
 Response to Reviewer #1 

 We  sincerely  appreciate  the  referees  for  their  valuable  and  insightful  comments  on  our 
 manuscript.  The  feedback  is  instrumental  in  enhancing  the  quality  and  clarity  of  our  research. 
 These  comments  are  not  only  valuable  but  also  serve  as  a  critical  resource  for  improving 
 various  aspects  of  our  article,  including  methodology,  data  interpretation,  and  overall 
 presentation.  We  have  taken  each  comment  seriously  and  conducted  a  thorough  review  of  our 
 manuscript to ensure that we comprehensively address all concerns raised by the referees. 

 This  response  document  provides  a  detailed  account  of  the  changes  implemented  in  relation  to 
 each  specific  comment  from  the  referee.  For  ease  of  reference,  referee  comments  are 
 presented  in  black,  while  author  responses  are  highlighted  in  blue,  with  modifications  to  the 
 manuscript in italic font. The line numbers correspond to the clean version of the revision. 

 General comments 

 This  manuscript  builds  on  previous  work  that  used  climate  forcing  observations  and  vegetation 
 model–derived  vegetation  outputs  to  build  a  fire  model  over  the  continental  U.S.  (CONUS)  using 
 the  XGBoost  machine  learning  algorithm.  Here,  the  authors  couple  that  fire  model  back  into  the 
 ELM  land  and  vegetation  model,  resulting  in  marked  improvements  relative  to  the  built-in, 
 process-based  ELM  fire  model  in  terms  of  total  burned  area,  its  seasonal  timing,  and  its 
 interannual  variability.  There  is  (as  expected)  some  decrease  in  performance  relative  to  the 
 uncoupled  ML  fire  model,  but  not  much.  The  authors  also  compare  their  ELM  simulations  with 
 other  process-based  fire  models  in  the  FireMIP  experiments.  The  manuscript  is  mostly 
 well-structured,  the  figures  are  easy  to  understand,  and  the  writing  is  for  the  most  part  clean  and 
 clear. 

 Process-based  fire  models  are  notoriously  complicated  and  uncertain,  so  I  am  quite  interested 
 in  the  potential  of  machine  learning  to  supplement,  complement,  or  even  replace  them. 
 However,  I  have  serious  concerns  about  the  usefulness  of  the  particular  model  system 
 described  here.  I  also  have  various  less-severe  but  still-important  concerns  related  to 
 methodological and analytical issues. 

 To  some  extent  these  can  be  addressed  by  expanding  the  Discussion  and  adding  subsections 
 for  organization.  The  authors  should  reduce  the  amount  of  space  in  the  Discussion  dedicated  to 
 reiterating  already-stated  results,  instead  only  re-presenting  results  as  needed  to  support  new 
 assertions.  However,  my  fundamental  concern  about  the  usefulness  of  the  model  system 
 presented  here  will  require  a  fair  amount  of  additional  work.  I  thus  recommend  this  paper  be 
 reconsidered after major revisions. 

 Thank  you  for  your  thorough  review  and  valuable  insights.  We  agree  that  the  discussion  section 
 would  benefit  from  additional  subsections  to  better  organize  key  points  and  reduce  repeated 
 results.  We  will  reorganize  this  section,  highlighting  methodological  implications  and  comparison 
 insights  while  minimizing  redundancy.  Additionally,  we  fully  agree  with  your  perspective  on  the 
 roles  of  process-based  models  and  machine  learning  approaches.  Process-based  models 



 provide  critical  insights  into  mechanistic  processes,  while  machine  learning  approaches  offer 
 opportunities  to  capture  complex  patterns  that  may  be  challenging  to  model  directly.  We  believe 
 combining  these  methods  can  enhance  predictive  capabilities  and  address  uncertainties 
 effectively.  We  have  reorganized  the  Discussion  section  to  avoid  repeating  contents  and  extend 
 the discussions. 

 Specific comments 

 Utility or “fitness for purpose” of ML-based fire model 

 First,  I  want  to  outline  what  this  concern  is  not  about.  There  is  a  long-standing  philosophical 
 question  of  whether  an  empirical  model  can  ever  be  trusted  outside  the  time  period  and/or 
 environmental  conditions  in  which  it  was  trained.  Climate  change  and  socioeconomic 
 developments  are  expected  to  introduce  never-before-seen  combinations  of  environmental 
 conditions  and  human  behavior,  requiring  extrapolation.  Some  people  considering  this  issue 
 conclude  that  only  process-based  models  are  useful.  However,  I’m  not  making  that  argument 
 right  now—my  mindset  is  that  process-based  models  are  also  imperfect,  so  empirical  and  ML 
 models can be useful as well. 

 My  concern  is  more  that  methodological  issues  in  this  paper  make  it  so  that  I’m  not  sure  of  the 
 usefulness of  this particular  model system. There  are two main reasons for this. 

 First,  there  is  not  actually  one  “offline-XGB”  fire  model,  but  rather  twenty—one  for  each  year. 
 The  authors  did  this  in  an  attempt  to  avoid  “overfitting.”  Their  use  of  that  word  doesn’t  fit  with 
 how  I  understand  it,  so  I  interpreted  it  as  them  avoiding  training  and  testing  their  model  on  the 
 same  data.  This  is  an  important  goal,  but  by  choosing  to  do  it  this  way,  there  is  no  single  model 
 presented  that  could  be  used  for  years  outside  2001–2020.  Instead,  randomly  excluding  (e.g.) 
 20%  of  gridcell-years  and  building  one  model  based  on  the  rest  would  allow  the  construction  of 
 one  canonical  model  that  could  be  used  for  prognostic  simulations.  (In  addition,  it’s  unclear 
 whether  the  authors  mask  low-fire  gridcells  only  in  training  or  also  in  simulations—if  the  latter, 
 prognostic  simulations  would  of  course  always  predict  zero  burned  area  there.)  This  means  that 
 the  ELM+offline-XGB  model  isn’t  actually  useful  as  a  predictive  tool,  contrary  to  the  authors’ 
 assertions (e.g., P14 L18–19, P16–17 L72–76). 

