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Abstract  8 

Wildfires have shown increasing trends in both frequency and severity across the Contiguous United States (CONUS). 9 

However, process-based fire models have difficulties in accurately simulating the burned area over the CONUS due to a 10 

simplification of the physical process and cannot capture the interplay among fire, ignition, climate, and human activities. The 11 

deficiency of burned area simulation deteriorates the description of fire impact on energy balance, water budget, and carbon 12 

fluxes in the Earth System Models (ESMs). Alternatively, machine learning (ML) based fire models, which capture statistical 13 

relationships between the burned area and environmental factors, have shown promising burned area predictions and 14 

corresponding fire impact simulation. We develop a hybrid framework (ML4Fire-XGB) that integrates a pretrained eXtreme 15 

Gradient Boosting (XGBoost) wildfire model with the Energy Exascale Earth System Model (E3SM) land model (ELM) 16 

version 2.1. A Fortran-C-Python deep learning bridge is adapted to support online communication between ELM and the ML 17 

fire model. Specifically, the burned area predicted by the ML-based wildfire model is directly passed to ELM to adjust the 18 

carbon pool and vegetation dynamics after disturbance, which are then used as predictors in the ML-based fire model in the 19 

next time step. Evaluated against the historical burned area from Global Fire Emissions Database 5 from 2001-2020, the 20 

ML4Fire-XGB model outperforms process-based fire models in terms of spatial distribution and seasonal variations. 21 

Sensitivity analysis confirms that the ML4Fire-XGB well captures the responses of the burned area to rising temperatures. The 22 

ML4Fire-XGB model has proved to be a new tool for studying vegetation-fire interactions, and more importantly, enables 23 

seamless exploration of climate-fire feedback, working as an active component in E3SM.  24 
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1 Introduction 25 

Recent wildfire outbreaks worldwide have raised alarms due to wildfires burning longer and more intensely in many regions, 26 

posing significant threats to human livelihoods and biodiversity. Over the globe, climate change has contributed to a 16% 27 

increase in the global burned area over the past two decades, while human influences, including ignition and suppression, have 28 

reduced by 27% (Burton et al., 2023; Jones et al., 2022). The continental United States (CONUS) has emerged as a hotspot for 29 

wildfires, where both climate change and human activities have fueled a 42% increase in the burned area (Jones et al., 2022). 30 

Such expansive burned areas release an average of 162 million tons of CO2 and 0.9 million tons of PM2.5 annually into the 31 

atmosphere, resulting in over $200 billion health costs due to exposure to wildfire smoke (Samborska et al., 2024; JEC, 2023). 32 

Accurate prediction of wildfire risks has become an urgent need. 33 

 Traditional fire models, predominantly process-based models, simulate the behavior of individual wildfires using 34 

theoretical equations for ignitions and fire spread (Hantson et al., 2016). These models explicitly simulate the number and size 35 

of individual fires by incorporating parameterizations and parameters derived from laboratory or field experiments and 36 

typically estimate burned area by scaling up to the grid-cell level (Lasslop et al., 2014; Pfeiffer et al., 2013; Yue et al., 2014; 37 

Li et al., 2012; Thonicke et al., 2010; Huang et al., 2020, 2021; Arora and Boer, 2005; Burton et al., 2019). While process-38 

based wildfire models have proven effective in simulating global burned area distribution (Hantson et al., 2020), they often 39 

fall short of accurately predicting the extent and temporal changes of wildfires over the CONUS (Forkel et al., 2019; 40 

Teckentrup et al., 2019). The climate and vegetation controls on the CONUS burned area and their relative importance are 41 

incorrectly represented, leading to failures in burned area predictions regarding both spatial distribution and temporal variations 42 

(Forkel et al., 2019). Human ignition and suppression are assumed to be linearly or log-linearly related to population density 43 

and the gross domestic product (GDP), respectively (Jones et al., 2023; Li et al., 2013). This assumption overlooks a more 44 

nuanced picture of human activities, such as road density, cultural differences, agricultural activities, and forest management 45 

policy (Jones et al., 2022; Villarreal et al., 2022; Hanan et al., 2021; Miller et al., 2009; Turco et al., 2023; Haas et al., 2022). 46 

Process-based fire models are often integrated with biogeochemical process-enabled land models (hereafter referred to as BGC 47 

model) within Earth system models (ESMs) to predict fire disturbances on carbon allocation, which is then used to update 48 

energy balance, water budget, and carbon fluxes in the land model. Incorrect simulation of burned areas over the CONUS 49 

induces large uncertainties in the assessment of fire impacts using ESMs. 50 

Recent advances have explored the application of machine learning (ML) techniques in wildfire prediction (e.g., Wang et 51 

al., 2021; Buch et al., 2023; Li et al., 2023; Zhu et al., 2022). ML models offer the advantage of capturing nonlinear 52 

dependencies and complex interactions between driving factors and fire dynamics, without the need for explicit understanding 53 

