics: the Jaccard similarity index and the
Normalized Wasserstein Distance.

The Jaccard index, also known as IoU (Intersection over Union) ratio, quantifies the similarity between two finite sample

sets A and B as follows:

ANB
1402

In our context, the sets in question are the non-zero pixels X,,, and X from each image. The Jaccard index is beneficial because

®)

it evaluates the overlap between the spots in both images and ranges from O (indicating total dissimilarity) to 1 (indicating total
similarity). However, its limitations, as outlined in Wang et al. (2022), include a predisposition towards larger areas rather than
smaller ones. In the latter, a single-pixel error might significantly impact the IoU ratio. Moreover, the index drops to zero with
no overlap between the spots, failing to differentiate between various non-overlapping scenarios, including those where a spot’s
shape remains preserved despite translation.

Another valuable metric is the Wasserstein distance, or Earth Mover Distance , derived from optimal transport theory. This
measure assesses the dissimilarity between two distributions or densities by calculating the ’cost’ of transferring matter from
one distribution to the other. The Wasserstein distance can vary depending on the underlying distance metric; in our study, we
utilize the Euclidean distance, yielding the 2-Wasserstein Distance (W5), which is the square root of the loss from the following

optimization problem:

W3(a,b) = min > 5542 — 72 (6)
JeRin 2=
3
st. 'l=a
1=>o
I'>0

with I'= (’Vi,j)

where a € R™ and b € R! represent the sample weights, or in other words the mass distribution to be displaced, and (Zi>i€{1,...,n} =
({70, 9i}ieqr,...ny and (27)jeq1,...1y = ({25,951 jequ,....1y are the euclidean coordinates of the points from the two samples,
respectively. The solution of the optimization problem I' = (vy; ;) is the optimal transport matrix between the two samples.

In our case, we have two binary images, each of which can be interpreted as a 2D uniform distribution over the pixels with

a value of 1. Each such pixel is assigned a value of 1/k, where k is the number of pixels with value 1 in the respective image,

10
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ensuring that the distribution is properly normalized. Thus, in Eq. 6, we take n = [ = | X,,,| the number of elements of the sets

X, and X4, and we define the weight vectors as :

a=b=— (;”.;)T7

and (2;)ieq1,....n} and (2;)ieq1,... n} as the 2D-coordinates of the elements of the sets X,,, and X4 respectively.

Directly dealing with this distance can be challenging due to its dependence on the data type, including the sample size and
the characteristic distance between samples, and because it does not scale between 0 and 1. An approach, as developed in Wang
et al. (2022), introduces the Normalized Wasserstein Distance (NWD), which scales from O (indicating total dissimilarity) to 1

(indicating total similarity):

C )

where C is "a constant closely related to the dataset" (Wang et al., 2022). C is chosen as the average standard deviation of the

NWD(X,,, X,) = exp (_W)

coordinates of the sets X,,, and X4, calculated across multiple scenarios. The NWD has the advantage of better accounting for
results that are merely translated, correlating closely with the distance between the centers of mass of the distributions (Lipp
and Vermeesch, 2023), but it has the disadvantage of overly penalizing cases where a dissimilar pixel is very far from the areas
of similarity between the two images.

To mitigate this, we have calculated the arithmetic mean of the Jaccard Index and the NWD as a similiraty index, denoting
as f:

NWD (X, Xa) +J (X, Xa)
2

N(Xﬂde) = (8)

Thus, following the method above, we select the pixels of interest in both images I,,, and I3, and we calculate their similarity
index using the function p. Therefore, we define the function p*, which performs all of this for two images I,,, and I; and

returns their similarity:
M*(Imald) ::LL(XTTHXd) (9)

2.5 Method of scenario selection

Suppose we are dealing with a geological setting where we know the conductivity field and the source position, and we have
measurements of the cumulative fluid mass that has traversed the output layer up to the present time. Faults are present, but we
are uncertain whether they behave as preferential path or barrier. Can we predict the nature of these faults using our shortest
path method and our similarity metric 1+? To address this question, we aim to compare the similarity between binary images
generated from MODFLOW 6 (which we consider to be our ground truth or reference data) and those resulting from the
shortest path calculations, as described in the preceding sections.

For a known source position j and conductivity field, let S; be the set of fault scenarios, and ny = |\S| the number of possible

fault scenarios. Let us denote for each scenario s, I, (s) and I4(s) respectively as the arrays of cumulative mass and distances.

