
Potential based Thermodynamics with Consistent Conservative
Cascade Transport for Implicit Large Eddy Simulation:
PTerodaC3TILES version 1.0
John Thuburn1

1Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, UK

Correspondence: John Thuburn (j.thuburn@exeter.ac.uk)

Draft: March 4, 2025

Abstract. A new computational fluid dynamics code for Large-Eddy Simulation (LES) of the atmospheric boundary layer

and convection is presented and made available. A key novelty is that moist thermodynamics is formulated in terms of ther-

modynamic potentials, ensuring thermodynamic consistency. Despite the apparent complexity of the thermodynamic potential

approach, the model’s performance demonstrates that it is feasible and effective at reasonable computational cost for three-5

dimensional simulations. Semi-implicit semi-Lagrangian numerical methods are used; such methods are unusual for simulating

boundary layer and convective flows and are more typical of global atmospheric models. Moreover, the model includes no ex-

plicit scheme to represent subgrid-scale fluxes of scalars and momentum but relies instead on the mixing and dissipation

resulting from the numerical methods used; in other words, it employs Implicit LES (ILES). Sample results from several stan-

dard LES test cases show that the model’s ability to capture the main aspects of the flows is comparable to other LES models.10

At the same time, the results highlight limitations of the ILES approach near the bottom boundary and suggest that ILES might

need to be augmented in some way, for example, by distributing the convergence of surface fluxes over several model layers.

Also, results for a marine stratocumulus case show a significant sensitivity to different options for the numerical methods

and parameters used. Further development and application of the code would benefit from a deeper understanding of both the

bottom boundary behaviour and the sensitivities to numerics.15

1 Introduction

Large-Eddy Simulation (LES) has been an invaluable computational tool in atmospheric science since the early 1970’s, both

for advancing our understanding of complex atmospheric processes such as boundary-layer turbulence and convection and for

informing the development of parameterizations of those processes for use in weather and climate models. This article presents

the formulation of a new LES code developed by the author with a three-fold motivation:20

1. to demonstrate the feasibility of using thermodynamic potentials to achieve a consistent representation of moist thermo-

dynamics in a three-dimensional fluid dynamics code;
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2. to evaluate the use in LES of the sort of numerical methods more usually used in synoptic and global-scale models;

3. to provide a modelling tool that is easy to set up and run and in which it is easy to set up new test cases and diagnostics.

The thermodynamics of moist air is complicated, and atmospheric models often make approximations. Some common25

approximations introduce inconsistencies between different aspects of the system or with the laws of thermodynamics—see

Thuburn (2017b) for examples. Thermodynamic consistency can be ensured by deriving all thermodynamic quantities from one

of the four standard thermodynamic potentials, internal energy, enthalpy, Helmholtz free energy, or Gibbs function, expressed

as a function of its natural variables. Provided any approximations are made directly to the thermodynamic potential before

deriving other quantities, consistency is maintained. This approach has been proposed for use in ocean modelling for consistent30

treatment of the complex equation of state of seawater (IOC et al., 2010). More recently, the approach has been advocated for

deriving consistent equation sets for the thermodynamics of moist air in atmospheric models (Vallis, 2017; Eldred et al., 2022;

Staniforth, 2022). As an alternative, a model can be formulated and implemented directly in terms of the thermodynamic

potential and its derivatives (Thuburn, 2017b; Bowen and Thuburn, 2022a, b); in this way different approximations to the

thermodynamics can be implemented by modifying the minimal number of routines.35

For the case of thermodynamic equilibrium (no supersaturation, no condensate in subsaturated air, all components and

phases at the same temperature) and in the absence of ice, Thuburn (2017b) presented a semi-implicit semi-Lagrangian model

solving the compressible Euler equations in which the moist thermodynamics was formulated in terms of the Gibbs function for

moist air. Whilst encouraging, this initial implementation suffered several limitations. First, because the formulation works in

terms of the total Gibbs function for moist air, the water content must be partitioned into vapour and condensate whenever the40

Gibbs function is evaluated, complicating the calculation. More importantly, since the natural variables for the Gibbs function

pressure p and temperature T are intensive variables, knowledge of p and T (and total specific humidity q) alone is insufficient

to completely determine the equilibrium state, particularly the partition of water into its three phases, at the triple point. Thus,

the implementation is restricted to two phases: vapour and liquid. Finally, the formulation of Thuburn (2017b) could not

represent important nonequilibrium effects such as the delayed freezing of supercooled cloud droplets or the evaporation of45

rain in subsaturated air.

These limitations were overcome by Bowen and Thuburn (2022a, b). They formulated the thermodynamics in terms of

the internal energy, whose natural variables are the extensive variables specific volume α and specific entropy η, avoiding the

difficulty at the triple point. Moreover, by working with the individual internal energy potentials for dry air, water vapour, liquid

water, and ice, rather than a combined thermodynamic potential for the air parcel, they were able to separate the calculation of50

the potentials from the calculation of the air parcel equilibrium state, simplifying the formulation. By expressing the evolution

of a subset of variables in terms of thermodynamic forces and a resistivity matrix, they were able to account for departures

from thermodynamic equilibrium, while seamlessly approaching the equilibrium case in the limit of zero resistivity.

The codes developed by Thuburn (2017b) and Bowen and Thuburn (2022a, b) were two-dimensional vertical slice models

and they were applied to simple buoyant bubble test problems. The apparent complexity of the thermodynamic potential55

approach, with accompanying concerns about its computational cost, might discourage model developers from pursuing the
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approach in three-dimensional models. A primary goal of the work described here is is to demonstrate that the approach can be

applied successfully, without excessive expense, in a three-dimensional model suitable for studying complex boundary-layer

and convective flows.

Traditionally, LES models for atmospheric applications are often based on relatively simple numerical methods supple-60

mented by more or less sophisticated subgrid models (e.g. Siebesma et al., 2003). Typically, advection schemes are Eulerian

and time stepping is explicit, so that stability requires the advective and diffusive Courant numbers to be less than some thresh-

old value of order 1. Global weather and climate models, on the other hand, often use sophisticated (and relatively expensive)

advection schemes that are stable for large advective Courant numbers (e.g. Temperton et al., 2001; Lin, 2004; Wood et al.,

2014; Melvin et al., 2024), though they require the deformational Courant number to be bounded. Bartello and Thomas (1996)65

have argued that such large-timestep advection schemes are no longer cost-effective in flow regimes where the energy spectrum

is shallower, the Lagrangian and Eulerian timescales become more comparable, and the deformational Courant number is much

closer to the advective Courant number. Nevertheless, traditional LES codes are often run with time steps more than an order

of magnitude smaller than could be used by a semi-implicit semi-Lagrangian scheme at the same resolution (e.g. Stevens et al.,

2005, and compare section 5 below). This observation, combined with recent progress in improving the efficiency of conser-70

vative semi-implicit semi-Lagrangian solvers (Thuburn, 2024), encouraged the author to revisit the question by implementing

a semi-implicit semi-Lagrangian LES model.

On a closely related point, global models with sophisticated advection schemes sometimes do not include a subgrid model

to handle the turbulent downscale cascades of potential enstrophy and energy but rely instead on the dissipative nature of the

advection scheme to play that role (e.g. Walters et al., 2017; ECMWF, 2023). In other words, they use a form of Implicit75

Large-Eddy Simulation or ILES (e.g. Margolin et al., 2006; Grinstein et al., 2007). Although there have been some pioneering

attempts to use or evaluate ILES for boundary-layer and convective scale atmospheric flows (Margolin et al., 1999; Brown et al.,

2000; Smolarkiewicz and Prusa, 2002), and there is growing interest (e.g. Pressel et al., 2017; Souza et al., 2023), the approach

is still far from mainstream, and there remain many open questions about its strengths and weaknesses and how they depend

on details of the numerics. The need to answer these questions is becoming increasingly pressing as global prediction models80

begin to be used at kilometre-scale resolution (Satoh et al., 2008; Stevens et al., 2019; Hohenegger et al., 2023; Tomassini

et al., 2023). PTerodaC3TILES includes no subgrid model and uses the ILES approach. An important secondary goal for its

development is to provide a tool to facilitate the study of the ILES properties of semi-implicit, semi-Lagrangian schemes for

simulating convective scale flows.

Finally, the author perceived a need for an LES tool that could be set up to run ‘production’ science with minimal effort on85

a desktop machine or even a laptop. PTerodaC3TILES v1.0 comprises a single stand-alone fortran code and a namelist file.

No external packages are needed other than a fortran compiler (with OpenMP shared memory parallel capability if desired).

Initial data and forcings for a number of standard cases are available just by selecting namelist options; new cases can easily be

implemented by using the routines for existing cases as templates. To avoid large volumes of output, diagnostics are calculated

‘online’ at run time. Many standard diagnostics are available via namelist switches; others can easily be implemented and90
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output using existing routines as templates. Further details are given in the User Manual, available from Zenodo; see the

Code availability section.

Some aspects of the model formulation are novel or noteworthy; these are introduced briefly here and discussed in more

detail in section 2.

Unlike most atmospheric models, changes of phase of water and latent heat release are not treated as separate ‘physics’95

source terms, but are fully integrated within the dynamical core’s semi-implicit semi-Lagrangian time stepping (Thuburn,

2017b; Thuburn et al., 2022; Bowen and Thuburn, 2022a, b, sections 2.1, 2.3 below). To maintain consistency of the ther-

modynamics, surface fluxes of water imply surface fluxes of mass. The same is true for the somewhat artificial sources of

water specified in the domain interior for some test cases. Because of the model’s Charney-Phillips vertical staggering, with

total density stored at p-levels and specific humidities stored at w-levels, special care is needed to maintain that consistency100

(section 2.7). Mass sources accompanying water sources are neglected in most atmospheric models.

In contrast to Thuburn (2017b) and Bowen and Thuburn (2022a, b), in PTerodaC3TILES conservative options are available

for the advection of moisture and entropy variables. Although the numerical methods do not exactly conserve energy, energy

conservation is significantly improved as a side-effect of a conservative treatment of entropy and water (Thuburn, 2022).

Even with the use of cheap advection updates during the main solver iterations (Thuburn, 2024), advection remains one105

of the most expensive components of the model (along with the elliptic solver). Some modifications are made to the SLICE

conservative semi-Lagrangian advection scheme (Zerroukat et al., 2009) to improve its efficiency, particularly to minimize

the use of conditional code by avoiding ‘searching’. Geometrical calculations of coordinate line intersections to determine

‘intermediate departure points’ are replaced by additional trajectory calculations, and information generated in remapping

volume and mass is re-used in remapping other fields (section 2.6).110

Linearization of the thermodynamics leads to an 11×14 linear subsystem at each model gridpoint that must be diagonalized

in order to build the Helmholtz problem and to enable backsubstitution for the semi-implicit time stepping. To reduce what

would otherwise potentially be a significant computational expense, the equations and unknowns are re-ordered to exploit the

moderate sparsity of the thermodynamic subsystem, which is essentially the same at all gridpoints. The cost of the diagonal-

ization is thereby reduced to about 30% of the cost of a full Gaussian elimination for the case of equilibrium thermodynamics.115

The cost is further reduced by carrying out the diagonalization on all matrices in a grid column at the same time, with the inner

loop over vertical levels, to improve vectorization (section 2.10).

Some of the test cases implemented specify the use of Monin-Obukhov theory to compute surface momentum fluxes. Ap-

pendix A4 presents a slight reformulation of Monin-Obukhov theory that, with the aid of some curve-fitting, enables the friction

velocity U∗ to be obtained without the need for an iterative calculation and guarantees the existence of a unique solution for120

U∗ even when the validity of Monin-Obukhov theory breaks down.

Section 4 summarizes some of the ways in which the correctness of the formulation and implementation have been verified.

Section 5 presents some sample results from standard LES test cases to demonstrate the performance of the model. The

conclusions and areas where further work is needed are discussed in section 6.
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2 Model formulation125

The formulation of PTerodaC3TILES is inspired by semi-implicit semi-Lagrangian dynamical cores such as ENDGame (Wood

et al., 2014) and GungHo (Melvin et al., 2024) that iterate towards a (possibly off-centred) Crank-Nicolson time discretization

along trajectories. Such a formulation has been found to be stable and robust at large time steps for synoptic-scale flow. A

significant departure, though, is in the treatment of moist thermodynamics. First, to guarantee consistency, the thermodynamics

is expressed in terms of thermodynamic potentials, in this case the internal energy. Second, processes such as phase changes and130

latent heat release are not treated as separate ‘physics’ source terms but directly couple to the dynamics through the dependence

of pressure and buoyancy on the thermodynamic state. The wide range of timescales associated with the thermodynamics,

ranging from instantaneous for processes in equilibrium to many minutes for some nonequilibrium processes, is naturally

handled by the semi-implicit time discretization.

