# **Positive Aspects**

- The graph-based approach simplifies complex geological models and reduces the computational costs.
- Distance map provides information about the potential pathways of contaminant transport.
- A new similarity measure used to compare the distance map to the cumulative mass distribution.

Thanks for your positive assessment of this work.

### **General Comments**

• The term "groundwater" is often associated with specific subsurface conditions and flow regimes. While the principles of flow and transport in porous media can be applied to groundwater systems, the broader context of the study seems to be more general. It's important to use more accurate and inclusive terminology to avoid potential misunderstandings, a suggestion could be to use *porous media*.

Our work is motivated by groundwater applications, as stated in the introduction. It is also illustrated with a groundwater synthetic case. While such work could have more general applications to flow and transport in porous media, it has not been tested. Nonetheless it could be tested and applied in other setting.

The following sentence has been added in the last paragraph of the discussion:

"While our work could have more general applications to flow and transport in porous media, it has not been tested yet and could be investigated in future research."

Including fault scenarios might seem unnecessary if the method doesn't perform well for cases without faults, as Appendix A shows.

- Justify the Fault Scenarios: If the fault scenarios are crucial for real-world applications, provide stronger justification. Perhaps there are specific geological settings where faults significantly impact flow and transport.
- Under this specific scenario, explore the limitations of the graph-based approach to justify the range of the metric that is considered acceptable.
- Appendix A needs to include details of parametrization for the MODFLOW simulation.

Exploring conceptual uncertainty such as different fault scenarios is a key motivation of our work, as highlighted in the introduction. As explained in Appendix A, the absence of very high conductivity paths (or very low conductivity barriers), which the graph approximates quite well can explain the mitigated performance of a graph-based approach in a multi-Gaussian setting. So, the use of the method is particularly interesting to tests scenarios displaying different types of hydraulic conductivity contrasts or pathways. In

Appendix A, we already state that the same parameters are used but we could precise 'same flow and transport boundary conditions'.

The following has been added to the second paragraph of the discussion:

"However, the absence of very high conductivity paths (or very low conductivity barriers), which the graph approximates quite well can explain the mitigated performance of a graph-based approach in a multi-Gaussian setting. So, the use of the proposed approach is particularly interesting to tests scenarios displaying strong hydraulic conductivity contrasts or very different pathways."

• The method still relies on a 3D simulation (MODFLOW) to generate the "ground truth" against which the graph-based method is compared. This limits the method's independence and its potential for significant computational savings. While the graph-based method can provide a quick and potentially accurate approximation, perhaps consider validation with simplified Analytical Solutions, Sensitivity Analysis or Machine Learning techniques. This would provide a more rigorous comparison without relying on numerical simulations.

The generation of a synthetic "ground truth" (here using MODFLOW) is indeed necessary to test our approach. In a real case study, is seems reasonable to have monitoring wells at the outlet of the model boundaries, such as to interpolate cumulated mass at the outlet. It would not require the use of flow and transport simulations.

• Similarity measure: A similarity coefficient of 0.3 might seem low, especially considering that a perfect match would be 1.0. While a higher similarity coefficient would be ideal, a value of 0.3 can still be considered reasonable but needs to be explicitly acknowledged, especially given the complexity of the problem. The authors should provide a detailed discussion of the factors influencing the similarity coefficient and explain why this value is acceptable in the context of their study. Additionally, the authors could explore ways to improve the accuracy of the graph-based method, such as refining the graph construction by experimenting with different graph configurations to capture the underlying geological features better.

Lines 263 to 266, we explain how we set this threshold of 0.3. Indeed, the proposed similarity metric is very sensitive to slight changes: a small shift both decreases the Wasserstein component of the similarity and decreases the Jaccard index. The advantage and drawback of each component are given in section 2.4 and justify the proposed metric.

The following paragraph has been added in the discussion:

"The proposed similarity metric tries to mitigate the drawbacks of each of its components. On one hand, the Jaccard index penalizes the comparison of small areas, as a single-pixel error might significantly impact the IoU ratio in that case, and cannot discriminate between non-overlapping scenarios. On the other hand, the NWD penalizes cases where a dissimilar pixel is very far from the areas of similarity between two images. However, one can note that it is very sensitive to slight changes: a small shift both decreases the Wasserstein component of the similarity and decreases the Jaccard index."