11
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Two methods to predict the fault scenario are described in the following sections: one method selects a set of scenarios to

reduce uncertainty, while the other assigns a probability to each fault for its behavior.
2.5.1 Scenarios selection

We are striving to develop a method to identify, from a discrete set of potential scenarios, which scenario aligns with the actual
measurements of cumulative mass in the output layer. However, we have noted that despite the accuracy of the MODFLOW 6
simulation, certain scenarios lack sufficient variability to be distinguished, especially when the fault that distinguishes them has
minimal or no impact on the plume. Thus, given a reference scenario (so € S;), we aim to devise a strategy (represented by a
function f) to select a set f(sg) of scenarios (instead of one scenario) that includes our reference scenario sqg. Equivalently, this
function would reject certain scenarios and thus reduce the uncertainty. This function should rely exclusively on the cumulative
mass map I,,, (so) of so and the set of distance maps from all scenarios {I;(s),s € S;}. Ideally, we would like to find a function
satisfying f(s) = {s} for every scenario s, but as we said this is not always possible due to the low inter-scenario variability of
the model and the approximations of our method based on shortest paths.

Thus, we define the success of a strategy f applied to scenario s, denoted as Y'(f, s):

Y(f,8) = Lisess))s (10)

returning 1 if s € f(s), 0 otherwise. We also define w(f,s), that is the number of scenarios selected by the strategy f for the

scenario s:

w(f,s)=1f(s)| (11)

From these results, we can calculate, for a strategy f, the success rate Y (f) and the average number w(f) over all available
80 scenarios (for all possible sources). We would like to maximize success rate while keeping the average number of selected

scenarios low enough to reject the maximum number of scenarios. Therefore, we seek a strategy with the highest possible ratio
Y(f)
o(f)

We may simply consider the strategy hy, for k € {1,...,n,}, which always randomly selects a subset of S of size k. For
this type of strategy, we obtain a linear response: Y (hy,) = % and w(s) = k. This dummy strategy serves as a baseline for
improvement; a good strategy should display a metric above this linear response.

An idea for a method is for a certain threshold A € [0,1] to retain only the scenarios (s;) such that p* (I, (s),14(s;)) > X .
We thus define the strategy gy, for A € [0,1]:

ga(s) ={t € Sj, " (Im(s), 1a(t)) = A} (12)

Another idea is to select all the scenarios with maximum similarity I. This defines the u strategy:

u(s) =argmax (" (I (5).La(7) ) (13)

12
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2.5.2 Prediction of each fault’s behavior

Another way to learn more about the reference scenario is to attempt to predict the behavior of each individual fault rather than
directly seeking to identify the correct scenario. For a given reference scenario sg, we want to calculate a value interpreted as a
similarity to predict the behavior of its fault 7 (¢ € {1,2,3} in our example). For a given scenario sg, we define the binary value
F;(s0), which equals 1 if fault ¢ is a preferential path in scenario sg, and -1 if it is a barrier.

The sum of similarities between the reference scenario sy and the scenarios where the fault ¢ behave as a path, divided by
the sum of similarities to the reference scenario for all scenarios, returns a value between 0 and 1 that can be interpreted as a
probability:

Zsesj,Fi(s):1 1 (Im(s0),1a(s))
Esesj W (Im (50) ) Id(s))

Indeed, it ranges from O (if s is very dissimilar to the scenarios with ¢ as a preferential path) to 1 (if s¢ is very similar to these

(14)

scenarios). Similarly, the probably for the fault 7 to behave as a barrier for scenario sy can be seen as this normalized sum :

Zsesj.,Fi(s):—l I (Im (50)7‘[11(5))
> es, 1 (Um(50) . Ta(9))

=1 7P(F1'(So) = 1)

This value ranges from 0 and 1 as well, allowing it to be interpreted as a probability. It enables us to predict the behavior of

the fault, by rounding it to O or 1.

3 Results
3.1 General Graph approximation performances

The similarity index described in Sect. 2.4 has been applied to analyse the results of the 80 scenarios. For each scenario, a
MODFLOW 6 simulation is run to obtain the cumulative mass, a graph calculation is performed to obtain a distance map, and
the two outputs are compared via the similarity index. A representative sample of the results can be found in Fig. 5, and the
distribution of similarities is shown in Fig. 6. The mean and median similarity over all scenarios are respectively 0.62 and 0.74.

The similarity value is indicative since it was constructed from two different measures and thus requires some interpretation
to decide if the approximation is *good enough’ or not. Across all results, we observe that the approximation of X,,, by X4
is acceptable when the similarity value is greater than 0.3. Note that what can be considered as a valid threshold for a good
approximation is subject to the user appreciation. If the user is more demanding, they can choose a higher threshold, such as
0.4 or 0.5. In the case of Fig. 5f, we observe that our method captures two out of the three cumulative mass patches present in
the MODFLOW 6 simulation and produces a similarity index of 0.31. We can conclude that the distance map provides a good

indication of where the cumulative mass will be significantly present.

13



295
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Figure 5. Computation of the similarity for scenarios 0 (a), 76 (b), 36 (c), 8 (d), 27 (e), and 10 (f). For each case, on the left side is the
cumulative mass (X,,) at FTA from MODFLOW 6, to which an Otsu thresholding is applied. On the right side, the map of distances (Xg)
is shown, thesholded with the same number of pixels as for cumulated mass map. The similarity values are shown on the top of each figure.

