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Abstract  8 

Wildfires have shown increasing trends in both frequency and severity across the Contiguous United States (CONUS). 9 

However, process-based fire models have difficulties in accurately simulating the burned area over the CONUS due to a 10 

simplification of the physical process and cannot capture the interplay among fire, ignition, climate, and human activities. The 11 

deficiency of burned area simulation deteriorates the description of fire impact on energy balance, water budget, and carbon 12 

fluxes in the Earth System Models (ESMs). Alternatively, machine learning (ML) based fire models, which capture statistical 13 

relationships between the burned area and environmental factors, have shown promising burned area predictions and 14 

corresponding fire impact simulation. We develop a hybrid framework (ELM2.1-XGBFire1.0) that integrates an eXtreme 15 

Gradient Boosting (XGBoost) wildfire model with the Energy Exascale Earth System Model (E3SM) land model (ELM) 16 

version 2.1. A Fortran-C-Python deep learning bridge is adapted to support online communication between ELM and the ML 17 

fire model. Specifically, the burned area predicted by the ML-based wildfire model is directly passed to ELM to adjust the 18 

carbon pool and vegetation dynamics after disturbance, which are then used as predictors in the ML-based fire model in the 19 

next time step. Evaluated against the historical burned area from Global Fire Emissions Database 5 from 2001-2019, the 20 

ELM2.1-XGBFire1.0 outperforms process-based fire models in terms of spatial distribution and seasonal variations. The 21 

ELM2.1-XGBFire1.0 has proved to be a new tool for studying vegetation-fire interactions, and more importantly, enables 22 

seamless exploration of climate-fire feedback, working as an active component in E3SM.23 
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1 Introduction 25 

Recent wildfire outbreaks worldwide have raised alarms due to wildfires burning longer and more intensely in many regions, 26 

posing significant threats to human livelihoods and biodiversity. In the past two decades, satellite-derived data suggest that the 27 

global total burned area has declined by over 20%, primarily attributed to human influences (Jones et al. 2022; Andela et al. 28 

2017). However, the continental United States (CONUS) has emerged as a hotspot for wildfires, where both climate change 29 

and human activities have fueled a 42% increase in the burned area (Jones et al. 2022). Such expansive burned areas release 30 

an average of 162 million tons of CO2 and 0.9 million tons of PM2.5 annually into the atmosphere, resulting in over $200 billion 31 

health costs due to exposure to wildfire smoke (Samborska et al. 2024; JEC 2023). Accurate prediction of wildfire risks has 32 

become an urgent need. 33 

 Traditional fire models, predominantly process-based models, simulate the behavior of individual wildfires using 34 

theoretical equations for ignitions and fire spread (Hantson et al. 2016). These models explicitly simulate the number and size 35 

of individual fires by incorporating parameterizations and parameters derived from laboratory or field experiments and 36 

typically estimate the burned area by scaling up to the grid-cell level (Lasslop et al. 2014; Pfeiffer et al. 2013; Yue et al. 2014; 37 

Li et al. 2012; Thonicke et al. 2010; Huang et al. 2020, 2021; Arora and Boer 2005; Burton et al. 2019). While process-based 38 

wildfire models are effective in simulating global burned area distribution (Hantson et al. 2020), they often fall short of 39 

accurately predicting the extent and temporal changes of wildfires over the CONUS (Forkel et al. 2019; Teckentrup et al. 40 

2019). The climate and vegetation controls on the CONUS burned area and their relative importance are incorrectly represented, 41 

leading to failures in burned area predictions regarding both spatial distribution and temporal variations (Forkel et al. 2019). 42 

Human ignition and suppression are assumed to be linearly or log-linearly related to population density and the gross domestic 43 

product (GDP), respectively (Jones et al. 2023; Li et al. 2013). This assumption overlooks a more nuanced picture of human 44 

activities, such as road density, cultural differences, agricultural activities, and forest management policy (Jones et al. 2022; 45 

Villarreal et al. 2022; Hanan et al. 2021; Miller et al. 2009; Turco et al. 2023; Haas et al. 2022). Process-based fire models are 46 

often integrated with biogeochemical process-enabled land models (hereafter referred to as BGC model) within Earth system 47 

models (ESMs) to predict fire disturbances on carbon allocation, which is then used to update energy balance, water budget, 48 

and carbon fluxes in the land model. Incorrect simulation of burned areas over the CONUS induces large uncertainties in the 49 

assessment of fire impacts using ESMs. 50 

Recent advances have explored the application of machine learning (ML) techniques in wildfire prediction (e.g., Buch et 51 

al. 2023; Li et al. 2023; Wang et al. 2021; Zhu et al. 2022). ML models offer the advantage of capturing nonlinear dependencies 52 

and complex interactions between driving factors and fire dynamics, without the need for explicit understanding of physical 53 

processes (Rodrigues and de la Riva 2014). Zhu et al. (2022) presented a deep neural network (DNN) scheme that surrogated 54 

the process-based wildfire model with the Energy Exascale Earth System Model (E3SM) interface, demonstrating over 90% 55 
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higher accuracy in simulating global burned area. Wang et al. (2021) combined the local predictors, large-scale meteorological 56 

patterns, and the eXtreme Gradient Boosting (XGBoost) algorithm to build an ML wildfire model, which improves the 57 

temporal correlations of burned areas in several regions over the CONUS by 14–44%. Buch et al. (2023) developed a novel 58 

stochastic machine learning (SML) framework, SMLFire1.0, with a high spatial resolution of 12 km over the Western U.S. 59 

