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Abstract. The second-order discontinuous Galerkin (DG2) solver of the shallow water equations in LISFLOOD-FP 8.0 is 10 

well-suited for predicting small-scale transients that emerge in rapid, multiscale floods caused by impact events like 

tsunamis. However, this DG2 solver can only be used for simulations on a uniform grid where it may yield inefficient 

runtimes even when using its graphics processing unit (GPU) parallelised version (GPU-DG2). To maximise runtime 

reduction, the new LISFLOOD-FP 8.2 version integrates GPU parallelised dynamic (in time) grid resolution adaptivity of 

multiwavelets (MW) with the DG2 solver (GPU-MWDG2). The GPU-MWDG2 solver requires selecting a maximum 15 

refinement level, 𝐿, based on size and resolution of the Digital Elevation Model (DEM) and an error threshold, ε ≤ 10-3, to 

preserve similar accuracy as a GPU-DG2 simulation on a uniform grid. The accuracy and efficiency of dynamic GPU-

MWDG2 adaptivity is assessed for four tsunami-induced flooding test cases involving increasingly complex tsunamis: from 

single-wave impact events to wave trains. At ε = 10-3, the GPU-MWDG2 simulations yield predictions similar to the GPU-

DG2 simulations, but using ε = 10-4 can improve the accuracy in velocity-related predictions. In terms of efficiency, the 20 

GPU-MWDG2 simulations show progressively larger speedups over the GPU-DG2 simulations from 𝐿 ≥ 10, which become 

significant (≥ 3.3- and 4.5-fold at ε = 10-4 and 10-3, respectively) for simulating a single-wave impact event. The 

LISFLOOD-FP 8.2 code is open source, DOI: 10.5281/zenodo.4073010, as well as the simulation data and the input files 

and scripts to reproduce them, DOI: 10.5281/zenodo.13909072, with additional documentation at 

https://www.seamlesswave.com/Adaptive (last accessed: 9 October 2024).   25 
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1 Introduction 

LISFLOOD-FP is a raster-based hydrodynamic modelling framework that has been used to support various geoscientific 

modelling applications (e.g. Hajihassanpour et al., 2023; Hunter et al., 2005; Nandi & Reddy, 2022; Zeng et al., 2022; Ziliani 

et al., 2020). LISFLOOD-FP has a suite of numerical solvers of the two-dimensional shallow water equations, including a 

diffusive wave solver (Hunter et al., 2005), a local inertial solver (Bates et al., 2010), a first-order finite volume solver, and a 30 

second-order discontinuous Galerkin (DG2) solver (Shaw et al., 2021). The DG2 solver is the most complex numerically, 

requiring three times more degrees of freedom per computed variable and at least twelve times more computations per cell 

compared to any of the other solvers in LISFLOOD-FP (Ayog et al., 2021; Kesserwani et al., 2018; Shaw et al., 2021). Even 

when parallelised on a graphics processing unit (GPU), the GPU parallelised DG2 solver (GPU-DG2) may still exhibit 

prohibitively long runtimes when used to run real-world flood simulations on Digital Elevation Models (DEMs) with raster 35 

grid sizes beyond the kilometre scale and/or at grid resolutions near or below the metre scale (Kesserwani & Sharifian, 2023; 

Shaw et al., 2021). 

Although DG2 simulations are capable of accurately reproducing slow to gradual flooding flows, even at very 

coarse DEM resolutions (Ayog et al., 2021; Kesserwani, 2013; Kesserwani & Wang, 2014; Shaw et al., 2021), they 

primarily excel at capturing small-scale transients that occur over a wide range of spatial and temporal scales (Kesserwani et 40 

al., 2023; Kesserwani & Sharifian, 2023; Sharifian et al., 2018; Sun et al., 2023). Such transients are typical of rapid flooding 

flows triggered and driven by multiscale impact event(s) like tsunami(s), which can include zones of flow recirculation past 

unsubmerged island(s). Hence, DG2 simulations are well-suited for obtaining detailed modelling of rapid, multiscale 

flooding flows, such as in tsunami-induced flooding. Within this scope for the modelling, dynamic (in time) mesh adaptivity 

has often been deployed with finite volume based tsunami inundation simulators to reduce simulation runtimes (e.g. Lee, 45 

2016; Popinet, 2012). This paper reports the integration of dynamic grid resolution adaptivity with the GPU-DG2 solver in 

LISFLOOD-FP to reduce the runtimes of rapid multiscale flow simulations, which are exemplified by tsunami-induced 

flooding events. 

Unlike static grid resolution adaptivity, which was integrated into LISFLOOD-FP 8.1 (Sharifian et al., 2023), this 

LISFLOOD-FP 8.2 version performs dynamic grid resolution adaptivity every simulation timestep to achieve as much local 50 

grid resolution coarsening as possible for grid cells covering regions of smooth flow and DEM features, thereby reducing the 

computational effort and runtime of a simulation by reducing the number of computational cells in the grid. The 

LISFLOOD-FP 8.2 version is unique in providing a single, mathematically sound hydrodynamic modelling framework that 

integrates dynamic grid resolution adaptivity on the GPU for achieving raster-grid DG2 simulations that can preserve a 

similar level of predictive accuracy and robustness as alternative GPU-DG2 simulations on a uniform grid. In fact, existing 55 

hydrodynamic modelling frameworks for tsunami simulation that have integrated dynamic grid resolution adaptivity with 

GPU parallelisation were mostly based on finite volume simulators (Berger et al., 2011; de la Asunción & Castro, 2017; 

Ferreira & Bader, 2017; Kevlahan & Lemarié, 2022; LeVeque et al., 2011; Liang et al., 2015; J. Park et al., 2019; Popinet, 
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2011, 2012; Popinet & Rickard, 2007). Comparatively, there are fewer simulators based on DG methods, mostly in the 

context of tsunami inundation simulation and considering triangular or curvilinear meshes, with sparse focusses: either on 60 

integrating central processing unit (CPU) parallelisation of extrinsic forms of dynamic adaptivity, or on parallelising (non-

adaptive) DG simulators on the GPU; while, in any of the focusses, addressing the robustness treatments for the integration 

of wet-dry fronts and/or the source terms (Blaise et al., 2013; Blaise & St-Cyr, 2012; Bonev et al., 2018; Castro et al., 2016; 

Hajihassanpour et al., 2019). 

To mention just a few, Blaise & St Cyr (2012) and Blaise et al. (2013) integrated CPU parallelisation with dynamic 65 

adaptivity for curvilinear meshes, calling for better forms of adaptivity with better robustness treatments to achieve reliable 

DG based tsunami inundation simulations. Rannabauer et al. (2018) addressed wet-dry front treatments with a DG based 

simulator of tsunami inundation that integrated CPU parallelised dynamic adaptivity on triangular meshes; further, the 

authors identified the benefit of their DG based simulator in comparison with a finite volume simulator. To track tsunami 

propagation on the sphere, Bonev et al. (2018) and Hajihassanpour et al. (2019) developed DG based simulators with 70 

dynamic adaptivity for curvilinear meshes, highlighting the need to further exploit GPU parallelisation to achieve practical 

runtimes. For tsunami inundation simulations, Castro et al. (2016) found that non-adaptive DG simulator on triangular 

meshes yield 23-fold faster runtimes when parallelised on the GPU as compared to when parallelised on the CPU with 24 

threads. Yet, to the best of the writers’ knowledge, there is no existing DG based hydrodynamic modelling framework that 

combines raster grid-based dynamic resolution adaptivity with GPU parallelisation packed within a mathematically sound 75 

framework that intrinsically preserves the robustness and predictive accuracy of the DG solver on the uniform grid. In this 

paper, such a GPU parallelised adaptive hydrodynamic modelling framework is optimised and newly integrated into 

LISFLOOD-FP 8.2; the framework combines dynamic grid resolution adaptivity of multiwavelets (MW) with the DG2 

solver formulation – this combination is, hereafter, referred to as dynamic GPU-MWDG2 adaptivity or the GPU-MWDG2 

solver. 80 

Dynamic MWDG2 adaptivity automates local grid resolution coarsening on a raster-based adaptive grid via the 

multiresolution analysis (MRA) of MW applied to scaled DG2 modelled data – considering both (time-varying) flow 

solutions and (time-invariant) DEM representations (Kesserwani et al., 2019; Kesserwani & Sharifian, 2020; Sharifian et al., 

2019, 2023). As the scaling, analysis, and reconstruction of DG2 modelled data are all inherent to the MRA procedure, the 

existing robustness treatments incorporated in the reference GPU-DG2 solver are readily preserved irrespective of the 85 

variability in the resolution scales. Another benefit of the MRA procedure is the reliance on a single criterion, an error 

threshold ε, to sensibly control the amount of local grid resolution coarsening. For ε ≤ 10-3, dynamic MWDG2 adaptivity was 

shown to preserve similarly accurate simulations as the reference DG2 solver run on the uniform grid (Caviedes-Voullième 

et al., 2020; Caviedes-Voullième & Kesserwani, 2015; Gerhard et al., 2015; Kesserwani et al., 2015); and Kesserwani & 

Sharifian (2020) formulated CPU-based MWDG2 solvers that further preserve the robustness of a reference DG2 solver 90 

designed for realistic, two-dimensional hydrodynamic modelling (Kesserwani et al., 2018).  
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Chowdhury et al. (2023) devised an efficient GPU parallelisation of wavelet adaptivity for finite volume 

hydrodynamic simulations. Their results show that the speedup afforded by wavelet adaptivity scales up with the maximum 

refinement level, 𝐿 – selected from the size and resolution of the raster-formatted DEM file – and starts offering positive 

speedups over uniform-grid finite volume GPU simulations starting from 𝐿 ≥ 9. Kesserwani & Sharifian (2023) extended 95 

the GPU parallelisation of wavelet adaptivity to produce a GPU-MWDG2 solver and analysed its efficiency using ε = 10-3 in 

simulating realistic slow-to-rapid flooding flow scenarios that involved 𝐿  ≥ 10. Their findings revealed that the GPU-

MWDG2 solver is three times faster than the GPU-DG2 solver when simulating a rapid flood scenario driven by an impact 

event, requiring 𝐿 = 11, as long as the dynamic GPU-MWDG2 adaptivity does not use more than 85 % the number of cells 

on the uniform grid of the GPU-DG2 simulation. These findings motivate for a dedicated study about the potential speedup 100 

of GPU-MWDG2 simulations over GPU-DG2 simulations in the context of rapid multiscale flooding scenarios involving 𝐿 

≥ 9 and ε ≤ 10-3. 