 We  fully  understand  your  concern.  The  concept  of  splitting  data  by  years  and  building  a 
 separate  model  for  each  year  was  to  ensure  all  the  predictions  were  not  using  data  that  the 
 machine  learning  model  had  seen  during  its  training  process.  However,  we  acknowledge  that 
 this  approach  oversights  the  usefulness  of  this  model.  Regarding  masking  low-fire  grid  cells,  we 
 only applied the mask during the training process. 

 In  the  revision,  we  have  trained  a  canonical  model  using  the  random  split  approach,  80%  for 
 training  and  20%  for  validation.  The  canonical  model  retains  the  performance  in  both  offline  and 
 coupled  models,  and  this  single  model  will  be  useful  in  prognostic  simulations.  For  more  details, 
 please see the responses to the specific comment. 
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 So  if  the  presented  model  isn’t  useful  for  prediction,  can  it  help  us  understand  anything  about 
 the  drivers  of  present-day  burned  area  and  its  trends  (as  the  authors  try  with  the 
 detrended-temperature  experiment)?  Unfortunately,  the  answer  to  that  question  is  also  no, 
 because  it’s  trained  on  unreliable  model  outputs  of  vegetation  biomass,  composition,  and 
 dynamics.  This  is  a  real  concern  with  highly-tuned  models,  including  ML  models,  which  can  end 
 up  being  “right  for  the  wrong  reason,”  using  one  process  to  compensate  for  another  that’s 
 poorly-represented.  While  observational  data  are  also  imperfect,  an  ML  model  trained  only  on 
 observations—especially  one  designed  with  explainability  in  mind—  would  be  more  trustworthy 
 when  it  comes  to  examining  the  influence  of  different  drivers.  I  think  the  authors  could  resolve 
 this  usefulness  issue  by  building  one  canonical  offline-XGB  fire  model,  enabling  its  use  in 
 prognostic  simulations.  I  don’t  really  have  a  problem  with  this  being  trained  on  ELM-simulated 
 vegetation  data;  yes,  that  will  mean  compensation  of  ELM’s  biases,  but  that  can  happen  in  pure 
 process-based  models  anyway.  However,  it  does  mean  that  the  detrended-temperature  analysis 
 should  be  removed  from  the  paper,  unless  both  the  ML  and  process-based  models’  temperature 
 responses  are  compared  to  a  purely-observation-based  analysis.  Removing  that  analysis  would 
 be fine for me, as I find it somewhat extraneous. 

 We  appreciate  your  understanding  of  training  the  ML  model  with  ELM-simulated  vegetation  data 
 and  your  insights  about  model  error  compensation.  We  acknowledge  the  limitation  of  attribution 
 analysis  using  a  highly-turned  model.  In  the  revision,  the  analysis  and  discussion  on  the 
 detrended temperature have been removed. 

 Methodological questions 

 • Sect. 2.1.2: 

 This  should  be  expanded  to  include  a  brief  summary  of  how  the  “pretrained”  model 
 worked—enough  for  the  reader  to  understand  what  “the  large-scale  patterns”  are  without  having 
 to consult Wang et al. (2021). 

 We  have  added  the  following  texts  to  expand  the  introduction  on  the  pretrained  XGBoost  model 
 (Lines 112-120). 

 In  this  study,  we  adapted  the  XGBoost  algorithm  used  in  Wang  et  al  (2021)  to  develop  an  offline 
 ML  fire  model  using  variables  directly  provided  by  ELM  at  each  grid  cell.  Wang  et  al.  (2021) 
 integrated  large-scale  meteorological  patterns  alongside  local  weather,  land  surface  properties, 
 and  socioeconomic  data  to  enhance  the  prediction  of  burned  areas.  The  large-scale  patterns 
 were  identified  using  singular  value  decomposition  (SVD)  to  capture  influential  atmospheric 
 conditions  that  develop  over  days  to  weeks  and  cumulatively  impact  the  monthly  burned  area. 
 The  feature  importance  analysis  in  their  study  noted  that  while  large-scale  patterns  improved 
 prediction,  however,  they  played  a  secondary  role.  Therefore,  we  exclude  the  large-scale 
 patterns  from  predictors  without  significantly  affecting  the  model  accuracy.  Hereafter  the 
 uncoupled XGBoost fire model is referred to as offline-XGB. 
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 It’s  also  a  bit  confusing  to  say  you’re  using  the  “pretrained”  model,  but  then  you  change  how  it 
 works  and  retrain  it  for  each  year  from  2001–2020.  Was  “pretrained”  supposed  to  mean  that  it’s 
 being trained offline, i.e., before being coupled? 

 Thanks for raising this great point. In the revision, we modified this sentence to: 

 In  this  study,  we  adapted  the  XGBoost  algorithm  used  by  Wang  et  al  (2021)  to  develop  an  offline 
 ML fire model using variables directly provided by ELM at each grid cell. 

 And 

 Hereafter the uncoupled XGBoost fire model is referred to as offline-XGB. 

 Excluding  low-burning  gridcells:  Is  this  just  in  training,  or  are  they  also  masked  in  simulations?  If 
 the latter, then the ELM-BGC and FireMIP outputs should also be masked. 

 The  low-burning  grid  cell  mask  is  only  applied  in  the  training  process.  We  have  clarified  this  in 
 the revision. 

 •  Analysis  of  effect  of  rising  temperature:  Why  is  ML4Fire-XGB  included  but  not  offline-XGB? 
 The latter is more what this paper is actually about. 

 In  the  original  manuscript,  we  used  ML4Fire-XGB  in  the  rising  temperature  experiment  to 
 account  for  the  temperature  effect  on  vegetation  growth  and  its  consequence  on  the  burned 
 area.  However,  we  agree  with  the  reviewer’s  inspection  of  this  analysis,  and  we  have  removed 
 the relevant analysis and discussion. 