- A comprehensive evaluation of the graph-based method requires a clear understanding of the underlying physics-based model, including its setup and initial conditions. The authors should provide a detailed description of the MODFLOW simulations, including:
  - o Model Domain: The spatial extent and discretization of the model domain.

- Hydrogeological Properties: The values assigned to hydraulic conductivity, porosity, and other relevant parameters.
- Boundary Conditions: The types of boundary conditions applied to the model boundaries.
- o Initial Conditions: The initial distribution of hydraulic head and contaminant concentration.

All these characteristics are already described in section 2.1. Figure 2 illustrates sections of hydraulic conductivity for one of the fault scenarios. All scenarios are provided along with the code to generate them as explained in the Code and data availability section (line 430).

Comparing a single MODFLOW scenario to multiple graph-based scenarios can be
misleading, as it doesn't directly assess the accuracy of each individual graph-based
scenario. A more appropriate approach would be to compare each corresponding pair of
scenarios

As stated in lines 260-261, "The similarity index described in Sect. 2.4 has been applied to analyse the results of the 80 scenarios. A representative sample of the results can be found in Fig. 5, and the distribution of similarities is shown in Fig. 6." It means that for each of the 80 scenarios, we compute a similarity index (illustrated in Fig 5) between the MODFLOW cumulative mass map and the GRAPHFLOW distance map. The histogram of the 80 resulting similarity indices is displayed in Fig. 6.

The first paragraph of section 3.1 now reads:

"The similarity index described in Sect. 2.4 has been applied to analyse the results of the 80 scenarios. For each scenario, a MODFLOW simulation is run to obtain the cumulative mass, a graph calculation is performed to obtain a distance map, and the two outputs are compared via the similarity index. A representative sample of the results can be found in Fig. 5, and the distribution of similarities is shown in Fig. 6."

Regarding scenario selection, as explained in section 2.5.1, for a given contaminant source position all pairs of scenarios are tested against each other in the scenario selection. The success rate and number of scenarios are averaged across the 80 possible scenarios. We should precise that the average is over all pairs of scenarios and all contaminant sources.

The beginning of section 3.1 has been reformulated as:

"The results of the average Success rate  $\bar{Y}$ , computed over pairs (80) of fault scenarios (8) and contaminant sources (10), as a function of the average number of selected scenarios..."

- The paper should be understandable to a broad audience without requiring extensive external references. Consider providing a brief explanation of the algorithms used:
  - o Dijkstra's Algorithm
  - Other Algorithms (Jaccard dissimilarity, Wasserstein distance, Otsu thresholding)

We already provide explanations of the Jaccard dissimilarity and Wasserstein distance in section 2.4 as we combine them to propose a new metric. For Dijkstra's algorithm and Otsu Thresholding, simple sentences (around lines 117 and 154 respectively) already describe the purpose of these methods, which is sufficient for the reader.

## **Specific Comments**

#### • Abstract:

[2] The phrase "large-scale structural features" could be more specific. Explicitly mention geological features: "large-scale geological features, such as faults, fractures, and stratigraphic variations" and their standard scales compared to domain extension.

The second sentence of the abstract has been updated as suggested.

#### • Introduction:

[42-43] The paper should clearly state how the methodology "improves the consistency for subsurface flow". The author should provide a more precise explanation of why faults are relevant for contaminant transport in porous media. The manuscript should provide a deeper analysis of the role of heterogeneity within the graph-based approach.

The previous work from Rizzo and de Barros (2017) is limited to 2D multi-Gaussian heterogeneous medium and compares the graph approximation with results from particle tracking. Here we go one step further by integrating general flow direction information and by doing a comparison with flow and transport simulations (thus aiming at improving the consistency with subsurface flow).

These precisions have been added in the introduction as:

"To do so, we adapt the approach of Rizzo and de Barros (2017), that is limited to 2D multi-Gaussian heterogeneous medium. Here we go one step further by integrating general flow direction information and by doing a comparison with flow and transport simulations, thus improving its consistency with subsurface flow..."

