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Reviewer comments are in black, author responses and other comments in blue, and changes to
the manuscript in red.

Reviewer 1

This paper presents a novel LES code for simulating atmospheric boundary layers and convec-
tion, focusing on three main points:

e Thermodynamic Potentials Approach: The code achieves thermodynamic consistency by de-
riving all relevant quantities from thermodynamic potentials, such as internal energy. This
approach, while intricate, provides a robust framework for moist thermodynamics.

e Semi-Implicit Semi-Lagrangian Numerics: Departing from traditional LES models, the code
employs numerical methods more commonly used in global models. This allows for larger time
steps and more efficient simulations, particularly for sub-kilometer resolution cases.

e Implicit LES: Instead of explicit subgrid turbulence models, the code leverages dissipation
from its numerical methods to represent small-scale effects. While effective, this approach
exposes certain limitations near surface boundaries.

The paper also emphasizes the accessibility of the code for both research and practical applica-
tions. Features such as predefined test cases, built-in diagnostics, minimal setup requirements,
and compatibility with modest computational resources enhance its usability.

Results from standard test cases demonstrate competitive performance compared to traditional
LES models. However, areas for improvement are identified, particularly regarding near-surface
behavior and sensitivity to numerical configurations.

The paper is exceptionally well-written and highly comprehensible, providing nearly all the
details required for reproducibility.

Thank you for the positive comments.

Comment

The code in its current state cannot be used to run highly accurate simulations, as it is paral-
lelized only with OpenMP shared memory parallel capability. Parallelization with MPI or, even

better, MPI:GPU could significantly enhance the usability and scalability of the solver. I have
tested the solver on my machine and obtained the same results as those displayed in the paper. |



am therefore confident that this solver, along with all the explanations provided, will be highly
beneficial for the community.

It was a conscious decision at the design stage to stick with OpenMP parallel in order to com-
plete the initial development in a timely manner. An MPI extension to allow distributed memory
parallelism for much higher resolution would be attractive, but would require significant code
changes. Moreover, it is not clear that the cascade advection scheme would work well with
MPI, so an algorithmic redesign might also be needed. Nevertheless, if the code attracts users
and there is demand for greater parallelism, then this decision could be revisited in the future.
An extension to use GPUs for shared memory parallelism, for example using OpenACC, would
also be attractive and could perhaps be retrofitted relatively painlessly; this is something I would
like to consider in the relatively near future.

Thank you for taking the trouble to install and run the code; it is good to know that it works and
you were able to obtain the same results.

Questions

Thank you for a thought-provoking set of questions! Similar questions have been on my mind,
and I wish I could give more complete answers. My student Yuhang Tong is currently working
on addressing some of them. Several of the questions (Stability, Timestep limitations, Deforma-
tional Courant number) are very closely related to each other, so my responses will be similar.

General comparisons

e Adding a small subsection that highlights a comparison with existing literature could further
contextualize the code’s performance and its advantages or limitations relative to established
models.

The scientific performance of PTerodaC>TILES is discussed in section 5 for the BOMEX,
ARM, and DYCOMS cases. For each case, key diagnostics are plotted in the same format
as the in the original intercomparison papers to facilitate comparison, and the text discusses
similarities and differences compared to those papers. Limitations of the current version of
PTerodaC>TILES and areas needing further investigation are highlighted in section 5 and again
in the Discussion and conclusions (section 6).

The computational performance of PTerodaC>TILES is harder to compare directly with that
of established LES models, since a clean comparison must be done on the same platform, and
most LES codes have multiple code dependencies, requiring a non-trivial amount of work to
carry out such a comparison from scratch. For this reason, the submitted paper is careful not
to make direct comparisons of total cost but just notes some typical costs for PTerodaC>TILES
and notes that it can take timesteps significantly larger than typical established LES codes, since
published timesteps are available for standard cases at the same spatial resolutions (e.g., Stevens
et al., 2005).

Stability



e The author claims stability for large acoustic, gravity-wave, and advective Courant numbers,
with examples provided in test cases (e.g., ARM and DYCOMS).