A feature of the consistent treatment of thermodynamics is that any surface or interior source of moisture implies a corre-135

sponding source of mass (section 2.7). Such a mass source is neglected in most atmospheric models.

PTerodaC3TILES version 1.0 includes only equilibrium thermodynamics, but almost all of the machinery is in place to

deal with the nonequilibrium case. Also, this version includes no representation of microphysical processes; any condensate is

simply carried along with the flow. The inclusion of a simple microphysics scheme is a priority for future work.

2.1 Continuous governing equations140

The continuous equations to be solved are the same as those solved by Bowen and Thuburn (2022a), extended to three spatial

dimensions, and with the inclusion of Coriolis terms and external source terms for mass, momentum and water. See that article

for a derivation and in-depth discussion. For the purpose of exposition it is convenient to split the governing equations into

dynamics and thermodynamics

2.1.1 Dynamics145

The subset of governing equations involving material derivatives is the following:

1

V
D

Dt
(Vρ) = Sρ, (1)

Du

Dt
+2Ω×u+α∇p+∇Φ= Su, (2)

150

1

V
D

Dt
(Vρq) = ρSq, (3)

1

V
D

Dt
(Vρη) = ρJTP + ρSη, (4)
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DX

Dt
= J +SX . (5)155

Here, ρ is the total fluid density, u= (u,v,w) is the fluid (barycentric) velocity, q is the total specific humidity, η is the total

specific entropy, α= 1/ρ is the total specific volume, p is the pressure, and Ω is the rotation vector of the frame of reference.

Φ= gz is the geopotential with g the gravitational acceleration. S and S terms indicate external sources.

The vector X = (ql, qf , qvηv, qlηl, qfηf)T (superscript T meaning transpose) encodes the additional thermodynamic infor-

mation that needs to be predicted in the nonequilibrium case. Superscripts d, v, l, and f indicate dry air, water vapour, liquid160

water, and frozen water, respectively. J is a vector of thermodynamic ‘fluxes’, with P the corresponding thermodynamic

‘forces’, defined below. The expression JTP in (4) gives the entropy source per unit mass due to nonequilbrium processes1.

D/Dt is the material derivative. In equations (1), (3) and (4), V is the material volume element. These equations are written

in a form that lends itself to numerical solution using a conservative semi-Lagrangian scheme. The material derivative in (5) is

written in a form that anticipates discretization using an interpolating semi-Lagrangian scheme, on the assumption that it will165

be sufficient to advect the total specific humidity and entropy conservatively, with a cheaper non-conserving scheme for the

components of X . Nevertheless, an option for conservative advection is available. In the equilibrium case, however, J is not

needed (see (13) below) so advection of X becomes superfluous and is automatically switched off.

The user can also choose to include additional tracers stored either at p-levels or at w-levels (see section 2.2). Since these do

not feed back on the dynamics or thermodynamics we largely omit them from further discussion.170

2.1.2 Thermodynamics

The diagnostic equations describing the thermodynamics are as follows:

qvαv − qdαd = 0, (6)

(1− δl)λl − δlql = 0, (7)175

(1− δf)λf − δfqf = 0, (8)

qv + ql + qf − q = 0, (9)

180

qvαv + qlαl + qfαf −α= 0, (10)
1This entropy source term does not include the effects of viscosity and mixing of air parcels; see section 4.6.
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qdηd + qvηv + qlηl + qfηf − η = 0, (11)

p+ edα + evα = 0, (12)185

RJ − (P −C)≡−RPE = 0. (13)

Where needed, the mass fraction of dry air is given by qd = 1− q.

Equation (6) states that the water vapour and dry air occupy the same volume within an air parcel. Equations (9), (10), and

(11) state that the total specific humidity equals q, the total specific volume equals α, and the total specific entropy equals η.190

Equation (12) expresses Dalton’s law of partial pressures, and is key for coupling the thermodynamics to the dynamics. Here,

ed(αd,ηd), ev(αv,ηv), el(ηl), and ef(ηf) are the internal energy potentials for dry air, water vapour, liquid water, and frozen

water, respectively, expressed as functions of their natural variables (Appendix A2). As in Bowen and Thuburn (2022a, b),

condensate is assumed to be incompressible, with αl and αf specified constants, so we suppress the dependence of el on αl

and of ef on αf , and the pressure within any condensate (for example, as needed to compute the Gibbs function) is equal to195

the total pressure of the surrounding gas. Subscripts α and η on the species internal energies indicate partial derivatives with

respect to the respective natural variables.

Equation (13) is a set of ‘phenomenological equations’ relating thermodynamic fluxes J to the thermodynamic forces P

that push the system towards equilibrium (de Groot and Mazur, 1984). RPE is a residual that should be driven towards zero by

the iterative solver. In the present system P is given by200

P =∇Xη =
1

T d

(
gv − gl,gv − gf ,T d −T v,T d −T l,T d −T f

)T
, (14)

where the gradient ∇Xη is taken at constant mass and energy, T i is the temperature of species i, and gi is the Gibbs function

for species i, i ∈ {d,v, l, f} (Appendix A2). R is a symmetric and positive semi-definite resistivity matrix controlling the rate

at which an air parcel approaches thermodynamic equilibrium. C = ηref(δ
lλl, δfλf ,0,0,0)T is a vector of switched Lagrange

multipliers, with δl, δf ∈ {0,1}, used in enforcing the constraints that ql and qf must be non-negative. For example, if the205

thermodynamic forces imply evaporation of liquid but ql is already zero, then the liquid constraint is switched on (δl = 1) and

the solution for λl balances the relevant component of P . Finally, equations (7) and (8) are a convenient way to express the

‘complementarity conditions’ (e.g. Nocedal and Wright, 2006) that either ql or λl must be zero, and either qf or λf must be

zero. ηref is an arbitrary reference value, here equal to 1000Jkg−1K−1, introduced to ensure that equations (7) and (8) are

dimensionally correct.210

Bowen and Thuburn (2022b) show how R can be related to the thermal conductivity of air and the molecular diffusivity of

water vapour in air for cloud droplets of a given radius. In PTerodaC3TILES v1.0 the resistivity R is set to zero, imposing local

thermodynamic equilibrium. Nevertheless, almost all of the machinery is in place to handle the nonequilibrium case.
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Figure 1. Schematic showing the placement of model variables on the vertically staggered Charney-Phillips grid. Superscript i can stand for

any of d, v, l, f .

Note that PTerodaC3TILES has no explicit representation of subgrid variability in temperature or humidity, hence in con-

densate. Each grid cell is either entirely saturated or entirely unsaturated. In other words, it is an ‘all-or-nothing’ representation215

of saturation and condensate.

2.2 Domain, grid, and discretization

The domain of PTerodaC3TILES v1.0 is rectangular and doubly periodic in the horizontal, with flat rigid boundaries at the

bottom and top. Cartesian coordinates (x,y,z) are aligned with the domain. When a full three-dimensional Coriolis force is

used then the x- and y-directions are assumed to be East and North, respectively, but otherwise the model is agnostic about220

which direction is North.

A C-grid staggering (Arakawa and Lamb, 1977) is used in the horizontal and a Charney-Phillips grid staggering (Charney

and Phillips, 1953) in the vertical (Fig. 1). The choice of a Charney-Phillips vertical grid is unusual for LES models but is

more common in global models. It avoids computational modes—oscillatory vertical profiles of thermodynamic variables that

spuriously satisfy discrete hydrostatic balance—and gives more accurate coupling between vertical velocity and buoyancy on225

small vertical scales, but makes it difficult to formulate an exactly energy-conserving scheme.

In the following, integer indices are used for p-points, with an offset of 1/2 in the relevant direction for velocity points.

Vertical indices 1 and Nz correspond to the lowermost and uppermost p-levels; vertical indices 1/2 and Nz +1/2 correspond

to the w-levels at the bottom and top model boundaries. Horizontal grid spacings ∆x and ∆y are uniform but need not be

equal to each other. The vertical grid spacing ∆z may be uniform or stretched. See Appendix A1 for the grid specification in230

the stretched case. All of the results shown in sections 4 and 5 use uniform ∆z.

Simple finite difference or finite volume approximations are used for gradient and divergence operators. The components of

the pressure gradient (and similarly the geopotential gradient) are needed at velocity points:

∂p

∂x

∣∣∣∣
i+1/2j k

=
pi+1j k − pij k

∆x
,

∂p

∂y

∣∣∣∣
ij+1/2k

=
pij+1k − pij k

∆y
,

∂p

∂z

∣∣∣∣
ij k+1/2

=
pij k+1 − pij k

∆zk+1/2
, (15)
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where ∆zk+1/2 = zk+1−zk, and with the obvious modifications to allow for periodic boundary conditions. The divergence of235

the velocity is needed at p-points and is given by

∇ ·u|ij k =
ui+1/2j k −ui−1/2j k

∆x
+
vij+1/2k − vij−1/2k

∆y
+
wij k+1/2 −wij k−1/2

∆zk
, (16)

where ∆zk = zk+1/2 − zk−1/2, with an analogous expression for the divergence of mass flux increments.

Averaging between velocity points and p-points is needed at various places in the discretization. Horizontal averaging uses

a simple two-point average with weights 1/2, indicated by (.)
x

or (.)
y
. For example, the values of α used in the horizontal240

components of (2), are given by 1/ρx or 1/ρy .

Because the vertical grid may be stretched, four different vertical averaging operators are possible:

– (.)
w

: linear interpolation from p-levels to w-levels;

– (.)
r
: piecewise constant conservative remapping from p-levels to w-levels;

– (.)
p
: linear interpolation from w-levels to p-levels;245

– (.)
s
: piecewise constant conservative remapping from w-levels to p-levels.

Complete expressions for these four operators along with some useful conservation and discrete product rule properties are

given in Appendix B of Thuburn et al. (2022). For example, the averaging of velocity components to compute the Coriolis

terms (equation (2)) and departure points (section 2.6) uses a combination of (.)
x

, (.)
y
, (.)

p
, and (.)

w
. When a value for p is

needed at the bottom and top boundaries a variant of the (.)
w

operator is employed that uses linear extrapolation rather than250

the default constant extrapolation.

In order to ensure consistent and conservative transport of water and entropy, a key aspect of the model formulation is that a

mass budget for a ‘dual’ w-level density ρr should be satisfied that is consistent with the p-level ρ budget (Konor and Arakawa,

2000; Thuburn, 2022; Bendall et al., 2023). Achieving this consistency requires some care in the advection of w-level scalars

(section 2.6), both for SLICE and for the cheap advection updates, and also in the discrete formulation of surface sources and255

interior sources (section 2.7).

In the following sections, for clarity, details of the spatial discretization are suppressed except to indicate where different

vertical averaging operators are used.

2.3 Overview of information flow

Before delving further into details, it is useful to take an overview of the flow of information between the dynamics and260

thermodynamics parts of the model formulation (Fig. 2), to help clarify the organization of the linearization and the derivation

of the Helmholtz problem in subsections 2.8, 2.9 and 2.10.

For the continuous equations, the role of the thermodynamics is to return the pressure p, given the density ρ, total water q,

and total entropy η. To do so, the thermodynamics must determine how q and η are partitioned among the different components

and phases qv, ql, qf , ηd, ηv, ηl, ηf .265
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Figure 2. Schematic showing the flow of information between the dynamics, thermodynamics at p-levels, and thermodynamics at w-levels

for the case of equilibrium thermodynamics. (For the nonequilibrium case the w-level thermodynamics retains some memory of qi and ηi.)

Superscript i stands for any of d, v, l, or f . An overbar indicates a vertical averaging operation from p-levels to w-levels or vice-versa.

The situation is more complicated when discretized with a Charney-Phillips vertical grid staggering, since p and ρ are stored

at p-levels while q and η are stored at w-levels. Moreover, in order to obtain optimal coupling between vertical velocity and

buoyancy, the w-level specific volume that appears in the vertical pressure gradient term in (2) must be calculated not simply

from a vertically averaged density 1/ρr, but from the w-level η and q and a vertically averaged pressure pw (Thuburn, 2017a).

It is convenient to express this requirement through an additional equation270

pw − p(w) ≡−Rp = 0, (17)

where p(w) is the pressure appearing in (12) on w-levels, and Rp is a residual that should be driven to zero by the iterative

solver. Thus, on w-levels a full set of thermodynamic equations (6)-(13) is solved, while on p-levels the following subset of

thermodynamic equations is solved:

qv
p
αv(p) + ql

p
αl + qf

p
αf − 1

ρ
= 0, (18)275

qv
p
αv(p) − qd

p
αd(p) = 0, (19)

p+ edα + evα = 0. (20)

Equation (18) determines the p-level specific volume of water vapour αv(p), then (19) determines the p-level specific volume280

of dry air αd(p). Finally, the pressure is computed from the dry air and water vapour internal energy potentials in terms of their
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p-level natural variables αd(p), ηd
p
, αv(p), and ηvp. Note that the specific volumes αd(p) and αv(p) are calculated directly

from ρ on p-levels rather than using vertical averages of the w-level values αd
p
, αvp, ensuring that p responds correctly and

locally to changes in ρ.