of physical processes (Rodrigues and de la Riva, 2014). Zhu et al. (2022) presented a deep neural network (DNN) scheme that 54 

surrogated the process-based wildfire model with the Energy Exascale Earth System Model (E3SM) interface, demonstrating 55 

over 90% higher accuracy in simulating global burned area. Wang et al. (2021) combined the local predictors, large-scale 56 

meteorological patterns, and the eXtreme Gradient Boosting (XGBoost) algorithm to build an ML wildfire model, which 57 
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improves the temporal correlations of burned areas in several regions over the CONUS by 14–44%. Buch et al. (2023) 58 

developed a novel stochastic machine learning (SML) framework, SMLFire1.0, with a high spatial resolution of 12 km over 59 

the Western U.S. (WUS). 60 

The newly developed ML fire models often focus on wildfire properties such as burned area, fire count, and fire emissions 61 

(Wang et al., 2021; Buch et al., 2023). Despite the improved fire predictions, fire impacts on the ecosystem, climate, and 62 

human community cannot be evaluated without integrating the wildfire process into the Earth system. In addition, climate 63 

change impacts on the burned area, either directly through fire weather conditions, or indirectly through ecosystem productivity, 64 

vegetation type, fuel loads, and fuel moisture – cannot be fully understood without explicitly representing the complex 65 

interplays between climate, ecosystems, and fire. For instance, a warmer and drier climate has been shown to cause an eightfold 66 

rise in the high-severity burned area from 1985 to 2017 over the WUS (Parks and Abatzoglou, 2020). The corresponding 67 

changes in fire dynamics may shift the vegetation species distribution from those originally low in resistance to wildfire to 68 

those in high resistance or even benefiting from regular fire occurrence (Rogers et al., 2015; Huang et al., 2024). The fire-69 

adapted vegetation species, in turn, facilitate the frequent occurrence of wildfires. In this consideration, a full coupling of fire, 70 

ecosystem, and climate is required to better predict fire changes and the corresponding impacts in a future climate. 71 

Leveraging the accuracy of ML-based wildfire models and the representation of ecosystem-climate interactions in ESMs, 72 

in this study, we have developed a novel hybrid framework to integrate a pretrained ML wildfire model with the E3SM land 73 

model (ELM) to study the full atmosphere-vegetation-wildfire feedbacks. This integration facilitates a dynamic feedback loop 74 

where outputs from the ML model (i.e., predicted burned areas) inform the land surface processes in ELM, which in turn 75 

update the inputs for the ML model for subsequent predictions. This approach leverages the detailed physical understanding 76 

of surface biogeophysical and biogeochemical processes provided by ELM and the predictive power of ML-based wildfire 77 

models to create a more accurate and robust framework for wildfire prediction and impact assessment. The remaining sections 78 

is arranged as follow: Section 2 introduces the ELM and ML wildfire model training method, coupling strategy, and datasets 79 

used in this study; Section 3 presents the simulated burned area compared with observations and several process-based fire 80 

models; discussion and conclusion are in Section 4.  81 

2. Materials and methods  82 

2.1 Model Description 83 

2.1.1 Default wildfire model in ELM 84 

The ELM is part of the E3SM project which started with a version of the Community Earth System Model (CESM1). The 85 

ELM default wildfire module originated from the Community Land Model (CLM4.5) (Li et al., 2012). This wildfire model 86 

calculates burned areas by multiplying the number of wildfires and burned area per fire on a grid-cell level. The number of 87 

wildfires (fire count) is derived using anthropogenic and natural ignition sources, fuel load and combustibility, surface 88 
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meteorology, and anthropogenic suppression. The natural ignition source is derived from the number of cloud-to-ground 89 

lightning flashes multiplied by a constant ignition efficiency (Prentice and Mackerras, 1977). Anthropogenic ignitions are 90 

simply parametrized using a fixed number of potential anthropogenic ignitions by a person and population density (Venevsky 91 

et al., 2002). Humans also suppress wildfires. The capability of fire suppression is assumed to be a function of gross domestic 92 

product. The ignition efficiency is also altered by fuel conditions, including the fuel load (aboveground biomass) and fuel 93 

combustibility (approximated using relative humidity, temperature, and top or root zone soil moisture). The spread of each fire 94 

is approximated using an ellipse shape with its length-to-breadth ratio determined by wind speed and fuel moisture (Rothermel, 95 

1972). This simple concept well captures the major constraints for predicting the global wildfire distribution and seasonal 96 

variations (Rabin et al., 2017; Li et al., 2014; Huang et al., 2020).  97 

Like many other process-based wildfire models, the default fire model in ELM benefits from the full ecosystem interactions 98 

from its hosting land model, as well as the potential to be coupled with atmospheric models. With the BGC processes being 99 

turned on, ELM-BGC reallocates carbon and nitrogen in leaf, wood, root, litter, and soil pools after fire based on plant 100 

functional type (PFT)-dependent carbon combustion and mortality rate. The biogeochemical changes subsequently influence 101 

biogeophysical properties such as leaf area index (LAI), vegetation canopy height, and albedo, disturbing the land-atmosphere 102 

exchanges of energy and water fluxes. The post-fire vegetation recovery depends on the plant photosynthesis processes and 103 