Next, in Sect. 2, the GPU-MWDG2 solver in LISFLOOD-FP 8.2 is described with a focus on its use for running 

GPU-MWDG2 simulations from raster-formatted DEM and initial flow setup files (Sect. 2.1), its associated upper memory 

limits (Sect. 2.2), and its efficiency analysis using several proposed metrics obtained from postprocessing simulation outputs 105 

(Sect. 2.3). In Sect. 3, the efficiency of the GPU-MWDG2 solver using ε = 10-3 and 10-4 is assessed with reference to the 

GPU-DG2 solver by considering four test cases of tsunami-induced flooding with increasingly complex tsunamis, from 

single-wave impact events to wave trains. Sect. 4 draws conclusions and recommendations as to when the GPU-MWDG2 

solver can best lead to considerable speedups over the GPU-DG2 solver. The LISFLOOD-FP 8.2 code is open-source under 

the GPL v3.0 licence (LISFLOOD-FP developers, 2024) in addition to the simulation results and the input files and scripts to 110 

reproduce them (Chowdhury & Kesserwani, 2024), with further guidance at https://www.seamlesswave.com/Adaptive (last 

accessed: 9 October 2024). 

2 LISFLOOD-FP 8.2 

LISFLOOD-FP 8.2 includes the new capability of running simulations over a non-uniform grid using dynamic GPU-

MWDG2 adaptivity. The GPU-MWDG2 solver can be used as an alternative to the uniform-grid GPU-DG2 solver (Shaw et 115 

al., 2021) to potentially reduce simulation runtimes. Unlike with LISFLOOD-FP 8.1, where the MRA procedure of MW is 

only applied once at the beginning of the simulation to generate a static non-uniform grid whose grid resolution is locally 

coarsened as much as permitted by features of the DEM that are time-invariant (Sharifian et al., 2023), the GPU-MWDG2 

solver deploys the MRA procedure every simulation timestep, denoted by Δ𝑡, to also automate grid resolution coarsening 

based on the features of the time-varying flow solution. 120 

The algorithmic description of the GPU-MWDG2 solver has been reported in previous papers (Kesserwani & 

Sharifian, 2020; 2023), which its dynamic adaptivity has been further optimised to improve memory coalescing and 

occupancy in the GPU kernels (NVIDIA, 2023). Therefore, the GPU-MWDG2 solver is only briefly overviewed here (see 
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Appendix A) with a focus on its operational workflow, shown in Figure 1. Here, the presentation is focussed on describing 

the features incorporated into LISFLOOD-FP 8.2 for running the GPU-MWDG2 solver (Sect. 2.1), on identifying the upper 125 

limits of its GPU memory consumption in relation to the specification of the GPU card (Sect. 2.2), and on proposing metrics 

for detailed analysis of the efficiency of its dynamic adaptivity from output datasets (Sect. 2.3). 

 

Figure 1: The main operations involved in the GPU-MWDG2 solver (further detailed in Appendix A). 

2.1 The GPU-MWDG2 solver 130 

Running a simulation of a test case using any solver in LISFLOOD-FP requires setting up several test case-specific input 

files1, and the same is required for the GPU-MWDG2 solver. An important input file is the “parameter” file with the 

extension .par, which is a text file specifying various solver and simulation parameters2. In the remainder of this paper, the 

usability of the GPU-MWDG2 solver will be described for the “Monai valley” test case (explored in Sect. 3.1) – without loss 

of generality. Step-by-step instructions on how to use the GPU-MWDG2 solver to run a simulation of the “Monai valley” 135 

test case have been provided in Appendix B. 

 

Figure 2: Listing of parameters in the .par file needed to run a GPU-MWDG2 simulation for the “Monai Valley” test case 

(Sect. 3.1), with the GPU-MWDG2 specific items highlighted in bold. 

 
1 https://www.seamlesswave.com/Merewether1; https://www.seamlesswave.com/Adaptive 
2 https://www.seamlesswave.com/Merewether1-1.html 
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 140 

The parameters2 or keywords that should be typed in the .par file for running a simulation of the Monai Valley test 

case are shown in Figure 2, including seven keywords related to running the GPU-MWDG2 solver highlighted in bold. The 

cuda keyword should be typed to access the GPU parallelised models in LISFLOOD-FP, e.g. the GPU-DG2 solver or the 

GPU-MWDG2 solver. The mwdg2 keyword should be typed to select the GPU-MWDG2 solver3. The epsilon keyword 

followed by a numerical value 0.001 specifies the error threshold 𝜀 = 10-3. The max_ref_lvl keyword followed by an 145 

integer value specifies the maximum refinement level 𝐿, specified according to the DEM size and resolution as explained 

next. 

 

Figure 3: Initial non-uniform grid generated by the GPU-MWDG2 solver, via the MRA procedure, based on the static 

features the bathymetry for the “Monai Valley” test case (Sect. 3.1). 150 

 

The GPU-MWDG2 solver starts a simulation on a square uniform grid made up of 2L × 2L cells, which is the finest-

resolution grid accessible to the GPU-MWDG2 solver (Appendix A). Practically, the DEM often involves a (rectangular) 

grid with 𝑀 rows and 𝑁 columns, for which the GPU-MWDG2 solver should still generate a starting square uniform grid 

with 2L × 2L cells. The most optimal choice would be by selecting the smallest value of 𝐿 such that 2𝐿 ≥ max(𝑁, 𝑀). For 155 

example, in the Monai valley test case, 𝑁  = 784 and 𝑀  = 486, and 𝐿  should be the smallest integer such that 2𝐿 ≥

max(784 , 486), leading to the choice 𝐿 = 10. Figure 3 shows the initial non-uniform grid generated by the GPU-MWDG2 

solver. Since the GPU-MWDG2 solver starts from a square uniform grid inclusive of the DEM dimensions, two areas 

 
3 The CPU version of the MWDG2 solver was not integrated on LISFLOOD-FP due to its uncompetitive runtimes. 
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emerge in the non-uniform grid: the actual test case area, which includes the DEM data and the initial flow conditions; and, 

empty areas where no DEM data are available and where no flow should occur.  160 

In the actual test case area, GPU-MWDG2 initialises the data in the cells by using the values specified in .dem and 

.start files in raster grid format (see Appendix B). Meanwhile, in the empty areas, it initialises the flow data to zero and 

assigns bathymetry data the numerical value that follows the wall_height keyword. This numerical value must be 

sufficiently high such that a wall is generated between the test case area and the empty areas (see Figure 3) that prevents any 

water from leaving the test case area (e.g. by choosing a numerical value that is higher than the largest water surface 165 

elevation). For the Monai valley test case, the wall_height keyword is specified to 0.5 m to generate a wall that is high 

enough to prevent any water from leaving the test case area. The refine_wall keyword and the ref_thickness 

keyword, followed by an integer for the latter, typically between 16 and 64, should also be typed in the parameter file to 

prevent GPU-MWDG2 from excessively coarsening the non-uniform grid around the walls (labelled with the curly braces in 

Figure 3). For the Monai valley test case, the refine_wall keyword is specified to trigger refinement around the wall, and 170 

ref_thickness is specified as 16 to trigger 16 cells at the highest refinement level between the wall and the test case area. 

The remaining keywords in Figure 2 are standard for running simulations using LISFLOOD-FP and were described 

previously2. Note that running GPU-MWDG2 on LISFLOOD-FP 8.2 only requires the user to provide the .dem file and 

.start files, unlike the DG2 solvers in LISFLOOD-FP 8.0 (Shaw et al., 2021) and the static non-uniform grid generator in 

LISFLOOD-FP 8.1 (Sharifian et al., 2023), which require providing .dem1x, .dem1y, .start1x and .start1y raster 175 

files to initialise the slope coefficients of the DG2 solver. These coefficients are automatically initialised by the GPU-

MWDG2 solver in LISFLOOD-FP 8.2. 

Compared to a GPU-DG2 simulation, a GPU-MWDG2 simulation consumes much more memory. As shown next 

in Sect. 2.2, the large memory costs arise from the need to store the objects involved in the GPU-MWDG2 algorithm. 

Practically, the largest allowable choice of 𝐿, or largest square uniform grid, is restricted by the memory capacity of the 180 

GPU card on which the GPU-MWDG2 simulation is performed. 

2.2 GPU memory cost analysis and limits 

The scope for running a GPU-MWDG2 simulation depends on the availability of a GPU card that can fit the memory costs 

for the specified choice of 𝐿. The left panel in Figure 4 shows the breakdown percentage of the memory consumed by the 

objects involved in GPU-MWDG2 simulations, i.e. the GPU-MWDG2 non-uniform grid, the explicit neighbours of each cell 185 

in the grid, and the hierarchy of grids involved in the dynamic GPU-MWDG2 adaptivity process (overviewed in Appendix 

A). It can be seen that 15% of the memory is allocated for arrays storing the hierarchy of uniform grids, and 6% is allocated 

for other miscellaneous purposes. Remarkably however, nearly 80% of the overall GPU memory costs are due to allocating 

arrays for the non-uniform grid and its neighbours: 22% from storing the array representing the non-uniform grid, while 

another 57% from explicitly storing the four neighbours of each cell in the non-uniform grid. This is because the GPU-190 
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MWDG2 solver is coded to allocate GPU memory for the worst-case scenario where there is no grid coarsening at all, 

thereby negating the need for memory reallocation after any coarsening to maximise the efficiency of dynamic GPU-

MWDG2 adaptivity, since memory allocation is a relatively slow operation. 

 

Figure 4:  GPU memory consumed by dynamic GPU-MWDG2 adaptivity. Left panel shows the percentage breakdown of 195 

the GPU memory consumed by the different objects involved in the GPU-MWDG2 solver. Right panel shows the amount of 

GPU memory allocated against the maximum refinement level L; The numbers on top of the bars show the number of cells 

for a given value of L. The horizontal lines indicate the memory limits of four GPU cards. 

 

The right panel in Figure 4 displays the GPU memory allocated by the GPU-MWDG2 simulations for different 𝐿 200 

leading to 2L × 2L cells on the square uniform grid. The coloured lines represent the memory limits of four different GPU 

cards. In this figure, the memory limits are considered for 𝐿 ≥ 9, i.e. for the case where wavelet-based adaptive simulations 

were shown to start offering speedups over the uniform-grid simulations (Chowdhury et al., 2023; Kesserwani & Sharifian, 

2023).  As can be seen, dynamic GPU-MWDG2 adaptivity can only allocate GPU memory below the upper memory limit of 

the GPU card under consideration, leading to a restriction on the value of L that can be employed. For instance, a GTX 1050 205 

card with a memory capacity of 2 GB can only accommodate GPU-MWDG2 simulations up to L = 10, i.e. starting from a 

square uniform grid made of 1024 × 1024 cells; this is because any value of 𝐿 > 10 will lead to exceeding this GPU card’s 

memory limit. Generally, the larger the value of 𝐿, the larger the 2L × 2L cells on the square uniform grid, thus the larger the 

memory requirement for the GPU card. At the time this study was conducted, GPU-MWDG2 simulations involving 𝐿 ≥ 13, 

i.e. starting from a square uniform grid from 8192 × 8192 cells, were not feasible because accommodating such values of 𝐿 210 

needed >80 GB of GPU memory, which was higher than the memory limit of the latest commercially available GPU card 

(i.e. the A100 GPU card, with 80 GB of memory). 
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2.3 Metrics for analysing GPU-MWDG2’s runtime efficiency 

Assessing the potential speedup that could be afforded by GPU-MWDG2 adaptivity over a GPU-DG2 simulation is essential 

for a user. As noted in other works that have explored wavelet adaptivity, the computational effort and speedup of a GPU-215 

MWDG2 simulation should ideally be correlated exactly with the number of cells in the GPU-MWDG2 non-uniform grid 

(since the number of cells dictates the number of DG2 solver updates to be performed). However, in practice, this rarely 

occurs as the ideal speedup is diminished by the additional computational effort spent by GPU-MWDG2 to generate the non-

uniform grid every timestep via the MRA process (Kesserwani et al. 2019; Kesserwani and Sharifian, 2020; Kesserwani and 

Sharifian, 2023; Chowdhury et al. 2023). Thus, to thoroughly assess the potential speedup of a GPU-MWDG2 simulation, 220 

the user must consider the interdependent effects of the number of cells in the non-uniform grid, the computational effort of 

performing the DG2 solver updates, and the computational effort of performing the MRA process. 