The axes are expressed in discretization units.

Another important result is the comparison of the computational time between the graph-based method and the physics-
based method. We conducted our calculations on our model as well as two others with coarser (Low Resolution) and finer
(High Resolution) resolutions. For the Low resolution, discretization parameters Az, Ay, and Az are multiplied by 2, and
divided by two for the High resolution, resulting in the cell volume being either multiplied or divided by 8. The computation

times are presented in Table 2. We observe that for the method using graphs, generating the graph has a significantly higher
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Figure 6. Histogram of similarity index values computed over all 80 scenarios using the similarity formula from Eq. (9). For each scenario,

the similarity was calculated between the cumulative mass map at FTA and the corresponding distance maps.

Table 2. Duration of each simulation for 3 different model resolutions. The physics-based simulation is conducted with MODFLOW 6, the
graph-based one with the igraph library.

Physics-based simulation | Graph Generation | Dijkstra computation

Low Resolution 10.6s 1.5s 0.02s
Standard Resolution 80s 10s 0.25s
High Resolution 712s 95s 2.6s

cost than calculating the paths. Moreover, the graph generation followed by Dijkstra’s calculation takes approximately 10 times

less computational time than the MODFLOW 6 simulation.
3.2 Scenario selection illustration on two examples

To illustrate the previous methods on a concrete case, we choose scenario number 65 from our database (denoted as sg5), which
has the source position 5 and corresponds to the fault scenario triplet (1,—1,1) (i.e., faults 1 and 3 are paths, and fault 2 is a
barrier). Figure 7 shows the similarity between the cumulative mass map I,,,(sg5) and each of the distance maps from all fault
scenarios I4(s),s € Ss. We can see that two fault scenarios stand out distinctly, fault scenarios (1,—1,—1) and (1,—1,1), thus
including the correct scenario. Indeed, when fault 1 acts as a preferential path and fault 2 as a barrier, most of the flow goes

through fault 1, which reaches the model outlet independently of fault 3 (that could act either as a barrier or a preferential path).
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Figure 7. Cross-similarity between the cumulative mass map at FTA of scenario 65 and the distance maps of all scenarios in S5 (a), and
between the cumulative mass map at FTA of scenario 12 and the distance maps of all scenarios in S2 (b), computed using the similarity

formula from Eq. (9).

Table 3. Probabilities P(F;(s) = 1) for each fault being a preferential path for scenario 12 and scenario 65.

Scenario \ Faultid | Fault 1 | Fault2 | Fault3
S12 0.35 0.49 0.53
565 0.80 0.19 0.51

It means that fault 3 does not influence the shortest path through the graph. Therefore, with the strategies defined in Sect. 2.5.1
g (with any threshold between 0.2 and 0.75) or with the strategy u, we can clearly isolate these two scenarios from the rest,
allowing us to reject 6 out of 8 fault scenarios. If we attempt to predict the faults individually (as in Sect. 2.5.2), we obtain the
probabilities in the second row of the Table 3. The prediction is accurate for faults 1 and 2, but for fault 3, the probability is
very close to 0.5, not allowing any conclusion. For scenario 65, we see that both approaches allow for the clear identification
of the nature of two out of three faults.

Now, let us consider scenario s15 from our database, which has the source position 2 and corresponds to the fault scenario
(—1,—1,1). Looking at Fig. 7, which shows the similarity between the cumulative mass map I,,,(s12) and each of the distance
maps from all fault scenarios 74(s), s € Sa, we can see that it is less clear here. Even if the correct fault scenario has the highest
cross similarity, the difference with the others is not substantial enough to make a confident prediction. Using the second

method and looking at each fault individually, we obtain the probabilities in third row of Table 3. While the prediction for the
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first fault is clearly predicted (correctly) as behaving as a path, the prediction is poor for faults 2 and 3, with probabilities slightly

320 below or above 0.5. Thus, for this scenario, the results are less favorable, with only one fault being confidently identified.

325

3.3 Scenario selection overall results
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Figure 8. Results of scenario identification for different selection functions. Each point corresponds to one strategy f, and its coordinates
corresponds to the average number of scenarios retained w(f) and the success rate Y (f), computed over all 80 cases. The black cross
markers refer to the dummy strategies hg, selecting a constant number of random scenarios. The dot markers refer to the strategies g,
retaining the scenarios with a cross similarity over the threshold A, their color corresponding to the value of A according to the colorbar on
the right. Finally, the red cross marker refers to the strategy u, selecting the scenarios with the maximal cross similarity. We can notice that

both strategies g and w are above the line of the random strategies hy.