2.4 Semi-implicit semi-Lagrangian scheme285

Splitting the momentum equation into its horizontal and vertical components with v = (u,v,0) the horizontal velocity, a semi-

implicit semi-Lagrangian discretization of (1)-(5) is

[ρ− a∆tSρ]
n+1 − [ρ+ b∆tSρ]

n
T ≡−Rρ = 0, (21)

[v+ a∆t((2Ω×u)H +α∇Hp−Sv)]
n+1 − [v− b∆t((2Ω×u)H +α∇Hp−Sv)]

n
D ≡−Rv = 0, (22)290

[
w+ a∆t

(
(2Ω×u)V +α

∂p

∂z
+
∂Φ

∂z
−Sw

)]n+1

−
[
w− b∆t

(
(2Ω×u)V +α

∂p

∂z
+
∂Φ

∂z
−Sw

)]n
D

≡−Rw = 0, (23)

[ρr (η− a∆tSη)]
n+1 − [ρr (η+ b∆tSη)]

n
T −∆tρrJTP n+1 ≡−Rρη = 0, (24)

295

[ρr (q− a∆tSq)]
n+1 − [ρr (q+ b∆tSq)]

n
T ≡−Rρq = 0, (25)

[X − a∆tSX ]
n+1 − [X + b∆tSX ]

n
D −∆tJ = 0. (26)

Here, superscripts n and n+1 are time step indices. Subscripts H and V indicate horizontal and vertical components, respec-

tively. Subscript D indicates a quantity interpolated or remapped to a semi-Lagrangian trajectory departure point or cell, while300

subscript T indicates a conservatively transported quantity defined by Vn+1ψT = [Vψ]nD.

∆t is the time step, and a and b= 1− a are off-centring parameters for the dynamics. To damp acoustic waves that might

be generated by initial perturbations imposed to trigger turbulence or by the switching on of forcing terms at the initial time, a

is smoothly adjusted from 1 to a user specified value over the first 900s of a model run. A value of a= 0.51 (after the initial

adjustment) is used for the results shown in section 5.305

The termsRρ, Rv ,Rw,Rρη ,Rρq represent residuals in their respective equations. In the target discretization these residuals

should be zero. The iterative solver described in the following sections attempts to drive those residuals to zero. No residual

appears in (26) because that equation is used to diagnose the fluxes J so it is always satisfied exactly.
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The subsystem of thermodynamics equations (6)-(13) is solved at step n+1, and it is P n+1 that appears in (24), effectively

giving a backward Euler treatment of the thermodynamics. The thermodynamic processes of interest typically involve relax-310

ation towards equilibrium rather than oscillation about equilibrium. A backward Euler treatment should be sufficiently accurate

for nonequilibrium processes whose timescale is much longer than ∆t, such as evaporation of falling rain. For processes whose

timescale is shorter than about ∆t/2 a backward Euler step is preferable to a Crank-Nicolson step since Crank-Nicolson can

overshoot the equilibrium solution. If the form of the resistivity matrix implies that any part of the system is in equilibrium (e.g.

T v = T d) then a backward Euler step is essential, since the equilibrium must be imposed at step n+1, not as a time average.315

2.5 Time stepping algorithm

The semi-implicit semi-Lagrangian scheme described in section 2.4 is both nonlinear in the unknown step n+1 values and

nonlocal because unknown values at neighboring gridpoints are coupled. The equations are solved using an iterative quasi-

Newton algorithm (algorithm 1). By elimination of unknowns, the linear system for the Newton update is reduced to a more or

less standard Helmholtz problem, which is solved using a multigrid method (section 2.11). To avoid the expense of computing320

conservative semi-Lagrangian transport multiple times per step, a single full advection calculation is made once at the start of

the time step, and relatively cheap updates to the transport are made at each solver iteration (Zerroukat and Allen, 2020). These

cheap transport updates use simple upwind or centred schemes and are made in such a way that the transport of scalars remains

conservative and bounded (assuming conservative and bounded options have been chosen by the user) and consistent with the

transport of mass at every solver iteration (Thuburn, 2024).325

Algorithm 1 Computations performed to take one model time step

Compute time step n terms

Initialize step n+1 state variables to step n state

Full advection calculation: compute [.]D and [.]T terms

for ℓ= 1 to Nℓ do

Compute step n+1 terms based on iteration ℓ− 1 values

Compute residuals

Build and solve the Helmholtz problem

Backsubstitute, updating all transport terms and state variables

end for

The number of solver iterations takes a default value Nℓ = 3. This was found to be sufficient for all test cases simulated

except DYCOMS, for which Nℓ = 4 was needed. This exceptional case is discussed in sections 4 and 5.

When cheap transport updates are employed, the resulting time integration scheme at solver convergence is not quite as

written in section 2.4, with semi-Lagrangian advection by the trajectory-average velocity. Rather, the net transport results

from semi-Lagrangian advection using the first-guess trajectory-average velocity followed by a sequence of small corrections.330

Nevertheless, the end result is very close to the target discretization and appears to work well in practice.
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An attractive aspect of the use of the consistent and conservative cheap transport updates is that, after the first solver iteration,

the residuals in (21), (24) and (25) and the equations for any advected tracers are very small and result only from changes in

source terms between one iteration and the next (Thuburn, 2024). It is likely that this helps solver convergence (section 4.4).

2.6 Advection335

All advection terms are computed using semi-Lagrangian schemes. Different advection options are available depending on the

advected variable and its location on the grid. All momentum equation components are advected with an interpolating (non-

conservative) semi-Lagrangian scheme. Terms in the total fluid density equation and the mass fractions of any p-level tracers

are advected using the mass-conserving SLICE scheme (Zerroukat et al., 2009). Advected terms in the water and entropy

equations (24), (25) and (26), and any w-level tracers, may be advected with either an interpolating semi-Lagrangian scheme340

or with SLICE.

Both the interpolating semi-Lagrangian scheme and SLICE use the ‘cascade’ idea (Purser and Leslie, 1991) to replace a

three-dimensional interpolation or remapping by a sequence of one-dimensional interpolations or remappings (Fig. 3).

The interpolating semi-Lagrangian scheme is based on cubic Lagrange interpolation. For the vertical interpolation, modifi-

cations are needed near the upper and lower boundaries. Between the uppermost pair of data points and between the lowermost345

pair of data points a modified cubic interpolation is used that uses only the two nearest data points and is very close to a

linear interpolation. For terms in the u and v equations, when extrapolation above the uppermost data point is needed constant

extrapolation is used. When extrapolation below the lowest data point is needed, the scheme uses either constant extrapola-

tion or linear interpolation between the data value at level 1 and zero at the surface, according to whether the user selects a

'freeslip' or 'noslip ' boundary condition for the advection.350

For the SLICE scheme, for each advected field the user may choose between piecewise constant, piecewise parabolic (Colella

and Woodward, 1984) and parabolic spline (Zerroukat et al., 2007) remapping schemes. Experimentation suggests that, for most

purposes, piecewise constant remapping is adequate for cell volume, divergence, and density. The results shown in section 5

use this option, with parabolic spline method remapping for entropy and water. For each advected field the user has the option

to use a simple limiter ensuring boundedness of the advected field. The limiter is redundant in the case of SLICE advection355

with piecewise constant remapping. In section 5 the limiter is used for advection of entropy and water but not for advection of

velocity components.

Some modifications to previous implementations of cascade advection schemes are made to reduce expensive searching and

conditional code and to maximize re-use of information. First, in addition to the trajectory departure points, three-dimensional

cascade interpolation or remapping requires two sets of ‘intermediate departure points’. Rather than construct these interme-360

diate departure points by computing intersections between the arrival coordinate system defined by the model grid and the

departure or Lagrangian coordinate system, as in previous work (e.g Purser and Leslie, 1991; Nair et al., 2002; Zerroukat et al.,

2002), here they are computed by separate trajectory calculations. The idea is illustrated in Fig. 3 for the two-dimensional case.

A first guess followed by a single fixed point iteration is used for all trajectory calculations.
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Figure 3. Departure points and cascade remapping in two dimensions. The red line Df to Af is an example ‘full’ trajectory to a v-point

arrival point Af from the corresponding departure point Df . The x- and y-coordinates of Af are known and the x and y coordinates of Df are

to be calculated. The blue line Di to Ai is an example ‘intermediate’ trajectory to Ai from Di. The x-coordinate of Ai and the y-coordinate

of Di are known and the y-coordinate of Ai and the x-coordinate of Di are to be calculated. Once the intermediate and full departure points

are found, fields are conservatively remapped in the x-direction, from the model grid cells (straight black lines) to intermediate cells (blue

dashed lines), then in the s-direction to the departure cells (red curves). The remapped field is then transported from its departure cells (e.g.

pink cell) to the corresponding arrival cells (e.g. grey cell).

Second, we want to remap the density field using a volume coordinate to ensure consistency with the trajectory-average365

divergence (see below), and we want to remap water, entropy, and tracers in a mass coordinate to ensure that their advection

is conservative, bounded if desired, and consistent with the density advection. However, neither the volume coordinate nor the

mass coordinate is a simple function of cell index, so it might appear, at first glance, that expensive searching is needed to

determine the necessary origin grid indices in these coordinates. This difficulty is circumvented with the aid of the following

insight. To compute a one-dimensional remapping of a field f from an origin grid to a destination grid, the information370

needed comprises the origin grid cell average values of f , the origin grid coordinate intervals ∆sk, the origin grid indices ki

corresponding to destination grid cell edges i, and the cell fractions ξi in the s-coordinate (Fig. 4). Fields are then remapped in

the following sequence.

1. Remap cell volume in a geometrical coordinate x, y or z; the origin grid indices ki and cell fractions ξi are easily

determined.375
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Origin grid

Destination grid

Figure 4. Information used for one-dimensional conservative remapping of a field between an origin grid (cell edges indicated in blue) and

a destination grid (cell edges indicated in red). The remapping coordinate s may be a geometrical coordinate (x, y or z), volume, or mass.

∆sk is an origin grid cell size in the s-coordinate. ki is the origin grid cell index in which the destination grid edge i sits. ξi is the fraction of

the origin grid cell ki, measured in the s-coordinate, to the left of destination edge i.

2. Remap density in a volume coordinate; the origin grid indices ki are unchanged while the cell fractions ξi are obtained

as a by-product of the volume remapping. For example, if Fig. 4 represents the remapping of volume in a geometrical

coordinate then the volume-coordinate cell fraction needed for the density remapping is given by the ratio of the dark

shaded area to the full shaded area.

3. Remap p-level tracer mass fractions in a mass coordinate; the origin grid indices ki are again unchanged while the cell380

fractions ξi are obtained as a by-product of the density remapping.

4. Remap w-level scalars in a mass coordinate. The origin grid indices ki and cell fractions ξi must correspond to a mass

coordinate based on ρr; they can be computed from the mass coordinate ki and ξi at the p-levels immediately below and

above the w-level in question.

Thuburn et al. (2010) found that the accuracy of a semi-implicit semi-Lagrangian scheme with conservative semi-Lagrangian385

advection of density relies on the semi-Lagrangian departure volumes (departure areas in the shallow water context) being

consistent with the trajectory-average divergence. Subsequent work showed that this divergence-consistency criterion is crucial

for stability too, unless a strong off-centring is employed. However, it appears very difficult to enforce this criterion directly

within the trajectory calculations. Thuburn et al. (2010) solved this problem by conservatively advecting the divergence field,

hence constructing the required departure cell areas, and using an area coordinate for the final SLICE remapping sweep in the390

advection of mass. Here a slightly different approach is taken, to enable the remapping sequence discussed above. First, the

divergence field is conservatively advected, and the information is used to compute the required departure cell volumes. These

required departure cell volumes are compared with the actual departure cell volumes returned by SLICE, and the difference is

used to compute a (small) divergent velocity increment sufficient to correct the discrepancy. The semi-Lagrangian advection

of all other advected fields is then carried out, following which the machinery for making cheap advection updates is used to395

update the advection of all fields using this velocity increment and so satisfy divergence-consistency.
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One of the benefits of the Charney-Phillips vertical grid is that the colocation of w and η permits a tight coupling between

vertical motion and buoyancy. However, when the entropy transport is computed in flux form that tight coupling is lost un-

less the horizontal fluxes are corrected to account for the vertical gradients of η, Fx = ρxu, and Fy = ρyv (Thuburn, 2022).