PFT competition strategy. The interactions between wildfire and vegetation under historical climate have been thoroughly 104 

assessed in CLM long-term simulations (Li and Lawrence, 2017; Seo and Kim, 2023). The model framework is illustrated in 105 

Figure 1. Hereafter the ELM coupled with the process-based fire model is referred to as ELM-BGC.  106 

 107 
Figure 1: Schematic diagram of the hybrid model framework.  108 
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2.1.2 Machine learning wildfire model 109 

The XGBoost-based wildfire model has proven to outperform process-based models in predicting burned areas over the 110 

CONUS (Wang et al., 2021). In this study, we tailored the pretrained XGBoost wildfire model to use variables directly provided 111 

by ELM at each grid cell. One modification is that we exclude the large-scale patterns used in Wang et al. (2021), without 112 

significantly affecting the model accuracy. XGBoost is a highly efficient and scalable implementation of gradient boosting, 113 

designed for performance and speed (Chen and Guestrin, 2016). It builds sequential decision trees to correct errors from 114 

previous models, using techniques like regularization to prevent overfitting and parallel processing for faster computation. 115 

To reduce overfitting, we build a separate ML model for each year from 2001 to 2020 using the remaining 19 years’ data. 116 

Model performance was evaluated based on its accuracy in predicting the spatial distribution and temporal variation of burned 117 

areas. Validation metrics included root mean square error (RMSE), mean absolute error (MAE), and the coefficient of 118 

determination (R2). This pretrained XGBoost model is referred to as offline-XGB in the following analysis.  119 

2.1.3 Hybrid modeling framework 120 

The pretrained ML-based wildfire model is integrated with the ELM using the ML4ESM coupling framework. The 121 

ML4ESM framework offers a robust and flexible solution for integrating ML parameterizations into ESMs through a Fortran-122 

Python interface (Zhang et al., 2024). It supports popular ML libraries such as PyTorch, TensorFlow, and Scikit-learn, enabling 123 

the seamless incorporation of ML algorithms to represent complex climate processes like convection and wildfire dynamics. 124 

The interface leverages C language as an intermediary for efficient data transfer by accessing the same memory reference, 125 

instead of the extra data copy or through files, minimizing memory overhead and computational inefficiencies. A C-Hub is 126 

then used to communicate variables from the Fortran-written ELM and the Python-written ML wildfire model. In our 127 

application, all surface meteorology, lightning, and socioeconomic data, alongside the ELM simulated fuel conditions are 128 

passed to the pretrained ML-based wildfire model to predict the burned area. The burned area is returned to ELM to calculate 129 

fire impacts and update surface properties.  130 

2.2 Datasets and processing 131 

2.2.1 Burned area datasets 132 

The primary dataset for training and validating the ML-based model is the Global Fire Emissions Database version 5 133 

(GFED5) (Chen et al., 2023). The GFED5 is a succession of GFED4s, by fusing multiple streams of remote sensing data to 134 

create a 24-year (1997-2020) dataset of the monthly burned area at 0.25º spatial resolution. During 2001-2020, the GFED5 135 

comprises the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product (Hall et al., 2016; 136 

Giglio et al., 2016, 2018), with adjustment for the errors of commission and omission. Adjustment factors are estimated based 137 

on region, land cover, and tree cover fraction, using spatiotemporally aligned burned areas from Landsat or Sentinel-2 (Claverie 138 

et al., 2018). Focusing on the MODIS-era, 2001-2020, we mask the grid cells with less than 30 months of non-zero burned 139 
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area (~two thirds of the total number of grid cells). This step is significant to avoid feeding the ML model with distinct predictor 140 

combinations while all zero burned areas.   141 

Besides observations, we also obtained burned area from four state-of-the-art process-based wildfire models participating 142 

the Fire Model Intercomparison Project (FireMIP) (Rabin et al., 2017), including the Canadian Land Surface Scheme Including 143 

Biogeochemical Cycles (CLASSIC) (Melton et al., 2020), the Simplified Simple Biosphere model coupled with the Top-down 144 

Representation of Interactive Foliage and Flora Including Dynamics model (SSiB4-TRIFFID) (Huang et al., 2020, 2021), the 145 

SPread and InTensity of FIRE (SPITFIRE) coupled with the Organizing Carbon and Hydrology In Dynamic Ecosystems 146 

(ORCHIDEE) (Yue et al., 2014), and the Vegetation Integrative Simulator for Trace gases (VISIT) (Ito, 2019). The burned 147 

area simulation from the process-based fire model over the CONUS will be used to benchmark that from the hybrid framework.   148 