The results of the average success rate Y, computed over pairs (80) of fault scenarios (8) and contaminant sources (10), as a
function of the average number of selected scenarios w are presented in Fig. 8. It is evident that all data points lie significantly
above the baseline curve of the h;, functions. Specifically, selecting the g function for A\ = 0.5 yields a precision of Y = 0.8
and an average number of selected scenarios w = 2, which can be interpreted as a confidence of 80% to select the right scenario
when selecting the 2 best scenarios. Close results are obtained with the u function. This shows that with this method we are able
to confidently reject a good portion of the scenarios. Using the probabilities calculated in Equation 14, we can then calculate
the recall and precision for each fault in predicting its behavior. Because there are two possible classes (barrier or path), recall

and precision are calculated for both classes. The results are shown in Fig. 9 with blue markers. Also in Fig. 9, the recall and
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Figure 9. Precision and recall for the classification for each fault, each method, and each class. (a) : class -1 (barrier), (b) : class 1 (path)

precision scores obtained using the cumulative mass results from MODFLOW 6 from start to finish are shown with orange
markers. The fact that these precision and recall are not equal to 1 demonstrates the inherent lack of variability in the data,
i.e. there exists ambiguity between scenarios that cannot be resolved when using the physic based solver. Even with perfect
measurement, we cannot determine the nature of each fault with certainty a posteriori.

We can make the general observation that the results from the graph-based models are within the range of the results from
the physics-based solver. Notably, for Fault 2, the graph-based model even outperforms the physics-based one in predicting its
behavior. This is because the graph method is highly sensitive to the presence or absence of paths with very high conductivity.
Conversely, for Fault 3 (the transverse fault), the results are significantly worse. This is because the Dijkstra paths are minimally
influenced by the nature of Fault 3 due to its geometry: whether it acts as a preferential pathway or a barrier, it only adds a

constant to the length of all the paths.

4 Discussion

This study has confirmed and extended the findings of Rizzo and de Barros (2017) by successfully demonstrating the effec-
tiveness of graph-based methods in approximating contaminant transport in 3D subsurface environments with faults. Using
a graph modelisation very similar to the one of Rizzo and de Barros (2017), but embedding a few improvements, we have

shown that not only the shortest path, but the whole distance map generated by Dijkstra’s algorithm between the source and the
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model’s outlet is rank-correlated with the distribution of cumulative masses flowing through the outlet. The proposed metric,
combining both Jaccard index and Wasserstein distance, and used to compare the graph based distances with the cumulative
mass, is effective to compare binary images and exhibits fairly good spatial similarity between the two maps.

The proposed similarity metric tries to mitigate the drawbacks of each of its components. On one hand, the Jaccard index
penalizes the comparison of small areas, as a single-pixel error might significantly impact the IoU ratio in that case, and cannot
discriminate between non-overlapping scenarios. On the other hand, the NWD penalizes cases where a dissimilar pixel is very
far from the areas of similarity between two images. However, one can note that it is very sensitive to slight changes: a small
shift both decreases the Wasserstein component of the similarity and decreases the Jaccard index.

In addition to the model presented in Sect. 2.1, we tested our method in the absence of faults by varying the multi-Gaussian
field. The results are presented in Appendix A. We first verified that our results align with those of Rizzo and de Barros
(2017). We also studied the uncertainty of the minimal distance point of the outlet and compared it with that of the maximum
cumulative mass point. We demonstrated that the uncertainties were comparable and followed similar trends for different
field parameters. However, the absence of very high conductivity paths (or very low conductivity barriers), which the graph
approximates quite well can explain the mitigated performance of a graph-based approach in a multi-Gaussian setting. So, the
use of the proposed approach is particularly interesting to tests scenarios displaying strong hydraulic conductivity contrasts or
very different pathways.

These results suggest the potential use of graph-based methods as a proxy for groundwater flow simulation. In particular,
when traditional methods are too costly to implement and when the sought-after information is less about the contaminant
concentration values and more about its location on a control plane. This is relevant for scenario selection, which can be
achieved by comparing the locations of contaminants at the outlet. Our experiment described in Sect. 2.5 allowed us to asses
the use of a graph-based method in fault scenarios selection. By comparing the similarity between the cumulative mass result
of a reference scenario and the graph simulations, we can either reject a significant number of scenarios to reduce uncertainty
or calculate a fault-by-fault probability of increasing/decreasing the conductivity. For two of the three faults studied, our results
are close to those obtained with MODFLOW 6.

However, several questions and challenges related to the use of graph-based methods remain unresolved after this study. It
is still necessary to explore the impact of the chosen observation time for the physical data, the possibility of 3D visualization
of the shortest paths, and to test other graph algorithms for approximating groundwater flow. Additionally, the difficulty in
determining a thresholding method for the distance seems to compromise the possibility of completely replacing physics-based
methods. All these questions are detailed in the following paragraphs.