[47] Consider addressing the role of heterogeneity in the main body of the manuscript.

I am not sure what this comment means. We agree that we should talk more about the role of heterogeneity in the first paragraph of the introduction.

The first paragraph of the introduction as been completed with the following:

"However, these methods often require high computational resources (Karmakar et al., 2022, which restrain the exploration of heterogeneity or geological structural uncertainty, such as faults acting as a preferential flow-path or a barrier, despite their control on flow and transport conditions."

### **Method:**

[60] Figure 1. There are no dimensions indicated in the figure. Is there a reason for the orientation of the scheme?

The scheme Has been re-oriented and a scale has been added in the revised manuscript.

[70-73] The description of the experimental setting should be more specific about the position of the source points relative to the grid size. The authors indicate only one coordinate point; it is unclear where the random 10 positions fall on the modeling grid.

The 10 positions are displayed on Figure 2.

A table describing the source point coordinates has been added to section 2.1.

[75-80] This section should also address how the authors evaluate the role of heterogeneity for the simulation domain for the different subsurface properties, as this section indicates a variability in the behavior of the faults but does not answer the effect of the hydraulic conductivity or porosity for this approach. Appendix A should be referenced here.

For each scenario, each geological unit is a stochastic multi-Gaussian SRF realization whose parameters are described lines 78 to 81.

The following sentence has been updated in the last paragraph of section 2.1:

"For each scenario, the hydraulic log-conductivity (before the effects of faults) of each geological unit is modeled by a spatial random field (SRF) with a multi-Gaussian (MG) model..."

[98] Figure 2 shows the hydraulic conductivity values of one scenario. The color bar should be properly labeled, and the formatting of the relative position of the two plots needs to be adjusted.

The label of the colorbar has been added in the revised manuscript.

[100] Equation 2. This equation needs to be properly referenced and described in the text. The variables are not defined.

 $R_{\Gamma}$  is the hydraulic resistance along the path gamma. For each point l on gamma (where l is a dummy variable), we calculate the absolute value of the scalar product between the inverse of the conductivity tensor at point l,  $K^{-l}(l)$ , and the infinitesimal distance dl. We then compute the integral of this value over the path gamma.

This has been clarified in the revised manuscript around equation 2.

[105] Equation 3. This equation needs to be properly referenced and described in the text.

It is the scalar product between the inverse of the hydraulic conductivity simplified tensor  $[k_{xx}, k_{yy}, k_{zz}]$  and the oriented edge  $[e_x, e_y, e_z]$ .

This has been clarified in the text, right after equation 3.

[126] is the function "get shortest paths" the same as the Dijkstra algorithm?

Yes, it is the implementation of Dijkstra algorithm used here.

The first sentence of the second paragraph of section 2.2.2 has been updated to:

"Starting from the weighted and directed graph generated in the previous section, we aim to apply a shortest path algorithm (Dijkstra's algorithm) between the source and the graph nodes corresponding to the model outlet face (for which the hydraulic head is set to 0m on Fig. 1)."

[140] Figure 3. At this stage of the reading, it is still not clear what s32 is. The figure needs quality improvement. Include units for the color bars. Figures c and d should be moved further down as it is not clear at this point what they mean, and they are not formatted properly. Labels for figures c and d should indicate the modeling framework used (MODFLOW, GRAPHFLOW). Furthermore, the

choice of histogram plot to compare the output of 80 simulations using the new methodology compared to one single scenario using MODFLOW is confusing as it does not indicate the performance of each simulation against its corresponding physics-based.

S32 is scenario 32 (numbering is explained lines 73 & 74). Cumulative mass, computed from MODFLOW outputs, is in units of mass per cubic meter (as define line 78) and distances, computed from GRAPHFLOW outputs, are homogeneous to a length in meters, but are not meters as the length through the graph is the product of weighted lengths, so we do not prefer to add a unit to the colorbar of this subfigure, as it could be misleading for the reader.

#### Metrics

[148] Figure 4 needs to improve its quality. Some recommendations: use the same font size of the plots and add labels to the color bars and units of measure. Adjust formatting. Since this is a workflow of the proposed metric, use more descriptive texts next to the figures.

Figure 4 has been reformatted in the revised manuscript.