Thuburn (2022) showed how the horizontal remapping of w-level fields in SLICE could be modified to implement the required400

correction. Here, since the correction is generally small, a much simpler approach is taken. Before carrying out the main SLICE

advection of entropy, a small transport correction is made to the entropy using the horizontal fluxes

F η
x = awbw∆z2

∂Fx

∂z

∂ηx

∂z

w

, F η
y = awbw∆z2

∂Fy

∂z

∂ηy

∂z

w

, (27)

where aw and bw are the coefficients associated with the (.)
w

operator. All quantities are evaluated at step n, and the fluxes

are applied over the time step ∆t. Subscripts k+1/2 indicating the vertical level have been omitted for clarity. Equation (27)405

is a slight generalization of equation (7) of Thuburn (2022) to allow for a vertically stretched grid. An analogous correction is

applied to the transport of all conservatively transported w-level scalars. However, because this simple formulation does not

guarantee boundedness of advected scalars, the user may choose whether or not to include the correction. The correction is

included for the results shown in section 5.

In the backsubstitution stage of the time step cheap updates are made to all transported terms [.]D and [.]T to account for410

the velocity increments u′, applied over the backward part of the time step a∆t. The transported terms in the momentum

equation are updated using an advective-form first-order upwind scheme. The transported term in the density equation is

updated using a flux-form scheme with mass flux increments F ′ = ρ̂u′ where the cell edge values ρ̂ are given by a second-

order centred scheme. The transported terms in any p-level tracer equations are updated using a flux-form scheme with tracer

flux increments F χ′ = F ′χ̂ where the cell edge values χ̂ are given by a first-order upwind scheme. Finally, the transport terms415

for any w-level scalars are updated using a flux-form scheme with scalar flux increments F χ′ = F ′dχ̂ with χ̂ again given by a

first-order upwind scheme. The notation (.)
d

here indicates that horizontal mass flux increments have been mapped to w-levels

using the (.)
r

operator and vertical mass flux increments have been mapped to p-levels using the (.)
p

operator for consistency

with the dual mass budget (Thuburn et al., 2022). This way of constructing the scalar flux increments ensures that the scalar

transport remains consistent with density transport and conservative and bounded if the full semi-Lagrangian transport was420

conservative and bounded.

2.7 Boundary and interior forcing terms

Each simulated case requires the implementation of appropriate boundary and interior forcing terms. For clarity of the code,

these boundary and forcing terms are implemented on a case-by-case basis. For the surface fluxes, the cases that are already

implemented include examples of the setups most commonly used in LES: heat and moisture fluxes as specified functions425

of time; heat and moisture fluxes determined from a specified surface temperature and relative humidity using a simple bulk
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model; momentum fluxes determined by a simple bulk model; momentum fluxes determined by Monin-Obukhov similarity

theory.2 A case using Monin-Obukov theory to determine heat and moisture fluxes has not yet been implemented.

This section highlights some aspects of how the boundary and interior forcing terms are implemented for consistency with

the rest of the model formulation.430

2.7.1 Consistent surface fluxes of mass and water

Under a careful and consistent treatment of the moist thermodynamics, a surface flux of water implies a surface flux of mass.

Most atmospheric models neglect that flux of mass. Because of the Charney-Phillips vertical staggering, and the fact that the

predicted density is the total density rather than the dry density, care is needed in computing the density and water increments

to ensure that the changes in both total mass and total water within the model agree with the time-integrated surface fluxes.435

First consider the forward part of the time step, i.e., the [. . .]n terms in (21) and (25). Let Fρ be the surface flux of mass

and ρnr
1/2Fq be the surface flux of water (both in kgm−2s−1). Recall that the w-level density at level k+1/2 must equal the

conservatively remapped p-level density ρrk+1/2. Thus, any change in total density at level 1 affects the density of water at

level 3/2, ρnr
3/2q3/2, as well as the density of water at level 1/2, ρnr

1/2q1/2. Nevertheless, imposing the constraints

– only the density at level 1 may change, and the total change in column mass per unit area must equal Fρb∆t,440

– only the specific humidity at level 1/2 may change, and the total change in column water mass per unit area must equal

ρn
r
1/2Fqb∆t,

leads to unique solutions for the increment in density at level 1

δρ1 =
Fρb∆t

∆z1
(28)

and the increment in specific humidity at level 1/2445

δq1/2 =

(
ρn1Fq − qn

s
1Fρ

)
b∆t

ρ+1 ∆z1/2
, (29)

where ρ+1 = ρn1 + δρ1, and we have used the fact that ρr1/2 ≡ ρ1.

For the backward part of the time step, i.e., the [. . .]n+1 terms in (21) and (25), an analogous argument leads to

δρ1 =
Fρa∆t

∆z1
(30)

and450

δq1/2 =

(
ρn+1
1 Fq − qn+1

s

1Fρ
)
a∆t

ρ−1 ∆z1/2
, (31)

where ρ−1 = ρn+1
1 − δρ1. Terms at time step n+1 are approximated by the latest available estimate.

The treatment of surface entropy fluxes is analogous, with q replaced by η and Fq replaced by Fη .
2The ATEX case definition calls for momentum fluxes to be determined by near-surface wind direction and a specified friction velocity. However, the ILES

formulation performs poorly with that setup, so a simple bulk model is used instead. The specified friction velocity setup can be restored with very minor code

changes.
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2.7.2 Surface drag

The various test cases implemented specify how the vertical flux of horizontal momentum is to be parameterized at the surface.455

Since there are no parameterized subgrid fluxes in the interior of the domain, the convergence of the parameterized momentum

flux occurs entirely in the lowest model layer, i.e., it is applied to the u and v components at model level 1.

Some of the test cases implemented specify that the surface momentum flux is to be computed using Monin-Obukhov

similarity theory. However, there are two difficulties. First, Monin-Obukhov similarity theory expresses the mean flow speed

U(z) at some height z as a nonlinear function of the friction velocity U∗. What we require in a numerical model is to express460

the friction velocity, hence the surface momentum flux, in terms of the known flow speed at the lowest model level; however,

in the usual approach, this requires the iterative solution of a nonlinear problem in each grid column. Second, and more

seriously, in the stable case (negative surface buoyancy flux) in light winds Monin-Obukhov similarity theory is valid only over

a limited height range that might be less than the height of the lowest model level z1. In this case, with commonly used stability

functions, the theory can produce either no solution or multiple solutions for U∗, given U(z1). To avoid these difficulties, a465

slight reformulation of Monin-Obukhov theory is used to compute surface momentum fluxes (Appendix A4).

2.7.3 Consistent interior forcing terms

For test cases that require a source of moisture in the interior of the model domain, consistency between the p-level mass budget

and the w-level dual mass budget requires that

(ρSq)k+1/2 =
(
Sρ

r
)
k+1/2

. (32)470

The simplest way to satisfy this condition is to specify the required moisture/mass source first on p-levels, and then remap

conservatively to w-levels. For simplicity, interior entropy sources are specified in the same way.

2.8 Linearized dynamics

To take a model time step, a quasi-Newton method is used to solve equations (21)-(26) along with the p-level and w-level

thermodynamic equations. After some number of quasi-Newton iterations, using the latest available estimates to evaluate step475

n+1 terms, the residuals Rρ, Rv , Rw, Rρη , Rρq , RPE, Rp will generally be non-zero. We seek increments or updates to the

step n+1 model variables that will reduce those residuals. This is done through an approximate linearization of the governing

equations (this section and section 2.9), leading to a large linear system for the increments. Despite the apparent complexity of

this system, systematic elimination of unknowns, partly manually and partly numerically, leads to a nearly standard Helmholtz

problem for a single unknown per model gridpoint: the pressure increment p′ (section 2.10). The Helmholtz problem can be480

solved efficiently using well-established methods; here a multigrid method is used. Once p′ is found, the other increments can

be found through backsubstitution (section 2.11).

The approximate linearization of (21)-(26) is

ρ′ + a∆t∇ ·F ′ =Rρ, (33)
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485

v′ + a∆t(α∗∇Hp
′ −S′

v) =Rv, (34)

w′ + a∆t

(
α∗
∂p′

∂z
+α′ ∂p∗

∂z

)
=Rw, (35)

ρ(ℓ+1)
r
η′ + ρ′

r
(η− a∆tSη)

(ℓ) − [ρr (η+ b∆tSη)]
′
T =Rρη, (36)490

ρ(ℓ+1)
r
q′ + ρ′

r
(q− a∆tSq)

(ℓ) − [ρr (q+ b∆tSq)]
′
T =Rρq, (37)

X ′ −∆tJ ′ = 0. (38)

An asterisk on any variable indicates a reference value for the linearization. Here the most recent estimate for the step n+1495

value is used as the reference value, avoiding the need to store additional three-dimensional fields. Certain terms in (36) and

(37) are explicitly evaluated at iteration number ℓ or ℓ+1. This specific way of writing the linearization ensures that, when

(36) and (37) are used in the backsubstitution, η and q are incremented exactly according to the consistent and conservative

transport updates. Since the source terms Sρ etc. are generally non-stiff, their linearizations are mostly omitted. The exception

is a linearization of the surface drag at model level 1 S′
v =−v′/τdrag, where τdrag is a surface drag timescale computed500

alongside the surface momentum flux. This term is omitted from the Helmholtz problem (in principle it could be included) but

is included in the backsubstitution.

In order to arrive at a standard Helmholtz problem for the pressure increments we must make a w′N2 term appear in the

linearization, where N2 is an appropriately defined buoyancy frequency squared. This requires us to work with a linearization

of advective form transport equations for η and q. Consider the η equation (36). In the backsubstitution the transport increment505

is computed as

[ρr (η+ b∆tSη)]
′
T =−a∆t∇ · (F ′dη̂) (39)

for some (upwind) cell edge values η̂. Thus, (36) becomes

ρ(ℓ+1)
r
η′ + ρ′

r
(η− a∆tSη)

(ℓ)
+ a∆t∇ · (F ′dη̂) =Rρη. (40)

Subtracting η̂ times a vertical average of (33) and approximating ρ(ℓ+1)
r

by a generic reference density ρ∗ gives510

η′ + a∆tw′ ∂η

∂z
=
Rρη − η̂Rρ

ρ∗
≡Rη. (41)

Proceeding in a similar way for the q equation (37) gives

q′ + a∆tw′ ∂q

∂z
=
Rρq − q̂Rρ

ρ∗
≡Rq. (42)
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2.9 Linearized thermodynamics

When thew-level thermodynamic state is updated, certain fields are diagnosed, ensuring that (6)-(11) are satisfied exactly: qd is515

set equal to 1−q; (9) gives qv; (10) gives αv; and (6) gives αd. Also, the updating of terms in (7) and (8) during backsubstitution

is done in such a way that those equations remain exactly satisfied. Thus, no residual term appears in the linearized versions of

these equations.

The linearized forms of (6)-(11) are then as follows:

qvαv′ +αvqv′ − qdαd′ +αdq′ = 0, (43)520

(1− δl)λl
′ − δlql

′
= 0, (44)

(1− δf)λf
′ − δfqf

′
= 0, (45)

525

qv′ + ql
′
+ qf

′ − q′ = 0, (46)

qvαv′ +αvqv′ +αlql
′
+αfqf

′ −α′ = 0, (47)

qdηd
′ − ηdq′ + qvηv′ + ηvqv′ + qlηl

′
+ ηlql

′
+ qfηf

′
+ ηfqf

′ − η′ = 0. (48)530

Note that qd′ =−q′ has been used to eliminate increments of the dry mass fraction. The linearization of (17) is

p′
w − p(w)′ =Rp. (49)

With the aid of (38), the linearized phenomenological equations become

1

∆t
RX ′ −P ′ +C ′ =RPE; (50)

for brevity the details of P ′ and C ′ are suppressed.535

Two modifications are then made to the linear system. First, a change of variable is made, introducing λ̃l
′
= λl

′
+ ql

′ and

λ̃f
′
= λf

′
+ qf

′. Second, ηref times (44) is added to the ql′ phenomenological equation and ηref times (45) is added to the qf ′

phenomenological equation. These two modifications guarantee that the coefficient of ql′ in (44) and the coefficient of qf ′ in

(45) are nonzero, and that the coefficients of λ̃l
′

and λ̃f
′

in the relevant phenomenological equations are nonzero. In this way,
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the sparsity pattern of the system matrix is known irrespective of the state of the switches δl, δf , and is then effectively the540

same at all grid points.