(WUS). 60 

The newly developed ML fire models often focus on wildfire properties such as burned area, fire count, and fire emissions 61 

(Wang et al. 2021; Buch et al. 2023). Despite the improved fire predictions, fire impacts on the ecosystem, climate, and human 62 

community cannot be evaluated without integrating the wildfire process into the Earth system. In addition, climate change 63 

impacts on the burned area, either directly through fire weather conditions, or indirectly through ecosystem productivity, 64 

vegetation type, fuel loads, and fuel moisture – cannot be fully understood without explicitly representing the complex 65 

interplays between climate, ecosystems, and fire. For instance, a warmer and drier climate has been shown to cause an eightfold 66 

rise in the high-severity burned area from 1985 to 2017 over the WUS (Parks and Abatzoglou 2020). The corresponding 67 

changes in fire dynamics may shift the vegetation species distribution from those originally low in resistance to wildfire to 68 

those in high resistance or even benefiting from regular fire occurrence (Rogers et al. 2015; Huang et al. 2024). The fire-69 

adapted vegetation species, in turn, facilitate the frequent occurrence of wildfires. In this consideration, a full coupling of fire, 70 

ecosystem, and climate is required to better predict fire changes and the corresponding impacts in a future climate. 71 

Leveraging the accuracy of ML-based wildfire models and the representation of ecosystem-climate interactions in ESMs, 72 

in this study, we have developed a novel hybrid framework to integrate a pretrained ML wildfire model with the E3SM land 73 

model (ELM) to study the full atmosphere-vegetation-wildfire feedbacks. This integration facilitates a dynamic feedback loop 74 

where outputs from the ML model (i.e., predicted burned areas) inform the land surface processes in ELM, which in turn 75 

update the inputs for the ML model for subsequent predictions. This approach leverages the detailed physical understanding 76 

of surface biogeophysical and biogeochemical processes provided by ELM and the predictive power of ML-based wildfire 77 

models to create a more accurate and robust framework for wildfire prediction and impact assessment. The remaining sections 78 

are arranged as follows: Section 2 introduces the ELM and ML wildfire model training method, coupling strategy, and datasets 79 

used in this study; Section 3 presents the simulated burned area compared with observations and several process-based fire 80 

models; discussion and conclusion are in Section 4.  81 

2. Materials and methods  82 

2.1 Model Description 83 

2.1.1 Default wildfire model in ELM 84 

The ELM is part of the E3SM project which started with a version of the Community Earth System Model (CESM1). The 85 

ELM default wildfire module originated from the Community Land Model (CLM4.5) (Li et al, 2012). This wildfire model 86 
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calculates burned areas by multiplying the number of wildfires and burned area per fire on a grid-cell level. The number of 87 

wildfires (fire count) is derived using anthropogenic and natural ignition sources, fuel load and combustibility, surface 88 

meteorology, and anthropogenic suppression. The natural ignition source is derived from the number of cloud-to-ground 89 

lightning flashes multiplied by a constant ignition efficiency (Prentice and Mackerras 1977). Anthropogenic ignitions are 90 

simply parametrized using a fixed number of potential anthropogenic ignitions by a person and population density (Venevsky 91 

et al. 2002). Humans also suppress wildfires. The capability of fire suppression is assumed to be a function of GDP and 92 

population density. The ignition efficiency is also altered by fuel conditions, including the fuel load (aboveground biomass) 93 

and fuel combustibility (approximated using relative humidity, temperature, and top or root zone soil moisture). The spread of 94 

each fire is approximated using an ellipse shape with its length-to-breadth ratio determined by wind speed and fuel moisture 95 

(Rothermel 1972). This simple concept well captures the major constraints for predicting the global wildfire distribution and 96 

seasonal variations (Rabin et al. 2017; Li et al. 2014; Huang et al. 2020).  97 

Like many other process-based wildfire models, the default fire model in ELM benefits from the full ecosystem interactions 98 

from its hosting land model, as well as the potential to be coupled with atmospheric models. With the BGC processes being 99 

turned on, ELM-BGC reallocates carbon and nitrogen in leaf, wood, root, litter, and soil pools after fire based on plant 100 

functional type (PFT)-dependent carbon combustion and mortality rate. The biogeochemical changes subsequently influence 101 

biogeophysical properties such as leaf area index (LAI), vegetation canopy height, and albedo, disturbing the land-atmosphere 102 

exchanges of energy and water fluxes. The post-fire vegetation recovery in ELM-BGC depends on the plant photosynthesis 103 

processes and PFT competition strategy for soil resources. The interactions between wildfire and vegetation under historical 104 

climate have been thoroughly assessed in CLM long-term simulations (Li and Lawrence 2017). The model framework is 105 

illustrated in Figure 1. Hereafter the ELM coupled with the process-based fire model is referred to as ELM-BGC.  106 
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 107 
Figure 1: Schematic diagram of the hybrid model framework.  108 

2.1.2 Machine learning wildfire model 109 

The XGBoost-based wildfire model has proven to outperform process-based models in predicting burned areas over the 110 