 •  It’s  unclear  what  FireMIP  outputs  you  used.  P6  L43:  In  addition  to  Rabin  et  al.  (2017),  the 
 FireMIP  phase  1  burned  area  publication  should  also  be  cited.  This  might  be  Hantson  et  al. 
 (2020,  doi:10.5194/gmd-13-3299-2020),  but  the  models  chosen  here  aren’t  all  present  in  that 
 publication.  Hopefully  Rabin  et  al.  (2017)  describes  the  simulation  protocol  for  the  models 
 whose  output  you’ve  chosen  to  compare;  if  not,  a  different  publication  that  includes  the  protocol 
 should be cited. 

 Thank  you  for  pointing  out  the  confusion.  In  our  manuscript,  we  used  outputs  from  the  latest 
 FireMIP  models,  i.e.,  the  FireMIP  Phase  II  or  the  ISIMIP-Fire  sector  (ISIMIP3a) 
 (  https://protocol.isimip.org/#/ISIMIP3a/fire  ).  The  ISIMIP3a  experimental  design  follows  the 
 protocol  outlined  in  Rabin  et  al.  (2017),  with  all  models  using  a  common  set  of  climate  and 
 socioeconomic  (land-use,  GDP  etc)  data  provided  by  ISIMIP3a.  We  opted  for  ISIMIP3a  model 
 outputs  due  to  the  updates  in  fire  models  implemented  and  a  longer  simulation  period  post-2000 
 in  this  phase.  Although  there  is  no  specific  protocol  paper  for  ISIMIP3a,  two  publications  have 
 recently  been  made  available  (Burton  et  al.,  2024;  Park  et  al.,  2024).  At  the  time  of  our  study, 
 only  four  models  had  uploaded  results,  but  we  have  now  updated  our  analysis  to  include 
 outputs from all seven ISIMIP3a models, as detailed in Burton et al. (2024). 

 Reference: 
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 Burton,  C.,  Lampe,  S.,  Kelley,  D.  I.,  Thiery,  W.,  Hantson,  S.,  Christidis,  N.,  Gudmundsson,  L., 
 Forrest,  M.,  Burke,  E.,  Chang,  J.,  Huang,  H.,  Ito,  A.,  Kou-Giesbrecht,  S.,  Lasslop,  G.,  Li,  W., 
 Nieradzik,  L.,  Li,  F.,  Chen,  Y.,  Randerson,  J.,  Reyer,  C.  P.  O.,  and  Mengel,  M.:  Global  burned 
 area  increasingly  explained  by  climate  change,  Nat  Clim  Change, 
 10.1038/s41558-024-02140-w, 2024. 

 Park,  C.  Y.,  Takahashi,  K.,  Fujimori,  S.,  Jansakoo,  T.,  Burton,  C.,  Huang,  H.,  Kou-Giesbrecht,  S., 
 Reyer,  C.  P.  O.,  Mengel,  M.,  Burke,  E.,  Li,  F.,  Hantson,  S.,  Takakura,  J.,  Lee,  D.  K.,  and 
 Hasegawa,  T.:  Attributing  human  mortality  from  fire  PM2.5  to  climate  change,  Nat  Clim  Change, 
 10.1038/s41558-024-02149-1, 2024. 

 Inconsistency of comparisons 

 •  This  manuscript  compares  ML-based  model  performance  against  GFED5—were  the 
 process-based  models  parameterized  against  that?  Probably  not,  because  it’s  pretty  new. 
 GFED5  has  61%  more  burned  area  than  GFED4s  (which,  the  process-based  fire  models  may 
 have  been  calibrated  against  GFED4  or  even  3).  Although  I’m  not  sure  how  much  the  increase 
 was in CONUS. This should all be explored in the Discussion. 

 We  appreciate  the  reviewer’s  concern,  particularly  as  we  developed  one  of  the  process-based 
 models  participating  in  ISIMIP3a,  and  GFED4s  served  as  the  reference  dataset  for  global  fire 
 calibration  in  these  models.  The  CONUS  annual  burned  area  increases  from  2.36  Mha  in 
 GFED4s  to  6.04  Mha  in  GFED5,  primarily  contributed  by  the  increase  in  crop  burned  area  from 
 0.83  Mha  to  3.09  Mha.  For  the  ML  model  training,  we  chose  GFED5  because  it  has  been  shown 
 to  better  capture  small  fires  compared  to  earlier  datasets  (Chen  et  al.,  2023;  Roteta  et  al., 
 2019),  which  often  under-represent  prevalent  agricultural  fires  in  the  Central  U.S.  Additionally, 
 GFED5  is  now  used  as  the  reference  dataset  in  the  latest  FireMIP/ISIMIP3a  publication  (e.g., 
 Burton  et  al.,  2024)  .  While  differences  in  magnitude  exist  between  GFED5  and  GFED4s  in 
 burned  area  estimates  within  CONUS,  these  datasets  also  share  common  features.  The  spatial 
 correlations  of  GFED4s  and  FireCCI5.1  against  GFED5  are  over  0.66.  In  the  revision,  we  have 
 added  a  new  figure  (Figure  3,  also  see  below)  comparing  GFED5,  GFED4s,  and  FireCCI5.1. 
 The  process-based  models  indeed  face  challenges  in  accurately  predicting  burned  areas  over 
 CONUS, even when evaluated against GFED4s or FireCCI5.1. 

 Figure  3:  Observed  burned  area  fraction  (%  yr-1).  (a)  GFED5  (2001-2019),  (b)  GFED4s 
 (2001-2016),  and  (c)  FireCCI5.1  (2001-2019).  The  numbers  indicate  the  mean  (M)  burned 
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 area  fraction  and  burned  area  (in  Mha)  in  brackets  for  each  dataset.  The  pattern  correlation 
 (R)  against  GFED5  is  also  shown,  with  an  asterisk  (*)  denoting  significance  at  the  0.01 
 level. Black contours outline the ecoregions  . 