The resulting system of linear equations may be compactly written

M̃Z ′ = R̃M, (51)

where M̃ is an 11×14 matrix, and (Z ′)T =
(
(Y ′)T, q′,α′,η′

)
where (Y ′)T =

(
αv′, ql

′
, qf

′
, qv′,αd′,ηd

′
,ηv′,ηl

′
,ηf

′
, λ̃l

′
, λ̃f

′)
.

The different ordering of the rows and columns of M̃ compared to Bowen and Thuburn (2022a) allows a better exploitation of545

the sparsity in the Gaussian elimination step discussed in section 2.10.

The linearized versions of the p-level thermodynamic equations (18)-(20) are

qv′
p
αv(p) + qv

p
αv(p)′ + ql

′p
αl + qf

′p
αf +

ρ′

ρ2∗
= 0, (52)

qv′
p
αv(p) + qv

p
αv(p)′ + q′

p
αd(p) − qd

p
αd(p)′ = 0, (53)550

p′ + edααα
d(p)′ + edαηη

d′
p
+ evααα

v(p)′ + evαηη
v′p = 0. (54)

2.10 Derivation of the Helmholtz problem

In order to derive a Helmholtz problem, it will be useful to express all other thermodynamic increments at w-levels (the

components of Y ′) in terms of q′, α′, and η′. This is done by carrying out a numerical Gaussian elimination on M̃ to leave555

MZ ′ =RM, (55)

where M is of the form

M= (I C1 C2 C3) , (56)

I is the 11× 11 identity matrix, and C1, C2, and C3 are columns of (generally) nonzero entries. For efficiency, the Gaussian

elimination exploits the known sparsity pattern of the matrix M̃ and, since the sparsity pattern is the same for all grid points,560

the elimination can be done without conditional code, and can be implemented with the innermost loop over model levels.

The entries Mij of the eliminated matrix M and the entries RM i of the eliminated right hand side RM are used in building

the coefficients and right hand side of the Helmholtz problem. A subset of them (rows 2, 3, and 7–11 of C1, C2, C3, and RM,

corresponding to the equations for (λl′,λf ′, ql′, qf ′,ηv′,ηl′,ηf ′)) are saved for use in backsubstitution.

Next, we need an equation relating p′, α′ and w′ at w-levels and an analogous equation relating p′, ρ′ and w′ at p-levels.565

With the aid of (55), the pressure perturbation at w-levels is given by

p(w)′ = −edααα
d′ − edαηη

d′ − evααα
v′ − evαηη

v′

=
∂p

∂q
q′ +

∂p

∂α
α′ +

∂p

∂η
η′ +RTDP, (57)
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where

∂p

∂q
= edααM512 + edαηM612 + evααM112 + evαηM712, (58)570

∂p

∂α
= edααM513 + edαηM613 + evααM113 + evαηM713, (59)

∂p

∂η
= edααM514 + edαηM614 + evααM114 + evαηM714, (60)

RTDP = edααRM5 + edαηRM6 + evααRM1 + evαηRM7. (61)

Defining the sound speed c by

∂p

∂α
=−ρ2∗c2 (62)575

and using (36) and (37) to eliminate η′ and q′, (49) becomes

p′
w

c2
+ ρ2∗α

′ + a∆tρ∗w
′N

2

g
=Rbuoy, (63)

where

ρ∗
N2

g
=

1

c2

{
∂p

∂q

∂q

∂z
+
∂p

∂η

∂η

∂z

}
(64)

and580

Rbuoy =
1

c2

{
Rp +RTDP +

∂p

∂q
Rq +

∂p

∂η
Rη

}
. (65)

Deriving the analogous equation on p-levels is a little more subtle because p′ depends both on ρ′ and, via qi′ and ηi′, on the

w-level α′ averaged to p-levels. Setting qi′ and ηi′ to zero in (52)-(54) shows that

∂p

∂ρ

∣∣∣∣
αp

=
1

ρ2∗

(
edαα

qd
p +

evαα

qv
p

)
≡ ĉ2, (66)

where ĉ is a ‘reduced sound speed’ (typically very close to and slightly larger than c). Hence585

∂p

∂αp

∣∣∣∣
ρ

=−ρ2∗(c2 − ĉ2), (67)

while ∂p/∂q and ∂p/∂η are given sufficiently accurately by their w-level values averaged to p-levels. Proceeding in this way,

(54) becomes

p′ − ĉ2ρ′ + ρ2∗(c
2 − ĉ2)α′p − ∂p

∂q
q′

p − ∂p

∂η
η′

p
=RTDP

p
. (68)

Using (63) to eliminate α′ and (36) and (37) to eliminate η′ and q′ leaves590

p′

ĉ2
− ρ′ +

(
1

c2
− 1

ĉ2

)
p′

wp

+ a∆tρ∗w′N
2

g

p

=Rbuoy
p − Rp

p

ĉ2
. (69)
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Next, use (63) to eliminate α′ from (35) and combine the terms involving p′ into a single operator:

ρ∗w
′ +D1(p

′) =
ρ∗Rw + a∆tgRbuoy

1+ a2∆t2N2
≡ ρ∗RwDp, (70)

where

D1(p
′)≡ a∆t

1+ a2∆t2N2

(
∂p′

∂z
+

g

c2
p′

w
)
. (71)595

Also, use (69) to eliminate ρ′ from (33) and combine the terms involving w′ into a single operator:

p′

ĉ2
+

(
1

c2
− 1

ĉ2

)
p′

wp

+ a∆t∇H · (ρ∗v′)+D2(ρ∗w
′) =Rbuoy

p − Rp
p

ĉ2
+Rρ, (72)

where

D2(ρ∗w
′)≡ a∆t

(
∂

∂z
ρ∗w

′ +
N2

g
ρ∗w′p

)
. (73)

Finally, eliminate u′, v′, and w′ using (34) and (70) to obtain the Helmholtz problem600

p′

ĉ2
+

(
1

c2
− 1

ĉ2

)
p′

wp

− a2∆t2∇H · ∇H p
′ −D2D1(p

′) =Rbuoy
p − Rp

p

ĉ2
+Rρ − a∆t∇H ·Rv −D2(ρ∗RwDp). (74)

The form of the Helmholtz problem is slightly unusual in the appearance of the first two terms rather than a single term

p′/c2. As noted above, the p′
wp

term appears because of the dependence of p′ on α′p and of α′ on p′
w

. Nevertheless, this

slightly different form does not affect the stencil of the discrete Helmholtz operator or the difficulty of solving the Helmholtz

equation numerically.605

The vertical part of the Helmholtz operator must be modified near the top and bottom boundaries to impose w′ = 0 there.

This modification amounts to

– omitting the contributions from levels 1/2 and Nz +1/2 in D2(ρ∗RwDp) on the right hand side of (74);

– omitting the contributions D1(p
′) from levels 1/2 and Nz +1/2 in D2D1(p

′).

The switching of the Lagrange multipliers used to enforce non-negativity of ql and qf can significantly change the lin-610

earization of the thermodynamics, particularly the value of N2. Therefore, the matrix M and the coefficients of the Helmholtz

problem are rebuilt at every solver iteration.

2.11 Helmholtz solver and backsubstitution

The Helmholtz problem is solved using a horizontal multigrid method. Each smoother iteration uses a Jacobi method in the

horizontal with a tridiagonal direct vertical solve. Key parameters of the multigrid solver—the depth of the V-cycles, the615

number of smoother iterations on the coarsest grid, and the number of V-cycles—are automatically chosen to ensure that the

pressure increments are sufficiently accurate (Appendix A3).

Having found the solution for p′, increments to other variables are found through backsubstitution:
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– u′, v′ and w′ are found using (34) and (70);

– Velocity increments are used to compute mass flux increments F ′ and hence ρ′ using (33);620

– Velocity and mass flux increments are used to update all transported terms and hence increment q and η;

– α′ is computed using (63), then (λl
′
,λf

′
, ql

′
, qf

′
,ηv′,ηl

′
,ηf

′
), are computed from q′, η′ and α′ using the coefficients saved

after the Gaussian elimination (55).

Before applying the increments (λl′,λf ′, ql′, qf ′,ηv′,ηl′,ηf ′), a check is made to see if they would imply breaking any of the

constraints ql ≥ 0, qf ≥ 0, λl ≤ 0, λf ≤ 0. If they would, then, at that grid point, a partial increment is made to these seven625

variables such that the updated variables sit at the constraint boundary, and the corresponding δi is switched from 0 to 1 or vice

versa. All other variables receive their full increments.

After the completion of the solver iterations the model’s pressure field is diagnosed using (18)-(20). This ensures that the

pressure is consistent with the other model thermodynamic fields and enables bit-reproducible restarts without the need to

save the pressure field. During early stages of model development (18)-(20) were also used to recompute p at the end of each630

solver iteration. However, this formulation is adversely impacted by the switching of constraints, as follows. The total entropy

always receives its full increment η′. When constraint switching leads to partial increments ηv′, ηl′ and ηf ′, the dry entropy

must take up the slack, potentially resulting in pressure changes much larger than the p′ originally returned by the Helmholtz

problem, and hence to large residuals locally in the momentum equation. Therefore, in the present formulation, p is updated by

adding the increment p′ returned by the Helmholtz problem at each solver iteration. In the presence of constraint switching, this635

alternative way of updating the pressure greatly reduces the residuals in the momentum equation but leads to a larger residual

Rp in (17). Nevertheless, the overall effect is beneficial, accelerating solver convergence.

3 Test cases

3.1 Generating initial data;

The model includes general purpose routines for constructing a horizontally uniform initial state in discrete hydrostatic balance640

given specified vertical profiles of a temperature variable, a humidity variable, and the horizontal wind components. The tem-

perature variable may be potential temperature, liquid water potential temperature, virtual potential temperature, or temperature

itself. The humidity variable may be total specific humidity or relative humidity.

PTerodaC3TILES version 1.0 has routines in place, which can be selected via namelist options, to generate initial data and

forcing terms for the following test cases: ATEX (Stevens et al., 2001); ARM (Brown et al., 2002); BOMEX (Siebesma et al.,645

2003); BUBBLE (a 3D version of Bryan and Fritsch, 2002); CBL (a dry convective boundary layer, Sullivan and Patton, 2011);

DYCOMS (Stevens et al., 2005); a NEUTRAL boundary layer with shear. The user can easily implement new test cases by

using exising routines as templates.

24



PTerodaC3TILES version 1.0 can also generate initial data for the LBA case (Grabowski et al., 2006). However, the current

version cannot represent the microphysics and precipitation necessary to simulate this case successfully, and the forcing terms650

are not yet implemented.

3.2 Output and diagnostics

A variety of diagnostics are computed online and may be selected by the user for output. These include

– time series of global diagnostics such as total mass and total water, along with accumulated source terms;

– column diagnostics of horizontal means of model fields and derived quantities such as turbulent kinetic energy, vertical655

fluxes, and cloud fraction;

– two dimensional slices in the x-y, x-z, and y-z planes of the main model fields plus some derived quantities like cloud

top height;

– diagnostics of quasi-Newton solver convergence;

– diagnostics of quantities potentially related to model stability.660

Full details are given in the User Manual, available from Zenodo; see the Code availability section.

4 Verification

All components of the model have been thoroughly tested during development. This section highlights some aspects that

require particularly careful checking or that can appear to work despite errors in formulation or coding.

4.1 Advection665

The advection routines have been tested with specified velocity fields, independently of the rest of the model, to verify their

overall accuracy, including correct behaviour at vertical and lateral boundaries and, where relevant, to confirm their conser-

vation, consistency, and boundedness properties. It is particularly important that the w-level dual mass budget is satisfied

(section 2.2) so that w-level scalars are correctly advected. Conservation, consistency, and boundedness have also been verified

in full model simulations to ensure that they are maintained by both the full cascade advection and the cheap advection updates.670

4.2 Divergence-consistency

It has been verified that the divergent velocity increments discussed in section 2.6 correctly compensate for any discrepancy be-

tween the departure volumes computed by SLICE and the trajectory-average divergence. When these compensating increments

are not included the model is found to become unstable, as expected theoretically.
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4.3 Thermodynamics and linearized thermodynamics675

The correctness and consistency of the formulation of thermodynamics in terms of internal energy potentials was verified in

stand-alone code before incorporating in PTerodaC3TILES. The use of switched constraints and partial increments within the

quasi-Newton solver allows ql and qf to be zero but not negative, as intended. For the PTerodaC3TILES implementation, the

correctness of the various test case initial states, constructed to be in hydrostatic balance and thermodynamic equilibrium, and

the broadly correct evolution of thermodynamic profiles and clouds provide further verification of the thermodynamics.680

The correct linearization of the thermodynamics encoded in the matrix M̃ is critical to the success of the formulation but is

fiddly and susceptible to errors. The linearization has been verified by comparing the actual changes in the left hand sides of

(6)-(13) with the changes predicted by the linearization when individual thermodynamic variables are perturbed. This testing

considered base states with and without liquid and frozen water to ensure that all cases were covered.