CONUS (Wang et al. 2021). XGBoost is a highly efficient and scalable implementation of gradient boosting, designed for 111 

performance and speed (Chen and Guestrin 2016). It builds sequential decision trees to correct errors from previous models, 112 

using techniques like regularization to prevent overfitting and parallel processing for faster computation. In this study, we 113 

adapted the XGBoost algorithm used in Wang et al (2021) to develop an offline ML fire model using variables directly 114 

provided by ELM at each grid cell. Wang et al. (2021) integrated large-scale meteorological patterns alongside local weather, 115 

land surface properties, and socioeconomic data to enhance the prediction of burned areas. The large-scale patterns were 116 

identified using singular value decomposition (SVD) to capture influential atmospheric conditions that develop over days to 117 

weeks and cumulatively impact the monthly burned area. The feature importance analysis in their study noted that while large-118 

scale patterns improved prediction, however, they played a secondary role. Therefore, we exclude the large-scale patterns from 119 

predictors without significantly affecting the model accuracy. Hereafter the uncoupled XGBoost fire model is referred to as 120 

offline-XGB. 121 

2.1.3 Hybrid modeling framework 122 

The offline-XGB model is integrated with the ELM using the ML4ESM coupling framework. The ML4ESM framework 123 

offers a robust and flexible solution for integrating ML parameterizations into ESMs through a Fortran-Python interface (Zhang 124 

et al. 2024). It supports popular ML libraries such as PyTorch, TensorFlow, and Scikit-learn, enabling the seamless 125 

incorporation of ML algorithms to represent complex climate processes like convection and wildfire dynamics. The interface 126 
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leverages C language as an intermediary for efficient data transfer by accessing the same memory reference, instead of the 127 

extra data copy or through files, minimizing memory overhead and computational inefficiencies. A C-Hub is then used to 128 

communicate variables from the Fortran-written ELM and the Python-written ML fire model. In our application, all surface 129 

meteorology, lightning, and socioeconomic data, alongside the ELM simulated fuel conditions are passed to the ML-based fire 130 

model to predict the burned area. The burned area is returned to ELM to calculate fire impacts and update surface properties.  131 

2.2 Datasets and processing 132 

2.2.1 Burned area datasets 133 

The primary dataset for training and validating the ML-based model is the Global Fire Emissions Database version 5 134 

(GFED5) (Chen et al. 2023). The GFED5 is a succession of GFED4s (van der Werf et al. 2017), which we also use as an 135 

additional reference dataset. GFED4 is generated by fusing multiple streams of remote sensing data to create a 24-year (1997-136 

2020) dataset of the monthly burned area at 0.25º spatial resolution. During 2001-2020, the GFED5 comprises the Moderate 137 

Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product (Hall et al. 2016; Giglio et al. 2016; Giglio 138 

et al. 2018), with adjustment for the errors of commission and omission. Adjustment factors are estimated based on region, 139 

land cover, and tree cover fraction, using spatiotemporally aligned burned areas from Landsat or Sentinel-2 (Claverie et al. 140 

2018).  Because of a new fire detection method that significantly boosts the area of small fires, the CONUS annual burned 141 

increases from 2.36 Mha in GFED4s to 6.04 in GFED5, primarily contributed by the increase of crop fire from 0.83 Mha to 142 

3.09 Mha.  143 

The FireCCI5.1 is obtained as another reference dataset (Chuvieco et al. 2019). FireCCI5.1 maps fires at 250 m resolution 144 

using the spectral information from MODIS in combination with the thermal anomalies. FireCCI5.1 has been reported heavily 145 

underestimate the total burned area mainly due to under-representation of small fires (Lizundia-Loiola et al. 2020). 146 

Besides observations, we also obtained burned area from seven state-of-the-art process-based wildfire models participating 147 

the  Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a) (Burton et al. 2024), including the Canadian Land 148 

Surface Scheme Including Biogeochemical Cycles (CLASSIC) (Melton et al. 2020), the Simplified Simple Biosphere model 149 

coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics model (SSiB4-TRIFFID-Fire) 150 

(Huang et al. 2020, 2021), the SPread and InTensity of FIRE (SPITFIRE) coupled with the Organizing Carbon and Hydrology 151 

In Dynamic Ecosystems (ORCHIDEE) (Yue et al. 2014), the Joint UK Land Environment Simulator (JULES) coupled with 152 

the INFERNO fire model (Mathison et al. 2023; Mangeon et al. 2016), the LPJ-GUESS dynamic global vegetation model 153 

coupled to the SPITFIRE (LPJ-GUESS-SPITFIRE) and SIMple FIRE model (SIMFIRE) (Knorr et al., 2016)and BLAZe 154 

induced biosphere-atmosphere flux Estimator (BLAZE) (LPJ-GUESS-SIMFIRE-BLAZE) (Rabin et al. 2017), and the 155 

Vegetation Integrative Simulator for Trace gases (VISIT) (Ito 2019). Driven by GSWP3-W5E5 historical climate forcing 156 

(Cucchi et al. 2020; Lange et al. 2021), these models provides monthly burned area at 0.5º spatial resolution from 1901-2019. 157 
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The multi-model output during 2001-2019 is used in this study. We also performed the benchmarking simulation using the 158 

built-in process model in ELM-BGC.  159 

The process-based models differ from one another not only in their dynamic global vegetation models (DGVMs) but also 160 

in the complexity of their fire models. ELM-BGC and SSiB4-TRIFFID utilized the same fire model from Li et al. (2012), LPJ-161 

GUESS-SPITFIRE and ORCHIDEE both coupled with SPITFIRE. Other models incorporate their own unique fire modules. 162 