 We  also  extend  the  discussion  to  highlight  that  the  process-based  models  were  calibrated 
 towards  GFED4s  or  earlier  versions.  Advancing  the  physical  understanding  of  wildfire 
 processes  and  calibrating  towards  the  GFED5  burned  area  may  improve  the  overall 
 performance in simulating the burned area in CONUS. 

 Reference 

 Chen,  Y.  et  al.  Multi-decadal  trends  and  variability  in  burned  area  from  the  fifth  version  of  the 
 Global Fire Emissions Database (GFED5). Earth Syst Sci Data 15, 5227–5259 (2023). 

 Roteta,  E.,  Bastarrika,  A.,  Padilla,  M.,  Storm,  T.  &  Chuvieco,  E.  Development  of  a  Sentinel-2 
 burned  area  algorithm:  Generation  of  a  small  fire  database  for  sub-Saharan  Africa.  Remote 
 Sens Environ 222, 1–17 (2019). 

 •  I’m  not  sure  exactly  what  FireMIP  simulations  you  used,  but  they  almost  certainly  used 
 different  climate,  lightning,  population  density,  and/or  GDP  inputs  from  the  ELM  simulations  here 
 (as well as the uncoupled ML4Fire-XGB training and usage). 

 This  study  uses  model  simulations  from  the  ISIMIP3a  (FireMIP  phase  II).  In  our  ELM-BGC  and 
 ELM2.1-XGBfire1.0  (the  coupled  ELM  and  XGB  fire  model)  simulations,  we  adopted  the  same 
 lightning,  CO₂,  population  density,  and  GDP  data  used  in  ISIMIP3a,  with  the  exception  of  the 
 climate  forcing  data.  To  focus  on  fires  in  CONUS,  we  applied  the  hourly  NLDAS  climate  forcing 
 at  a  spatial  resolution  of  0.25º,  rather  than  the  daily  GSWP3-W5E5  forcing  at  0.5º  used  in 
 ISIMIP3a.  This  different  reanalysis  data  source  and  differences  in  the  spatial  and  temporal 
 resolutions of the climate forcing could contribute to variations in burned area predictions. 

 Besides  ISIMIP3a  models,  we  also  conducted  ELM-BGC  (with  built-in  process-based  fire 
 model)  simulations  driven  by  the  same  set  of  climate,  lightning,  and  socioeconomic  forcing  data 
 as  used  to  drive  the  coupled  model  ELM2.1-XGBfire1.0.  The  results  show  that  the  burned  area 
 simulation  in  ELM-BGC  remains  unsatisfactory,  indicating  that  changes  in  climate  forcing  alone 
 do  not  account  for  all  limitations  in  burned  area  simulations  in  process-based  models  (at  least 
 for  ELM-BGC).  We  have  added  the  following  discussion  to  the  revised  manuscript  to  clarify  this 
 point (Lines 362-366). 

 All  ISIMIP3a  fire  models  were  driven  by  daily  GSWP3-W5E5  forcings  at  a  0.5º  spatial  resolution. 
 Differences  in  forcing  data  could  lead  to  variations  in  burned  area  predictions.  However,  given 
 that  both  ELM-BGC  and  ELM2.1-XGBfire1.0  are  driven  by  the  same  set  of  forcings  yet  produce 
 markedly  different  burned  area  predictions,  we  suggest  that  limitations  in  physical 
 understanding  may  play  a  dominant  role  in  hindering  the  performance  of  the  process-based 
 model. 

 •  After  reading  the  Results,  the  fact  that  the  process-based  models  all  overestimate  burned  area 
 in  CONUS  despite  (probably)  having  been  calibrated  against  the  (probably)  lower  CONUS 
 burned area observations suggests that the process-based models are extra wrong! 
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 The  reviewer’s  observation  is  correct.  The  estimation  over  the  CONUS  in  GFED5  is  156%  larger 
 than  GFED4s  (Figure  3  in  the  revision).  As  we  discussed  in  the  manuscript,  the  process-based 
 models  often  focus  on  the  globe  or  fire-prone  regions  such  as  African  savannas,  where  fire 
 regimes  can  be  distinct  from  the  CONUS.  We  believe  process-based  model  performance  over 
 the  CONUS  can  be  improved  with  parameter  calibration  and  an  advanced  understanding  of  the 
 missing physics. 

 FireMIP models 

 •  Why  were  only  those  four  FireMIP  models  chosen?  This  question  is  especially  important 
 because,  as  you  note,  two  of  them  share  (to  different  degrees)  code  derived  from  the  same  fire 
 model  used  in  ELM.  (It  was  not  great  to  learn  that  only  in  the  Discussion,  by  the  way—this  is  an 
 important caveat that should have been highlighted before or perhaps in the Results section.) 

 The  four  models  were  obtained  from  FireMIP  phase  II  (ISIMIP3a) 
 (  https://protocol.isimip.org/#/ISIMIP3a/fire  ).  By  the  time  this  research  was  performed,  only  these 
 four  models  were  available.  However,  we  have  now  updated  our  analysis  to  include  a  total  of 
 seven  ISIMIP3a  models  included  in  the  latest  ISIMIP3a  benchmarking  study  (  Burton  et  al. 
 2024).  For  instance,  the  spatial  map  comparison  (Figure  4  in  revision)  has  been  updated  as 
 follows.  The  different  fire  models  used  by  each  ISIMIP3a  model  are  now  described  in  the 
 method section 2.2.1. 

 A more detailed model introduction has been included in the revision. 

 Figure 4. Same as Figure 3, but shows model outputs. The bias (B) against GFED5 is indicated. 

 Reference: 
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 Burton,  C.,  Lampe,  S.,  Kelley,  D.  I.,  Thiery,  W.,  Hantson,  S.,  Christidis,  N.,  Gudmundsson,  L., 
 Forrest,  M.,  Burke,  E.,  Chang,  J.,  Huang,  H.,  Ito,  A.,  Kou-Giesbrecht,  S.,  Lasslop,  G.,  Li,  W., 
 Nieradzik,  L.,  Li,  F.,  Chen,  Y.,  Randerson,  J.,  Reyer,  C.  P.  O.,  and  Mengel,  M.:  Global  burned 
 area  increasingly  explained  by  climate  change,  Nat  Clim  Change, 
 10.1038/s41558-024-02140-w, 2024. 