— How generalizable are these stability claims? Can similar stability be achieved for cases with
stronger turbulence or more complex boundary conditions, such as heterogeneous surfaces or
strong temperature gradients?

— Are there scenarios where the acoustic or advective Courant numbers exceed the reported
values, leading to instability? Could the author clarify the specific limits for stability compared
to other methods?

— While the model reportedly handles advective Courant numbers > 1, what measures ensure
numerical accuracy at these high values? For instance, how do errors in interpolation or advec-
tion affect the resolved structures?

The stability properties of semi-implicit, semi-Lagrangian schemes are well understood theo-
retically; large acoustic, gravity-wave, or advective Courant numbers, on their own, should not
cause instability. However, in practical applications other factors that limit the stability (see
below) also increase with Az. Thus (a) it is not easy to demonstrate stability for very large
acoustic, gravity-wave, or advective Courant numbers since other factors that limit stability
come into play, and (b) in practice one is not likely to need Courant numbers much bigger than
those seen in sections 4 and 5 of the manuscript. Nevertheless, just to emphasise the point,
figures R1 and R2 show results from a rather artificial test case contrived to permit even larger
acoustic, gravity-wave, and advective Courant numbers. The basic state is at rest in hydrostatic
balance, and there is an extremely sharp increase in potential temperature of 20K over 3m at
altitude 4.5km, with uniform potential temperature 300K below and 320K above. Onto this
basic state a warm bubble of amplitude 1K is superposed. The grid spacing is 100m in the
horizontal (64x64 cells) and 3m in the vertical (2000 levels). The time step was 10s. The verti-
cal acoustic Courant number is close to 1200, and the gravity wave Courant number is greater
than 3. The advective Courant number increases as the bubble accelerates upwards, peaking at
over 27 before decreasing as the bubble approaches the strong stable layer and slows. Shear at
the edge of the bubble increases throughout the run, and this is reflected as an increase in the
deformational Courant, and, in fact, the run blows up shortly after t=600s, as expected given the
large deformational Courant number at that time.

wand etat, t=0 w and etat, t=600

Figure R1. Entropy (colours) and vertical velocity (contours, N + 1/2 m/s for integer N,
negative values dashed) for a buoyant bubble case with extremely fine vertical resolution. Left:
t = 0s; right = 600s.
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Figure R2. Time series of stability-related diagnostics for the bubble case. Top left:
component acoustic Courant numbers. Top right: gravity wave and convective Courant
numbers. Middle left: component advective Courant numbers. Middle right, bottom left,
bottom right components of the velocity gradient matrix multiplied by timestep. Colours of
curves are indicated in parentheses: blue (b), red (r), green (g), black (k).

At this point, without further study, I cannot make a definitive statement about exactly what
limits the stability of the model, and it probably varies from case to case. Nevertheless, based
on the theoretical properties of the methods and experience to date, there are a small number of
likely candidates.

(1) When the deformational Courant number approaches 1, departure points become less accu-
rate. This might lead to badly distorted departure cells such that the simple small-amplitude ad-
vecting velocity correction cannot restore divergence-consistency (section 2.6); or there might
be other feedbacks via advection that amplify errors.

(ii) If a>N?Ar? approaches —1 then the factor 14 a*>N?At? in the denominator of equations (70)
and (71) approaches zero and those terms blow up. This is a known limitation of the semi-
implicit treatment of gravity waves when the stratification becomes unstable (e.g. Davies et al.,
2005, Quart. J. Roy. Meteorol. Soc., 131, 1759-1782); it can be mitigated, for example, by
bounding the value of N? that appears in those coefficients.

(iii) Any factors that inhibit convergence of the quasi-Newton solver can mean that the theoret-
ical stability of a semi-implicit, semi-Lagrangian scheme is not attained. This could occur, for
example, (a) if the change in state over one time step is too large, hence too nonlinear, to be
captured by the quasi-Newton linearization, (b) if terms omitted from the linearization, such as
horizontal components of u- V1, become important, or (c) if insufficient iterations are taken for
constraint switching to settle down (as discussed in section 4.4).