An aspect to consider is the attention given to the observation time. As mentioned in Sect. 2.3, we chose to perform all our
measurements at the First Time of Arrival (FTA). While we use a percentage approach to determine the FTA, an alternative
could be to use a deconvolution approach (Luo and Cirpka, 2008), potentially at greater computing expenses. Then, with our
dataset, the time at which the distribution of cumulative mass is closest to the distribution of distances. However, it would be

necessary to study the quality of the approximation at other observation times as well.
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Additionally, it would be interesting to test the scalability of the approach (e.g. by increasing the regular grid resolution or
simplifying the graph representation) or other graph algorithms to approximate groundwater flow, to potentially increase the
computing efficiency of the approach. In particular, the minimum-cost flow problem Ahuja et al. (1993) could be useful if it
can be properly defined in this context. Specifically, it would be necessary to find a geological value to associate with the notion
of capacity, knowing that hydraulic resistance can be used to represent the cost.

With this graph-based method, we can hope for a true 3D visualization of the plume shape, rather than just the distance
distribution at the outlet. We have conducted some preliminary tests in this direction. The initial idea was to recalculate the
distances between the source and each orthogonal section of the graph using Dijkstra’s algorithm, rather than just the final
section. However, this method was unsuccessful due to the lack of consistency in the distance distribution between different
sections. A more successful idea was to calculate the number of paths passing through each node in the 3D mesh to identify
the most visited nodes. Preliminary figures are presented in Appendix C. A more quantitative study such as comparing results
with streamline-based approaches would be necessary.

Finally, there are two paths open to make the graph-based method fully independent from the physics-based results. The first
would be to find a thresholding method to distinguish the pixels of interest solely based on their distance. We attempted this
in Appendix B, but our results were mixed. The second, more ambitious method would be to find a function ¢ that transforms
the distance distribution I, into an estimate of the cumulative mass I,,, § = ®(Iq). Machine learning approaches could be
considered for this. Developing a truly independent method could significantly reduce computation time, as graph generation
and Dijkstra’s calculation are 10 times less costly than a physics-based simulation.

The investigation of the use of graph structures as proxies for geological processes extends beyond the hydrogeological
application proposed here. While our work could have more general applications to flow and transport in porous media, it has
not been tested yet and could be investigated in future research. Regarding other fields of application, Montsion et al. (2024)
used Dijkstra distances as proxies for the non-Euclidean distance in 2D between geological features, by assigning weights to
edges based on estimated flow properties, and these distances were in turn used as part of a mineral prospectivity analysis. In the
context of building 3D geological models, Graph Neural Networks are being used a framework for understanding relationships
between observations (Hillier et al., 2021, 2023). In both cases the possibilities for constraining the modelling results with
knowledge graphs that share similar architectures (Enkhsaikhan et al., 2021) provides the potential for mapping specific local

knowledge onto larger poorly understood regions.

5 Conclusions

GraphFlow allows for the calculation of Dijkstra paths to generate a distance map for the last layer of the model. We have
demonstrated, by developing an appropriate similarity measure, that for a synthetic case involving a fault zone, these distance
maps are highly rank-correlated (average Spearman coefficient of 0.9) with the distribution of cumulative masses at the First
Time of Arrival (FTA). Moreover, the spatial similarity of the pixels of interest is high (0.62 on average for our similarity

measure).
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This result has enabled us to use this model for scenario selection. For 8 different fault scenarios, comparing their distance
maps significantly reduces uncertainty by selecting a few plausible scenarios with confidence.

Several challenges remain in finding other applications for this method. The main challenge is in making the model indepen-
dent of physics-based results: specifically, finding a threshold based solely on distance to distinguish between pixels of interest

and pixels with negligible cumulative mass.

Appendix A: Validation of the Graph-Based Approximation Method in a Heterogeneous Environment Without Faults

We also tested our graph-based approximation method in a heterogeneous environment without faults. We used the exact same
parameters, but instead of testing variability according to fault behavior, we simulated 50 multi-Gaussian realizations for each
geological unit, resulting in 50 different scenarios. There is only one source position with coordinates z, = 1050 m , y, = 2550
m, z; = 512.5 m.

As in the main body of the paper, the distribution of similarity was calculated, with the mean and median being 0.37 and
0.38, respectively. These results, shown in Fig.A1, are significantly lower but still acceptable (above the qualitative threshold
of 0.3). This can be explained by the absence of very high conductivity paths (or very low conductivity barriers), which the
graph approximates quite well.

For these simulations, we also found it interesting to study the sensitivity of the groundwater flow simulation results to the
parameters of the multi-Gaussian hydraulic conductivity field. This has already been tested in numerous papers for PDE-based
methods only.

Cao et al. (2018) show that the characteristic size of the plume for a 2D simulation, as well as its variance (its uncertainty),
increase when the field variance o increases, and also when the correlation length A increases. Srzic et al. (2013) also demon-
strate that as the heterogeneity of the field increases, the uncertainty about the center of the plume increases as well. We would
like to see if the results from the shortest paths method exhibit similar behavior in response to parameter changes.