To this end, starting from LISFLOOD-FP 8.2, the user can include the “cumulative” keyword in the parameter 

file to produce a “.cumu” file that contains the time histories of several quantities for analysing the speedup achieved by 

GPU-MWDG2 adaptivity [i.e. the number of cells in the non-uniform grid, the computational effort of performing the DG2 225 

solver updates per timestep, the timestep size, the timestep count, amongst other items with the full list of items detailed in 

any of the the data and script files in Chowdhury and Kesserwani (2024)]. In this paper, the time histories of these quantities 

are postprocessed into several time-dependent metrics for analysing the speedups of GPU-MWDG2 simulations compared to 

GPU-DG2 simulations (Sect. 3). The metrics are described in Table 1, and their use for analysing the speedup of a GPU-

MWDG2 simulation is explained next by way of an example. 230 

 

Table 1: Time-dependent metrics for evaluating the potential speedup of a GPU-MWDG2 simulation over a GPU-DG2 

simulation. 

Metric Description 

𝑁𝑐𝑒𝑙𝑙𝑠(𝑡) 
Number of cells in GPU-MWDG2’s non-uniform grid compared to GPU-DG2’s grid (as a 

percentage) against simulation time. 

𝑅𝐷𝐺2(𝑡) 
Computational effort spent by GPU-MWDG2 to perform the DG2 solver updates at a given 

timestep (relative to GPU-DG2 as a percentage) against simulation time. 

𝑅𝑀𝑅𝐴(𝑡) 
Computational effort spent by GPU-MWDG2 to perform the MRA process and generate the non-

uniform grid at a given timestep (relative to GPU-DG2 as a percentage) against simulation time. 

𝑆𝑖𝑛𝑠𝑡(𝑡) 
Instantaneous speedup achieved by GPU-MWDG2 over GPU-DG2 at a given timestep against 

simulation time. 

𝑁Δ𝑡(𝑡) Number of timesteps taken by GPU-MWDG2 to reach a given simulation time. 

𝐶𝐷𝐺2(𝑡) 
Cumulative computational effort spent by GPU-MWDG2 to perform the DG2 solver updates 

(quantified in units of wall clock time) up to a given simulation time. 

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



10 

 

𝐶𝑀𝑅𝐴(𝑡) 
Cumulative computational effort spent by GPU-MWDG2 to perform the MRA process 

(quantified in units of wall clock time) up to a given simulation time. 

𝐶𝑡𝑜𝑡(𝑡) 
Total cumulative computational effort spent by GPU-MWDG2 to complete a simulation 

(quantified in units of wall clock time) up to a given simulation time. 

𝑆𝑎𝑐𝑐(𝑡) Accumulated speedup of GPU-MWDG2 over GPU-DG2 up to a given simulation time. 

  

 In a GPU-MWDG2 simulation of an impact event, the computational effort per timestep changes depending on the 235 

change in the number of cells in the GPU-MWDG2 non-uniform grid. The number of cells changes over time because finer 

cells are generated by GPU-MWDG2 adaptivity to track the flow features produced by the impact event as it enters and 

travels through the bathymetric area. Using the same Monai Valley example (Sect 3.1), the left panel of Figure 5 shows the 

initial non-uniform grid generated by GPU-MWDG2 at the start of the simulation, while the right panel shows an 

intermediate non-uniform grid generated by GPU-MWDG2 after the simulation has progressed by 17 s, i.e. after an impact 240 

event, here a tsunami, has entered and propagated through the bathymetric area. At the start of the simulation, the initial non-

uniform grid is coarsened as much as allowed, based only on the static features of the bathymetric area and initial flow 

conditions, leading to a minimal number of cells in the grid, which is quantified by 𝑁𝑐𝑒𝑙𝑙 . The number of cells determines the 

number of DG2 solver updates to be performed at a given timestep, leading to a corresponding computational effort per 

timestep, which is quantified by 𝑅𝐷𝐺2. There is also the computational effort of performing the MRA process at a given 245 

timestep, which is quantified by 𝑅𝑀𝑅𝐴. Based on the combined computational effort of performing both the MRA process 

and the DG2 solver updates at a given timestep, the instantaneous speedup in completing one timestep of a GPU-MWDG2 

simulation can be computed (relative to the GPU-DG2 simulation), which is quantified by 𝑆𝑖𝑛𝑠𝑡 . In Figure 5, after the 

simulation has progressed by 17 s, the number of cells in the non-uniform grid has increased due to using finer cells to track 

the tsunami’s wavefronts and wave diffractions, which leads to a higher value of 𝑁𝑐𝑒𝑙𝑙  and 𝑅𝐷𝐺2 (and possibly also to a 250 

higher value of 𝑅𝑀𝑅𝐴, as a higher number of cells in the non-uniform grid means more cells must be processed during the 

MRA process); thus, 𝑆𝑖𝑛𝑠𝑡  is expected to drop. Generally, the higher the complexity of the impact event, the higher the 

number of cells in the GPU-MWDG2 non-uniform grid, and the lower the potential speedup. 
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Figure 5: GPU-MWDG2 non-uniform grids generated for the “Monai Valley” test case (Sect. 3.1). Left panel shows the grid 255 

at the start of the simulation whereas the right panel shows the grid after the simulation has progressed by 17 s, which tracks 

flow dynamics. 

 

The metrics 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2 , 𝑅𝑀𝑅𝐴  and 𝑆𝑖𝑛𝑠𝑡  quantify the computational effort and speedup of a GPU-MWDG2 

simulation per timestep compared to a GPU-DG2 simulation. However, the overall or cumulative computational effort and 260 

speedup of a GPU-MWDG2 simulation depends on having accumulated the computational effort and speedup per timestep 

from all the timesteps taken by GPU-MWDG2 to reach a given simulation time. The higher the number of timesteps taken 

by GPU-MWDG2 to reach a given simulation time (quantified by 𝑁Δ𝑡), the higher the cumulative computational effort spent 

by GPU-MWDG2 to reach that simulation time (quantified by 𝐶𝑡𝑜𝑡 ). The 𝐶𝑡𝑜𝑡  metric is computed by summing the 

cumulative computational effort spent by GPU-MWDG2 to perform the DG2 solver updates and the MRA process, which is 265 

quantified by 𝐶𝐷𝐺2  and 𝐶𝑀𝑅𝐴 , respectively. Using the cumulative metrics, the overall speedup accumulated by a GPU-

MWDG2 simulation can be computed, which is quantified by 𝑆𝑎𝑐𝑐. The metrics in Table 1 are used in the next section (Sect. 

3) to assess the speedup afforded by GPU-MWDG2 adaptivity. 

3 Evaluation of GPU-MWDG2 adaptivity 

The efficiency of the GPU-MWDG2 solver is evaluated against the GPU-DG2 solver (which is always run on a uniform grid 270 

at the finest resolution used by the GPU-MWDG2 solver) by running and comparing GPU-MWDG2 simulations against 

GPU-DG2 simulations using the time-dependent metrics proposed in Table 1 (Sect. 2.3). For completeness, the accuracy of 

GPU-MWDG2 simulations is also evaluated, namely by quantifying the difference between the predictions of a GPU-

MWDG2 simulation and a GPU-DG2 simulation using the root mean squared error (RMSE) and the correlation coefficient 

(𝑟), which are given by: 275 
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𝑅𝑀𝑆𝐸 =
√∑  (𝑃𝑖,𝑀𝑊𝐷𝐺2 −𝑃𝑖,𝐷𝐺2)2𝑁𝑠

𝑖

𝑁𝑠
         (1) 

𝑟 =
∑  (𝑃𝑖,𝑀𝑊𝐷𝐺2−𝑃𝑀𝑊𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑃𝑖,𝐷𝐺2 𝑃𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ )

𝑁𝑠
𝑖

√[ 1
𝑁𝑠

∑ (𝑃𝑖,𝑀𝑊𝐷𝐺2−𝑃𝑀𝑊𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁𝑠
𝑖

]  [ 1
𝑁𝑠

 ∑ (𝑃𝑖,𝐷𝐺2−𝑃𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ )2𝑁𝑠
𝑖

] 
      (2) 

where, 𝑁𝑠 denotes the number of sampling points, 𝑃𝑖,𝑀𝑊𝐷𝐺2 and 𝑃𝑖,𝐷𝐺2 are the ith points where GPU-MWDG2 and GPU-DG2 

predictions are spatially and/or temporally sampled, respectively, and 𝑃𝑀𝑊𝐷𝐺2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑃𝐷𝐺2

̅̅ ̅̅ ̅̅  are their mean predictions across all 

sampling points. The RMSE measures the closeness between the predictions, whereas the r value measures the correlation 280 

(similarity) among these same predictions. The nearer to 0 the RMSE, the closer the predictions, and the nearer to 1 the 𝑟 

value, the higher their similarity. The GPU-MWDG2 simulations are run with ε = 10-4 and 10-3, which are the values for 

which the GPU-MWDG2 solver preserves the predictive accuracy of the GPU-DG2 solver while achieving a fair level of 

efficiency (Kesserwani et al., 2019; Kesserwani & Sharifian, 2020; 2023; Sharifian et al., 2019; 2023). 

 285 

Table 2: Characteristics of the four selected test cases listed in order of tsunami complexity and including the DEM size and 

resolution dictating the choice of L, the Manning coefficient, nM, and the simulation output time, tend. 

Test case DEM size Tsunami complexity L tend nM 

“Monai Valley”  

(Sect. 3.1) 

784 rows × 486 

columns (0.007 m 

resolution) 

Single-wave event with a smooth wave peak 

during 10 and 15 s, followed by a trough, 

during 15 and 20 s. 

10 22.5 s 0.01 

“Seaside Oregon”  

(Sect. 3.2) 

2181 rows × 1091 

columns (0.02 m 

resolution) 

Single-wave event with a long wave, without 

a trough, that occurs by 10 s, travelling 

towards the coast, from 15 s, to then hit a 

complex urban town. 