As the reviewer suggests, stronger turbulence or more complex boundary conditions, etc., will
indeed challenge the model stability more, but through these kinds of effects rather than simply
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through making the Courant numbers larger.
The discussion in section 4.5 has been extended to include these points.

In contrast to implicit Eulerian advection schemes, which do tend to become more diffusive
at Courant numbers > 1, semi-Lagrangian advection schemes generally retain their accuracy
by moving their interpolation or remapping stencil to include the appropriate departure point
or cell. (This is one of the reasons for their popularity.) Indeed, it has been argued that, pro-
vided the departure points are computed sufficiently accurately, semi-Lagrangian schemes can
become MORE accurate at larger timesteps because they take fewer steps and so make fewer in-
terpolations. Figure R3 shows another contrived experiment to illustrate the point. The setup is
for the NEUTRAL boundary layer case, but with surface friction, other forcings, and initial per-
turbations switched off so that the flow remains steady and laminar (u,v) = (10 m/s,—5 m/s),
independent of z. The grid resolution is isotropic 50m with 128x128x64 cells. The figure shows
x-y slices through a passive tracer initialized with a ‘pyramid’ cross section. After 1280s the
tracer should return to its initial position, having circumnavigated the domain twice in the x-
direction and once in the y-direction. With a time step of 3.2s (component advective Courant
numbers 0.64 and 0.32 in the x- and y-directions) the solution is quite accurate but there is a
slight erosion of the maximum. Increasing the time step to 25.6s (Courant numbers 5.12 and
2.56) and then to 128s (Courant numbers 25.6 and 12.8) shows no loss of accuracy and, indeed,
a slight improvement in capturing of the maximum.
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Figure R3. Tracer distributions in the large advective Courant number test. Contour values are
0.1, 0.3, 0.5, 0.7, 0.9. Top left: initial distribution. Top right: final distribution with timestep
3.2 s. Bottom left: final distribution with timestep 25.6 s. Bottom right: final distribution with
timestep 128 s.



Timestep limitations

e The author notes model failure when time steps are increased beyond 6 seconds in the DY-
COMS case.

— Is this limitation consistent across all cases, or does it vary depending on physical parameters
(e.g., turbulence intensity, stratification, or domain resolution)?

— Was a systematic sensitivity analysis performed to determine the optimal timestep for different
types of flows? How does timestep selection affect both stability and computational cost?

All of the cases presented will become unstable if the timestep is set too large. However, as the
reviewer suggests, the actual limit will depends on both the flow characteristics and the model
resolution and other parameters. Also, it is not clear that the exact mechanism limiting the
stability will be the same in all cases; see the discussion under the ‘Stability’ question.

A systematic sensitivity analysis has not yet been performed, but I agree that it would be good
to do one. It would be a signficant study in itself to answer the question properly, and I hope
my student will do some of that work. It is tempting for modellers to push the time step right
up to the stability limit to get faster throughput, even though it is not always clear whether ac-
curacy is lost. (Numerical weather and climate prediction often do this, despite studies showing
significant timestep sensitivity, usually associated with coupling to physical parameterisations).

Choosing a timestep that is too large always leads to instability, as noted above. Experience to
date is that the onset of instability is sudden, with little warning, rather than a gradual degra-
dation of performance with increasing A¢. (The one exception to this is the timestep sensitivity
seen in DYCOMS; however, my best guess is that this is associated with numerical mixing via
advection rather than a decline in stability.) To a good first approximation the cost scales like
the number of steps and hence like 1/A¢. This scaling is modified slightly because the multigrid
solver parameters are automatically adjusted based on the acoustic Courant number.

The 6 s figure for DYCOMS was intended just as an example. However, to avoid distraction, |
have replaced that with a statement that all cases become unstable if the timestep is too large.
Section 5.4 has been extended to include some discussion of how the cost scales with timestep.

Semi-Lagrangian accuracy

e The accuracy of semi-Lagrangian trajectory calculations decreases as eigenvalues of AtVu
approach/exceed 1.

— Could the author quantifies the impact of these inaccuracies on key diagnostics, such as turbu-

lent kinetic energy or scalar variance, particularly in regions where vertical shear is strongest?