4.4 Solver convergence685

Good solver convergence is also critical for the success of the formulation. A useful rule of thumb is that the residuals should

decrease by roughly an order of magnitude per solver iteration so that only a small number of iterations is needed per time step.

However, ensuring correct performance of the solver is far from trivial, as it depends on correct formulation and implementation

of the linearization, derivation of the Helmholtz problem, solution of the Helmholtz problem, and backsubstitution. Therefore,

the ability of the solver to correct known errors was directly verified, as follows.690

A known solution for the model state at step n+1 is required. This may be a known steady state such as a horizontally uniform

state in hydrostatic balance, or a more complex three-dimensional state obtained by taking a sufficiently large number of solver

iterations. When a small perturbation is made to this state, the solver should be able to fix that perturbation almost completely in

one iteration. Testing included perturbing each model state variable in turn, and considered perturbations with different spatial

structures, including globally uniform, horizontally uniform vertically localized, horizontally localized vertically uniform, and695

localized at a single point in the domain interior or at a top or bottom boundary.

Figure 5 shows the maximum residuals in the q and u equations and the maximum pressure increment versus iteration

number at hour 9 of the ARM case when both the dynamics and moist thermodynamics are very active. For the purpose of

calculating these diagnostics the model was restarted for a single time step and 12 solver iterations were taken rather than the

default 3. There is a very large drop in the maximum q residual between the first and second iterations associated with the700

cheap transport updates (section 2.6). There is a rather small reduction in the pressure increment between the first and second

iterations, probably related to constraint switching in the thermodynamics. Otherwise, all three quantities steadily decrease by

nearly an order of magnitude per iteration. Note that the residuals and pressure increments calculated at the fourth iteration are

a measure of the errors due to incomplete solver convergence that remain upon completion of the third iteration.

As discussed in section 2.11, when the thermodynamic state switches between absence and presence of condensate a subset705

of thermodynamic variables local to the switch receive only partial increments. It is important to understand the extent to

which such partial increments adversely affect the solver convergence. The DYCOMS case is especially challenging in this
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Figure 5. Maximum absolute value within the model domain of (a) q equation residual (dimensionless) (b) u equation residual (ms−1) and

(c) p′ (Pa) versus iteration number. These diagnostics were computed for a single time step, restarting from hour 9 of the ARM case and

taking 12 solver iterations.

Table 1. Representative number of grid points at which switches occurred at different solver iterations. The numbers were monitored over

10 time steps one hour into the DYCOMS case. The total number of model gridpoints was 128× 128× 300.

Iteration Number of

number switches

1 ∼ 60000

2 ∼ 600

3 ∼ 10

4 ∼ 0

regard. If the cloud deck begins to break up, then holes form in the cloud (e.g., Fig. 12). If the horizontal advective Courant

number is greater than 1, then a very large number of grid cells per step switch between absence and presence of liquid water.

Moreover, the extremely large gradients in humidity and entropy at cloud top, which get folded into the cloud holes, make the710

thermodynamic state at the cloud top and cloud hole edges very sensitive to the solver advection updates, so that switching can

occur at the second and subsequent solver iterations.

An initial attempt to run the DYCOMS case at 128×128×300 resolution (∆x=∆y = 25m, ∆z = 5m) withNℓ = 3 solver

iterations resulted in failure of the model after about 32 minutes. Diagnostics indicated that the switching had not completely

settled down after 3 solver iterations. Nevertheless, the number of switches decreases by two orders of magnitude per iteration,715

and increasing the number of iterations to Nℓ = 4 is sufficient for virtually all of the switching to settle down (Table 1),

allowing the DYCOMS case to run successfully. Although constraint switching can slow solver convergence, no cases have

been encountered in which constraint switching prevents solver convergence.

4.5 Stability

The semi-implicit semi-Lagrangian formulation of PTerodaC3TILES should be stable for large acoustic, gravity-wave, and720

advective Courant numbers. Diagnostics optionally output by the model confirm that the model does run stably with advec-
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tive Courant numbers greater than 1 and with very large acoustic Courant numbers. For example, in the ARM case presented

in section 5.2 the horizontal and vertical acoustic Courant numbers remain around 53 and 87, respectively. The horizontal

advective Courant number in the x-direction varies in the range 1.5 to 2, while the vertical advective Courant number peaks

at about 3. Both the gravity-wave and convective Courant numbers
√

max(N2)∆t and
√
max(−N2)∆t, respectively, peak725

at around 0.6. For the DYCOMS case presented in section 5.3 the horizontal and vertical acoustic Courant numbers remain

around 49 and 344, respectively. The horizontal advective Courant numbers in both the x- and y-directions are greater than 1,

while the vertical advective Courant number peaks at over 3. The gravity-wave Courant number is about 0.9 while the convec-

tive Courant number varies between 0.8 and 1.4.

Because the ILES formulation does not include an eddy-diffusion-based subgrid scheme, the diffusive Courant number is730

not relevant for model stability.

In all cases the model does become unstable if the time step is chosen too large. Further careful study is needed to understand

exactly what limits the model stability. However, based on the theoretical properties of the methods and experience to date,

likely candidates for instability mechanisms include the following.

1. When the deformational Courant number, or, more precisely, the maximum magnitude of the eigenvalues of b∆t∇u, ap-735

proaches 1, the semi-Lagragian trajectory calculations become increasingly inaccurate. This might lead to badly distorted

departure cells such that the simple small-amplitude advecting velocity correction cannot restore divergence-consistency

(section 2.6); or there might be other feedbacks via advection that amplify errors. Diagnostics of the components of

∆t∇u for the cases presented in section 5 suggest that the model is close to that regime in the surface layer where

vertical shear is strongest.740

2. If a2N2∆t2 approaches −1 then the factor 1+a2N2∆t2 in the denominator of (70) and (71) approaches zero and those

coefficients blow up. This is a known limitation of the semi-implicit treatment of gravity waves when the stratification

becomes unstable (Davies et al., 2005); it can be mitigated by bounding the value ofN2 that appears in those coefficients.

In PTerodaC3TILES no such bound is applied.

3. Any factors that inhibit convergence of the quasi-Newton solver can mean that the theoretical stability of a semi-implicit,745

semi-Lagrangian scheme is not attained. This could occur, for example,

– if the change in state over one time step is too large, hence too nonlinear, to be captured by the quasi-Newton

linearization;

– if insufficient iterations are taken for constraint switching to settle down (as discussed in section 4.4);

– if terms omitted from the linearization, such as u∂η/∂x, become important.750

(Coriolis terms are omitted from the linearization (34), (35), but |Ω|∆t is unlikely to be large enough, in practice, for

this to matter.)

It would be a valuable addition to the model to include mitigation strategies, such as adaptive time stepping, if the mechanisms

limiting the model stability could be better understood and quantified.
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4.6 Conservation755

PTerodaC3TILES is designed to have closed budgets for mass, water, and entropy. This property requires conservative advec-

tion of these quantities by both SLICE and the cheap transport updates (section 2.6), as well as careful formulation of surface

and interior sources (section 2.7), all taking into account the w-level dual mass budget (section 2.2).

Figure 6 shows time series of various budget quantities for the ARM case. Panel (a) shows that the change in total mass

(blue curve) agrees with the accumulated source of total mass, in this case due to the surface moisture flux (blue symbols),760

while the dry mass is exactly conserved. Panel (b) shows that the change in total water mass (black curve) agrees with the

accumulated source of water (black symbols), even while some water condenses into liquid (red curve). Panel (d) shows that

the change in total entropy (black curve) agrees with the accumulated source of entropy (black symbols). Panel (c) confirms

that the momentum budget is not closed because the semi-Lagrangian advection of momentum is not conservative. Panel (e)

shows that the change in total energy (black curve), which averages 432Wm−2, is slightly less than the accumulated total765

energy source (black symbols). The difference, shown in panel (f), is due to numerical dissipation of kinetic energy and mixing

of water and entropy. This energy loss averages about 12Wm−2.

Dissipation of kinetic energy and mixing of constituents and heat should result in a source of entropy that exactly compen-

sates this energy loss; however, this entropy source is currently neglected. See further discussion in section 6. Because the

current formulation assumes thermodynamic equilibrium in each grid cell, entropy sources due to departures from equilibrium770

(the JTP term in (4)) are zero.

4.7 Bit-reproducibility

PTerodaC3TILES produces bit-reproducible results when restarted from a checkpoint file3. This property is invaluable for

development and testing, as well as when re-running sections of a simulation to obtain additional diagnostics. PTerodaC3TILES

also produces bit-identical answers whether run with or without OpenMP shared memory parallelism, verifying the correctness775

of the parallel implementation.

5 Evaluation

This section presents results from some standard LES test cases to demonstrate the performance of PTerodaC3TILES ver-

sion 1.04. The same spatial resolution is used as in the original intercomparison articles defining the test case specifications.

Although relatively coarse by current day standards, this facilitates comparison with those published results and helps to high-780

light any limitations of PTerodaC3TILES version 1.0 that might be less conspicuous at finer resolution.

3In theory, the multigrid solver parameters automatically set by the model could change upon restart, breaking bit-reproducibilty. The author has not noticed

any cases where this happens. Nevertheless, this loophole should be closed in a future model version.
4While this manuscript was under review an error was noticed in the code for the Monin-Obukhov surface momentum flux calculation. Therefore the

results presented here for the ARM case use the bug-fixed version 1.2. The results for BOMEX and DYCOMS are unaffected.
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Figure 6. Global changes and accumulated sources versus time for key budget quantities for the ARM case. (a) Total mass and dry mass

(kgm−2). (b) Total water; 100× global liquid water and frozen water (kgm−2). (c) u-momentum and v-momentum (kgms−1m−2). (d) En-

tropy (JK−1m−2). (e) Energy (Jm−2). (f) Numerical energy change, i.e., the actual energy change minus the change due to explicit sources

(Jm−2).

All results shown in this section used SLICE advection with piecewise constant remapping for density and parabolic spline

remapping with a limiter and the Charney-Phillips grid correction for water and entropy. Semi-Lagrangian advection of velocity

components used no limiter and the 'freeslip' option for extrapolation near the bottom boundary.

5.1 BOMEX785

The BOMEX test case (Siebesma et al., 2003) is based on observations made during the Barbados Oceanographic and Mete-

orological Experiment. It simulates a scenario of shallow cumulus over the ocean in which large scale forcing, radiation, and

turbulent and convective fluxes maintain a quasi-steady balance.

As in Siebesma et al. (2003), PTerodaC3TILES used a 64×64×75 grid with ∆x=∆y = 100m, ∆z = 40m. The time step

was ∆t= 10s and the simulation was run for 6h.790

Figure 7 shows time series of three key quantities: total cloud cover, liquid water path (LWP), and tubulent kinetic energy

(TKE). All three time series agree broadly with Fig. 2 of Siebesma et al. (2003). After an initial spin-up during the first hour or

so, the total cloud cover and LWP fluctuate but have little trend, while the TKE continues to grow slowly. The PTerodaC3TILES
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Figure 7. Time series of (a) Total cloud cover, (b) Liquid water path, (c) Turbulent kinetic energy for the BOMEX case.

cloud cover is slightly lower and the TKE slightly larger than the ensemble means in Siebesma et al. (2003), but within the

typical inter-model spread.795

Figure 8 shows several horizontally averaged profiles from the BOMEX case. Panels (b), (c), and (d) agree well with the

corresponding figures from Siebesma et al. (2003) (their figures 6, 3(d), and 4(a)). Panels (a), (e), and (f) also broadly agree

with the corresponding figures from Siebesma et al. (2003) (their figures 3(c), 4(e), and 5(a)). However, an excessively strong

shear layer has formed between model levels 1 and 2, consistent with the idea that the ILES approach poorly represents vertical

subgrid transports near a horizontal boundary. This excessively strong shear layer leads to noise in the lowest two to three800

levels in the profiles of u, momentum flux, and TKE.

On a closely related point, numerical experimentation revealed that the momentum budget and the boundary layer u pro-

file are strongly sensitive to the details of the semi-Lagrangian interpolation scheme for velocity components near the bottom

boundary (section 2.6). For example, switching on the limiter for velocity advection or using the 'noslip ' bottom bound-

ary extrapolation option resulted in a large spurious numerical source of eastward momentum and a significant shift to the right805

of the boundary layer u profile.