12 40 s 0.025 

“Tauranga 

Harbour”  

(Sect. 3.3) 

4096 rows × 2196 

columns (10 m 

resolution) 

Wave train event of three low-frequency 

waves with troughs (two including noise) 

propagating over a long duration of 40 hr. 

12 40 hr 0.025 

“Hilo Harbour”  

(Sect. 3.4) 

702 rows × 692 

columns (10 m 

resolution) 

Wave train event with many high-frequency 

waves with troughs propagating over a long 

duration of 6 hr. 

10 6 hr 0.025 

 

As the potential speedup afforded by GPU-MWDG2 adaptivity is hypothesised to depend on the impact event 

complexity and the DEM size (dictating the choice of the 𝐿), the speedup evaluation is performed using four realistic 290 

tsunami-induced flooding test cases that each feature a unique combination of impact event complexity (either a simple 

single-wave tsunami or a complex wave train tsunami) and DEM size (requiring either 𝐿 = 10 or 12). Table 2 includes the 

test case-specific DEM sizes and resolutions that dictate the choice of 𝐿 ≥ 10 and the physical set-up parameters, i.e. the 
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Manning coefficient, nM, and the simulation end time, tend. The GPU-MWDG2 and GPU-DG2 simulations were run on the 

Stanage high performance computing cluster of the University of Sheffield to access the A100 GPU card with 80 GB of 295 

memory, necessary for accommodating the memory costs of GPU-MWDG2 simulations requiring an 𝐿 value as high as 12 

(Sect. 2.2). 

3.1 Monai Valley 

This test case was used to validate many hydrodynamic solvers (Caviedes-Voullième et al., 2020; Kesserwani & Liang, 

2012; Kesserwani & Sharifian, 2020; Matsuyama & Tanaka, 2001). It involves a 1:400 scaled replica of the 1993 tsunami 300 

that flooded Okushiri Island after a wave runup of 30 m at the tip of a very narrow gulley in a small cove at Monai Valley 

(Liu et al., 2008). The scaled DEM has 784 × 486 cells for which its associated initial square uniform grid is generated with 

L = 10. 

 

Figure 6: Monai Valley. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction and 305 

distance travelled by the tsunami; time history of the tsunami entering from the left boundary (bottom left panel); initial 

GPU-MWDG2 non-uniform grids (right panels) covering the portion of the bathymetric area framed by the white box (top 

left panel). 

 

In Figure 6, a top-down view of the bathymetric area is shown (top left panel), which has a small island in the 310 

middle and a coastal shoreline to the right, including Okushiri Island and Monai Valley. The coastal shoreline gets flooded 

by a tsunami that initially enters the bathymetric area from the left boundary and then travels to the right by 4.5 m (indicated 

by the red arrows), interacting with the small island as it travels through the bathymetric area. This tsunami is simulated for 
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22.5 s, during which it travels through the bathymetric area in three stages of flow over time: the entry stage (0 to 7 s), the 

travelling stage (7 to 17 s) and the flooding stage (17 to 22 s). During the entry stage, the tsunami does not enter the 315 

bathymetric area, as seen in the hydrograph of the tsunami’s water surface elevation (bottom left panel of Figure 6). During 

the travelling stage, the tsunami enters from the left boundary and travels right towards the coastal shoreline. Lastly, during 

the flooding stage, the tsunami floods the coastal shoreline, due to which many flow dynamics such as wave reflections and 

diffractions are produced that must be tracked using finer cells, thus increasing the number of cells in the GPU-MWDG2 

non-uniform grid. In the right panels of Figure 6, the initial GPU-MWDG2 grids at ε = 10-3 and 10-4 are depicted for the 320 

portion of the bathymetric area framed by the white box (top left panel of Figure 6). With ε = 10-3 and 10-4, the initial GPU-

MWDG2 grid has 6% and 12% of the number of cells as in the GPU-DG2 uniform grid, respectively. 

 
Figure 7: Monai Valley. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a time 

history of Δ𝑡 (centre panel). 325 
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In Figure 7, an analysis of the runtimes of the GPU-DG2 and GPU-MWDG2 simulations using the time-dependent 

metrics of Table 1 is shown; a time history of Δ𝑡 is also included. The dashed lines in the top left panel indicate the initial 

value of 𝑁𝑐𝑒𝑙𝑙 , i.e. 𝑁𝑐𝑒𝑙𝑙  of the initial GPU-MWDG2 non-uniform grids. Up to 15 s, i.e. before the flooding stage of flow 

begins, the time history of 𝑁𝑐𝑒𝑙𝑙  remains flat, meaning that the number of cells in the GPU-MWDG2 non-uniform grid does 330 

not change over time. Once the flooding stage begins however, 𝑁𝑐𝑒𝑙𝑙  increases slightly, particularly at ε = 10-4. With an 

increased number of cells in the non-uniform grid, the computational effort of performing the DG2 solver updates per 

timestep should increase, which is confirmed by the time history of 𝑅𝐷𝐺2, which is flat before the flooding stage of flow, but 

thereafter increases, particularly at ε = 10-4. Conversely, unlike 𝑅𝐷𝐺2, the time history of 𝑅𝑀𝑅𝐴 is similar for both values of ε, 

and stays flat for most of the simulation except for an initial decrease at the start, meaning that the computational effort of 335 

performing the MRA process per timestep is similar for both values of ε and remains fixed throughout the simulation. Thus, 

the drop in the speedup of completing a single timestep of the GPU-MWDG2 simulation compared to the GPU-DG2 

simulation is mostly due to the increase in 𝑅𝐷𝐺2 at ε = 10-4, with 𝑆𝑖𝑛𝑠𝑡  dropping from 2.0 to 1.8 (which otherwise stays flat at 

2.7 for ε = 10-3). 

Besides analysing the computational effort and speedups of the GPU-MWDG2 simulations per timestep, there is 340 

also the question of analysing the cumulative computational effort of running the simulations, which depends on the timestep 

size (Δ𝑡) and the number of timesteps taken to reach a given simulation time (𝑁Δ𝑡). In this test case, the time histories of Δ𝑡 

of the GPU-DG2 simulation and the GPU-MWDG2 simulation using ε = 10-4 are very similar, but with ε = 10-3, Δ𝑡 drops at 

7 s, i.e. as soon as the travelling stage of flow begins. This slight drop in Δ𝑡 is likely dictated by wetting and drying on the 

cells associated with more frequent and aggressive grid resolution coarsening at ε = 10-3 than 10-4. Due to the smaller Δ𝑡 at ε 345 

= 10-3, the trend in 𝑁Δ𝑡 is steeper at ε = 10-3 than 10-4, i.e. more timesteps are taken and thus more computational effort is 

spent by GPU-MWDG2 to reach a given simulation time at ε = 10-3 than 10-4. Still, despite the steeper trend in 𝑁Δ𝑡, the 

cumulative computational effort of performing the MRA process is similar using both ε = 10-3 and 10-4, which is expected 

given that 𝑅𝑀𝑅𝐴 is also very similar for values of ε. In contrast, the cumulative computational effort of performing the DG2 

solver updates is considerably higher at ε = 10-4 than 10-3, likely due to the higher 𝑅𝐷𝐺2 at ε = 10-4, which seems correct since 350 

a higher computational effort to perform the DG2 solver updates per timestep should lead to a higher cumulative 

computational effort (assuming that the time histories of 𝑁Δ𝑡 are similar for the different values of ε, which is the case here). 

Overall, for both values of ε, the total computational effort of running the GPU-MWDG2 simulations is always lower than 

that of the GPU-DG2 simulation, with 𝐶𝑡𝑜𝑡  always being lower than that of GPU-DG2 at both ε = 10-3 and 10-4. The 

accumulated speedups of the GPU-MWDG2 simulations, 𝑆𝑎𝑐𝑐 , finish at around 2.5 and 2.0 using ε = 10-3 and 10-4, 355 

respectively. 
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Figure 8: Monai Valley. Time series of the water surface elevation (h + z) predicted by GPU-DG2 and GPU-MWDG2 at the 

three sampling points (shown in Figure 6, top left panel) compared to the experimental results. 

 360 

Table 3: Monai valley. RMSE and r scores from the GPU-MWDG2 predictions versus the GPU-DG2 prediction.  
RMSE r 

Prediction dataset ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4 

Time series at Point 1 4.19 × 10-4 1.36 × 10-4 0.9995 0.9999 

Time series at Point 2 1.40 × 10-3 7.55 × 10-4 0.9935 0.9979 

Time series at Point 3 4.53 × 10-4 1.91 × 10-4 0.9994 0.9999 

Flood map at tend 1.81× 10-3 1.00 × 10-3 0.9978 0.9993 

 

In Figure 8 and Table 3, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-DG2 

prediction are evaluated for the time series of the water surface elevation at Points 1, 2 and 3 (coloured points in the top left 

panel of Figure 7), at which all the predictions agree well with the measured time series. With both ε values and at all three 365 

points, the GPU-MWDG2 predictions match those of GPU-DG2, yielding close RMSE and 𝑟 scores, including for the spatial 

flood map predictions at tend. Overall, GPU-MWDG2 competitively reproduces the GPU-DG2 water surface elevation 

predictions with both ε values while being more than 2 times faster than GPU-DG2 due to using L = 10, i.e. the “borderline” 

value of L where GPU-MWDG2 adaptivity reliable yields a speedup. In the next test case, the impact of a larger DEM size, 
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requiring a larger 𝐿 value, on the speedup of the GPU-MWDG2 solver is evaluated, while further considering the prediction 370 

of more complex velocity-related quantities. 

3.2 Seaside Oregon 

This is another popular benchmark test case used to validate hydrodynamic solvers for nearshore tsunami inundation 

simulation (Gao et al., 2020; Macías et al., 2020; Park et al., 2013; Qin et al., 2018; Violeau et al., 2016). It involves a 1:50 

scaled replica of an urban town in Seaside, Oregon, flooded by a tsunami travelling along a scaled DEM made up of 2181 × 375 

1091 cells, here requiring a larger L = 12 to generate the initial square uniform grid.  