The representation of fires over croplands and pastures varies across models (Burton et al. 2024; Teckentrup et al. 2019). Most 163 

models, except for JULES, classify croplands as non-burnable. JULES treats croplands similarly to natural grasslands, while 164 

all other models exclude croplands from burning. Most models do not include pasture as a PFT, therefore, do not distinguish 165 

pastures from grasslands in terms of both growth and fire behavior. In LPJ-GUESS-SIMFIRE-BLAZE, pastures are harvested, 166 

leading to reduced biomass and consequently a smaller burned area. The difference among process-based models will be 167 

discussed in Section 4. 168 

2.2.2 Surface meteorological, lightning, and socioeconomic datasets 169 

Surface meteorological variables, including temperature, humidity, wind speed, downward shortwave radiation, downward 170 

longwave radiation, precipitation, and surface pressure, are obtained from NLDAS-2 (Phase 2 of the North American Land 171 

Data Assimilation System) forcing fields to both drive the ELM and construct the training set for the ML fire model. This 172 

dataset combines multiple sources of observations (such as precipitation gauge data, satellite data, and radar precipitation 173 

measurements) to produce estimates of climatological properties at or near the Earth’s surface at hourly temporal resolution 174 

and 1/8th-degree grid spacing. We use the temperature, relative humidity, specific humidity, wind speed, and precipitation 175 

directly from NLDAS-2 to train the ML fire model. Additionally, we calculate the Standardized Precipitation 176 

Evapotranspiration Index (SPEI) following (Beguería et al. 2014) and vapor pressure deficit (VPD) based on NLDAS-2 dataset 177 

as additional input for the ML model (Table 1). We coarsen this dataset to 0.25º to align with burned area datasets.  178 

In addition to surface meteorological forcing, we acquire lightning and socioeconomic datasets from multiple sources, 179 

while identical to those used by ISIMIP3a fire models. The 2-hourly climatology lightning flashes data from NASA LIS/OTD 180 

v2.2 at 2.5º resolution are used to calculate the number of natural ignitions. Lightning data are aggregated by summing the 2-181 

hourly data to derive monthly climatological means, and these monthly climatologies are repeated across all years, disregarding 182 

interannual variations. The annual gridded population density data is acquired from Goldewijk et al. (2017), while the GDP 183 

per capita is from the World Bank (https://data.worldbank.org/),  which are assigned constant values for all months within 184 

each corresponding year. All datasets are spatially resampled to a 0.25º×0.25º grid using bilinear interpolation. To train the 185 

ML model, additional inputs, including top-layer soil moisture, LAI, and spatial fraction of each plant functional type (PFT), 186 

are simulated by ELM (explained further in Section 2.3).  187 

https://data.worldbank.org/
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Table 1 Meteorological forcing, land surface properties, and fire specific inputs for driving the ELM-BGC and training the offline-188 
XGB fire model. 189 

Meteorological forcing Land surface property 
Temperature 

NLDAS-2 

Soil moisture 

ELM-BGC output Relative humidity Leaf area index 
Wind speed Plant functional type (PFT) 

fraction 
Precipitation Fire specific inputs 
Standardized precipitation 
evapotranspiration index (SPEI) 

Lightning NASA LIS/OTD v2.2 

Vapor pressure deficit (VPD) GDP World Bank 
  Population density Goldewijk et al. (2017) 

2.3 Model configuration and offline-XGB training and coupling processes 190 

In ELM-BGC, vegetation properties, including canopy height and LAI, vary with carbon allocation and distribution, driven 191 

by climate variability and disturbances such as wildfires. To bring the model’s carbon and nitrogen pools into equilibrium, we 192 

first conduct long-term spin-up simulations as suggested by Lawrence et al. (2011). We adopt a two-step approach consisting 193 

of a 400-year accelerated decomposition (AD) spin-up followed by a 400-year regular spin-up, driven by cycling NLDAS-2 194 

meteorological forcing from 1981 through 2000. In the AD spin-up, acceleration factors will be applied to accelerate 195 

decomposition in soil organic matter pools, and for plant dead stem and coarse root mortality. The terrestrial carbon pools and 196 

vegetation distribution after spin-up simulations reach quasi-equilibrium states after the 800-year simulations. 197 

Initialized with the quasi-equilibrium state from the spin-up simulation, we conduct transient simulations with the process-198 

based fire model in the ELM-BGC, driven by hourly NLDAS-2 meteorological forcings at a 0.25º resolution from 2001 to 199 

2020. The process-based fire model operates on an hourly basis, matching the frequency of the meteorological inputs, while 200 

the ML fire model is trained and applied at a monthly interval, consistent with GFED5 data intervals. For training the offline-201 

XGB model, the ELM-BGC outputs, including LAI, surface soil moisture, and PFT fractions, are averaged to monthly intervals, 202 

combined with monthly mean meteorological conditions, socioeconomic variables (GDP, population density), and lightning 203 

(as detailed in Table 1) to learn the relationship between predictors and burned area. To reduce overfitting, the 20-year dataset 204 

is split, with 80% used for training and 20% for validation. During training, grid cells with fewer than 30 months of non-zero 205 

burned area (~two-thirds of the total number of grid cells) are masked. This step is important to avoid feeding the ML model 206 

distinct predictor combinations that all correspond to zero burned areas, which could skew the model's learning process. Model 207 

performance was evaluated based on its accuracy in predicting the spatial distribution and temporal variation of burned areas. 208 