Starting from reference values for the standard deviation oy and the correlation length Ay, we successively apply a factor
to vary both parameters. The variable we will focus on is the standard deviation of the position of the point of maximum
cumulative mass at the FTA (respectively, the point of minimal distance). For each standard deviation ¢ and correlation length
A, we generated 50 realizations of the MG field and calculated the standard deviation of the coordinates of the point of
maximum cumulative mass at the FTA (respectively, the point of minimal distance). This represents the uncertainty of the result
for fixed parameters standard deviation o and correlation length A, considering that the exact structure of the conductivity field
is often unknown. By decomposing the results on the y and z axes, we can visualize the results in figure A2. We can observe
that in all cases, the results from Dijkstra’s algorithm follow the trends of the MODFLOW 6 results. Moreover, these trends
are consistent with previously observed results in the literature: as the correlation length and standard deviation increase,
the uncertainty also increases. We can also notice the standard deviations from Dijkstra’s algorithm are either equal to or
significantly greater than those from MODFLOW 6. This means that the uncertainty related to the structure of the conductivity
field is not underestimated by the Dijkstra’s method.
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Figure A1l. Histogram of the similarity index values over all 50 scenarios.

Appendix B: Thresholding Methods for Identifying Significant Points Based on Distance

In Sect. 3, we observed the effectiveness of similarity: for a given number n of pixels (corresponding to the number of pixels
where the cumulative mass at FTA is significant), we compared the set of n pixels with the highest cumulative mass at FTA
X, with the set of n pixels with the smallest distance X ;. However, even with this knowledge, without physics-based data
I, there is no straightforward way to determine which points of I; should be retained as locations where the contaminant
is present in significant quantities, based solely on the ranking of points according to their distance. For instance, we cannot
predict whether the cumulative mass is uniform throughout the entire last layer or highly localized. Therefore, we aim to
automatically determine, using the distribution of distances, a threshold to distinguish between significant and other points,
returning an estimation of the area I where the contaminant is significant. The Otsu algorithm does not work well directly
on distances array I; because the distribution is not suitable for it. By examining the distributions of several scenarios (see Fig.
B1 (a) and (b)), we observe the presence of a peak, typically close to the minimum distance. Empirically, a correct threshold
value consistently lies before this peak.

An attempt we made was to apply an Otsu thresholding to the signal before this peak. It’s even possible to use multi-class
Otsu thresholding to estimate different cumulative mass zones. The results are mixed, and some examples are shown in Fig.

B1 (c) and (d). Often, our auto-thresholding attempt overestimates the area of interest.
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Figure A2. Standard deviation of point of maximum cumulative mass coordinates (resp. point of shortest graph distance coordinates) for

simulations with MODFLOW 6, in blue (resp. with graph method, in orange) as a function of the correlation length of the conductivity field.

Appendix C: 3D Visualization of Dijkstra Pathways

For each vertex, we aim to count the number of Dijkstra paths that pass through these nodes. Using the notations from section
2.2.1, and calling (71, ...,T2000) the set of oriented paths calculated by Dijkstra’s algorithm between the source and the 2000

nodes of the model outlet face, we define the number of paths passing through a vertex v € V as n*(v):

W)= > luen, 1

i€{T )
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465 where 1,cr,} is an indicator function that equals 1 if the vertex v belongs to the path 7;, and 0 otherwise.

In practice, if we consider all the paths between the source and the last layer, we end up with nodes having a high n* value,
but these do not accurately correspond to the actual flow paths of the contaminant. This occurs because arrival points that are
very far away or even at an infinite distance (in the sense of Dijkstra) from the source are counted, meaning the contaminant
has no chance of reaching them. Thus, we realized that restricting the number of nodes to m by selecting only the m closest

470 nodes (in the sense of Dijkstra) to the source yielded better results. For the examples, we arbitrarily chose m = 200, but this

parameter warrants further exploration. Some examples of this method are shown in Figure C1.

Code and data availability. The code to approximate groundwater flow and transport simulations via graph and reproduce the illustration
examples with a set of illustrative notebooks are available at https://doi.org/10.5281/zenodo.13328938 (Moracchini and Pirot, 2024) as the
v1.0 release of the GraphFlow GitHub repository under the MIT license.

475  Author contributions. LM and GP framed the workflow of the proposed approach and developed the Python code and conducted the synthetic
experiments and analysis. MJ participated in framing the idea. MJ and KB contributed to some parts of the code development. LM wrote the

core parts of the manuscript. All co-authors contributed to essential discussions, to the redaction and review of the manuscripts.

Competing interests. The authors have declared that none of them has any competing interests.

Acknowledgements. ChatGPT-4 was used to review some sections of this paper for English-language accuracy.
480 This work is supported by the ARC-funded Loop: Three-dimensional Bayesian Modelling of Geological and Geophysical data (LP210301239)
and by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government’s Cooperative Re-

search Centre Programme. This is MinEx CRC Document 2024/44.

24


https://doi.org/10.5281/zenodo.13328938
https://github.com/21moracchi/GraphFlow

485

490

495

500

505

510

515

References

Ahuja, R., Magnanti, T., and Orlin, J.: Network Flows: Theory, Algorithms, and Applications, Prentice Hall, ISBN 9780136175490, https:
//books.google.com.au/books?id=WnZRAAAAMAAIJ, 1993.