 

Figure 9: Seaside Oregon. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction and 

distance travelled; tsunami time history entering the left boundary (bottom left panel); initial GPU-MWDG2 grids (right 

panels) for the potion in white box (top left panel). 380 

 

In Figure 9, the bathymetric area is shown (top left panel), which is very plain everywhere except to the right where 

very complex terrain features of the urban town, such as buildings and streets, are located. The urban town is flooded by a 

tsunami that enters from the left boundary and travels a distance of 33 m to the right before hitting and flooding the town (as 

shown by the red arrows). This tsunami is simulated for 40 s, during which it travels through the bathymetric area in four 385 

stages of flow over time, much like in the last test case (Sect. 3.1): the entry stage (0 to 10 s), the travelling stage (10 to 25 s), 

the flooding stage (25 to 35 s) and the inundation stage (35 to 40 s). During the entry stage, the tsunami is not yet in the 
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bathymetric area. During the travelling stage, the tsunami starts to enter the bathymetric area from the left boundary and 

travels right towards the town. During the flooding stage, the tsunami hits the town, flooding the streets and overtopping 

some of the buildings, causing vigorous flow dynamics. Finally, during the inundation stage, the tsunami inundates the town 390 

and eventually interacts with the right boundary, causing wave reflections. The water surface elevation hydrograph of the 

tsunami is plotted in the bottom left panel of Figure 9: it only has a single peak, indicating low tsunami complexity. The right 

panels show the initial GPU-MWDG2 non-uniform grids at ε = 10-3 and 10-4, respectively (again for the portion of the 

bathymetric area framed by the white box in top left panel): at ε = 10-3, greater grid coarsening is achieved, with the grid 

including only 2% of the number of cells as in the GPU-DG2 uniform grid, whereas at ε = 10-4  it is 5% since more cells are 395 

used due to retention of finer resolution around and within complex terrain features of the urban town. 

 
Figure 10: Seaside Oregon. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a 

time history of Δ𝑡 (centre panel). 
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 400 

In Figure 10, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations are shown. As indicated by 

the time history of 𝑁𝑐𝑒𝑙𝑙 , the number of cells in the GPU-MWDG2 non-uniform grid does not increase significantly for either 

value of ε until the flooding stage of flow at 25 s, where 𝑁𝑐𝑒𝑙𝑙  starts increasing more noticeably. Once the number of cells 

starts increasing, there is a corresponding increase in 𝑅𝐷𝐺2. On the other hand, the time history of 𝑅𝑀𝑅𝐴 quite flat during the 

entire simulation, except for a small decrease during the first 10 s of the simulation, and a small increasing trend in the final 405 

5 s of the simulation, i.e. during the inundation stage of flow when the number of cells increases relatively sharply compared 

to the rest of the simulation. Driven primarily by the increase in 𝑅𝐷𝐺2 at the flooding stage at 25 s, the time history of 𝑆𝑖𝑛𝑠𝑡  is 

quite stable until 25 s and thereafter shows a decreasing trend that is particularly steep at ε = 10-3. 

Like the previous test case (Sect. 3.1), the time histories of Δ𝑡 in the GPU-DG2 simulation and GPU-MWDG2 

simulation at ε = 10-4 are very similar, but at ε = 10-3, there is a sharp drop in Δ𝑡 after 32 s, i.e. when the flooding stage of 410 

flow starts transitioning to the inundation stage. This sharp drop in Δ𝑡 is triggered by wet/dry fronts at coarse cells that are 

present in the non-uniform grid with ε = 10-3, but not with 10-4. The first drop in Δ𝑡, which occurs at 25 s when the flooding 

stage starts, leads to a locally steeper trend in the time history of 𝑁Δ𝑡, as indicated by the kink at 25 s. The second drop in Δ𝑡, 

which is seen only for ε = 10-3 after 32 s, leads to a sustained steepness in the time history of 𝑁Δ𝑡 after 32 s. This steepness 

means that GPU-MWDG2 takes more timesteps and thus accumulates more computational effort to reach a given simulation 415 

time at ε = 10-3 than 10-4, which is confirmed by the final value of 𝐶𝑀𝑅𝐴, which is higher at the end of the simulation at ε = 

10-3 compared to 10-4, even though its time history at ε = 10-3 was consistently lower than at ε = 10-4 before this. Since 𝑅𝑀𝑅𝐴 

was always lower at ε = 10-3 than 10-4, this observation about 𝐶𝑀𝑅𝐴  suggests that even if the computational effort per 

timestep is lower throughout the simulation, a high timestep count can sufficiently increase the cumulative computational 

effort such that it becomes higher at ε = 10-3 than 10-4. Nonetheless, the time history of 𝐶𝑡𝑜𝑡  in the GPU-MWDG2 420 

simulations always remains well below that of the GPU-DG2 simulation, with 𝑆𝑖𝑛𝑠𝑡  finishing at 3.5 and 3.0 with ε = 10-3 and 

10-4, respectively. 

In Figure 11 and Table 4, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-

DG2 prediction are evaluated in terms of time series of the water surface elevation, ℎ +  𝑧, the 𝑢 component of the velocity 

field, and the associated momentum, Mx = 0.5ℎ𝑢2 , at points A1 (one of the left-most crosses in Figure 9), B6 (one of the 425 

central crosses) and D4 (one of the right-most crosses), all showing a good agreement with the measured time series (also 

plotted in Figure 11). Point A1 is located at the bottom left corner at the start of the town, at which GPU-MWDG2 closely 

trails the GPU-DG2 predictions for both ε values (𝑟 scores of 0.99 and the same order-of-magnitude for the RMSE scores). 

Point B6 is located in the middle of the urban town, at which the RMSE and 𝑟 scores are similar to those obtained at point 

A1; however, GPU-MWDG2 at ε = 10-3 provides improved visual trailing of the GPU-DG2 predicted velocity. Point D4 is 430 

located at the downstream end of the upper area in the urban town, at which less similarity is detected between the GPU-

MWDG2 predictions and the GPU-DG2 prediction for u and Mx: at ε = 10-3, lower 𝑟 scores of around 0.88 and 0.77 are 

detected, respectively, compared to the 𝑟 scores of around 0.91 and 0.92 reached at ε = 10-4, for which the u velocity is more 
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closely predicted (RSME score of 9.51 × 10-2 at ε = 10-4 versus a score of 1.30 × 10-1 at ε = 10-3). In terms of spatial flood 

map at tend, the same discrepancies between the 𝑟 scores can be seen for the u velocity predictions, and between the RSME 435 

score for the Mx predictions (Table 4). Hence, ε = 10-4 can be a better choice to acquire more accurate velocity-related 

predictions in the zones inside and around fine-scale terrain features of urban town, while ε = 10-3 remains a competitive 

choice to maximise the speedup throughout the simulation by an order-of-magnitude. This and the previous test cases (Sects. 

3.1 and 3.2) show that the GPU-MWDG2 solver can achieve at least a 2-fold speedup over the GPU-DG2 solver for tsunami 

simulations involving a single-wave impact event. In the following Sects. 3.3 and 3.4, the speedup of the GPU-MWDG2 440 

solver is evaluated for field-scale scenarios involving more complex tsunami impact events. 

 
Figure 11: Seaside Oregon. Time series of the water surface elevation (h + z), 𝑢 velocity component and momentum Mx for 

the GPU-DG2 and GPU-MWDG2 predictions at points A1, B6 and D4 (Figure 9), compared to the experimental data. 

 445 
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Table 4: Seaside Oregon. RMSE and r scores from GPU-MWDG2 predictions versus the GPU-DG2 prediction. 450 

  RMSE r 

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4 

Time series at A1 

ℎ +  𝑧  3.04 × 10-3 2.68 × 10-3 0.9979 0.9982 

𝑢  6.86 × 10-2 4.54 × 10-2 0.9905 0.9958 

Mx 2.90 × 10-3 1.01 × 10-3 0.9995 0.9999 

Time series at B6 

ℎ +  𝑧  4.48 × 10-3 2.46 × 10-3 0.9931 0.9976 

𝑢  5.65 × 10-2 4.29 × 10-2 0.9944 0.9968 

Mx 7.40 × 10-3 3.87 × 10-3 0.9943 0.9982 

Time series at D4 

ℎ +  𝑧  5.87 × 10-3 3.75 × 10-3 0.9841 0.9897 

𝑢  1.30 × 10-1 9.51 × 10-2 0.8889 0.9176 

Mx 6.52 × 10-3 2.20 × 10-3 0.7746 0.9214 

 

Spatial map at tend 

ℎ +  𝑧  5.58 × 10-3 1.50 × 10-3 0.9999 0.9999 

𝑢  6.66 × 10-2 3.52 × 10-2 0.8303 0.9502 

Mx 2.03 × 10-3 5.89 × 10-4 0.9350 0.9945 

 

3.3 Tauranga Harbour 

This test case reproduces the 2011 Japan tsunami event in Tauranga Harbour, New Zealand (Borrero et al., 2015; Macías et 

al., 2015; 2020). The bathymetric area has a DEM made of 4096 × 2196 cells, requiring L = 12 to generate the initial square 

uniform grid. As shown by the red arrows in Figure 12, the tsunami enters from the top boundary and travels a short distance 455 

downwards before quickly hitting the coast at y = 16 km. As shown by the time history of the water surface elevation 

(bottom left panel of Figure 12), the tsunami is a wave train made up of three wave peaks and troughs that enter that 

bathymetric area one after the other at 0, 12 and 24 hr during the 40-hr tsunami event, with the latter two waves also 

exhibiting noise. Due to the wave train, the short travel distance before flooding the harbour, and the highly irregular 

bathymetric zones that trigger wave reflections and diffractions, vigorous flow dynamics occur within the bathymetric area 460 

from the very beginning of the simulation. The right panels of Figure 6 include the GPU-MWDG2 grids generated at ε = 10-3 

and 10-4 for the region bounded by the white box (top left panel). With ε = 10-3, the number of cells in the grid is 5% of the 
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GPU-DG2 uniform grid, whereas with ε = 10-4, it is 15%, due to less coarsening in and around the irregular bathymetric 

zones. 

 465 

Figure 12: Tauranga Harbour. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction 

and distance travelled; tsunami time history entering the top boundary (bottom left panel); initial GPU-MWDG2 grids (right 

panels) for the potion in white box (top left panel). 

 

In Figure 13, an analysis of the runtimes of the GPU-MWDG2 and GPU-DG2 simulations is shown. Unlike the 470 

previous test cases (Sects. 3.1 and 3.2), the first wave of the tsunami wave train enters the bathymetric immediately, causing 

𝑁𝑐𝑒𝑙𝑙  to increase very sharply and immediately from its the initial value for both values of ε, which thereafter fluctuates due 

to the periodic tsunami signal. Following the sharp increase and fluctuations in 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2  also sharply increases and 

fluctuates. However, 𝑅𝑀𝑅𝐴 does not and stays stable and flat throughout the simulation. Thus, driven primarily by the sharp 

decrease in 𝑅𝐷𝐺2, 𝑆𝑖𝑛𝑠𝑡  decreases sharply from 4.0 to 1.6. The time histories of Δ𝑡 in the GPU-DG2 simulation and the GPU-475 

MWDG2 simulation using ε = 10-4 follow each other quite closely, but at ε = 10-3, the time history of Δ𝑡 shows two periodic 

drops after 24 h, likely due to periodic wetting and drying processes around coarse cells that are present in the non-uniform 

grid at ε = 10-3 but not at 10-4. Due to the smaller Δ𝑡 at ε = 10-3, the time history of 𝑁Δ𝑡 is locally steeper (see the kinks at 25 

and 35 h), but this does not lead to significant differences between the cumulative computational effort at ε = 10-3 versus 10-

4. The time history of 𝐶𝑡𝑜𝑡 in the GPU-MWDG2 simulations consistently remains below that of the GPU-DG2 simulation for 480 

both values of ε, but they are relatively close to each other compared to the previous test cases (Sects. 3.1 and 3.2). Thus, 

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

even though 𝑆𝑎𝑐𝑐 starts at around 4, like in the previous test case with 𝐿 = 12 (Sect. 3.2), it drops sharply to 1.6 and 1.4 at ε = 

10-3 and 10-4, respectively. 