Validation metrics included root mean square error (RMSE) and the coefficient of determination (R2). 209 

We then integrate the offline-XGB to ELM-BGC, forming the coupled model ELM2.1-XGBfire1.0. The coupled model 210 

runs at 0.25º and hourly resolutions, where the hourly model predictions are accumulated to calculate monthly means. At the 211 



9 
 
 

end of each month, the ML fire model is called to predict the monthly burned area, updating the land surface properties (e.g., 212 

LAI and vegetation height), carbon cycling (biotic carbon in each pool), and ecohydrology processes (photosynthesis and soil 213 

moisture) in ELM-BGC. 214 

2.4 Ecoregion 215 

We evaluate the model simulated burned area for each ecoregion adopted from the U.S. Environmental Protection Agency 216 

(EPA). Ecoregions are areas where ecosystems (and the type, quality, and quantity of environmental resources) are generally 217 

similar (Omernik and Griffith 2014) and generally, wildfire properties in each ecoregion are similar. A combination of level I 218 

and level II ecoregions is used and some types have been combined to focus on the broad vegetation distribution. As shown in 219 

Figure 2, the Western Forested Mountains include NW Forested Mountains, Marine West Coast Forests, and Mediterranean 220 

California from ecoregion level 1. The North American (NA) Deserts include NA Deserts and small portions of Temperate 221 

Sierras and Southern Semi-Arid Highlands. The Northeast (NE) Temperate Forests include Mixed Wood Shield, Mixed Wood 222 

Plains, and Atlantic Highlands from ecoregion level II. The Southeast (SE) Temperate Forests include Southeastern U.S. Plains 223 

Ozark, Ouachita-Appalachian Forests, and Mississippi Alluvial and Southeast U.S. Coastal Plains ecoregion level II.  224 

  225 

Figure 2: Ecoregions used in fire model evaluation. 1 – Western Forested Mountains, 2 – NA Desert, 3 – Great Plains, 4 – SE 226 
Temperate Forests, and 5 – NE Temperate Forests. 227 
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3 Results 228 

3.1 Evaluation of the burned area spatial distribution  229 

The burned areas across the CONUS exhibit a strong spatial variation (Fig. 3a), primarily influenced by climate, vegetation, 230 

and human activities. According to the GFED5, the CONUS experiences an average burned area fraction (BAF) of 0.6–0.9% 231 

yr-1 (4.8–7.1 Mha yr-1). The BAF in the WUS (Western Forested Mountains and NA Desert) ranges between 0.4–0.9% yr-1 232 

(1.1–2.3 Mha yr-1). States like California, Oregon, and Nevada, as well as the Rocky Mountain region, including parts of 233 

Colorado and Wyoming, experience large wildfires. The wildfires in the Pacific Northwest and northern California are 234 

generally lightning-caused and occur in boreal forests (Balch et al. 2017), whereas those in southern California are primarily 235 

caused by human ignition in dry forests and shrublands. The Southwest, including Arizona and New Mexico, also sees 236 

significant burned areas in shrublands and dry forests. In the Great Plains, states such as Kansas and North Dakota also exhibit 237 

high burned areas, alongside with Texas and Oklahoma, with a BAF ranging between 0.7–1.3% yr-1 (1.6–2.9 Mha yr-1). These 238 

high burned areas are primarily contributed by agricultural fires, particularly for cleaning crop residues and managing pastures 239 

(Donovan et al. 2020). The Southeastern U.S. experiences 0.9–1.5% yr-1 (1.5–2.6 Mha yr-1) BAF annually, while the temperate 240 

forested areas covering Florida, Georgia, and the Carolinas, show lower burned areas compared to the West. The Midwest and 241 

Northeast exhibit sparse burned areas, with BAF mostly less than 0.16–0.25% yr-1 (0.2–0.3 Mha yr-1). Burned areas in GFED4s 242 

and FireCCI5.1 are much smaller than GFED5 due to the underrepresentation of small fires. The overall spatial distributions 243 

are generally consistent across the three datasets, as shown by the high spatial correlation coefficients (𝑅!).  244 

 245 
Figure 3: Observed burned area fraction (% yr-1). (a) GFED5 (2001-2019), (b) GFED4s (2001-2016), and (c) FireCCI5.1 (2001-2019).  246 
The numbers indicate the mean (M) burned area fraction and burned area (in Mha) in brackets for each dataset. The pattern 247 
correlation (R) against GFED5 is also shown, with an asterisk (*) denoting significance at the 0.01 level. Black contours outline the 248 
ecoregions.  249 

The offline-XGB wildfire model reproduces the burned area distribution over the CONUS well (Fig. 3b), with a 𝑅! of 0.98 250 

(𝑝<0.01) and a bias of -1.0 Mha yr-1. While integrated with ELM, the performance degraded (𝑅!=0.59, 𝑝<0.01, bias=1.9 Mha 251 

yr-1) (Fig. 3d). This degradation is likely due to the fire-vegetation feedbacks. The aboveground biomass and fuel moisture 252 

from ELM-BGC have been used to train the offline-XGB prior to the coupled run within ELM. In the coupled simulation, 253 
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ELM2.1-XGBfire1.0 updates the biotic carbon and fuel moisture based on the burned area simulated in the previous timestep. 254 