This is an excellent question, related to the discussion under ‘Timestep limitations’, and cer-
tainly deserves some careful study. For now, I can say that often one sees very little dependence



of most diagnostics on timestep (again with the exception of DYCOMS) right up to the point
where the model becomes unstable; I suspect that this insensitivity occurs because any instabil-
ity tends to be very localized while the rest of the simulated domain is well behaved.

Comparisons with explicit solvers

e The semi-Lagrangian formulation is noted for enabling large timesteps compared to explicit
schemes.

— Could the author provide direct comparisons (e.g., runtime, accuracy, or computational cost)
between their method and traditional LES solvers under similar setups?

— How does the semi-implicit scheme affect the resolution of fast dynamical processes, such as
wave breaking or sharp density gradients, compared to explicit solvers?

Direct comparisons of runtime and cost are difficult, as noted above in response to the ‘General
comparisons’ question. The discussion in section 5 shows that the results from PTerodaC>*TILES
are comparable to those of established LES codes, most of which are explicit. The most con-
spicuous limitations of PTerodaC>TILES are related to its ILES formulation, particularly near
the surface. My student Yuhang Tong is making good progress on understanding these limita-
tions and developing mitigations.

The semi-implicit treatment of acoustic waves is not thought to adversely affect results; most
LES codes are anelastic or Boussinesq, eliminating acoustic waves altogether. In practice the
gravity wave Courant number is generally < 1 except in strongly stable layers at the surface;
thus, any slowing of gravity waves by the semi-implicit treatment should be negligible. More
likely to be an issue is when semi-Lagrangian advection permits taking timesteps that are long
compared to the Lagrangian dynamical timescale, which could lead to under-resolution in time
of some dynamical process. However, this scenario is precisely when the deformation Courant
number is large, so instability is likely to be as much an issue as loss of accuracy.

Deformational Courant number

e The deformational Courant number is mentioned as a potential limiting factor for stability,
especially in regions with strong vertical shear.

— How frequently does the model approach the instability threshold in practical simulations,
such as those with strong surface shear or boundary-layer phenomena?

— Are there any mitigation strategies (e.g., adaptive timestep control or trajectory smoothing) to
manage cases where the deformational Courant number approaches or exceeds 1?

How frequently the model approaches the instability threshold depends very much on the user’s
choice of timestep. It is also difficult to monitor because we don’t know exactly what that
instability threshold is (or what the thresholds are, since there are several potential instability
mechanisms).

Some form of mitigation such as adaptive timestep control should be possible, but first we need



a clearer understanding of exactly what limits stability. For example, because of the expense,
one would not want to diagnose the eigenvalues of the velocity gradient at every model gridpoint
at every step in ‘production’ runs, but one could imagine doing so to study the model stability.
If the stability threshold was found to correspond to the same value of the maximum eigenvalue
for different simulations then that would be useful evidence.

I have added a comment to the discussion in section 4.5 to mention the possiblility of some
form of mitigation if the causes of instability can be better understood.

Reviewer 2
SUMMARY

This ms describes a novel and viable LES model including an implementation of consistent
moist thermodynamics. It serves as a demonstrator of this thermodynamic formulation in real-
istic modelling scenarios, represented by a suite of well-known test cases. The formulation is
an interesting contribution to model development in this area, and the ms makes a good case for
its wider consideration.

The model formulation is presented in sufficient detail (in a section extending to twenty pages)
and modelling limitations or areas for future work are well highlighted in general. In the discus-
sion of test cases, the model appears to perform well on the whole. Modelling difficulty in one
case, due to the lack of a subgrid turbulence/mixing model, also indicates where future work
may be required.

The model is available via the link supplied, along with some further documentation.
Thank you for the positive comments, and for checking the link.

SPECIFIC COMMENTS

1.Introduction

Lines 60-82: The test advances arguments for the use of a different solution method compared
to many “traditional” (line 68) LES codes, and also for numerical diffusion as a substitute for
a subgrid scheme, as has been done previously. Is the implication that any diffusive, numerical
solution of the unsteady Euler equations constitutes LES?