 
Figure 13: Tauranga Harbour. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a 485 

time history of Δ𝑡 (centre panel). 

 

In Figure 14 and Table 5, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-

DG2 prediction is evaluated for the time series of water surface elevation at sampling points A Beacon, Tug Harbour, 

Sulphur Point and Moturiki (top left panel of Figure 12), all of which show a good agreement with the measured time series. 490 

The GPU-MWDG2 predicted water surface elevations are very close to those predicted by GPU-DG2 regardless of ε, as 

confirmed by the 𝑟 scores, around 0.99, and by the RSME scores, which remain in the same order-of-magnitude (Table 5). 
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Moreover, the difference for the 𝑆𝑝𝑒𝑒𝑑 = √𝑢2 + 𝑣2 time series at point ADCP (top left panel of Figure 12) is evaluated, 

showing less agreement with the measured time series compared to the water surface elevation: the GPU-MWDG2 

predictions at ε = 10-4 shows 5% better similarity to the GPU-DG2 predictions compared to at ε = 10-3 (𝑟 scores of 0.9527 495 

and 0.9023, respectively). However, the better similarity score at ε = 10-4 is mostly detectable in the prediction of the final 

flood map at tend leading to a 15% higher 𝑟 score of 0.89 compared to the score of 0.75 at ε = 10-3 (Table 5). 

 
Figure 14: Tauranga Harbour. Time series of the water surface elevation (h + z) produced by GPU-DG2 and GPU-MWDG2 

at the points labelled A Beacon, Tug Harbour, Sulphur Point and Moturiki (labelled in Figure 12) and for the 𝑆𝑝𝑒𝑒𝑑, at the 500 

point ADCP (also labelled in Figure 12), compared to the experimental results. 

 

Overall, this test case features a more complex tsunami compared to the previous test cases (Sects. 3.1 and 3.2), 

which sharply increases the number of cells in the GPU-MWDG2 non-uniform grid and thus also increases the 

computational effort of performing the DG2 solver updates. Hence, despite requiring the same 𝐿 = 12 as the previous test 505 

case (Sect. 3.2), the final speedups are lower in this test case due to the more complex tsunami, with 𝑆𝑎𝑐𝑐  finishing at 1.6- 
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and 1.4-fold with ε = 10-3 and 10-4, respectively. Using ε = 10-4 would improve the closeness to the GPU-DG2 predicted 

velocities, while using ε = 10-3 leads to very close water surface elevation predictions and fairly accurate velocity predictions, 

although without a major improvement in the speedup. In the next test case, another complex tsunami with higher frequency 

impact event peaks is considered, but now with a smaller DEM size requiring 𝐿 = 10. 510 

 

Table 5: Tauranga Harbour. RMSE and r scores for GPU-MWDG2 predictions versus the GPU-DG2 prediction. 

  RMSE r 

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4 

Time series at A Beacon ℎ +  𝑧  7.46 × 10-2 1.28 × 10-2 0.9986 0.9999 

Time series at Tug Harbour ℎ +  𝑧  6.86 × 10-2 8.99 × 10-2 0.9984 0.9972 

Time series at Sulphur Point ℎ +  𝑧  1.62 × 10-1 1.43 × 10-1 0.9916 0.9933 

Time series at Moturiki ℎ +  𝑧  7.81 × 10-2 2.35 × 10-2 0.9935 0.9993 

Time series at ACDP 𝑆𝑝𝑒𝑒𝑑  3.45 × 10-1 2.40 × 10-1 0.9023 0.9527 

Spatial map at tend 

ℎ +  𝑧  7.33 × 10-2 3.10 × 10-2 0.9999 0.9999 

𝑆𝑝𝑒𝑒𝑑  8.01 × 10-2 4.80 × 10-2 0.7556 0.8950 

 

3.4 Hilo Harbour 

This test case reproduces the 2011 Japan tsunami event at Hilo Harbour in Hawaii, USA (Arcos & LeVeque, 2014; Lynett et 515 

al., 2017; Macías et al., 2020; Velioglu-Sogut & Yalciner, 2019). It involves a complex tsunami made up of a high-

frequency wave train that propagates for 6 hr into a bathymetric area that is smaller than the previous test case (Sect. 3.3). 

The latter bathymetric area has a DEM size made of 702 × 692 cells, requiring a smaller L = 10 to generate the initial square 

uniform grid. As shown in Figure 15, the tsunami enters from the top boundary and travels south to flood and interact with 

the coast at y = 4 km. The wave train occurs over the entire 6 hr simulation time, from a reference timestamp of 7 hr to 13 hr 520 

post-earthquake. In Figure 15, the time history of the wave train is shown during the 8.5 to 11 hr time period (bottom left 

panel): from the very beginning and during the entire simulation, violent flow dynamics occur in the bathymetric area. The 

right panels show the initial GPU-MWDG2 non-uniform grids generated at ε = 10-3 and 10-4 for the region bounded by the 

white box (top left panel): the number of cells in the initial non-uniform grids are at 10.0% and 22.5% of the GPU-DG2 

uniform grid at ε = 10-3 and ε = 10-4, respectively. 525 
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Figure 15: Hilo Harbour test case. Top-down view of bathymetry (top left panel), where the red arrows indicate the 

direction and distance travelled; tsunami time history entering the top boundary (bottom left panel); initial GPU-MWDG2 

grids (right panels) for the potion in white box (top left panel). 

 530 

In Figure 16, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations is shown. Like the last test 

case (Sect. 3.3), since the wave train enters the bathymetric area immediately, 𝑁𝑐𝑒𝑙𝑙  increases sharply and immediately to 

maximum values of 32% and 40% at ε = 10-3 and 10-4, respectively. The time history of 𝑁𝑐𝑒𝑙𝑙  stays at this maximum for the 

simulation except for (somewhat less sharp) localised drops at certain simulation times, e.g. at 8 hr. Following 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2 

also increases sharply and immediately (to maximum values of 50% and 55% at ε = 10-3 and 10-4, respectively), and shows 535 

localised drops at the same timestamps as the drops in 𝑁𝑐𝑒𝑙𝑙 . In contrast, the time history of 𝑅𝑀𝑅𝐴 stays very flat throughout 

the simulation, except for a small, temporary drop at 8 hr, which is when the largest drop in 𝑁𝑐𝑒𝑙𝑙  occurs. Due to the 

generally flat time histories of 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴, the time history of 𝑆𝑖𝑛𝑠𝑡  is also flat except for localised peaks that occur at the 

same timestamps as the localised drops in 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴. Unlike all of the previous test cases (Sect. 3.1 - 3.3), the time 

history of Δ𝑡 is very similar between the GPU-DG2 simulation and the GPU-MWDG2 simulations, regardless of the ε value 540 

as they both yield high number of cells compared to the uniform GPU-DG2 grid. Thus, the time history of 𝑁Δ𝑡  is virtually 

identical across all simulations. Given that the time histories of 𝑁Δ𝑡, 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴 are similar for both ε values, the time 
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histories of 𝐶𝐷𝐺2 and 𝐶𝑀𝑅𝐴 are also very similar. The time history of 𝐶𝑡𝑜𝑡 is very close between the GPU-DG2 simulation 

and the GPU-MWDG2 simulations in this test case (even more so than in the last case, Sect. 3.3), so 𝑆𝑎𝑐𝑐 is the lowest out of 

all the test cases, finishing at 1.25 and 1.10 using ε = 10-3 and 10-4, respectively. 545 

 
Figure 16: Hilo Harbour. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a time 

history of Δ𝑡 (centre panel). 

 

In Figure 17 and Table 6, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-550 

DG2 prediction is evaluated in terms of the time series of the water surface elevation at points labelled "Control point" and 

"Tide gauge", and 𝑢 and 𝑣 velocity components at the points labelled "ADCP HA1125" and "ADCP HA1126" (top left panel 

in Figure 15), all showing a fair agreement with the measured time series. For both ε, the GPU-MWDG2 predicted water 
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surface elevations are more than 97% similar to those predicted by GPU-DG2 (Table 6), with broadly comparable closeness 

for the RMSEs that tends to improve at ε = 10-4 for the spatial map at 𝑡𝑒𝑛𝑑 and the time series at "Control point". In terms of 555 

the GPU-MWDG2 predicted velocities, the closeness is comparable in terms of the RMSE scores, but the 𝑟 scores can vary 

by 10% depending on the choice of ε: ε = 10-4 yield betters 𝑟 scores between around 0.82 and 0.91, whereas the scores 

yielded at ε = 10-3 varied between around 0.70 and 0.83 – the highest discrepancies occurred in the spatial flood maps at 𝑡𝑒𝑛𝑑 

(Table 6). 

 560 

Table 6: Hilo Harbour. RMSE and r scores for GPU-MWDG2 predictions versus the GPU-DG2 prediction. 

  RMSE r 

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4 

Control point ℎ +  𝑧  1.11 × 10-1 5.45 × 10-2 0.9767 0.9923 

Tide gauge ℎ +  𝑧  1.81 × 10-1 1.10 × 10-1 0.9827 0.9938 

ADCP HA1125 𝑣  3.63 × 10-1 2.91 × 10-1 0.7884 0.8252 

ADCP HA1126 𝑢  3.23 × 10-1 2.23 × 10-1 0.8343 0.9193 

Spatial map at tend 

h + z 5.31 × 10-2 6.20 × 10-3 0.9999 0.9999 

𝑣  9.17 × 10-2 6.09 × 10-2 0.7063 0.8134 

𝑢  9.01 × 10-2 5.93 × 10-2 0.7465 0.8387 

 
Figure 17: Hilo Harbour. Time series produced by GPU-DG2 and GPU-MWDG2, for the water surface elevation (h + z)  at 

“control point” and “Tide gauge” (labelled in Figure 17), and for the velocity components at “ADCP HA1125” and ADCP 

HA 1126 (labelled in Figure 17), compared to the experimental results. 565 
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Overall, despite simulating a test case with a complex tsunami impact event and also a DEM size that requires 

selecting a small 𝐿 = 10, GPU-MWDG2 still manages to attain speedups over GPU-DG2 in this test case: around 1.25 at ε = 

10-3 and 1.10 at ε = 10-4. This seems to suggest that the GPU-MWDG2 solver can reliably be used to gain speedups over the 

GPU-DG2 solver even if simulating complex tsunami impact events, using ε = 10-3 to boost the speedup, or using ε = 10-4 

increase the quality of velocity predictions. 570 

 

4 Conclusions and recommendations 

This work reported the version release of the LISFLOOD-FP 8.2 hydrodynamic modelling framework, which integrates the 

GPU parallelised grid resolution adaptivity of multiwavelets (MW) within the second-order discontinuous Galerkin (DG2) 

solver of the shallow water equations (GPU-MWDG2) to run simulations on a non-uniform grid. The GPU-MWDG2 solver 575 

enables dynamic (in time) grid resolution adaptivity based on both the (time-varying) flow solutions and the (time-invariant) 

Digital Elevation Model (DEM) representations. It has been aimed at reducing the runtime of the existing uniform grid GPU 

parallelised DG2 solver (GPU-DG2) for flood simulation driven by rapid, multiscale impact events, which were exemplified 

by tsunami-induced flooding. 