Consequently, differences in the simulated burned area compared to the process-based models are reflected in the biotic carbon 255 

and fuel moisture, accumulating over the 20-year simulation period and influencing the burned area simulation in subsequent 256 

timesteps. 257 

  258 
Figure 4: Same as Figure 3, but shows model outputs. The pattern correlation (R) and bias (B) against GFED5 are denoted.  259 

In various ecoregions, the offline-XGB model demonstrates minimal biases, and the ELM2.1-XGBfire1.0 consistently 260 

outperforms all process-based fire models in predicting annual mean burned area (Fig. 4a-b). The accurate simulation of burned 261 

area over the Western Forest Mountains indicates that the ELM2.1-XGBfire1.0 framework generally captures the complex 262 

interplays between climate, vegetation, and human activities, with both climate forcings and predicted vegetation status from 263 

ELM-BGC. Meanwhile, the ELM2.1-XGBfire1.0 shows superior performance over the Great Plains, indicating that the ML 264 

model effectively describes crop fire thereby utilizing data on crop fraction and LAI. 265 

The performance of the eight process-based fire models in simulating burned areas over the CONUS shows both strengths 266 

and weaknesses (Figs. 4c-j and Fig. 5). All models generally capture the high burned areas in key regions such as the WUS 267 

and Southeast U.S., except for ORCHIDEE showing a concentrated burned area in the Great Plains and LPJ-GUESS-268 

SIMFIRE-BLAZE models missing fires in SE U.S. However, all process-based models tend to overestimate burned areas in 269 

various regions across the CONUS. ELM-BGC has moderate overestimations over the CONUS, with 3.83 Mha yr-1. The 270 

burned areas are doubled in CLASSIC, ORCHIDEE, JULES and VISIT simulations, with values up to 20.7 Mha yr-1 (Fig. 4a).  271 
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In the Western Forest Mountains, where fuel is abundant due to dense forest coverage, all process-based models except 272 

ORCHIDEE simulate 2 to 5 times of GFED5 burned area. This overestimation can be related to many factors including 273 

overestimation of fuel combustibility and underrepresentation of anthropogenic fire suppression (Balch et al., 2017). In contrast, 274 

wildfires in the NA Desert are primarily constrained by the fuel load. ELM-BGC and CLASSIC produce smaller 275 

overestimations, while SSiB4-TRIFFID-Fire, VISIT, JULES, and LPJ-GUESS models significantly overestimate the burned 276 

area (4–16 times of GFED5), likely due to overestimations of fuel load, which might be attributed to insufficient water stress 277 

on vegetation growth in the arid region (Liu and Xue 2020; Z. Zhang et al. 2015). Although none of the process-based models 278 

accurately capture the spatial distribution of burned area over the Great Plains (Fig. 1), ELM-BGC, SSiB4-TRIFFID-Fire, and 279 

VISIT produce comparable burned areas to observations while CLASSIC and ORCHIDEE overpredict them (4–7 times of 280 

GFED5). The inaccurate description of the spatial pattern and large inter-model spread in the Great Plains may be caused by 281 

inaccurate treatments of cropland fires and pasture fires (Donovan et al. 2020). As noted by Teckentrup et al. (2019) and 282 

Burton et al. (2024), none of the process-based models has activated the explicit cropland fire model. While LPJ-GUESS-283 

SIMFIRE-BLAZE incorporates harvesting in pastures, reducing biomass and influencing fire dynamics, all other process-284 

based vegetation models do not distinguish pastures from natural grasslands for both vegetation growth and fire processes. 285 

Therefore, information on how fuel properties, including amount as well as physical (e.g., bulk density) and chemical 286 

characteristics, and fire ignitions differ between pastures and natural grasslands could help to improve burned area simulation 287 

in the process-based fire models (Rabin et al. 2017). Fuel management practices, such as prescribed burning and grazing, can 288 

significantly alter fire dynamics but are generally absent in current models. In the eastern U.S. (EUS) forests (Southeast and 289 

Northeast Temperate Forests ecoregions), fires are more managed by prescribed burning, leading to fewer uncontrolled 290 

extreme wildfires. Although prescribed burning as an additional ignition source is not included in the process-based models, 291 

ignition is not a limiting factor in this region due to the abundance of lightning, which provides sufficient natural ignition 292 

sources. Consequently, the burned area is primarily controlled by fire spread, which is influenced by natural conditions such 293 

as fuel availability and wind, allowing the models to perform well in simulating fire dynamics.  294 
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  295 

  296 
Figure 5: Observed and simulated mean burned area fraction (% yr-1) over the CONUS and eco-regions. The red line in each panel 297 
indicates the observed burned area. Modeled burned areas greater than 4 % yr-1 are truncated with the value denoted on the bar.  298 

3.2 Evaluation of the burned area temporal variability 299 

We evaluate the model performance in simulating the monthly burned area and depicting fire seasons. Fire season is defined 300 

as a monthly burned area greater than 1/12 of the annual total burned area. The CONUS has two fire seasons, i.e., March-301 

April-May and August-September-October, affected by both climate and human activities (Fig. 6a). The WUS fire season 302 

spans from early summer to late fall, primarily determined by the dry conditions and high temperature during these months 303 

(Safford et al. 2022; Schoennagel et al. 2017). Specifically, over the Western Forest Mountains, the fire season includes July 304 

to November (Fig. 6b). Most models capture the July to October fire season, except for ORCHIDEE (May-August). However, 305 

only offline-XGB, SSiB4-TRIFFID-Fire, and CLASSIC simulate the peak fire month in August, while others simulate a peak 306 