[178] Variables have different formatting than the previous equation. 2-Wassertein Distance (W2) needs to be numbered.

We have checked the formatting and all 'b's should be bold and italic. The equations formatting, as well as the equations numbering, have been updated in the revised manuscript.

### • Method of scenario selection

[205-214] This section seems to address a different problem: the uncertainty of uncharacterized faults. However, the proposed methodology to validate the graph model has not been discussed up to this point. Consider including the evaluation of the model with the proposed metric first. This analysis should reflect the desirable range of the metric and its limitations.

We justify the use of the graph model as a proxy by analysing the ranking correlation between the graph distances and the cumulated mass (Figure 3d).

The following sentences have been added and reformulated in the first paragraph of section 2.4:

"The preservation of rank correlation enables to compare areas displaying high values of cumulative mass with areas displaying shortest distances, and suggest that the proposed proxy is relevant. We want to find a metric that spatially compare the pixels in  $I_m$  to the pixels in  $I_d$  with low Dijkstra distances. Ideally, given a number n of pixels in  $I_m$  displaying the highest values of cumulative mass, for a perfect proxy, the pixels in  $I_d$  displaying the n shortest distances would share the same locations in the images."

## • Results

[265] In this section, the author should provide a thorough justification of why a metric of 0.3 is considered valid. Based on the plots presented in Figure 5, for a validation coefficient of 0.31, the cumulative mass and the shortest distances seem to differ.

It depends on what we consider a "good" approximation. In line 265, we refer to an "acceptable" threshold. In the case of Figure 5.f, we observe that our method captures two out of the three cumulative mass patches present in the MODFLOW simulation. Indeed, if the user is more demanding, they can choose a higher threshold, such as 0.4 or 0.5.

The following text has been added in the second paragraph of section 3.1:

"Note that what can be considered as a valid threshold for a good approximation is subject to the user appreciation. If the user is more demanding, they can choose a higher threshold, such as 0.4 or 0.5. In the case of Fig. 5f, we observe that our method captures two out of the three cumulative mass patches present in the MODFLOW simulation and produces a similarity index of 0.31."

[272] How does the discretization of the domain affect the binary maps and, consequently, its validation?

Here, we just tested the computing time scalability. We did not compare binary maps of different resolutions.

The former 6<sup>th</sup>, now 7<sup>th</sup> paragraph of the discussion has been modified with:

"Additionally, it would be interesting to test the scalability of the approach (e.g. by increasing the regular grid resolution or simplifying the graph representation) or other graph algorithms to approximate groundwater flow, to potentially increase the computing efficiency of the approach."

Figure 5. This figure needs to improve its quality. Consider including the name of the scenario presented in each plot.

The scenario numbers have been added in the figure caption.

We are providing them now.

Fig a: scenario 0, Fig b: scenario 76, Fig c: scenario 36,

Fig d: scenario 8, Fig e: scenario 27, Fig f: scenario 10

[276] There is no reference to what position 5 is.

Although present in the code, the coordinates of the different positions are indeed not included in the paper. This will be added in the revised version of the paper. We are providing these coordinates for 10 positions, indexed from 0 to 9:

| ID | X             | Y             | Z     |
|----|---------------|---------------|-------|
| 0  | 2011.8216247  | 2950.46369633 | 512.5 |
| 1  | 1644.15961272 | 2948.64944714 | 512.5 |

| 2 | 1811.83145201 | 2423.32644897 | 512.5 |
|---|---------------|---------------|-------|
| 3 | 2327.70259382 | 2409.19913637 | 512.5 |
| 4 | 2049.59368767 | 2027.55911324 | 512.5 |
| 5 | 2253.51310867 | 2538.14331322 | 512.5 |
| 6 | 1829.7317165  | 2788.42870343 | 512.5 |
| 7 | 1803.19482929 | 2453.49788948 | 512.5 |
| 8 | 1634.04169725 | 2403.11298645 | 512.5 |
| 9 | 1703.45524068 | 2262.31334044 | 512.5 |

The table describing the source point coordinates has been added to section 2.1.