 •  FireMIP  does  its  own  benchmarking  at  the  global  scale.  If  only  choosing  a  few  models,  their 
 performance  in  that  global  benchmarking  should  be  discussed.  That  would  help  contextualize 
 your CONUS results. 

 Thank  you  for  the  suggestion.  The  global  benchmarking  performance  of  the  models  was 
 thoroughly  discussed  by  Burton  et  al.  (2024).  To  avoid  redundancy,  we  focused  our  analysis  on 
 the  CONUS  rather  than  repeating  the  global  evaluation.  In  the  revision,  we  have  included  all 
 seven models and discussed their performance over the CONUS. 

 •  P16  L60–61:  “VISIT  adopts  the  Thonicke  et  al.  (2001),  a  semi-empirical  fire  model  and  has  not 
 been well calibrated since coupling.” According to whom? Or is this just speculation? 

 This sentence has been written as follow: 

 VISIT,  JULES,  LPJ-GUESS-SIMFIRE-BLAZE  employs  the  semi-empirical  fire  models  (Thonicke 
 et  al.  2001;  Pechony  and  Shindell  2009;  Knorr  et  al.  2014),  in  which  burned  area  is  calculated 
 without an explicit rate-of-spread model (Hantson et al. 2016). 

 Agricultural burning 

 •  It  seems  like  crop  vegetation  patches  and/or  burning  are  included  in  your  model  training  and 
 analyses?  This  is  worth  mentioning,  because  some  process-based  fire  models  exclude  crop 
 burning,  the  detection  of  which  was  a  major  development  in  GFED5.  And  crops  had  by  far  the 
 largest  CONUS  (GFED  region  TENA)  burned  area  in  GFED5  (Chen  etal.,  2023,  Table  3), 
 although I’m not sure how much they contributed to the increase from GFED4s. Please discuss. 

 The  crop  PFT  fraction  is  included  as  a  predictor  in  our  model,  and  crop  burning  is  incorporated 
 within  the  GFED5  burned  area  data  used  for  training.  Consequently,  our  XGB  model  is  capable 
 of  predicting  agricultural  burning  patterns.  This  inclusion  is  important  because  crop  burning 
 constitutes  roughly  49%  of  the  total  burned  area  in  the  CONUS,  as  highlighted  by  GFED5  (Chen 
 et  al.,  2023).  According  to  our  internal  dataset,  crop  burning  contributes  to  29%  of  total  burned 
 area  in  GFED4s  during  2001-2016.  By  accounting  for  crop  burning,  our  model  aligns  more 
 closely  with  recent  advancements  in  fire  detection  and  provides  a  more  comprehensive 
 representation  of  fire  activity  across  different  land  cover  types,  including  agricultural  areas.  We 
 have added the following discussion in Line 366-371. 

 By  contrast,  the  ML  model  incorporates  the  crop  PFT  fraction  and  is  trained  with  data  that 
 include  agricultural  burning,  allowing  it  to  capture  burning  patterns  often  missing  or 
 underrepresented  in  process-based  models.  Meanwhile,  all  process-based  fire  models  used  in 
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 this  study  have  used  GFED4s  or  earlier  versions  as  a  reference  for  calibration.  GFED5  captures 
 significantly  more  small  fires  compared  to  GFED4s,  making  the  CONUS  annual  burned  area 
 increase  by  156%,  with  crop  fire  increasing  by  240%  (Chen  et  al.,  2023).  The  inclusion  of  crop 
 fires is particularly impactful in the CONUS. 

 •  Some  of  the  FireMIP  models  you  chose  might  have  also  excluded  pasture  burning;  see  Table 
 S3  in  Rabin  et  al.  (2017),  although  that  information  might  not  apply  to  the  versions  of  the  models 
 in  the  FireMIP  simulations  you  chose  (see  my  comment  about  P6  L43).  Indeed,  you 
 acknowledge that models might not include cropland or pasture burning at P10 L50–53. 

 Thank  you  for  raising  this  point.  None  of  these  models  explicitly  accounts  for  crop  (residual) 
 fires.  Most  models,  except  JULES,  consider  croplands  as  non-burnable.  JULES  treats  cropland 
 similarly  to  natural  grassland,  while  all  other  models  exclude  cropland  from  burning  entirely. 
 Fires  are  permitted  in  pastures  across  all  models.  In  LPJ-GUESS-SIMFIRE-BLAZE,  pastures 
 are  harvested,  which  results  in  reduced  biomass  and,  consequently,  a  smaller  burned  area.  In 
 contrast,  other  models  treat  pastures  as  natural  grasslands  in  terms  of  growth  and  fire  behavior. 
 For  more  details,  please  refer  to  Extended  Data  Table  1  (Fire  model  overview)  and  Section  3  of 
 the Supplementary Material in Burton et al. (2024), and Teckentrup et al., 2019. 

 An  introduction  of  the  current  treatment  of  crop  fire  in  the  current  ISIMIP3a  models  has  been 
 added in Lines 162-166. 

 The  representation  of  fires  over  croplands  and  pastures  varies  across  models  (Burton  et  al. 
 2024;  Teckentrup  et  al.  2019).  Most  models,  except  for  JULES,  classify  croplands  as 
 non-burnable.  JULES  treats  croplands  similarly  to  natural  grasslands,  while  all  other  models 
 exclude  croplands  from  burning.  Most  models  do  not  include  pasture  as  a  PFT,  therefore,  do  not 
 distinguish  pastures  from  grasslands  in  terms  of  both  growth  and  fire  behavior.  In 
 LPJ-GUESS-SIMFIRE-BLAZE,  pastures  are  harvested,  leading  to  reduced  biomass  and 
 consequently a smaller burned area. 