I certainly did not mean to imply that!

(1) A leading order requirement for LES is that there be enough small-scale dissipation to soak
up the downscale cascade of enstrophy (2D) or energy (3D). Often that is sufficient to get a
superficially plausible simulation, consistent with the idea of an inertial subrange that is inde-
pendent of the details of forcing and dissipation. However, many other aspects matter for a
‘good’ LES.



(i1) How localised in wavenumber space should the dissipation be? For 2D turbulence, calcu-
lation of spectral tendencies at full (high) resolution and at truncated resolution implies that
dissipation should be very localised at the end of the resolved spectrum (Thuburn, Kent and
Wood, 2014). Typical ILES schemes and parameterisation schemes spread the dissipation over
a much wider wavenumber range. I have not seen the analogous results for 3D turbulence, but
would be very interested to know if they have been published.

(i11) Backscatter. For 2D, the same spectral tendency calculations show that energy should
be scattered back into the energetically dominant large scales. (Again, I would be very inter-
ested to see the analogous 3D result.) I have not seen any numerical method that correctly
accomplishes the 2D backscatter. The Anticipated Potential Vorticiy Method (Sadourny and
Basdevant 1985) dissipates (potential) enstrophy while conserving energy, but backscatters the
energy to the wrong scales. (One can, though, construct a backscatter parameterisation that
restores dissipated energy to the correct scales.)

(iv) There are arguments that a subgrid model should ideally respond ‘dynamically’ to the flow
and that it should be nonlinear. Advocates of ILES point out that dissipation from the numerical
methods does respond dynamically to the flow, becoming zero when the flow is at rest, and can
be nonlinear if limiters are used (Monotone Implicit Large Eddy Simulation, or MILES). There
is some discussion of these points in the Margolin, Rider and Grinstein (2006) book, but I
believe there is scope for further investigation.

(v) I am not aware of any studies that examine in detail how the magnitude and location of dis-
sipation are related to individual flow structures, either for ILES or traditional subgrid models.
I think this would be a very interesting comparison. We do know that a numerical advection
scheme tends to diffuse structures along streamlines whereas often what is required is diffusion
across streamlines; this is related to known limitations of ILES near boundaries.

(vi) All of the above questions are especially challenging in the grey zone, when major flow
structures are marginally resolved and there is little or no inertial subrange. Model behaviour
can then be very sensitive to details of dissipation (e.g. Tomassini et al 2023) and therefore, by
implication, to details of the numerical methods.

References not already in the manuscript:

Thuburn, J., Kent, J., and Wood, N., 2014: Cascades, Backscatter and Conservation in Numer-
ical Models of Two-Dimensional Turbulence. Quart. J. Roy. Meteorol. Soc., 140, 626-638.
DOI: 10.1002/qj.2166

Sadourny R., Basdevant, C., 1985: Parameterization of sub-grid scale barotropic and baroclinic
eddies: Anticipated Potential Vorticity Method. J. Atmos. Sci. 42: 1353-1363.

The above discussion is too detailed for a model development paper, but I have clarified (around
line 80) that there remain many open questions about the strengths and weaknesses of ILES,

and that PTerodaC>TILES is a tool to help answer those questions.

2.Model formulation



Lines 139-142: Compared to the equations of Bowen and Thuburn (2022a), one development in
the present model is the introduction of Coriols forces. This is unproblematic for the terrestrial
applications discussed later, but would there be a constraint on resolution at very high rotation
rates e.g. for possible extraterrestrial applications?

Along with the other non-advective terms, the Coriolis terms are discretized in a Crank-Nicolson
manner along trajectories (equations (22), (23)), so will be stable at solver convergence. How-
ever, the Coriolis terms are omitted from the linearisation (equations (34), 35)), as is usual in
C-grid models such as ENDGame (Wood et al. 2014), because their inclusion would make it
difficult to eliminate velocity increments to obtain a Helmholtz problem. Thus, in principle,
a value of QAr approaching 1 might retard (or prevent) solver convergence enough to lead to
instability. For global simulations of Earth this can happen with timesteps of around 2 hrs. For
the much smaller timesteps of LES a correspondingly more rapid planetary rotation (daylength
a couple of minutes) would be needed, so this is unlikely to be a problem in practice.