Figure 7. This plot references 8 different scenarios from the graph method against one single scenario solved using a physics-based model. In the following paragraph, the author should provide an explanation of why two different scenarios lead to similar or equal validation metrics. This is misleading as it could mean that the proposed validation metric is not robust.

The following explanations have been added in the first paragraph of section 3.2.

"When fault 1 act as a preferential path and fault 2 as a barrier, most of the flow goes through fault 1, which reaches the model outlet independently of fault 3 (that could act either as a barrier or a preferential path). It means that fault 3 does not influence the shortest path through the graph."

Table 2. The caption and names of the scenarios don't match.

Thanks for pointing this out. It is about scenarios 12 and 65 and the caption has been modified accordingly.

### **Technical corrections**

The figures in the manuscript could be significantly improved in terms of clarity and readability. To enhance the visual appeal and understanding of the results. The font size for labels, axis titles, and legends should be increased to improve visibility. Clear and concise labels should be used to identify different components of the figures. Avoid using abbreviations or overly technical terms. Employ distinct color bars for different variables to facilitate comparison and interpretation. Consider the overall layout of the figures, ensuring that the elements are well-organized and easy to follow.

Figures 1, 2 4 and 7 have been updated to improve their readability as suggested and such that the font size are increased.

## Reviewer comments (RC2) in black and answers in blue

### **General Comments**

A new method proposed here would allow a faster ranking of geological multiple scenarios in ground water contamination problems by replacing the grid model per graph and the transport solver within partial differential equations by metrics on graph.

- The details given in the article would allow to reproduce the method by others.
- The article is clearly structured, containing the state of art (introduction), method description and results discussion. The application to a synthetic case is appearing from the beginning of the "Method" part, but since the illustrations on this single application case are helping to understand and to follow the method, it stands well where it is.
- Overall, I appreciate the open discussion where the authors are evocating the remaining challenge of the choice of the threshold or the choice of the particular metrics.

Thanks for your positive comments.

## **General Suggestions**

• As far as I understood, the grid is replaced by a graph with no loosing information, where each cell center is replaced by a node and the conductivity between neighbor cells as replaced by a directional edge. Can you state more clearly on that fact in your work, precising that the support of information being change (grid to graph) but with identical information and resolution? Do you use all cells of initial model to create a graph or you neglect the flank cells never participating in the flow? Clarify please that there is no upscaling nor graph reduction here and so it is a perfectly bijective transformation. One it is said, would it mean the heart of your approach is not in grid to graph transformation but in the proxy of flow simulator?

Yes, this is correct, as mentioned at the end of section 2.2.1 ("Thus, we obtain a graph with exactly the same resolution as the original simulation space..."). We can precise that we use all cells of the initial model, keep identical information and resolution, and that there is no upscaling nor graph reduction.

The last paragraph of section 2.2.1 is now reformulated as:

"To build the graph, we use all cells of the initial model, keep identical information and resolution, and do not perform upscaling nor graph reduction. Thus, we obtain a graph with exactly the same resolution as the original simulation space (as many nodes in the graph as cells in the grid representation), with edge weights that accurately approximate the cost for the contaminant to traverse that edge."

• For the same clarity purpose, I would separate the replacement of grid by graph step from the step of replacement of the flow-transport simulator by a proxi with graphs metrics computation. In more general application, the Dijkstra or other graph metrics algorithms may easily by applied to a grid support and get the same results (since the transformation from grid to graph is bijective and finally just a question of format of the data).

Each of these two steps already have its own subsection 2.2.1 Graph generation (for the replacement of grid by graph step) and 2.2.2 Computation (for the step of replacement of the flow-transport simulator by a proxy).

• In case if the transformation to the graph is crucial for this work, please argue this and demonstrate that the following algorithms would not work elsewhere.

Dijkstra's algorithm finds shortest paths between nodes in a weighted graphs. This is why it is crucial to format the geological model as a graph.

The paragraph of section 2.2 has been reformulated as:

"In order to take advantage of Dijkstra's algorithm to find shortest paths between graph nodes and use such a formulation as an approximation for subsurface contaminant flow and transport, the underlying aquifer model has to be represented as a graph. Here we explain how the regular-grid discretization of an aquifer model can be converted into a graph."