 Reference: 

 Teckentrup,  L.,  Harrison,  S.  P.,  Hantson,  S.,  Heil,  A.,  Melton,  J.  R.,  Forrest,  M.,  Li,  F.,  Yue,  C., 
 Arneth,  A.,  Hickler,  T.,  Sitch,  S.,  and  Lasslop,  G.:  Response  of  simulated  burned  area  to 
 historical  changes  in  environmental  and  anthropogenic  factors:  a  comparison  of  seven  fire 
 models, Biogeosciences, 16, 3883-3910, 2019. 

 • P10 L52–53: 

 Citations should be provided for none of the models having cropland fire on. 

 References (Burton et al. 2024) and (Teckentrup et al. 2019) have been added. Thank you. 
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 “That  says  all  vegetation  models  treat  pastures  as  natural  grasslands.”  (a)  What  is  “That” 
 referring to? (b) Citations? (c) For fire only, or are these also not grazed? 

 We will clarify this in the next manuscript in Lines 279-282. 

 As  noted  by  Teckentrup  et  al.  (2019)  and  Burton  et  al.  (2024),  none  of  the  process-based 
 models  has  activated  the  explicit  cropland  fire  model.  While  LPJ-GUESS-SIMFIRE-BLAZE 
 incorporates  harvesting  in  pastures,  reducing  biomass  and  influencing  fire  dynamics,  all  other 
 process-based  vegetation  models  do  not  distinguish  pastures  from  natural  grasslands  for  both 
 vegetation growth and fire processes. 

 •  P10  L53–55:  “This  may  explain  the  significant  overestimation  of  burned  areas  in  ORCHIDEE 
 as  the  SPITFIRE  fire  module  has  a  much  higher  flammability  in  natural  grasslands  compared  to 
 woody  plants.”  That  suggestion  implies  that  grass  isn’t  in  reality  more  flammable  than  woody 
 plants,  which  I  don’t  think  is  supported  by  evidence.  Perhaps  change  this  to  something  about 
 grass being TOO much more flammable than woody plants. 

 Thank  you  for  pointing  this  out.  We  agree  that  in  ORCHIDEE,  the  flammability  of  grass  might  be 
 set  too  high  relative  to  that  of  trees,  as  discussed  in  Teckentrup  et  al.  (2019).  We  have  revised 
 this sentence in the updated manuscript to clarify this point. 

 • P10 L55–57: 

 Clarify  that  “fuel  properties”  includes  amount  as  well  as  physical  (e.g.  bulk  density)  and  chemical 
 characteristics. 

 Modified as suggested. 

 Management  should  also  be  mentioned  here,  both  in  terms  of  grazing  (impacts  on  fuel  load  and 
 plant community composition) as well as prescribed fire. 

 The following sentence has been added to Lines 286-287. 

 Fuel  management  practices,  such  as  prescribed  burning  and  grazing,  can  significantly  alter  fire 
 dynamics but are generally absent in current models. 

 •  P12  L75–84:  The  fire  model  in  CLM  (which  ELM  is  based  on)  includes  crop  fires.  Are  those  not 
 simulated  in  ELM?  Or  is  their  area  just  low  (or  even  zero)  in  the  Great  Plains  relative  to  other 
 types of fire? 

 Crop  fires  are  not  enabled  in  the  version  of  the  ELM  model  we  used.  The  crop  model  has  not 
 been  explicitly  calibrated  to  represent  crop  fires  in  CONUS,  and  enabling  it  could  introduce 
 additional biases due to parameter uncertainties. 

 “expect” should be “except”. 

 Corrected. 
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 •  P12  L85–88:  This  sentence  should  be  expanded  to  explicitly  mention  and  cite  process-based 
 models that do have managed crop and/or pasture burning. 

 To  the  best  of  our  knowledge,  ELM  is  one  of  the  few  process-based  models  capable  of  explicitly 
 simulating  crop  fires;  however,  this  feature  was  not  enabled  in  our  study.  None  of  the  models 
 used  here  include  explicit  representations  of  pasture  burning.  We  have  added  this  statement  to 
 the revision. 

 Minor comments 

 •  I  would  probably  remove  “North  American”  from  the  title,  since  this  work  is  actually  limited  to 
 the continental US—well less than half of North America. 

 “North American” has been removed from the title. 

 •  Title  says  “ML4Fire-XGBv1.0,”  but  “ML4Fire-XGB”  is  used  in  the  paper  only  to  refer  to  the 
 uncoupled  ML-based  fire  model(s).  The  real  development  in  the  paper  is  really  more  about 
 coupling  the  ML  fire  models  with  ELM.  I’d  suggest  changing  the  model/version  number  in  the 
 title to something like “ELM2.1-XGBfire1.0”. 

 It’s a great point. We have changed the title to: 

 ELM2.1-XGBfire1.0:  Improving  wildfire  prediction  by  integrating  a  machine-learning  fire  model  in 
 a land surface model 

 • Line numbers seem to just show the last two digits; please fix in revision. 

 Looks  like  it  happened  when  converting  from  Word  to  PDF.  It  has  been  corrected  in  the  revision. 
 Sorry for the inconvenience. 

 • Various places: “COUNS” typo. 

 Apologies for the typos. We have thoroughly gone through the manuscript to avoid these typos. 

 •  P2  L27–29:  “[C]limate  change  has  contributed  to  a  16%  increase  in  the  global  burned  area 
 over  the  past  two  decades,  while  human  influences,  including  ignition  and  suppression,  have 
 reduced  by  27%.”  Second  part  is  sort  of  ambiguous.  Has  the  strength  of  the  human  influences 
 decreased by 27%, or have human influences caused burned area to be reduced by 27%? 

 R: We apologize for the confusion. We have rewritten this sentence as follow (Lines 26-28). 

 In  the  past  two  decades,  satellite-derived  data  suggest  that  the  global  total  burned  area  has 
 declined  by  over  20%,  primarily  attributed  to  human  influences  (Jones  et  al.  2022;  Andela  et  al. 
 2017). 