Bai, T. and Tahmasebi, P.: Characterization of groundwater contamination: A transformer-based deep learning model, Advances in Water
Resources, 164, https://doi.org/10.1016/j.advwatres.2022.104217, cited by: 16, 2022.

Bear, J. and Cheng, A.: Modeling Groundwater Flow and Contaminant Transport, vol. 23, ISBN 978-1-4020-6681-8,
https://doi.org/10.1007/978-1-4020-6682-5, 2010a.

Bear, J. and Cheng, A. H.-D.: Modeling Groundwater Flow and Contaminant Transport, Springer, Dordrecht, ISBN 9781402066825, https:
/Nink.springer.com/book/10.1007/978-1-4020-6682-5, 2010b.

Cao, G., Qin, R., Wu, Y., Wu, J., Zengguang, X., and Zhang, C.: Effects of source size, monitoring distance and aquifer heterogeneity
on contaminant mass discharge and plume spread uncertainty, Environmental Fluid Mechanics, 18, https://doi.org/10.1007/s10652-017-
9564-6, 2018.

Csardi, G. and Nepusz, T.: The Igraph Software Package for Complex Network Research, InterJournal, Complex Systems, 1695, 2005.

Dijkstra, E. W.: A note on two problems in connexion with graphs, Numerische Mathematik, 1, 269-271, 1959.

Enkhsaikhan, M., Holden, E.-J., Duuring, P., and Liu, W.: Understanding ore-forming conditions using machine reading of text, Ore Geology
Reviews, 135, 104200, 2021.

Hillier, M., Wellmann, F., Brodaric, B., de Kemp, E., and Schetselaar, E.: Three-dimensional structural geological modeling using graph
neural networks, Mathematical geosciences, 53, 1725-1749, 2021.

Hillier, M., Wellmann, F., de Kemp, E. A., Brodaric, B., Schetselaar, E., and Bédard, K.: GeoINR 1.0: an implicit neural network approach
to three-dimensional geological modelling, Geoscientific Model Development, 16, 6987-7012, 2023.

Hyman, J. D., Hagberg, A., Osthus, D., Srinivasan, S., Viswanathan, H., and Srinivasan, G.: Identifying Backbones in Three-
Dimensional Discrete Fracture Networks: A Bipartite Graph-Based Approach, Multiscale Modeling & Simulation, 16, 1948-1968,
https://doi.org/10.1137/18M 1180207, 2018.

Karmakar, S., Tatomir, A., Oehlmann, S., Giese, M., and Sauter, M.: Numerical Benchmark Studies on Flow and Solute Transport in Geo-
logical Reservoirs, Water, 14, https://doi.org/10.3390/w14081310, 2022.

Karra, S., O’Malley, D., Hyman, J. D., Viswanathan, H. S., and Srinivasan, G.: Modeling flow and transport in fracture networks using
graphs, Phys. Rev. E, 97, 033 304, https://doi.org/10.1103/PhysRevE.97.033304, 2018.

Knudby, C. and Carrera, J.: On the use of apparent hydraulic diffusivity as an indicator of connectivity, Journal of Hydrology, 329, 377-389,
https://doi.org/https://doi.org/10.1016/j.jhydrol.2006.02.026, 2006.

Le Goc, R., de Dreuzy, J.-R., and Davy, P.: Statistical characteristics of flow as indicators of channeling in heterogeneous porous and fractured
media, Advances in Water Resources, 33, 257-269, https://doi.org/https://doi.org/10.1016/j.advwatres.2009.12.002, 2010.

Lipp, A. and Vermeesch, P.: Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and
other geological distributions, Geochronology, 5, 263-270, https://doi.org/10.5194/gchron-5-263-2023, 2023.

Luo, J. and Cirpka, O. A.: Traveltime-based descriptions of transport and mixing in heterogeneous domains, Water Resources Research, 44,
2008.

Luo, J., Ma, X,, Ji, Y., Li, X., Song, Z., and Lu, W.: Review of machine learning-based surrogate models of groundwater contaminant

modeling, Environmental Research, 238, 117 268, https://doi.org/https://doi.org/10.1016/j.envres.2023.117268, 2023.