2.2.2 Surface meteorological, lightning, and socioeconomic datasets 149 

Surface meteorological variables including temperature, humidity, wind speed, downward shortwave radiation, downward 150 

longwave radiation, precipitation, and surface pressure are obtained from NLDAS-2 (Phase 2 of the North American Land 151 

Data Assimilation System) forcing fields to both drive the ELM and construct the training set for the ML fire model. This 152 

dataset combines multiple sources of observations (such as precipitation gauge data, satellite data, and radar precipitation 153 

measurements) to produce estimates of climatological properties at or near the Earth’s surface at hourly temporal resolution 154 

and 1/8th-degree grid spacing. We use the temperature, relative humidity, specific humidity, wind speed, and precipitation 155 

directly from NLDAS-2 train the ML fire model. Additionally, we calculate the Standardized Precipitation Evapotranspiration 156 

Index (SPEI) following Beguería et al (2013) and vapor pressure deficit (VPD) based on NLDAS-2 dataset as additional input 157 

for ML model (Table 1). We coarsen this dataset to 0.25º to align with burned area datasets.  158 

In addition to surface meteorological forcing, we acquire lightning and socioeconomic datasets from multiple sources. The 159 

2-hourly climatology lightning flashes data from NASA LIS/OTD v2.2 at 2.5º resolution are used to calculate the number of 160 

natural ignitions. The gridded population density data is acquired from Kummu et al. (2018) while the GDP per capita is from 161 

the World Bank (https://data.worldbank.org/). All the datasets are resampled to 0.25×0.25 spatial and annual temporal 162 

resolution. To train the ML model, additional inputs including top-layer soil moisture, LAI, and spatial fraction of each plant 163 

functional types (PFTs) are simulated by ELM (explained further in Section 2.3).  164 
Table 1 Meteorological forcing, land surface properties, and fire specific inputs for training the XGBoost-ELM 165 

Meteorological forcing Land surface property 
Temperature 

NLDAS-2 

Soil moisture 

ELM-BGC output Relative humidity Leaf area index 
Wind speed Plant functional type (PFT) 

fraction 
Precipitation Fire specific inputs 
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Standardized precipitation 
evapotranspiration index (SPEI) 

Lightning NASA LIS/OTD v2.2 

Vapor pressure deficit (VPD) GDP Kummu et al., (2018) 
  Population density GPW v4 

2.2.3 Ecoregion 166 

We evaluate the model simulation of the burned area for each ecoregion adopted from the U.S. Environmental Protection 167 

Agency (EPA). Ecoregions are areas where ecosystems (and the type, quality, and quantity of environmental resources) are 168 

generally similar (Omernik and Griffith, 2014) and generally, wildfire properties in each ecoregion are similar. A combination 169 

of level I and level II ecoregions is used and some types have been combined to focus on the broad vegetation distribution. As 170 

shown in Figure 1, the Western Forested Mountains include NW Forested Mountains, Marine West Coast Forests, and 171 

Mediterranean California from ecoregion level 1. The North American (NA) Deserts include NA Deserts and small portions 172 

of Temperate Sierras and Southern Semi-Arid Highlands. The Northeast (NE) Temperate Forests include Mixed Wood Shield, 173 

Mixed Wood Plains, Central U.S. Plains, and Atlantic Highlands from ecoregion level II. The Southeast (SE) Temperate 174 

Forests include Southeastern U.S. Plains Ozark, Ouachita-Appalachian Forests, and Mississippi Alluvial and Southeast U.S. 175 

Coastal Plains ecoregion level II.  176 

  177 

Figure 2: Ecoregions used in fire model evaluation. 1 – Western Forested Mountains, 2 – NA Desert, 3 – Great Plains, 4 – SE 178 
Temperate Forests, and 5 – NE Temperate Forests. 179 
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2.3 Model configuration and ML4Fire-XGB training processes 180 

In ELM-BGC, vegetation properties, including canopy height and LAI, vary with carbon allocation and distribution, driven 181 

by climate variability and disturbances such as wildfires. To bring the model’s carbon and nitrogen pools into equilibrium, we 182 

first conduct long-term spin-up simulations as suggested by Lawrence et al. (2011). We adopt a two-step approach consisting 183 

of a 400-year accelerated decomposition (AD) spin-up followed by a 400-year regular spin-up, driven by cycling NLDAS-2 184 

meteorological forcing from 1981 through 2000. In the AD spin-up, acceleration factors will be applied to accelerate 185 

decomposition in soil organic matter pools, and for plant dead stem and coarse root mortality. The terrestrial carbon pools and 186 

vegetation distribution after spin-up simulations reach quasi-equilibrium states after the 800-year simulations. 187 