5.2 ARM

The ARM test case (Brown et al., 2002) simulates the diurnal evolution of shallow convection over land, starting from an

initially stable and cloud-free boundary layer. The number, size, and depth of clouds evolve during the day, and clouds often

overshoot their level of neutral buoyancy.810
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Figure 8. Vertical profiles of horizontally averaged quantities from the BOMEX case. (a) u and v (ms−1). (b) Cloud fraction (dimensionless).

(c) Liquid water ql (dimensionless). (d) Vertical eddy flux of total water ⟨w′q′⟩ (ms−1). (e) Vertical eddy fluxes of momentum ⟨w′u′⟩ and

⟨w′v′⟩ (m2s−2). (f) TKE (m2s−2). (a), (b) and (c) are averaged over the last hour of simulation; (d), (e) and (f) are averaged over the last

three hours.

As in Brown et al. (2002), PTerodaC3TILES used a 96× 96× 110 grid with ∆x=∆y = 66.7m, ∆z = 40m. The time step

was ∆t= 10s and the simulation was run for 14.5h. Large-scale forcing terms were omitted, since they have only a small

effect on the simulation (Brown et al., 2002).

Figure 9 shows a time-height plot of cloud fraction and TKE. The evolution of the cloud fraction, which peaks at a little

over 0.15 around 6 or 7h, as well as the height of cloud base and cloud top, agree well with Fig. 5 of Brown et al. (2002). The815

intensity of TKE in the boundary layer grows and then decays in concert with the strength of the surface heat flux, and there is

a clear signature of the formation of gravity waves in and above the cloud layer.

Figure 10 shows profiles of u- and w-variances at 3h and 9h. The peak in w-variance after 3h is somewhat smaller than

most ensemble members in Brown et al. (2002) (their Fig. 6), but otherwise these profiles agree well with Brown et al. (2002),

including the secondary peak in w-variance in the cloud layer at 9h, and the small peak in u-variance near the boundary layer820

top at 3h, which disappears after clouds form (see discussion in Brown et al., 2002, section 3(b)).

Figure 11 shows snapshots of cloud top height at selected times. The behaviour is consistent with that documented for the

ARM case, with many small and shallow clouds at early times, gradually growing in depth, evolving towards fewer larger,

deeper clouds with smaller total cloud cover at later times. The horizontal motion of the higher cloud tops is almost exactly in
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Figure 9. TKE (shading) and cloud fraction (contours) versus time and height for the ARM case. The contour values are 0.0001, 0.05, 0.1,

and 0.15. The peak TKE value is 1.74m2s−2.
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Figure 10. Vertical profiles of (a) w-variance and (b) u-variance for the ARM case at 3h and 9h. The profiles are also averaged in time

between minus and plus 30min of the nominal diagnostic time.

the x-direction (the direction of the background geostrophic wind) while near cloud base there is a small component of motion825

in the y-direction, leading to a distinct characteristic tilt to the clouds.

5.3 DYCOMS

The DYCOMS test case (Stevens et al., 2005) simulates a very different boundary layer regime from BOMEX and ARM: a

nocturnal stratocumulus cloud layer over the ocean. The cloud layer is capped by a very strong and sharp inversion, with q

decreasing by a factor of 6 and a jump in potential temperature of more than 9K over 5m, the recommended vertical grid830

spacing. Observations suggest that the cloud cover should be maintained close to 100%. However, LES often fail to maintain

the cloud cover, since excessive mixing across the inversion can lead to evaporative cooling driving cloud-free downdrafts.

The DYCOMS case is expected to be particularly testing for the PTerodaC3TILES formulation, for several reasons. First,

there are no physical parameters that can be adjusted to control the strength of mixing near the inversion, since the mixing is

entirely associated with the numerics. There is, however, some sensitivity to the choice of numerical options and parameters,835
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Figure 11. Snapshots of cloud top height (grey) for the ARM case at 6h, 8h, and 10h. For this purpose, grid cells with ql + qf > 10−5 are

defined to be cloudy (though qf ≡ 0 for ARM). The green background indicates no cloud in that column, and the contour interval is 100m;

refer to Fig. 9 for the lowest cloud base and highest cloud top at these times.

as discussed below. Second, good convergence of the semi-implicit iterative solver depends on having a sufficiently good

linearization. The presence of near discontinuities in the distributions of total entropy and total specific humidity mean that the

linearized advection terms (41) and (42) are necessarily less accurate. The solver convergence is also affected by the switching

of thermodynamic constraints (sections 2.11 and 4.4). Once cloud-free downdrafts form (Fig. 12), and are advected across

the grid with horizontal Courant numbers greater than 1, condensate appears or disappears at large numbers of gridpoints840

every step. Moreover, the large gradients in entropy and specific humidity mean that transport increments resulting from small

velocity increments at one solver iteration are enough to cause constraint switching at the next solver iteration. Experience to

date suggests that more solver iterations per step are required for DYCOMS than for other test cases in order for the constraint

switching to settle down (section 4.4).

As in Stevens et al. (2005), PTerodaC3TILES used a 96× 96× 300 grid with ∆x=∆y = 35m, ∆z = 5m. The time step845

was ∆t= 5s and the simulation was run for 4h.

Figure 13 (compare Stevens et al., 2005, Fig. 2) shows that in the PTerodaC3TILES simulation cloud cover gradually falls

to about 40% while the liquid water path falls to around 0.02kgm−2 (about 0.035kgm−2 for the ensemble mean in Stevens

et al. (2005)). The TKE settles down at about 200kgs−2, about half of the ensemble mean in Stevens et al. (2005) (noting

the different units used). The gradual reduction in cloud cover is also clearly illustrated in Fig. 14. The figure confirms that850

turbulence grows initially both from the surface (due to the surface sensible heat flux) and from cloud top (due to cloud top

radiative cooling).
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Figure 12. Snapshots of cloud top height (pale grey) for the DYCOMS case at 1h, 2h, and 3h. The blue background indicates no cloud in

that column, and the contour interval is 50m; refer to Fig. 14 for the lowest cloud base and highest cloud top at these times.
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Figure 13. Time series of (a) total cloud cover, (b) liquid water path, (c) turbulent kinetic energy for the DYCOMS case.

The PTerodaC3TILES simulation of cloud in the DYCOMS case appears to be quite sensitive to the choice of numerical

options and parameters. For example, when the time step is reduced from 5s to 2s, the cloud breakup is slowed, leaving 70%

cloud cover after 4h. On the other hand, when parabolic spline remapping is replaced by piecewise parabolic method remapping855

for the advection of entropy and water almost all cloud disappears after 4h. Further experiments and diagnostics to understand

these sensitivities would be valuable.
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Figure 14. TKE (shading) and cloud fraction (contours) versus time and height for the DYCOMS case. The contour values are 0.3 to 0.9 in

steps of 0.1, and 0.99. The peak TKE value is 1.16m2s−2.

Table 2. Computational cost of PTerodaC3TILES for three standard test cases on a 2022 MacBook Pro laptop.

Case Number of Number of Nℓ Wall-clock

grid cells time steps time (s)

BOMEX 64× 64× 75 2160 3 903

ARM 96× 96× 110 5220 3 6840

DYCOMS 96× 96× 300 2880 4 12659

5.4 Computational cost

While noting the usual caveats that computational costs are sensitive to computing platform, compiler, output files written,

and many other factors, it is nevertheless useful to give would-be users an idea of the computational cost of PTerodaC3TILES.860

Table 2 gives the wall-clock times for the three test cases discussed in this section. The cases were run on a 2022 MacBook

Pro with an 8 core M2 chip. The gfortran compiler was used with the -O3 optimization flag and OpenMP for shared memory

parallelism. The parallel speed-up ranged from 574% for BOMEX to 652% for DYCOMS.

The multigrid elliptic solver and the full transport calculation dominate the cost, accounting for approximately 40% and

35% of the total cost, respectively, with some variation from case to case. Creating the thermodynamic subsystem matrix and865

carrying out the Gaussian elimination account for less than 15% of the total cost.

The cost of the model scales linearly with the number of time steps, and hence almost inversely with the time step size ∆t.

The scaling is not exactly inverse because the multigrid scheme parameters take account of the acoustic Courant number

(Appendix A3). The scaling of the cost with spatial resolution is affected by memory usage as well as floating point operations,

so will be strongly system dependent.870
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6 Conclusions and discussion

It has been demonstrated that a consistent treatment of moist thermodynamics, expressed in terms of internal energy poten-

tials, can be incorporated, without excessive computational expense, in a three-dimensional computational fluid dynamics

code suitable for the study of atmospheric boundary layers and shallow convection. In the current implementation the moist

thermodynamics is fully incorporated within the dynamical core rather than treated as separate ‘physics’ source terms.875

The iterative solver for the semi-implicit time integration scheme requires a linearization of the thermodynamics, with

elimination of unknowns to leave a typical Helmholtz problem for the pressure increment. The moderate sparsity and fixed

sparsity pattern of the Jacobian matrix of the (w-level) thermodynamic subsystem are exploited to reduce the cost of the

elimination.

The use of internal energy potentials has several advantages over the Gibbs function approach used by Thuburn (2017b)880

(see section 1). However, one disadvantage of the internal energy potential approach is that it does not permit seamlessly

switching to a (quasi-)Boussinesq equation of state since eα terms (used throughout the algorithm) would become undefined.

A nearly Boussinesq fluid could be simulated by making the sound speed extremely large. Alternatively, if a Boussinesq option

is a requirement, then the above difficulty could be avoided by using specific enthalpies as the potentials in formulating the

thermodynamics (Chris Eldred, personal communication, 2024).885

The numerical methods used by PTerodaC3TILES are more typical of those used in global weather and climate models than

traditional LES models. The semi-implicit semi-Lagrangian scheme permits time steps significantly larger than are commonly

used in traditional LES models at similar resolution. Experience to date, consistent with the theoretical properties of the

numerical methods, suggests that the deformational Courant number is most often the factor limiting the maximum stable time

step. However, there is no simple, easily monitored stability criterion (computing the eigenvalues of ∆t∇u at every grid point890

and every step would be expensive), so a degree of experimentation is required to find a suitable time step for each simulation.

An important caveat is that stability does not imply accuracy. For example, the DYCOMS case (section 5.3) shows significant

sensitivity to the size of the time step. Further investigation is required to quantify the extent to which accuracy declines as we

push the time step towards the stability limit, and which flow regimes, like DYCOMS, are especially sensitive to the time step.

For the BOMEX, ARM, and DYCOMS cases presented here, and other cases not discussed, PTerodaC3TILES can produce895

plausible simulations of standard LES test cases, comparable to other model results in the literature. These results are encour-

aging for the ILES approach and, more widely, for the use of global models at sub-kilometre resolution. At the same time,

these results have given some useful initial indications of the limitations of the ILES approach as well as highlighting areas in

need of further investigation.

Most notably, ILES produces weak vertical fluxes of momentum and scalars near the bottom boundary. These weak fluxes900

lead to excessive vertical gradients, which, in turn, result in further errors. For example, in BOMEX the spuriously strong

vertical shear exacerbates the conservation errors of the cubic semi-Lagrangian advection of momentum, and makes the results

very sensitive to the details of the semi-Lagrangian interpolation in the lowest levels. In an ARM simulation with finer vertical

resolution near the surface (not shown), the spuriously weak mixing near the surface allows a thin layer of fog to form briefly
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during the first hour. Some initial experimentation showed benefits in distributing the convergence of the surface momentum905

flux over several layers near the surface rather than just a single layer. In future work it is planned to investigate this idea further,

applied to scalars as well as momentum, and to try to determine how the optimal distribution depends on the flow regime as

well as numerical factors such as the grid resolution and anisotropy.

Another broad area in need of further investigation is the sensitivity to numerical methods and parameters. The sensitivity

of the DYCOMS case to the time step and the advection remapping scheme has been mentioned already. Other potentially910

significant factors include the grid isotropy, and the use of different advection options such as the use of limiters and the

Charney-Phillips grid correction (27), and the modifications to momentum interpolation near the bottom boundary.

Taking inspiration from global models that predict potential temperature, PTerodaC3TILES has a closed budget for entropy

rather than energy. The entropy source that should be associated with numerical mixing of scalars and dissipation of kinetic

energy is neglected, resulting in a small but systematic energy loss (Fig. 6). If desired, the global numerical energy loss915

could easily be diagnosed and returned as an entropy source to close the energy budget. Initial attempts to diagnose the local

numerical energy loss (not shown) suggest that the calculation is subtle and far from trivial, and might not even be well-

defined, in large part because of the Charney-Phillips vertical grid staggering. Further work will be needed to diagnose the

local numerical energy loss, if, indeed, it is possible at all. A strong motivation to continue these attempts is that such an

estimate of energy dissipation would be a key input to a stochastic parameterization of backscatter (e.g. Mason and Thomson,920

1992; Brown et al., 1994), which would be a useful extension to the model’s functionality.