25


https://books.google.com.au/books?id=WnZRAAAAMAAJ
https://books.google.com.au/books?id=WnZRAAAAMAAJ
https://books.google.com.au/books?id=WnZRAAAAMAAJ
https://doi.org/10.1016/j.advwatres.2022.104217
https://doi.org/10.1007/978-1-4020-6682-5
https://link.springer.com/book/10.1007/978-1-4020-6682-5
https://link.springer.com/book/10.1007/978-1-4020-6682-5
https://link.springer.com/book/10.1007/978-1-4020-6682-5
https://doi.org/10.1007/s10652-017-9564-6
https://doi.org/10.1007/s10652-017-9564-6
https://doi.org/10.1007/s10652-017-9564-6
https://doi.org/10.1137/18M1180207
https://doi.org/10.3390/w14081310
https://doi.org/10.1103/PhysRevE.97.033304
https://doi.org/https://doi.org/10.1016/j.jhydrol.2006.02.026
https://doi.org/https://doi.org/10.1016/j.advwatres.2009.12.002
https://doi.org/10.5194/gchron-5-263-2023
https://doi.org/https://doi.org/10.1016/j.envres.2023.117268

520

525

530

535

540

Meray, A., Wang, L., Kurihana, T., Mastilovic, 1., Praveen, S., Xu, Z., Memarzadeh, M., Lavin, A., and Wainwright, H.: Physics-informed
surrogate modeling for supporting climate resilience at groundwater contamination sites, Computers & Geosciences, 183, 105508,
https://doi.org/https://doi.org/10.1016/j.cageo.2023.105508, 2024.

Mishra, A., Ni, H., Mortazavi, S. A., and Haese, R. R.: Graph theory based estimation of probable CO2 plume
spreading in siliciclastic reservoirs with lithological heterogeneity, Advances in Water Resources, 189, 104717,
https://doi.org/https://doi.org/10.1016/j.advwatres.2024.104717, 2024.

Montsion, R., Perrouty, S., Lindsay, M., Jessell, M., and Sherlock, R.: Development and application of feature engineered geological layers
for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts, Geoscience Frontiers, 15, 101 759,
2024.

Moracchini, L. and Pirot, G.: GraphFlow, https://doi.org/10.5281/zenodo.13328938, 2024.

O’Ghaffari, H., Nasseri, M., and Young, R. P.: Fluid Flow Complexity in Fracture Networks: Analysis with Graph Theory and LBM, 2011.

Ostad-Ali-Askari, K. and Shayannejad, M.: Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar
Aquifer, ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 23, 15 943-15 959, https://doi.org/10.1007/s10668-021-01323-
1,2021.

Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66,
https://doi.org/10.1109/TSMC.1979.4310076, 1979.

Pang, M., Du, E., and Zheng, C.: Contaminant Transport Modeling and Source Attribution With Attention-Based Graph Neural
Network, Water Resources Research, 60, e2023WRO035 278, https://doi.org/https://doi.org/10.1029/2023WR035278, €2023WR035278
2023WR035278, 2024.

Rizzo, C. B. and de Barros, F. P. J.: Minimum Hydraulic Resistance and Least Resistance Path in Heterogeneous Porous Media, Water
Resources Research, 53, 8596-8613, https://doi.org/https://doi.org/10.1002/2017WR020418, 2017.

Srzic, V., Cvetkovic, V., Andricevic, R., and Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute
concentration uncertainty, Water Resources Research, 49, 3712-3728, https://doi.org/https://doi.org/10.1002/wrcr.20314, 2013.

Wang, J., Xu, C., Yang, W., and Yu, L.: A Normalized Gaussian Wasserstein Distance for Tiny Object Detection, 2022.

26


https://doi.org/https://doi.org/10.1016/j.cageo.2023.105508
https://doi.org/https://doi.org/10.1016/j.advwatres.2024.104717
https://doi.org/10.5281/zenodo.13328938
https://doi.org/10.1007/s10668-021-01323-1
https://doi.org/10.1007/s10668-021-01323-1
https://doi.org/10.1007/s10668-021-01323-1
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/https://doi.org/10.1029/2023WR035278
https://doi.org/https://doi.org/10.1002/2017WR020418
https://doi.org/https://doi.org/10.1002/wrcr.20314

(a) (b)

x10-° x10~6
1.2
sl
1.01
0.8 1 61
E 0.6 E
8 841
0.4
5]
0.24
0.0 04
100‘000 200‘000 300‘000 400‘000 500‘000 200‘000 406000 600‘000 800‘000
Distances Distances
3.0
1.0 ©) . . .
Cumulative mass at FTA  Distances with thresholding 55
0.8
2.0
0.6
% 1.5
N
0.4
1.0
0.2 05
0.0 0.0
3.0
3.0 C)
Cumulative mass at FTA  Distances with thresholding 55
2.5 '
20 2.0
15 1.5
1.0 1.0
0.5 0.5
0.0 0.0

Figure B1. (a) and (b) : Densities of the distance for two different simulations. The densities have been computed with a gaussian Kernel.
The presence of a peak close to the shortest distance is to be noticed. (c) and (d) : Two different cases and their corresponding estimated
thresholding on the distances. In both cases, the similarity is already quite good (> 0.5). The colorbars on the right refer to the discrete

classes after the otsu thresholding, it is not meant to approximate the cumulative mass values. The axes are expressed in discretization units.
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Figure C1. Visualisation for two scenarios of the most visited nodes n* and the concentration C' at FTA.
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