Initialized with the quasi-equilibrium state from the spinup simulation, we conduct transient simulations with the process-188 

based fire model in the ELM-BGC utilizing NLDAS-2 meteorological forcings for the period of 2001-2020. The surface soil 189 

moisture, LAI, fraction of each PFT output from ELM-BGC transient run are then used to train the offline-XGB prior to the 190 

coupled run within ELM. Furthermore, we run the coupled ML4Fire-XGB in which the pre-trained XGB model provides 191 

monthly burned area to ELM to update the land surface properties (LAI, PFT fraction, and soil moisture), which are then used 192 

as predictors in the ML-based fire model in the next time step. The differences in land surface properties input in offline-XGB 193 

and ML4Fire-XGB produce different burned area simulation, and the divergence accumulates over the 20-year simulation 194 

period. 195 

 In addition to the default transient simulations with ELM-BGC and ML4Fire-XGB which represent historical burned area, 196 

we conduct additionally sensitivity simulations with ELM-BGC and ML4Fire-XBG, utilizing the same NLDAS-2 197 

meteorological forcings except for detrended temperatures to evaluate the responses of the modeled burned area to raising 198 

temperatures, which are considered as the primary driver of the increasing burned area over the WUS (Parks and Abatzoglou, 199 

2020; Zhuang et al., 2021).  200 

3 Results 201 

3.1 Evaluation of the burned area spatial distribution  202 

The spatial distribution of burned areas across the CONUS varies significantly (Fig. 3a), primarily influenced by climate, 203 

vegetation, and human activities. According to the GFED5, the CONUS experiences an averaged burned area fraction (BAF) 204 

of 0.6–0.9% yr-1 (4.8–7.1 Mha yr-1), which is consistent with Chen et al., (2023). High-burned areas are predominantly 205 

observed in the WUS (Western Forested Mountains and NA Desert), with BAF ranging between 0.4–0.9% yr-1 (1.1–2.3 Mha 206 

yr-1). States like California, Oregon, and Nevada, as well as the Rocky Mountain region including parts of Colorado and 207 

Wyoming experience large wildfires. The wildfires in the Pacific Northwest and northern California are generally lightning-208 

caused and occur in boreal forests (Balch et al., 2017) whereas those in southern California are primarily caused by human 209 

ignition in dry forests and shrublands. The Southwest, including Arizona and New Mexico, also sees significant burned areas 210 
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in shrublands and dry forests. In the Great Plains, states such as Kansa and North Dakota exhibit high burned areas, alongside 211 

with Texas and Oklahoma, with a BAF ranging between 0.7–1.3% yr-1 (1.6–2.9 Mha yr-1). These high burned areas are 212 

primarily contributed by agricultural fires, particularly for cleaning crop residues and managing pastures (Donovan et al., 213 

2020). The Southeastern U.S. experiences 0.9–1.5% yr-1 (1.5–2.6 Mha yr-1) BAF annually, while the temperate forested areas 214 

covering Florida, Georgia, and the Carolinas, show lower burned areas compared to the West. This region often uses prescribed 215 

burning to manage forests and reduce wildfire risk. The Midwest and Northeast exhibit sparse burned areas, with BAF mostly 216 

less than 0.16–0.25% yr-1 (0.2–0.3 Mha yr-1). 217 

 218 

Figure 3: Observed and simulated burned area fraction (% yr-1) averaged over 2001-2020. The dataset names are listed on the top 219 
of each panel.  220 

The offline-XGB wildfire model reproduces the burned area distribution over the CONUS well (Fig. 3b), with a spatial 221 

correlation coefficient (𝑅!) of 0.96 (𝑝<0.01) and a small bias (-0.4 Mha yr-1). While integrated with ELM, the performance 222 

holds (𝑅!=0.70, 𝑝<0.01, bias=1.0 Mha yr-1) (Fig. 3d). This degradation is likely due to the vegetation-wildfire feedbacks. The 223 

https://doi.org/10.5194/gmd-2024-151
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



10 
 
 

aboveground biomass and fuel moisture from ELM-BGC have been used to train the ML4Fire-XGB prior to the coupled run 224 

within ELM. In the coupled simulation, ML4Fire-XGB updates the biotic carbon and fuel moisture based on the burned area 225 

simulated in the previous timestep. Consequently, differences in the simulated burned area compared to the process-based 226 

models are reflected in the biotic carbon and fuel moisture, accumulating over the 20-year simulation period and influencing 227 

the burned area simulation in subsequent timesteps. 228 

In various eco-regions, the offline-XGB model demonstrates minimal biases, and the ML4Fire-XGB model consistently 229 

outperforms all process-based fire models in predicting annual mean burned area (Fig. 3b-f). The accurate simulation of burned 230 

area over the Western Forest Mountains indicates that the ML4Fire-XGB framework generally captures the complex interplays 231 

between climate, vegetation, and human activities, with both climate forcings and predicted vegetation status from ELM-BGC. 232 

Meanwhile, the ML4Fire-XGB shows superior performance over the Great Plains, indicating that the ML model effectively 233 

describes crop fire thereby utilizing data on crop fraction and LAI. 234 

The performance of the five process-based fire models (ELM-BGC, CLASSIC, ORCHIDEE, SSiB4/TRIFFID, and VISIT) 235 

in simulating burned areas over the CONUS shows both strengths and weaknesses (Figs. 3e-i and Fig. 4). All models generally 236 

capture the high burned areas in key regions such as the WUS and Southeast U.S., except for ORCHIDEE which shows a 237 

concentrated burned area in the Great Plains. However, these models tend to overestimate burned areas in regions across the 238 