~ 1–2 months late. Similar fire season and model performance are observed over the NA Desert (Fig. 5c). In wildfire-dominant 307 

regions, the shift in fire peak months might be related to the representation of seasonality in vegetation production and fuel 308 

build-up in the BGC model (Hantson et al. 2020).  309 
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Human activities can also change the timing of fire occurrence (Le Page et al. 2010). Over the Great Plains, pasture fires 310 

are conducted during late winter to early spring to control pests, recycle nutrients, and prepare fields for planting (Gates et al. 311 

2017). During the late summer to early fall, crop fires are conducted to clear crop residues. However, these fires may become 312 

uncontrolled, leading to larger fires that significantly impact the region. The fire seasons due to pasture fires and crop fires are 313 

evident in observations and are captured in offline-XGB and ELM2.1-XGBfire1.0, despite ELM2.1-XGBfire1.0slightly 314 

underestimating the peak in March. Except for LPJ-GUESS-SPITFIRE, none of the process-based models is able to simulate 315 

these periods, instead, a summer fire season is predicted. LPJ-GUESS-SPITFIRE produces peaks in both spring and summer. 316 

In SE Temperate Forests, routinely prescribed burns reduce large fire occurrences across the year (Mitchell et al. 2014). The 317 

dry condition and/or fallen vegetation fuel larger burned areas in February–March and September–November. The ML-based 318 

models generally reproduce the fire seasons in March–April and September–November while none of the process-based 319 

models captures the bimodal seasonality. The results of NE Temperate Forests are similar to Great Plains, expect no peak 320 

burned area appears in November. The offline-XGB and SSiB4-TRIFFID-Fire capture the spring peak. To the best of our 321 

knowledge, ELM-BGC is one of the few process-based models capable of explicitly simulating crop fires; however, this feature 322 

was not enabled in our study. None of the models used here include explicit representations of pasture burning. Our evaluation 323 

suggests that including anthropogenic fires could help to improve model simulations in Central and Eastern US. However, this 324 

requires a better understanding of how fire is used for land management under different socioeconomic and cultural conditions 325 

(Pfeiffer et al., 2013; Li et al., 2013). 326 
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  327 

 328 
Figure 6: Monthly mean burned area fraction (% yr-1) over each eco-region. Vertical shadings indicate the fire seasons, monthly 329 
burned area greater than 1/12 of the total burned area, shadings along x-axes indicate one-standard deviation across the years.  330 

Over the CONUS, the observed interannual variability (IAV), measured using standard deviation, is 0.7 Mha yr-1, 331 

representing 12% of the annual total burned area in GFED5 (Fig. 7a). GFED4s and FireCCI5.1 suggest 1.1 Mha yr-1 (45%) 332 

and 0.9 Mha yr-1 (30%), respectively. Process-based models greatly overestimate the IAV, ranging from 2.5 (LPJ-GUESS-333 

SIMFIRE-BLAZE) to 6.6 (VISIT) Mha yr-1. The relative IAV regarding the modeled annual mean value, ranging from 12% 334 

(JULES) to 41% (ELM-BGC), generally within the range of observations. The machine learning models, offline-XGB and 335 

ELM2.1-XGBfire1.0 produce IAV of 0.6 Mha yr-1 (11%) and 0.8 Mha year-1 (10%), respectively.  336 

Despite the magnitude of IAV being amplified by process-based models, after extracting the mean values and dividing by 337 

standard deviation, the standardized time series well correlated with the observation (Fig. 7b). Since the modeled IAV is 338 

generally influenced by climate variability and the climate-driven fuel variability, both process-based and ML-based models 339 

capture the timing of the fluctuations.  340 
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     341 
Figure 7: Annual total burned area (Mha yr-1). (a) Annual total and (b) standardized by removing mean and standard deviation.  342 

Monthly temporal variability in burned areas demonstrates significant regional differences across the eco-regions (Fig. 8). 343 

Over the entire simulation period, the ML-based models generally capture the timing of wildfires across the CONUS with a 344 

temporal correlation coefficient greater than 0.5 (p < 0.01), whereas the process-based models exhibit a correlation of only 0.3 345 

(p > 0.01). The ML-based models also effectively capture the temporal variability across the eco-regions, although there is a 346 

slight decrease in the ELM2.1-XGBfire1.0 in the Great Plains and EUS. This decrease is likely related to the fire-vegetation 347 

feedback, which alters the fuel condition differently from the training set. In contrast, the process-based models show 348 

comparable correlations as the ML-based models in the WUS but fail to accurately predict burned area temporal variations in 349 

the Great Plains and EUS. Again, climatic factors play a dominant role in shaping the temporal variability of BAF in the WUS, 350 

while human activities largely influence the BAF in the Great Plains and EUS (Kupfer et al. 2020; Y. Chen et al. 2023). 351 

Process-based models tend to better describe responses of fuel load and combustibility to climate than responses of fire ignition 352 

and suppression to human activities (Hantson et al. 2016).  353 
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  354 
Figure 8: Monthly correlation coefficient between simulations and GFED5 over each eco-region.  355 