The framework integrating dynamic GPU-MWDG2 adaptivity in LISFLOOD-FP 8.2 was reported with a focus on: 580 

how to run GPU-MWDG2 simulations from raster-formatted DEM and initial flow condition setup files, requiring a user-

specified maximum refinement level, 𝐿, and an error threshold, ε; consideration of the memory limits affordable per selected 

𝐿 and per GPU card; and, the development of a suite of time-dependent metrics for assessing the potential speedup afforded 

by GPU-MWDG2 adaptivity. The accuracy and efficiency of dynamic GPU-MWDG2 adaptivity was assessed for tsunami-

induced flood simulations featuring different levels of impact event complexity, ranging from a single-wave tsunami to a 585 

wave train of multiple tsunamis. The assessments qualitatively and quantitatively evaluated the capability of dynamic GPU-

MWDG2 adaptivity, using ε = 10-3 and 10-4, in reproducing spatial and temporal GPU-DG2 predictions of water levels and 

velocity-related quantities. The evaluations consistently demonstrated that the GPU-MWDG2 simulations using ε = 10-3 

yield water level predictions as accurate as the GPU-DG2 simulations, and that using the smaller ε = 10-4 would only be a 

potential option to improve the accuracy of velocity-related predictions if needed. 590 

In terms of the average speedup that can be achieved by dynamic GPU-MWDG2 adaptivity, it seems to be 

maximised depending on whether: (i) the size and resolution of the DEM area corresponds to a choice for 𝐿 ≥ 9 and (ii) the 

simulated impact event is single-peaked, such as a single-wave tsunami. As shown in Table 7, for the impact events that are 

single-peaked: when the DEM area required 𝐿 = 10, the average speedups would be around 2.0 times faster than the GPU-

DG2 simulations (i.e. “Monai Valley”); whereas, with the DEM area requiring a larger 𝐿  = 12, considerable average 595 

speedups of 3.3-fold were achieved at ε = 10-4, which increased to 4.5-fold at ε = 10-3 (i.e. “Seaside, Oregon”). Meanwhile, 

for the multi-peaked impact events, the average speedups reduced to 1.8-fold for a DEM area requiring 𝐿  = 12 (i.e. 

“Tauranga Harbour”) and to 1.2-fold for a smaller DEM requiring a smaller 𝐿 = 10 (i.e. “Hilo Harbour”). 
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Table 7: Summary of GPU-MWDG2 runtimes and potential average speedups with respect to GPU-DG2. 600 
  GPU-MWDG2 GPU-DG2 

Tsunami (impact) event L (Max cells) Runtime, ε Speedup, ε Runtime  

Test case tend Single-wave tsunami ----  10-3 10-4 10-3 10-4 ---- 

Monai Valley 22.5 (9000 s*) Yes 10 (> 1.04m) 16 s 20 s 2.5 2.0 40 s  

Seaside Oregon 40 s (33 min*) Yes 12 (> 16.7m) 3.5 min 5.2 min 4.5 3.3 13 min** 

Tauranga Harbour 40 hr No (three peaks) 12 (> 16.7m) 7.5 hr 8.1 hr 1.8 1.4 11.3 hr 

Hilo Harbour 6 hr No (eleven peaks) 10 (> 1.04m) 5.3 min 5.8 min 1.3 1.2 6.9 min 

* By accounting for the physical scaling factor of the replica. 

 

In summary, the GPU-MWDG2 solver in LISFLOOD-FP 8.2 accelerates GPU-DG2 simulations of rapid multiscale 

flooding flows, yielding the greatest speedups for simulations needed 𝐿 ≥ 10 (i.e., ratio the DEM area to DEM resolution) 

and driven by single-peaked impact events. The LISFLOOD-FP 8.2 code is accessible on Zenodo, DOI: 605 

10.5281/zenodo.4073010, together with the input files and scripts for reproducing the simulation data, DOI: 

10.5281/zenodo.13909072, with step-by-step guidance at https://www.seamlesswave.com/Adaptive (last accessed: 9 October 

2024). 
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Code and data availability. LISFLOOD-FP 8.2 source code is available from Zenodo (LISFLOOD-FP developers, 2024; 610 

https://zenodo.org/doi/10.5281/zenodo.4073010) as well as the simulation data and input files and scripts for reproducing 

them (Chowdhury, 2024; https://doi/org/10.5281/zenodo.13909072).  

 

Video supplement. Step-by-step instructions on how to download and install and run the LISFLOOD-FP-8.2 code for the 

“Hilo Harbour” (Sect. 3.4) is available from Zenodo (Chowdhury, 2024). The video demo also includes updates on the 615 

changes made to the CMake build process for compatibility with different versions of the CUDA toolkit.  
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  785 

Appendix A: The GPU-MWDG2 algorithm 

The GPU-MWDG2 algorithm that is integrated into LISFLOOD-FP 8.2 solves the two-dimensional shallow water equations 

over a non-uniform grid that locally adapts its grid resolution to the flow solutions and DEM representation every simulation 

timestep. The conservative form of the shallow water equations in vectorial format is as follows: 

𝜕𝑡𝑼 + 𝜕𝑥𝑭(𝑼) +  𝜕𝑦𝑮(𝑼) =  𝑺𝑏(𝑼) + 𝑺𝑓(𝑼) (A1) 

Where 𝜕⬚  represents a partial derivative operator; 𝑼 = [ℎ, ℎ𝑢, ℎ𝑣]𝑇  is the vector of the flow variables where 𝑇 790 

stands for the transpose operator, ℎ(𝑥, 𝑦, 𝑡) is the water depth (m) at time 𝑡 and location (𝑥, 𝑦), and 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) 

are the 𝑥 - and 𝑦 -component of the velocity field (m/s) in the two-dimensional Cartesian space; 𝑭 = [ℎ𝑢, (ℎ𝑢)2ℎ−1  +

0.5 𝑔ℎ2, ℎ𝑢𝑣]𝑇  and 𝑮 = [ℎ𝑣, ℎ𝑢𝑣, (ℎ𝑣)2ℎ−1  + 0.5𝑔ℎ2]𝑇  are the components of the flux vector in which g is the 

gravitational acceleration constant (m/s2); 𝐒𝑏 = [0, −𝑔ℎ𝜕𝑥𝑧, −𝑔ℎ𝜕𝑦𝑧] 𝑇 is the bed-slope source term vector incorporating the 

partial derivative of the bed elevation function 𝑧(𝑥, 𝑦); and 𝐒𝑓 = [0, −𝐶𝑓𝑢√𝑢2 + 𝑣2, −𝐶𝑓𝑣√𝑢2 + 𝑣2] T is the friction source 795 

term vector including the friction effects as function of 𝐶𝑓 = 𝑔𝑛𝑀
2  ℎ−1/3 in which 𝑛𝑀 is Manning’s roughness parameter. For 

ease of presentation, the scalar variable 𝑠 will hereafter be used to represent any of the physical flow quantities in 𝑼 as well 

as the bed elevation 𝑧. 

Over each computational cell c, the DG2 modelled data for any of the any physical flow quantities, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣}, 

follows a piecewise-planar solution, denoted by sc(𝑥, 𝑦, 𝑡) (Kesserwani & Sharifian, 2020). The piecewise-planar solution, 800 

sc(𝑥, 𝑦, 𝑡), is expanded onto local basis functions from the scaled and truncated Legendre basis (Kesserwani et al., 2018; 
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Kesserwani & Sharifian, 2020) to become spanned by three shape coefficients: 𝐬𝐜 
= [𝑠𝑐

0(𝑡), 𝑠𝑐
1𝑥(𝑡), 𝑠𝑐

1𝑦
(𝑡)]𝑇 , where 𝑠𝑐

0(𝑡) is 

a coefficient of an average; and 𝑠𝑐
1𝑥(𝑡) and 𝑠𝑐

1𝑦
(𝑡) are x- and y-directional slope coefficients, respectively (see Eq. 10 in 

Kesserwani & Sharifian, 2020). The bed-elevation, 𝑠 ∈ {𝑧} , is also represented as piecewise-planar, sc(𝑥, 𝑦) , but it is 

spanned by time-independent shape coefficients. The shape coefficients in 𝒔𝑐, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣, 𝑧}, must be initialised (Eq. 11 805 

in Kesserwani & Sharifian, 2020), while the time-dependent ones, with 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣}, are updated using “DG2 solver 

updates” by an explicit two-stage Runge-Rutta scheme solving three ordinary differential equations: 

𝜕𝑡𝒔𝑐 
(𝑡) = 𝑳c                                                (A2) 

Where, 𝑳𝑐 = [𝐿𝑐
0 , 𝐿𝑐

1𝑥 , 𝐿𝑐
1𝑦

]𝑇  includes the respective components of the local discrete spatial DG2 operators, to 

update each of the coefficients in 𝒔𝑐 
= [𝑠𝑐

0(𝑡), 𝑠𝑐
1𝑥(𝑡), 𝑠𝑐

1𝑦
(𝑡)]𝑇. The operators in 𝑳𝑐 were already designed to incorporate 810 

robust treatments of the bed and friction source terms and of moving wet-dry fronts (Kesserwani & Sharifian, 2020; Shaw et 

al., 2021). 

The MWDG2 algorithm involves the MRA procedure to decompose, analyse and assemble the shape coefficients 

𝒔𝐜 
, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣, 𝑧}, to produce a non-uniform grid over which the DG2 solver updates are applied (Eq. A2). The MWDG2 

algorithm was substantially redesigned to enable efficient parallelisation on the GPU (Chowdhury et al., 2023; Kesserwani & 815 

Sharifian, 2023). An overview of the GPU parallelised MWDG2 algorithm (GPU-MWDG2) is provided next. 

In the CUDA programming model for parallelisation the GPU (NVIDIA, 2023), instructions are executed in parallel 

by workers called “threads”, and a group of 32 consecutive threads that operate in lockstep is called a “warp”. To devise an 

efficiently parallelised GPU-MWDG2 code, coalesced memory access, occurring when threads in a warp access contiguous 

memory locations, should be maximised, and warp divergence, occurring when threads within a single warp perform 820 

different instructions, should be minimised. To achieve these requirements in the GPU-MWDG2 code, the implementation 

of the MRA procedure had to be reformulated so as to ensure the DG2 solver updates are applicable cell-wise, like with 

GPU-DG2 (Shaw et al., 2021). 