CONUS. ELM-BGC and SSiB4-TRIFFID-Fire have moderate overestimations over the CONUS, with 8.5 Mha yr-1 and 11.1 239 

Mha yr-1, respectively. The burned areas are doubled in CLASSIC, ORCHIDEE, and VISIT simulations, with values up to 240 

17.6 Mha yr-1 (Fig. 4a).  241 

In the Western Forest Mountains, where fuel is abundant due to dense forest coverage, all process-based models except 242 

ORCHIDEE simulate 2 to 4 times of GFED5 burned area. This overestimation can be related to many factors including 243 

overestimation of fuel combustibility and underrepresentation of anthropogenic fire suppression (Balch et al., 2017). In contrast, 244 

wildfires in the NA Desert are primarily constrained by the fuel load. ELM-BGC and CLASSIC produce smaller 245 

overestimations, while SSiB4-TRIFFID-Fire and VISIT significantly overestimate the burned area (4–15 times of GFED5), 246 

likely due to overestimations of fuel load, which might be attributed to insufficient water stress on vegetation growth in the 247 

arid region (Liu and Xue, 2020; Zhang et al., 2015). Although none of the process-based models accurately capture the spatial 248 

distribution of burned area over the Great Plains (Fig. 1), ELM-BGC, SSiB4-TRIFFID-Fire, and VISIT produce comparable 249 

burned areas to observations while CLASSIC and ORCHIDEE overpredict them (4–7 times of GFED5). The inaccurate 250 

description of the spatial pattern and large intermodal spread in the Great Plains may be caused by inaccurate treatments of 251 

cropland fires and pasture fires (Donovan et al., 2020). Notably, none of the process-based models has activated the explicit 252 

cropland fire model. That says all vegetation models treat pastures as natural grasslands. This may explain the significant 253 

overestimation of burned areas in ORCHIDEE as the SPITFIRE fire module has a much higher flammability in natural 254 

grasslands compared to woody plants (Teckentrup et al., 2019). Therefore, information on how fuel properties and fire ignitions 255 

differ between pastures and natural grasslands could help to improve burned area simulation in the process-based fire models 256 

(Rabin et al., 2017). In the eastern U.S. (EUS) forests (Southeast and Northeast Temperate Forests ecoregions), fires are more 257 
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managed by prescribed burning, leading to fewer uncontrolled extreme wildfires. Consequently, all process-based models 258 

perform reasonably well in these areas.  259 

  260 

 261 
Figure 4: Observed and simulated mean burned area fraction (% yr-1) over the CONUS and eco-regions. The red line in each panel 262 
indicates the observed burned area. Modeled burned areas greater than 4 % yr-1 are truncated with the value denoted on the bar.  263 

3.2 Evaluation of the burned area temporal variability 264 

We evaluate the model performance in simulating the monthly burned area and depicting fire seasons. Fire season is defined 265 

as a monthly burned area greater than 1/12 of the annual total burned area. The COUNS has two fire seasons, i.e., March-266 

April-May and August-September-October, affected by both climate and human activities (Fig. 5a). The WUS fire season 267 

spans from early summer to late fall, primarily determined by the dry conditions and high temperature during these months 268 

(Safford et al., 2022; Schoennagel et al., 2017). Specifically, over the Western Forest Mountains, the fire season includes July 269 

to November (Fig. 5b). Most models capture the July to October fire season, except for ORCHIDEE (May-August). However, 270 

only offline-XGB, SSiB4-TRIFFID-Fire, and CLASSIC simulate the peak fire month in August, while others simulate a peak 271 

~ 1–2 months late. Similar fire season and model performance are observed over the NA Desert (Fig. 5c). In wildfire-dominant 272 
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regions, the shift in fire peak months might be related to the representation of seasonality in vegetation production and fuel 273 

build-up in the BGC model (Hantson et al., 2020).  274 

Human activities can also change the timing of fire occurrence (Le Page et al., 2010). Over the Great Plains, pasture fires 275 

are conducted during late winter to early spring to control pests, recycle nutrients, and prepare fields for planting (Gates et al., 276 

2017). During the late summer to early fall, crop fires are conducted to clear crop residues. However, sometimes these fires 277 

can become uncontrolled, leading to larger wildfires that significantly impact the region. The fire seasons due to pasture fires 278 

and crop fires are evident in observations and are captured in offline-XGB and ML4Fire-XGB, despite ML4Fire-XGB slightly 279 

underestimating the peak in March. None of the process-based models is able to simulate these periods, instead, a summer fire 280 

season is predicted. In SE Temperate Forests, routinely prescribed burns reduce large fire occurrences across the year (Mitchell 281 

et al., 2014). The dry condition and/or fallen vegetation fuel larger burned areas in February–March and September–November. 282 