In response to reviewer 1 I have added some discussion to section 4.5 of factors that might limit
model stability; this is the appropriate place to mention the Coriolis terms too.

Line 212: It is stated that the model has no representation of subgrid temperature/humidity
variability. Presumably this would degrade results if the model is run at low resolution? In the
absence of a subgrid turbulence model, subgrid velocity variations will be similarly unrepre-
sented. There is indication in the work of Brown, Derbyshire and Mason (QJRMS 1994) that
gridscale stochasticity may be beneficial in modelling stable layers. Would it be possible to
introduce a stochastic element in the present model, either with or without a subgrid model?

I agree, I would expect this to degrade results at low resolution, though I have not yet carefully
assessed this. Taking into account the subgrid temperature and humidity variability involves
various assumptions and approximations, for example a Gaussian joint distribution and a lin-
earization of the saturation curve (e.g. Sommeria and Deardorff 1977). Careful thought would
be needed to devise such a scheme that would remain consistent with the thermodynamic po-
tential approach.

I do not see any difficulty, from a model formulation and coding point of view, in including
some stochastic terms. A key ingredient in such a stochastic scheme appears to be an estimate
of the local, or at least horizontal mean, kinetic energy dissipation rate. An appropriate place to
mention a possible stochastic extension, therefore, is in the penultimate paragraph of section 6,

which discusses the challenge of estimating numerical dissipation rates.

Sommeria J. and Deardorff J. W., 1977: Subgrid-scale condensation in models of nonprecipi-
tating clouds, J. Atmos. Sci., 34, 344-355.

A possible stochastic extension is now mentioned in the penultimate paragraph of section 6.

Equations (18-20) are not written in an explicitly diagnostic form, although the text immediately
preceding makes it seem as though they should be. Maybe that sentence could be rephrased.

Agreed, this could be expressed better. I have rephrased the text.
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Subsection 2.7.1 is titled “Consistent surface fluxes of mass and water”, and it is possible to
overlook the last sentence therein which says that surface entropy flux is treated likewise. Based
on the information in the ms, it is not clear (to me) which boundary conditions the model
supports. Does it require continuous specification of surface heat and moisture fluxes. Would
it also support a constant-temperature boundary? 1 think this aspect should be made clearer.
In Section 3 (line 637) the text refers only to “forcing terms”, which does not help to clarify,
although lines 979-980 perhaps indicate that surface fluxes are always required.

It is true that this aspect is not as clear as it should be, and I thank the reviewer for pointing that
out.

Given the variety of different surface, large-scale, and radiative forcings specified in the differ-
ent case definitions, I decided to implement these forcings as separate routines for each case
(within the module named after the corresponding case), rather than as a small number of gen-
eral purpose routines with many convoluted options. The surface fluxes of sensible and latent
heat are determined by a simple bulk model with specified Ty and gsu(7y) for ATEX and are
specified functions of time for the other cases implemented (zero for the BUBBLE and NEU-
TRAL cases). The surface fluxes of momentum are zero for the BUBBLE case, given by a
simple bulk model for the BOMEX and DYCOMS cases, and given by Monin-Obukhov sim-
ilarity theory for the ARM, CBL, and NEUTRAL cases. The ATEX case definition calls for
a specified friction velocity U,. However, under this specification ILES performs poorly, so
a simple bulk model is implemented instead. A warning message to alert the user is printed.
The specified U, formulation can be restored by commenting and uncommenting a few lines of
code.

Thus, most boundary conditions that might be desired for a new test case can be implemented
by using existing routines as templates. An exception would be if Monin-Obukov theory were
required to compute sensible and latent heat fluxes as well as momentum fluxes. The modified
formulation presented in Appendix A4 assumes that the surface buoyancy flux is known. Some
theoretical work would be needed to extend that formulation to the case of specified surface
temperature rather than specified heat fluxes (the Bull and Derbyshire 1990 report would be a
good starting point).