 •  P3  L67–69:  “The  corresponding  changes  in  fire  dynamics  may  shift  the  vegetation  species 
 distribution  from  those  originally  low  in  resistance  to  wildfire  to  those  in  high  resistance  or  even 
 benefiting  from  regular  fire  occurrence  (Rogers  et  al.,  2015;  Huang  et  al.,  2024).”  Since  you’re 
 using big leaf, you’re not getting that—this should be discussed. 
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 Currently,  ELM  is  configured  in  the  "biogeochemistry"  (BGC)  model,  with  PFT  distributions 
 prescribed  based  on  satellite  products.  We  have  clarified  this  in  the  discussion  of  the 
 revised manuscript in lines 394-396. 

 •  P4  L92–93:  Is  suppression  not  also  a  function  of  population  density  (in  addition  to  GDP)? 
 Per-capita GDP, no? 

 Thank  you  for  pointing  this  out.  Yes.  Suppression  is  parameterized  as  a  function  of  GDP  per 
 capita and population density in ELM. Correction has been made in the revision. 

 •  P4  L04:  Worth  pointing  out  that  “competition”  in  ELM  (without  FATES  turned  on,  that  is)  is 
 limited to competition for soil resources, not light. 

 We have clarified it in the revision, Lines 102-103. 

 The  post-fire  vegetation  recovery  in  ELM-BGC  depends  on  the  plant  photosynthesis  processes 
 and PFT competition strategy for soil resources. 

 •  P5  L16:  “To  reduce  overfitting,  we  build  a  separate  ML  model  for  each  year  from  2001  to  2020 
 using  the  remaining  19  years’  data.”  Confused  me  for  a  while.  Suggested  revision  in  bold:  “To 
 reduce  overfitting,  we  build  a  separate  ML  model  for  each  year  from  2001  to  2020  using  the 
 data from the other 19 years in that period.” 

 This sentence has been removed since the random splitting is used to build a canonical model. 

 •  P6  L40–41:  “significant”  should  be  “important”  or  something  similar;  “while  all  zero  burned 
 areas” seems to be an incomplete thought. 

 This sentence has been rewritten as follows (Lines 203-204). Thank you. 

 This  step  is  important  to  avoid  feeding  the  ML  model  distinct  predictor  combinations  that  all 
 correspond to zero burned areas, which could skew the model's learning process. 

 • P6 L42–48: Also mention here that you’ll be looking at ELM-BGC outputs. 

 The ELM-BGC has been added. 

 • P6 L62: Missing degree symbol at “0.25x0.25”. 

 Corrected. 

 • P6 L62: How were the datasets resampled? Nearest-neighbor? 

 All  variables  are  interpolated  using  the  bilinear  interpolation  method  for  spatial  and 
 nearest-neighbor for temporal. 

 • Table 1: GDP and population density citations don’t match text at P6 L61–62. 

 Corrected. 
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 • P8 L97: “XBG” should be “XGB”. 

 Corrected. Thank you. 

 • Fig. 3: 

 What is gray? 

 The gray shading has been removed in the revised manuscript. 

 Would  it  be  more  useful  to  have  the  ecoregions  overlaid  on  this  map  instead  of  state 
 boundaries?  I  could  see  an  argument  either  way.  Please  add  text  boxes  with  each  model’s  Rp 
 (including  asterisks  to  show  significance  level)  and  bias  scores.  As  it  is  now,  some  models  don’t 
 have their scores listed anywhere in the text/figures/tables. 

 We  have  updated  Figures  3  and  4  in  the  revision  as  suggested.  Please  see  the  figures  in 
 response to your major comments. 

 • P9 L22–23: “the performance holds,” but it actually worsens, as the next sentence says. 

 Thanks for pointing this out. This sentence has been changed to: 

 While integrated with ELM, the performance was degraded. 

 • P10 L52: “intermodal” should be “intermodal”. 

 We changed “intermodal” to “inter-model". 

 •  P10–11  L57–59:  If  fires  in  this  region  are  managed  by  prescribed  burning,  we  actually 
 shouldn’t  expect  the  process-based  models  to  do  well  there,  since  they  don’t  account  for 
 prescribed burning. This result is thus somewhat surprising. 

 It  is  a  great  point.  Based  on  our  conversation  with  local  agencies,  they  tend  to  cast  prescribed 
 fires  as  much  as  possible,  which  effectively  reduces  large  fires  and  makes  the  actual  burned 
 areas  largely  influenced  by  climate  and  fuel  conditions.  Since  the  ignition  is  less  constrained, 
 the  burned  area  is  mainly  influenced  by  the  fire  spread  which  is  highly  related  to  natural  forcing 
 such  as  fuel  and  wind  conditions.  On  the  other  hand,  the  southeastern  U.S.  is  a  lightning-prone 
 region,  which  is  a  major  source  of  fire  ignition  in  models.  Therefore,  without  prescribed  burning, 
 models simulated a high level of fire ignition due to lightning, and well captured the fire spread. 

 The following discussion has been added in Lines 288-291: 

 Although  prescribed  burning  as  an  additional  ignition  source  is  not  included  in  the 
 process-based  models,  ignition  is  not  a  limiting  factor  in  this  region  due  to  the  abundance  of 
 lightning,  which  provides  sufficient  natural  ignition  sources.  Consequently,  the  burned  area  is 
 primarily  controlled  by  fire  spread,  which  is  influenced  by  natural  conditions  such  as  fuel 
 availability and wind, allowing the models to perform well in simulating fire dynamics. 
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 •  P11  Fig.  4:  To  reflect  interannual  variability,  add  uncertainty  bars  and/or  change  the  red  line  to 
 a shaded region. 

 One-standard deviation range of the red line (GFED5) has been added to reflect the uncertainty. 

 •  P13  L93:  “accounting  for”  should  be  “representing”;  “largely”  should  be  “greatly”;  “in”  should  be 
 “from”. 

 Corrected. Thank you. 

 • P13 L99: “IVA” should be “IAV”. 

 Corrected. 