The ML-based models generally reproduce the fire seasons in March–April and September–November while none of the 283 

process-based models captures the bimodal seasonality. The results of NE Temperate Forests are similar to Great Plains, expect 284 

no peak burned area appears in November. The offline-XGB and SSiB4-TRIFFID-Fire capture the spring peak. Our evaluation 285 

suggests that the inclusion of anthropogenic fires could help to improve model simulations in Central and Eastern US. However, 286 

this requires a better understanding of how fire is used for land management under different socioeconomic and cultural 287 

conditions (Pfeiffer et al., 2013; Li et al., 2013). 288 

 289 

  290 
Figure 5: Monthly mean burned area fraction (% yr-1) over each eco-region.  291 
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Over the CONUS, the observed interannual variability (IAV), measured using standard deviation, is 0.7 Mha yr-1, 292 

accounting for 12% of the annual total burned area (Fig. 6a). Process-based models largely overestimate the IAV, ranging in 293 

2.6–6.6 Mha yr-1. This overestimation can be partly attributed to the overestimation in the annual total burned area. The relative 294 

IAV regarding the modeled annual mean value, ranging from 21% to 50%, is still overestimated by the process-based models. 295 

The machine learning models, offline-XGB and ML4Fire-XGB produce IVA of 0.9 Mha yr-1 (15%) and 1.0 Mha year-1 (12%), 296 

respectively.  297 

Despite the magnitude of IAV being amplified by process-based models, after extracting the mean values and dividing by 298 

standard deviation, the standardized time series well correlated with the observation (Fig. 6b). Since the modeled IVA is 299 

generally influenced by climate variability and the climate-driven fuel variability, both process-based and ML-based models 300 

capture the timing of the fluctuations.  301 

    302 
Figure 6: Annual total burned area (Mha yr-1). (a) Annual total and (b) standardized by removing mean and standard deviation.  303 

Monthly temporal variability in burned areas demonstrates significant regional differences across the eco-regions (Fig. 7). 304 

Over the entire simulation period, the ML-based models generally capture the timing of wildfires across the CONUS with a 305 

temporal correlation coefficient greater than 0.5 (p < 0.01), whereas the process-based models exhibit a correlation of only 0.3 306 

(p > 0.01). The ML-based models also effectively capture the temporal variability across the eco-regions, although there is a 307 

slight decrease in the ML4Fire-XGB in the Great Plains and EUS. This decrease is likely related to the fire-vegetation feedback, 308 

which alters the fuel condition differently from the training set. In contrast, the process-based models show comparable 309 

correlations as the ML-based models in the WUS but fail to accurately predict burned area temporal variations in the Great 310 

Plains and EUS. Again, climatic factors play a dominant role in shaping the temporal variability of BAF in the WUS, while 311 

human activities largely influence the BAF in the Great Plains and EUS. Process-based models tend to better describe responses 312 

of fuel load and combustibility to climate than responses of fire ignition and suppression to human activities.  313 
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 314 
Figure 7: Monthly correlation coefficient between simulations and GFED5 over each eco-region.  315 

3.3 Evaluation of the burned area responses to climate change 316 

Among many other factors, the rising temperature has led to a significantly increased burned area in the WUS (Parks and 317 

Abatzoglou, 2020). The results presented in the preceding section establish the ML4Fire-XGB model as a robust tool for 318 

predicting wildfire dynamics. In this section, we examine the model responses to rising temperature by comparing the 319 

difference between simulations with/without the increasing trends in temperature. The 20-year mean difference and relative 320 

difference to the 2001-2005 mean simulated by ELM-BGC and ML4Fire-XGB are compared (Fig. 8 and Table 2). As a 321 

reference, GFED5 shows that 2001-2020 mean burned area over the COUNS increases by 0.35 Mha yr-1 (6%) compared to 322 

the 2001-2005 mean. Both models simulate overall increased burned areas over fire-prone regions, with a comparable increase 323 

over the CONUS, 0.77 Mha yr-1 (5%) for ELM-BGC and 0.36 Mha yr-1 (4%) for ML4Fire-XGB. The largest increases are 324 

found over EUS, with over 25% and 7% relative increases for ELM-BGC and ML4Fire-XGB, respectively. The larger increase 325 

in EUS in ELM-BGC may originate from overpredicting the climate dependence of burned areas while overlooking the role 326 

of human activities. ELM-BGC also estimates a larger (5%) than ML4Fire-XGB (2%) over the Great Plains. Changes in the 327 

NA Desert and Great Plains are comparable in the two models. Both models estimate a 6% increase in the WUS.  328 
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Table 2: Raising temperature induced burned area change. The relative change is regarding to 2001-2005 mean.  329 

 ELM-BGC ML4Fire-XGB 

 Mean (Mha) Relative change (%) Mean (Mha) Relative change (%) 