 

A.1. MRA procedure 825 

The MRA procedure must start from a square uniform grid at the finest resolution, namely at the given DEM resolution, that 

is taken to have a maximum refinement level, 𝐿. This finest grid contains 2𝐿 × 2𝐿  cells, on which the shape coefficients 𝒔c
(𝐿)

 

are initialised. From the finest grid, the MRA procedure can be applied to build a hierarchy of grids of successively coarser 

resolution, at levels 𝑛 = 𝐿 − 1, …, 1, 0, with 2𝑛 × 2𝑛 cells. Using the “encoding” operation, the shape coefficients, 𝒔c
(𝑛)

, and 

their associated “details”, 𝒅𝑐,𝛩
(𝑛)

= [𝑑𝑐,𝛩
0,(𝑛)

, 𝑑𝑐,𝛩
1𝑥,(𝑛)

, 𝑑𝑐,𝛩
1𝑦,(𝑛)

]𝑇 , 𝛩 = 𝛼, 𝛽, 𝛾, can be produced on the “parent” cells of the coarser 830 

resolution grids, at level n, from the shape coefficients 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and 𝒔[3]
(𝑛+1)

 of the four “children” cells at the 

finer resolution grids, at level n + 1 (Eq. 30 in Kesserwani & Sharifian, 2020). However, with the GPU-MWDG2 solver, 𝒔c
(𝑛)

 

and 𝒅𝑐,𝛩
(𝑛)

 are stored in arrays in GPU memory that are indexed using Z-order curves (Chowdhury et al., 2023), as exemplified 
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in Figure A1a for a simplistic case with 𝐿 = 2. With this indexing, coalesced memory access was ensured with the GPU-

MWDG2 solver because the shape vectors, 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and 𝒔[3]
(𝑛+1)

 reside in adjacent memory locations when used 835 

to produce 𝒔c
(𝑛)

 and 𝒅𝑐,𝛩
(𝑛)

 (see Figure A1b).  

 

Figure A1: Indexing and storage for the MRA procedure on the GPU. Left panel shows a hierarchy of grids across which 

cells are indexed along the Z-order curve. Right panel shows how four “children” cells at resolution level n + 1, and their 

“parent” cell at resolution level n, noting that the shape coefficients at the “children” cells are stored in adjacent GPU 840 

memory locations. 

 

While encoding, the magnitude of all the details 𝒅𝑐,𝛩
(𝑛)

 is analysed in order to identify significant details (Kesserwani 

& Sharifian, 2020), which results in a tree-like structure of significant details (Figure A2a). The MRA procedure then refers 

to this tree to generate the non-uniform grid via the “decoding” operation. Decoding is applied within the hierarchy of grids, 845 

starting from the coarsest resolution grid until reaching the “leaf” cells, where significant details belong (i.e. a branch of the 

tree terminates, see Figure A2a where leaf cells are coloured). After decoding, the shape vectors, 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and 

𝒔[3]
(𝑛+1)

 at the leaf cells are restored on the non-uniform grid (Eq. 31 in Kesserwani & Sharifian, 2020) to be updated in time. 

With the GPU-MWDG2 solver, decoding must be performed using a parallel tree traversal algorithm (PTT) to 

minimise warp divergence (Chowdhury et al., 2023). To do so, the PTT starts by launching as many threads 𝑡𝑛  as the 850 

number of cells on the finest resolution grid; for example, 16 threads t0 to t15 for traversing the tree in Figure A2a. Each 

thread independently traverses the tree starting from the cell on the coarsest resolution grid until it reaches its leaf cell 𝑐 and 

records its index (Figures A2b and A2c).  
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Figure A2: Parallel tree traversal (PTT) and neighbour finding. (a) The tree-like structure obtained after flagging significant 855 

details during the process of encoding; (b) The leaf cells where the tree terminates (highlighted in green and blue); (c) Leaf 

cells are assembly into the non-uniform grid; (e) Possible scenarios of neighbouring cells to leaf cell c; and (e) leaf and 

neighbour cells storage as arrays in GPU memory. 

 

Figure A2b shows the indices of the leaf cells identified by each thread once PTT is complete. Since the PTT started 860 

with 16 threads and there are fewer leaf cells than the threads, many of threads ended up identifying the same index of the 

leaf cell (e.g., t0 to t3 identified the leaf cell with index 1 and t12 to t15 identified the leaf cell with index 4). Threads with 

duplicate indices are re-used, alongside the other threads, to search and record the indices of east, west, north, and south 

neighbouring cells of each leaf cell by making each thread look up, down, left, and right. For example, t0 to t3 of the leaf cell 

with index 1 will identify the east neighbour cells 9 and 11 (Figure A2c). Since the DG2 solver updates on the leaf cell with 865 

index 1 requires the (shape coefficients of the) east neighbour cells (shaded red, Figure A2d) to be at the same resolution 

level as the coarser leaf cell, the PPT will instead record the index of coarsened east neighbour cells (yellow shaded, Figure 

A2d). For any other scenario (e.g., west, north, or south neighbour cells in Figure A2d), the actual indices and shape 

coefficients are recorded by the PTT. After recording the indices and shape coefficients, 𝒔𝑐
(𝑛)

, which are to unique each leaf 
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cell 𝑐, and its neighbours, 𝒔𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝒔𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝒔𝑒𝑎𝑠𝑡
(𝑛)

 and 𝒔𝑤𝑒𝑠𝑡
(𝑛)

, they are stored on the non-uniform grid (Figure A2c). In particular, 870 

shape coefficients for the leaf cells, 𝒔𝑐
(𝑛)

, are stored in a separate arrays in GPU memory, and separate arrays are also used to 

do the same for the shape coefficients of their neighbour cells, 𝒔𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝒔𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝒔𝑒𝑎𝑠𝑡
(𝑛)

 and 𝒔𝑤𝑒𝑠𝑡
(𝑛)

 (see Figure A2e). With this 

cell-wise storage of indices and shape coefficients, the DG2 solver updates, Eq. A2, can be applied in a straightforward 

manner. 

 875 

A.2 DG2 solver update on the non-uniform grid 

On the non-uniform grid, the DG2 solver updates, Eq. A2, are applied to update the shape coefficients 𝒔𝑐
(𝑛)

 by half a timestep 

over the first Runge-Kutta time stage. After this, another re-encoding step must be applied to the update shape coefficients 

𝒔𝑐
(𝑛)

 so that the stored shape coefficients of the four neighbours, 𝐬𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝐬𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝐬𝑒𝑎𝑠𝑡
(𝑛)

 and 𝐬𝑤𝑒𝑠𝑡
(𝑛)

, are also lifted by half a 

timestep. Now, the shape coefficients 𝒔𝑐
(𝑛)

 can be updated by a full timestep by completing the second of Runge-Kutta time 880 

stage. 

Appendix B: Step-by-step instructions for running the “Monai valley” example 

This Appendix shows how to run a simulation of the “Monai valley” example (Sect. 3.1) using the GPU-MWDG2 solver 

step-by-step. To use the GPU-MWDG2 solver, the LISFLOOD-FP source code has to be downloaded (LISFLOOD-FP 

developers, 2024; https://zenodo.org/doi/10.5281/zenodo.4073010), and then an executable file that can be run has to be 885 

built, either on Windows or Linux. To build the executable file on Windows, 1) the LISFLOOD-FP folder should be opened 

in Visual Studio, 2) either the x64-Debug or x64-Release option should be selected from the dropdown menu near the 

toolbar at the top; and, 3) the Build > Rebuild All option should be clicked. If the x64-Debug option was selected, the 

executable file, named lisflood.exe and containing the GPU-MWDG2 solver, should be built and located in the folder at 

LISFLOOD-FP\out\build\x64-Debug or similar (or LISFLOOD-FP\out\build\x64-Release if the x64-Release 890 

option was selected). To build on Linux, the steps are 1) navigating to the LISFLOOD-FP directory, 2) running cmake    

-S . -B build in the terminal; and, 3) running cmake --build build. The executable file, named lisflood, should 

be built and located in the LISFLOOD-FP/build directory. 

After the executable file has been built, it can be run in order to run simulations of the “Monai valley” example 

using the GPU-MWDG2 solver. Before running the simulation, several input files must be prepared, which are listed in 895 

Table B.1. To prepare the input files, a number of Python scripts should be used that are available in the monai folder 

uploaded alongside the input files made publicly available online for reproducing the results and simulations reported in this 

paper (Chowdhury, 2024; https://doi.org/10.5281/zenodo.13909072). The usage of these Python scripts is as follows. 

 

 900 
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Table B.1: Input files needed to run simulations of the Monai valley example using the GPU-MWDG2 solver. 

Input file File name Description 

Digital elevation 

model 
monai.dem 

ASCII raster file containing the numerical values of 

the bathymetric elevation pixel-by-pixel. 

Initial flow 

conditions 
monai.start 

ASCII raster file containing the numerical values of 

the initial water depth and discharge pixel-by-pixel. 

Boundary 

conditions 
monai.bci 

Text file specifying where boundary conditions are 

enforced and what type (fixed versus time-varying). 

Time series at 

boundaries 
monai.bdy 

Text file containing time series in case time-varying 

boundary conditions and/or point sources have been 

specified in the .bci file. 

Stage locations monai.stage 
Text file containing the locations of virtual stage 

points where simulated time histories of the water 

depth are recorded. 

Parameter file monai.par 
Text file containing parameters to access various 

solver and simulation features. 

 

 

Figure B.1: Input files prepared for the “Monai valley” example after running the Python scripts available in the monai 

folder. 905 

 

To prepare the input files for the Monai valley simulation using the Python scripts, 1) the monai folder should be 

copied to the same location as the lisflood.exe executable file, e.g. LISFLOOD-FP\out\build\x64-Release if on 

Windows or LISFLOOD-FP/build if on Linux, 2) the monai folder should be navigated to, 3) the monai.stage file 

should be generated by typing and running python stage.py in a command prompt, 4) the monai.dem and 910 

monai.start raster files should be generated by running python raster.py, 5) the monai.bci and monai.bdy files 
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should be generated by running python inflow.py, 6) the parameter file monai.par should be prepared as shown in 

Figure 2; and, 7) the simulation should be run by typing and running ..\lisflood.exe monai.par in a command 

prompt. Following steps (1) to (7) should result in the files shown in Figure B.1. Steps (1) to (7) can be performed as a fully 

automated process by running python run-simulations.py: this Python script will automatically prepare the input files 915 

(steps 3 to 6), run several simulations (step 7), and postprocess the results. Note that if run-simulations.py is run inside 

the downloaded monai folder before running any simulations, and with the self.run() function in the Python file 

commented out, it will reproduce the results in Sect. 3.1 (i.e. it will generate Figures 7 and 8 and the data for Table 3). 
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