• I would place the information in Appendix A in the beginning of the methodology description. As I understood, the proposed approach is performing less good in more homogeneous media. It is not a blocking point itself, but you need to demonstrate that for the other same conditions and the same "matrix" media, your approach do perform differently in the case where you have contract heterogeneities (with and without faults).

We prefer to keep this part in appendix as it does not contribute to address conceptual uncertainty exploration and scenario selection which is the main motivation of this work. As explained in Appendix A, the absence of very high conductivity paths (or very low conductivity barriers), which the graph approximates quite well can explain the mitigated performance of a graph-based approach in a multi-Gaussian setting. So, the use of the method is particularly interesting to tests scenarios displaying different types of hydraulic conductivity contrasts or pathways.

The second paragraph of the discussion has been completed with the following:

"However, the absence of very high conductivity paths (or very low conductivity barriers), which the graph approximates quite well can explain the mitigated performance of a graph-based approach in a multi-Gaussian setting. So, the use of the proposed approach is particularly interesting to tests scenarios displaying strong hydraulic conductivity contrasts or very different pathways."

• The calibration of the threshold on the distance map for your methodology should be done using the parallel with the conventional flow-transport results (with MODFLOW). It is understandable that for the brand-new approach such calibration could be needed. But for the eventual industrial use of your approach, would your approach will depend on the conventional result or you may envisage another calibration process?

We do not envisage other calibration methods at the moment. Nonetheless, the calibration can be conducted on a limited number of scenarios for a specific setting. It would still allow for the exploration of additional scenarios. We would be keen to hear about alternatives.

• The fact that you are using an oriented graph does limit you to apply your approach to the highly connected media? This is the reason why your fractures are not connected to each other in your synthetic example? If such is the case, please discuss it in the limits of your approach application. What would be the challenge if we want to use your approach on the non-oriented graph?

The graph is similar to a non-oriented graph, as all edges are 'duplicated' such that for an oriented edge connecting vertex 1 to vertex 2, and oriented edge connecting vertex 2 to vertex 1 exists. We use oriented edged as a way to integrate general flow information such as the main flow direction.

We added the following after the first paragraph of section 2.2.1:

"Though the graph is built as an oriented graph, it is similar to a non-oriented graph, as all edges are 'duplicated' such that for an oriented edge connecting vertex 1 to vertex 2, and oriented edge connecting vertex 2 to vertex 1 exists. We use oriented edged as a way to integrate general flow information such as the main flow direction."

#### **Details**

## • Formulas and equations

In most of the paper formulas and equations one or two terms are not defined in the text. It is quite easy to guess who is who, but it is not homogeneous. You can whether pass through all variables and all text in the article or create a table of annotations in the beginning of the Method paragraph.

We have carefully checked that and updated the manuscript accordingly.

### • 2.1 Experimental settings:

In real study, if the transmissivity of the fault is unknown, one would define an uncertainty range as a continuous random variable. Would your approach work in this case? Or, because of the efficiency, discussed earlier for the homogeneous media, there are some intermediate situations where it would not work and though would not discriminate the multiple generated cases?

The sensitivity of uncertainty range around fault transmissivity could be tested. But it is likely that in some intermediate situations, the ambiguity would remain and the proxy would not enable to discriminate between different cases. However, such a sensitivity analysis can be solely conducted on the proxy (without running a physical solver), by looking at the sensitivity of different fault transmissivity values on the shortest paths or graph distance maps; it could then be used to define range of values for differentiable scenarios.

### • 2.2.1 Graph generation:

[99] Figure 2. There is a figure of the conventional grid containing a 3D property. This paragraph is focusing on the graph creation. May you illustrate the resulting graph? or at least a zoom on the peace of the graph?

Given that the graph connects each neighbouring grid cell, it would not identify specific features and not simplify the visualization of the model for the reader, thus we chose not to provide such a plot.

[100] Equation 2. Variables R hydraulic and *dl* are not referenced.

*R* is the hydraulic resistance and *dl* is the incremental length along the path.

These precisions have been added above and below equation 2.

[106] Equation3. Variable Re is not referenced. ...

 $R_{\rm e}$  is the hydraulic resistance of edge e.

The variable has been referenced just above equation 3.