4 Discussion and Conclusion 356 

4.1 Overview of the hybrid framework 357 

This study introduces a hybrid framework integrating an XGBoost wildfire model into an Earth system model (ELM-BGC), 358 

resulting in ELM2.1-XGBfire1.0. Both offline and coupled versions of the ML model were evaluated against observations and 359 

compared to eight state-of-the-art process-based models. The offline-XGB significantly reduces burned area biases, 360 

particularly in the WUS, while the ELM2.1-XGBfire1.0 retains the spatial and temporal accuracies with slightly reduced 361 

performances. In regions such as the Great Plains and EUS, where human activities are major influences, offline-XGB and 362 

ELM2.1-XGBfire1.0 outperform all process-based models.   363 

4.2 Challenges and insights for process-based models 364 

We acknowledge that the simulation biases in process-based models may come from multiple sources. All ISIMIP3a fire 365 

models were driven by daily GSWP3-W5E5 forcings at a 0.5º spatial resolution. Differences in forcing data could lead to 366 

variations in burned area predictions. However, given that both ELM-BGC and ELM2.1-XGBfire1.0 are driven by the same 367 

set of forcings yet produce markedly different burned area predictions, we suggest that limitations in physical understanding 368 

may play a dominant role in hindering the performance of the process-based model. By contrast, the ML model incorporates 369 
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the crop PFT fraction and is trained with data that include agricultural burning, allowing it to capture burning patterns often 370 

missing or underrepresented in process-based models. Meanwhile, all process-based fire models used in this study have used 371 

GFED4s or earlier versions as a reference for calibration. GFED5 captures significantly more small fires compared to GFED4s, 372 

making the CONUS annual burned area increase by 156%, with crop fire increasing by 240% (Chen et al., 2023). The inclusion 373 

of crop fires is particularly impactful in the CONUS. 374 

The process-based fire models used in this study differ in both fire models and DGVMs. VISIT, JULES, LPJ-GUESS-375 

SIMFIRE-BLAZE employ the semi-empirical fire models (Thonicke et al. 2001; Pechony and Shindell 2009; Knorr et al. 376 

2014), in which burned area is calculated without an explicit rate-of-spread model (Hantson et al. 2016). The CLM-Li fire 377 

model (Li et al., 2012), a fire model of intermediate complexity, is incorporated into both ELM-BGC and SSiB4-TRIFFID-378 

Fire and partially used in CLASSIC (Melton and Arora, 2016). Consequently, similar performance is observed among these 379 

models, although CLASSIC tends to exhibit larger overestimation. The highly complex SPITFIRE model (Thonicke et al. 380 

2010) provides a more comprehensive description of fire behavior (e.g., fire duration and flame height) and is coupled with 381 

ORCHIDEE and LPJ-GUESS to describe the fire impact depending on plant traits (bark thickness and crown height). Although 382 

SPITFIRE provides more comprehensive description of fire, it does not outperform other fire models in regard to burned area 383 

simulation (Hantson et al. 2020).  384 

With more sophisticated parametrization and fire parameters introduced, more observational analyses are required to 385 

understand the mechanism behind and to constrain the parametric uncertainty. The fire-vegetation feedbacks further 386 

complicate this problem, with more complex dynamic vegetation models being slow to reach equilibrium after disturbances. 387 

The choice of prescribed or dynamic vegetation could also play a role; note that among all the process-based models, CLASSIC, 388 

VISIT, and ELM used prescribed vegetation while all others used dynamic vegetation. It is noteworthy that parameters 389 

involved in wildfire prediction are calibrated to align with the research interests of the institutes developing and managing 390 

these models. Advancing the physical understanding wildfire processes for the CONUS and fine-tuning model parameters 391 

towards the new burned area dataset hold the potential to improve model performance (Huang et al., 2020). 392 

4.3 Impact on carbon dynamics and broader application 393 

Although ELM2.1-XGBfire1.0 significantly improves the simulation of burned areas, its impact on terrestrial carbon fluxes 394 

remains limited. Within the CONUS, fires primarily affect the terrestrial carbon cycle at localized scales due to the relatively 395 

small burned areas. ELM-BGC, for instance, underestimates gross primary production (GPP) by approximately 30% (figure 396 

not shown). With more accurate fire predictions, ELM2.1-XGBfire1.0 helps to slightly reduce this negative bias (less than 397 

1%). Additionally, while ELM-BGC using prescribed PFT distributions can suppress the effects of fires on the ecosystem, it 398 

does not account for fire-induced shifts in vegetation species, where species with greater resistance or fire-adaptive traits may 399 

gradually dominate. Nonetheless, the coupling remains valuable, especially when the model is configured at higher resolutions. 400 

It is particularly important for evaluating fire-induced tree mortality, post-fire recovery, fire emissions, and their subsequent 401 

impacts on air quality, cloud formation, and surface meteorology, particularly when ELM is run as part of the E3SM.  402 
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The development and application of ML4Fire-XGB represent a significant step forward in our ability to model wildfire 403 

dynamics in regions with complicated interactions between fires, ecosystems, climate, and human activities, bypassing the 404 

explicit understanding of physical processes. By incorporating ML wildfire model into a land surface model, we address the 405 

critical need for enhanced predictive capabilities at subseasonal to seasonal scales. Meanwhile, the predictability can adapt to 406 

the evolving nature of fire regimes under climate change. This research not only contributes to the scientific community's 407 

understanding of fire-ecosystem-climate interactions but also provides a practical tool for policymakers and resource managers 408 

engaged in wildfire preparedness and response. 409 
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