Two closely related priorities for future work are the inclusion of a simple microphysics scheme with precipitation, and the

inclusion of thermodynamic nonequilibrium effects. These developments will enhance the capabilities of PTerodaC3TILES,

allowing it to be applied to a wider range of cases. Equally importantly, they will test whether the thermodynamic potential

approach can be applied straightforwardly and efficiently to more complex physical processes, beyond the coupling of the925

equation of state to the dynamical core.

Code availability. The model code used to produce the results in this paper (PTerodaC3TILES 1.0, PTerodaC3TILES 1.2), an exam-

ple namelist file, example plotting routines, and the User Manual, are available from Zenodo: https://doi.org/10.5281/zenodo.13899066

(Thuburn, 2025). The code is made available under the MIT licence.

The namelist files needed to create initial data for the BOMEX, ARM, and DYCOMS cases and to reproduce the simulations presented930

here, along with the plotting routines used to produce figures 5 to 14, are provided in the supplementary materials.

Appendix A

A1 Stretched vertical grid

When a stretched vertical grid is chosen, the height of the model level with index k is given by

zk = a(z) log
(
1+ d(z)b

k
(z)

)
+ c(z), (A1)935
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where k is an integer for p-levels and an integer plus 1/2 for w-levels. The parameters in (A1) are set so that the grid spacing

approaches a stretching factor b(z) per level for small k and a uniform grid spacing u(z) for large k, with b(z) and u(z) specified

by the user when creating initial data. In terms of Nz the number of p-levels and Dz = zNz+1/2 − z1/2 the domain depth with

z1/2 = 0 the height of the bottom boundary, the parameters are given by

a(z) = u(z)/ logb(z), (A2)940

d(z) =
1− exp(Dz/a(z))

b
1/2
(z)

(
bNz

(z) − exp(Dz/a(z))
) , (A3)

c(z) =Dz − a(z) log
(
1+ d(z)b

Nz+1/2
(z)

)
. (A4)

Importantly, (A1) has the virtue of being invertible, allowing the cell index k to be determined for any height z without the945

need for expensive searching in the semi-Lagrangian departure-point calculations.

A2 Expressions for internal energy and related quantities

The expressions used for specific internal energy of dry air, water vapour, liquid water, and frozen water are

ed(αd,ηd) = Cd
vT0 exp

(
ηd −Cd

p

Cd
v

)(
αd
0

αd

)Rd/Cd
v

, (A5)

950

ev(αv,ηv) = Cv
vT0 exp

(
ηv −Cv

p

Cv
v

)(
αv
0

αv

)Rv/Cv
v

+Ls
00, (A6)

el(ηl) = C lT0 exp

(
ηl −C l

C l
+
Lv
00 −αlpsat0

C lT0

)
+Lf

00, (A7)

ef(ηf) = CfT0 exp

(
ηf −Cf

Cf
+
Ls
00 −αfpsat0

CfT0

)
. (A8)955

These expressions differ from those used by Bowen and Thuburn (2022a) in that the constant Ls
00/T0 has been subtracted from

the specific entropy of all water phases.

For i= d, v, l, f , the species temperature is given by

T i = eiη. (A9)
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For i= d, v, the species partial pressure is given by960

pi =−eiα. (A10)

The Gibbs function for water vapour is given by

gv = ev +αvpv − ηvT v, (A11)

while for i= l, f ,

gi = ei +αip− ηiT i, (A12)965

with p= pd + pv. (The Gibbs function for dry air is not needed.)

A3 Parameters for multigrid scheme

The tuning of parameters in numerical solvers for elliptic problems is often empirical and case-dependent. Here, both the

Helmholtz problem and the properties of the multigrid solver are well understood, which allows some key parameters in the

multigrid scheme to be set automatically.970

Let Cx
ac = c∆t/∆x, Cy

ac = c∆t/∆y be the horizontal acoustic wave Courant numbers in the x- and y-directions, respec-

tively, appropriate to whichever grid in the hierarchy is under consideration. Let Cac =max(Cx
ac,C

y
ac). In the following calcu-

lations the temporal off-centring parameter a is effectively set to 1.

Each smoother iteration uses a direct solve in the vertical direction; thus, we must consider the action of the smoother on

errors of different horizontal scales. The error amplification factor for a uniform error for one Jacobi smoother iteration is975

Aε = 1− µ

1+2((Cx
ac)

2 +(Cy
ac)2)

, (A13)

where µ is the under-relaxation parameter, while the error amplification factor for a checkerboard pattern error is

Aε = 1−µ−
2µ
(
(Cx

ac)
2 +(Cy

ac)
2
)

1+2((Cx
ac)

2 +(Cy
ac)2)

. (A14)

1. Under-relaxation parameter. The under-relaxation parameter is set to µ= 0.8. This provides an appropriate compro-

mise between the damping of large-scale errors on the coarsest grid, where Cac ≈ 1 implies Aε ≈ 0.85, and the damping980

of grid-scale errors on the finest grid, where Cac ≫ 1 implies Aε ≈ 0.6.

2. Depth of V-cycles. As the horizontal grid is coarsened the horizontal acoustic wave Courant number Cac decreases,

the horizontal part of the Helmholtz problem becomes more diagonally dominant, and the smoother iterations damp the

error more and more quickly. Once the horizontal acoustic Courant number reaches about 1, there is little to be gained by

coarsening the grid further. Thus, the desired V-cycle depth is set to the smallest depth needed to reduce the horizontal985

acoustic Courant number below 1. The maximum possible V-cycle depth permitted by the number of grid points in the

x- and y-directions is also computed. The actual V-cycle depth is set equal to the minimum of the desired depth and the

maximum permitted depth. If the maximum permitted depth is smaller than the desired depth then a warning message

printed and the scheme attempts to compensate by increasing the number of coarsest grid smoother iterations.
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3. Number of coarsest grid smoother iterations. The rate at which large-scale errors are damped is determined by the990

damping of uniform errors on the coarsest grid. Using (A13) to estimate the large-scale error damping rate, the number

of smoother iterations on the coarsest grid is chosen so that a uniform error is damped by a factor 1/10 on each V-cycle.

4. Number of V-cycles. To ensure mass conservation, the backsubstitution computes density increments from the diver-

gence of mass flux increments, with velocity increments computed from the gradient of pressure increments. As a

consequence of the gradient and divergence operations, any grid-scale errors in the pressure increments due to imperfect995

convergence of the multigrid solver get amplified by a factor equal to the (fine-grid) horizontal acoustic Courant number

squared. Thus, to ensure good convergence of the quasi-Newton solver, any grid-scale errors in the pressure increments

computed by the multigrid solver must be much smaller, by a factor an order of magnitude smaller than 1/C2
ac, than the

pressure increments themselves. Using the estimate from (A14) that |Aε| ≈ |1− 2µ| for large Cac, we can estimate the

total number of fine-grid smoother iterations required, and hence the number of V-cycles.1000

A4 Alternative formulation of Monin-Obukhov theory for surface momentum flux

Monin-Obukhov similarity theory gives the flow speed U(z) at height z in terms of the friction velocity U∗ (e.g. Stull, 1988):

U(z) =
U∗

κ
{log(z/z0)+Ψ(ζ,ζ0)} , (A15)

where κ is the von Kármán constant, ζ = z/L is a non-dimensional height; ζ0 = z0/Lwhere z0 is the surface roughness length,

L=−U3
∗/F

b is the Obukhov length with F b the surface buoyancy flux, and Ψ is an integrated stability function, discussed1005

below. As written, (A15) must be solved iteratively to obtain U∗, given U(z) at some z. Moreover, in the stable case (F b < 0)

with light winds Monin-Obukhov similarity theory is valid only for sufficiently small z and may be outside its range of validity

at the height of the lowest model level; in that case, with commonly used expressions for Ψ, the solution for U∗ might not be

unique or might not exist (e.g., Fig. A1).

Here a slight modification of the usual Monin-Obukhov similarity theory is presented that ensures the existence of a unique1010

solution for U∗ even when Monin-Obukhov similarity theory is outside its range of validity. (The modification does not, of

course, extend that range of validity.) We focus on the case in which F b is known and the task is to determine U∗. The case in

which F b is also to be determined is more complicated (Bull and Derbyshire, 1990).

Since the expressions used for stability functions are typically derived by curve fitting to observations or simulations, it

seems reasonable to attempt to provide an inverse to (A15) with aid of some curve fitting. The fitting can be be done in such a1015

way as to guarantee the existence of a unique solution for U∗ satisfying the reasonable requirement U∗ → 0 as U(z)→ 0.

It is convenient to define r = z0/z = ζ0/ζ and to introduce a non-dimensional inverse flow speed

ŝ=
(−F bz)1/3

κ(U(z1)+ ε)
, (A16)

where ε is a small safety parameter to prevent infinite ŝ as U(z1)→ 0. Then (A15) becomes

ŝ=
ζ1/3

{− logr+Ψ(ζ,rζ)}
. (A17)1020
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To parameterize the surface momentum flux we need to be able to compute ζ = ζ(ŝ, r); ζ is a function of the two parameters ŝ

and r.

To construct a functional fit for ζ(ŝ, r), proceed as follows. For both the stable case and the unstable case, carry out an

asymptotic expansion of (A17) for the limits of small |ŝ| and large |ŝ| and rearrange to obtain the limiting expressions for

ζ(ŝ, r). Then seek a simple expression that agrees with the asymptotic expressions in the two limits.1025

For the unstable case we begin with the integrated stability function given by Benoit (1977)

Ψ(ζ,rζ) = log

{
(x20 +1)(x0 +1)2

(x2 +1)(x+1)2

}
+2(arctan(x)− arctan(x0)) , (A18)

where

x= (1− 15ζ)1/4, x0 = (1− 15rζ)1/4. (A19)

We find1030

ζ1/3 ∼ ŝ

{
− logr− 15

4
(1− r)(logr)3ŝ3

}
as ŝ→ 0, (A20)

and

ζ1/3 ∼ ŝ

{
− 1

15

(
4(r−1/4 − 1)

)4
ŝ−3

}1/7

as ŝ→∞. (A21)

These asymptotic limits are captured by the functional fit

ζ1/3 =
(
ã+ b̃

(
c̃+(−ŝ)p̃

)q̃)r̃
, (A22)1035

with the parameters given by

p̃= 3; q̃ = 2/7; r̃ = 3/(7p̃q̃); (A23)

Ã=− logr; B̃ =
15

4
(1− r)(logr)3; C̃ =

{
1

15

(
4(r−1/4 − 1)

)4}1/7

; (A24)

ã= Ã1/r̃ − b̃c̃q̃; b̃= C̃1/r̃; c̃=

(
B̃Ã(1−r̃)/r̃

b̃q̃r̃

)1/(q̃−1)

. (A25)

For the stable case we begin with a modification of the integrated stability function given by Cheng and Brutsaert (2005)1040

Ψ(ζ,rζ) = a log

(
ζ +(cb + ζb)1/b

ζ0 +(cb + ζb0)
1/b

)
, (A26)

with a= 3, b= 2.5, c= 0.5. (The original Cheng and Brutsaert (2005) scheme corresponds to a= 6.1, b= 2.5, c= 1. Fig-

ure A1 shows the effect of this modification.) We find

ζ1/3 ∼ ŝ
{
− logr+

a

c
(1− r)(− logr)3ŝ3

}
as ŝ→ 0, (A27)
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Figure A1. Dimensionless friction velocity Û∗ = ζ1/3 versus dimensionless wind speed Û = 1/ŝ at height z in the stable regime given

by Monin-Obukhov theory with the Businger-Dyer stability function (Dyer, 1974, asterisks), with the Cheng and Brutsaert (2005) stability

function (open circles), with the modified Cheng and Brutsaert stability function (A26) (filled circles), and the fit (A29) (thick curve), (a) for

r = z0/z = 0.001; (b) for r = z0/z = 0.1. Note that with the Businger-Dyer stability function there may be zero or two solutions for Û∗,

while with both the original and modified Cheng and Brutsaert stability functions there may be multiple solutions for Û∗.

and1045

ζ1/3 ∼ ŝ{−(1+ a) logr} as ŝ→∞. (A28)

These asymptotic limits are captured by the functional fit

ζ1/3 = c̆+
(
ă+ b̆ŝ)p̆

)q̆
, (A29)

with the parameters given by

p̆= 3; q̆ =−3; (A30)1050

Ă=− logr; B̆ =
a

c
(1− r)(− logr)3; C̆ =−(1+ a) logr; (A31)

ă= (Ă− c̆)1/q̆; b̆= B̆ă1/q̆/q; c̆= C̆. (A32)
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