The surface fluxes can be switched off via a namelist switch.

I have added some text to the start of section 2.7 summarising the key points of the above.

6. Conclusion and discussion

The concluding discussion is (understandably) mainly concerned with summarising model per-
formance and possible next steps in its development. However, given the development and
increasing resolution of NWP models, it is possible that these may be used as LES models in

the near future. It would be interesting to have the author’s opinion on the feasibility of im-
plementing this thermodynamic approach in another existing model such as an NWP model.

To be clear, the thermodynamic potentials approach and the ILES approach are two independent
things; PTerodaC>TILES just happens to use both.
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As mentioned in the Introduction (lines 30-35), there are two ways one might try to use ther-
modynamic potentials to obtain consistent thermodynamics.

(a) Use thermodynamic potentials to derive consistent governing equations for the thermody-
namics in more or less traditional form, then build a numerical model using those governing
equations. It should be relatively straightforward (though still far from trivial) to retrofit this
approach to an existing model, and there is interest from some modelling groups.

(b) Build the numerical model directly in terms of thermodynamic potentials, as in PTerodaC>TILES.
This alternative has the advantage of being more general and flexible. However, to apply this to

an exisiting model, all thermodynamic relations in the model (in parameterization schemes as
well as dynamics) would need to be re-expressed in terms of the potentials, requiring pervasive

and technically tricky code changes. Thus, realistically, I think this alternative is only likely to

be adopted if built into a new model, bottom-up.

Line 897: Could/should the zenodo link also be given as a citation in the bibliography?

Looking at other GMD manuscripts, this seems to be standard. 1 have included the link as a

citation, as suggested.
A4.Alternative formulation of Monin-Obukhov theory for surface momentum flux

This appendix lists one problem with stable boundary layers (lines 976-977), namely that the
lowest model level may not be low enough to lie within the validity range of MOST. It is not
obvious to me how a reformulation/approximation of MOST will overcome this problem, other
than perhaps making it simpler to apply MOST outside its range of validity? This should be
clarified.

Yes, this was not clear enough; thank you for pointing it out. The formulation in Appendix A4
does nothing to extend the range of validity of MOST. It merely ensures that a solution for
the surface momentum flux exists and is unique and is vaguely sensible, even outside MOST’s
range of validity.

I have added some text (second paragraph of Appendix A4) to clarify this point.

Figure Al does not seem to be referenced in the text. I assume the curves plotted there were
calculated for a specific value of surface buoyancy flux, and this value should be given.

Figure Al is cited at the end of the first paragraph of Appendix A4 and again just after equa-
tion (A26).

The surface buoyancy flux is accounted for in the Obukhov length L and hence in the non-
dimensionalization. U, is a function of {, while U is a function of r and {. Once we fix
r =20/z, as we do in each panel of the figure, U. is then a unique function of U, with no other
parameters to be specified.
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Other author comments

I am grateful to Yuhang Tong for pointing out that surface momentum fluxes were incorrectly
calculated for some cases in the PTerodaC>TILES version 1.0 code. The error affected only
those cases that use Monin-Obukhov theory to compute the surface momentum fluxes (ARM,
CBL, and NEUTRAL) and involved a missing factor of the von Karman constant in the com-
putation of U.,.

A bug-fixed version of the code (version 1.2) has been posted on Zenodo.

In the manscript the bug affected the results for the ARM case. I have rerun the ARM case with
the bug fixed and have included updated figures (5, 6, 9, 10, 11) and discussion in the revised
manuscript as well as linking to the bug-fixed code. Fortunately the differences are rather minor

and do not affect any of the main conclusions. They include

* differences in detail of the cloud field and time series of liquid water content because of the
chaotic nature of the turbulent flow (figures 6, 9, 11);

* some differences in momentum budget (figure 6);

* the low level peak in u-variance is now more in line with the results in Brown et al. (2002),
but the peak in w-variance at 3 hrs is now smaller than most ensemble members in Brown et al.
(figure 10). The peak TKE (figure 9) is reduced to 1.74m?s 2,

The axis units in figure 7(c) and figure 13(c) were incorrect. These have been corrected.
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