Western Forest 

Mountains 
0.13 5.94 0.05 5.68 

NA Desert 0.02 2.31 0.04 4.97 

Great Plains 0.11 4.85 0.09 2.30 

SE Temperate Forests 0.43 25.54 0.15 7.02 

NE Temperate Forests 0.07 26.34 0.03 7.66 

CONUS 0.77 4.79 0.36 4.45 

 330 

 331 

 332 
Figure 8: 2001-2020 mean burned area fraction due to rising temperature. 333 

4 Discussion and Conclusion 334 

In this study, we present a hybrid framework that integrates a pre-trained ML wildfire model in an Earth system model. 335 

We tailor an XGBoost wildfire model using input variables that are simulated by ELM-BGC to predict wildfires. Then the 336 

ML4ESM framework is adopted to couple the pre-trained XGBoost wildfire model with ELM, forming the ML4Fire-BGC. 337 

The ML-based wildfire models are comprehensively evaluated against observations and compared with five state-of-the-art 338 

process-based wildfire models. The offline-XGB and ML4Fire-XGB largely reduce the biases in mean burned area predictions 339 

over key regions such as WUS, where process-based models tend to overestimate burned areas by 1.5–16 times. Spatially, the 340 
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offline-XGB achieves a pattern correlation of 0.96 (p<0.01), and 0.70 (p<0.01) when integrated with ELM. The reduced 341 

performance is caused by the fire-vegetations interaction in the coupled model. Temporally, the ML-based models accurately 342 

capture the timing of wildfires across CONUS with a temporal correlation greater than 0.5 (p<0.01), significantly higher than 343 

the 0.3 correlation produced by process-based models.  344 

In the comparison of fire seasons, the ML-based models effectively capture the seasonal timing of wildfires across various 345 

ecoregions. In the WUS, the fire season typically spans from early summer to late fall, primarily influenced by dry conditions 346 

and high temperatures. Both ML-based and most of the process-based models simulate the July to October fire season, aligning 347 

closely with observations. In contrast, human activities and prescribed burns significantly influence fire dynamics in the Great 348 

Plains and EUS. Offline-XGB well reproduces the fire seasons in those regions, while ML4Fire-XGB shows degraded 349 

performances, overperforming all process-based models. This discrepancy may arise by the potential biases in the factors 350 

generated by ELM, which can impact the accuracy of online predictions. However, the ML-fired process exhibits high accuracy, 351 

as demonstrated by the Offline-XGB model, making it a reliable tool for evaluating the fired area under different warming 352 

scenarios. 353 

The analysis of rising temperature sensitivity experiments indicates that warming is a major driver of the increased burned 354 

area observed in recent decades. A comparison of the ELM-BGC and ML4Fire-XBG results with the total increase documented 355 

in GFED5 suggests that ML4Fire-XBG accurately captures the burned area responses to climate variability. Consequently, 356 

ML4Fire-XBG is well-suited for studies attributing changes in burned area to various factors. 357 

The CLM-Li fire model (Li et al., 2012) is incorporated into both ELM and SSiB4-TRIFFID-Fire and has been partially 358 

used in CLASSIC (Melton and Arora, 2016). Consequently, similar performance is observed among these models, while 359 

CLASSIC showing a larger overestimation. VISIT adopts the Thonicke et al. (2001), a semi-empirical fire model and has not 360 

been well calibrated since coupling. This may explain the poorer benchmarking results compared to other models in this study. 361 

A fire model SPITFIRE with higher complexity (Thonicke et al., 2010), has been coupled with ORCHIDEE. Although 362 

SPITFIRE is able to simulate both burned area and fire intensity and consider the impacts depending on fire regimes (e.g., fire 363 

duration and flame height), plant traits (bark thickness and crown height), it does not outperform other fire models in regard 364 

to burned area simulation (Hantson et al., 2020). With more sophisticated parametrization and fire parameters introduced, 365 

more observational analyses are required to understand the mechanism behind and to constrain the parametric uncertainty. It 366 

is noteworthy that parameters involved in wildfire prediction are calibrated to align with the research interests of the institute 367 

developing and managing these models. Fine-tuning these parameters and advancing the physical understanding of wildfire 368 

processes for the CONUS hold the potential to improve model performance (Huang et al., 2020).   369 

The development and application of ML4Fire-XGB represent a significant step forward in our ability to model wildfire 370 

dynamics in regions with complicated interactions between fires, ecosystems, climate, and human activities, bypassing the 371 

explicit understanding of physical processes. By incorporating ML wildfire parameterization into a land surface model, we 372 

address the critical need for enhanced predictive capabilities at subseasonal to seasonal scales. Meanwhile, the predictability 373 

can adapt to the evolving nature of fire regimes under climate change. This research not only contributes to the scientific 374 
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community's understanding of fire-ecosystem-climate interactions but also provides a practical tool for policymakers and 375 

resource managers engaged in wildfire preparedness and response. 376 
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