 •  P13  L11–13:  “Again,  climatic  factors  play  a  dominant  role  in  shaping  the  temporal  variability  of 
 BAF  in  the  WUS,  while  human  activities  largely  influence  the  BAF  in  the  Great  Plains  and  EUS. 
 Process-based  models  tend  to  better  describe  responses  of  fuel  load  and  combustibility  to 
 climate  than  responses  of  fire  ignition  and  suppression  to  human  activities.”  Citations  needed  for 
 these statements. 

 Citations  including  Kupfer  et  al.  2020,  Chen  et  al.  2023,  and  Hantson  et  al.  2016  have  been 
 added. 

 Kupfer,  J.  A.,  Terando,  A.  J.,  Gao,  P.,  Teske,  C.,  and  Kevin  Hiers,  J.:  Climate  change  projected 
 to  reduce  prescribed  burning  opportunities  in  the  south-eastern  United  States,  Int.  J.  Wildland 
 Fire, 29, 764–778, 2020. 
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 Chen,  Y.,  Hall,  J.,  van  Wees,  D.,  Andela,  N.,  Hantson,  S.,  Giglio,  L.,  van  der  Werf,  G.  R.,  Morton, 
 D.  C.,  and  Randerson,  J.  T.:  Global  fire  emissions  database  (GFED5)  burned  area, 
 https://doi.org/10.5281/ZENODO.7668423, 2023. 

 Hantson,  S.,  Arneth,  A.,  Harrison,  S.  P.,  Kelley,  D.  I.,  Prentice,  I.  C.,  Rabin,  S.  S.,  Archibald,  S., 
 Mouillot,  F.,  Arnold,  S.  R.,  Artaxo,  P.,  Bachelet,  D.,  Ciais,  P.,  Forrest,  M.,  Friedlingstein,  P., 
 Hickler,  T.,  Kaplan,  J.  O.,  Kloster,  S.,  Knorr,  W.,  Lasslop,  G.,  Li,  F.,  Mangeon,  S.,  Melton,  J.  R., 
 Meyn,  A.,  Sitch,  S.,  Spessa,  A.,  van  der  Werf,  G.  R.,  Voulgarakis,  A.,  and  Yue,  C.:  The  status 
 and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, 2016. 

 • P15, Fig. 8: What is white? 

 This figure has been removed. 

 •  Two  different  reference  lists?  The  first  one  ends  and  the  second  begins  on  P19.  They’re  not 
 the same, either, with at least one reference (Donovan et al., 2020) missing from the first. 

 Thanks for checking that! We have corrected the reference list in the revision. 
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 Response to Reviewer #2 

 We  sincerely  thank  Dr.  Kasoar  for  the  valuable  and  insightful  feedback  on  our  manuscript.  The 
 comments  provided  have  been  instrumental  in  enhancing  the  quality  and  clarity  of  our  work, 
 serving  as  a  critical  resource  for  refining  our  methodology,  data  interpretation,  and  overall 
 presentation.  We  have  carefully  considered  each  comment  and  have  conducted  a  thorough 
 revision of our manuscript to comprehensively address all concerns raised. 

 This  response  document  details  the  specific  changes  made  in  response  to  each  reviewer 
 comment.  For  ease  of  reference,  reviewer  comments  are  presented  in  black,  our  responses  are 
 highlighted  in  blue,  and  modifications  to  the  manuscript  are  indicated  in  italic  font.  The  line 
 numbers correspond to the clean version of the revised manuscript. 

 The  authors  present  a  new  two-way  coupling  of  an  XGBoost  machine  learning  fire  model 
 over  the  contiguous  US,  with  the  ELM  land  surface  model,  a  derivative  of  the  widely-used 
 CLM  land-surface  and  dynamic  vegetation  model,  which  can  be  run  as  an  alternative  to  the 
 process-based  Li  et  al.  scheme  currently  used  within  ELM  (and  CLM).  The  XGB  fire  model 
 performs  very  well  at  reproducing  the  observation-based  training  dataset  (GFED5  burned 
 area)  over  the  CONUS.  The  authors  also  compare  against  BA  simulations  from  several 
 process-based  models,  and  note  that  agreement  is  better  over  regions  of  the  CONUS 
 where  burned  area  is  mainly  driven  by  climate,  and  poorer  over  regions  where  there  is  a 
 strong  human  influence  on  the  burned  area  signature,  e.g.  due  to  crop  and  pasture  fires, 
 thereby  highlighting  another  potential  use  of  ML  models  to  help  identify  key  process  that 
 should be better represented in their process-based counterparts. 

 ML  methods  show  a  lot  of  promise  when  it  comes  to  more  accurately  parameterising 
 sub-grid  phenomena,  including  wildfire  prediction  which  is  notoriously  uncertain  among 
 current  process-based  and  simple  empirical  models,  and  so  I  really  welcome  initiatives  like 
 this  to  interactively  couple  data-driven  fire  models  with  a  dynamic  vegetation  model  to 
 provide  an  alternative  to  the  existing  process-based  scheme,  depending  on  the  desired 
 application.  I  have  some  high-level  concerns  detailed  below  about  the  current  presentation 
 of  the  model  description  and  validation;  hopefully  most  of  these  can  be  resolved  through 
 additional  discussion  and  clarifications  -  and  very  happy  to  be  corrected  if  I'm  mistaken  or 
 have  misunderstood  anything!  I  also  have  some  recommendations  for  additional  analysis 
 and  validation  that  I  think  could  be  beneficial.  I  then  finally  list  a  few  very  minor  technical 
 comments/clarifications. 

 In  terms  of  the  big  picture  motivation  of  the  paper,  the  main  new  development  is  the 
 interactive  coupling  of  the  XGB  fire  model  with  the  ELM  land  surface  and  dynamic 
 vegetation  model.  Therefore,  it  seems  strange  that  no  results  or  analysis  are  presented 
 showing  the  feedbacks  that  are  possible  because  of  this  coupling.  All  the  model  outputs 
 presented  are  focused  purely  on  burned  area  validation  -  where  in  fact,  the  coupled 
 ELM-ML4Fire-XGB  model  performs  slightly  worse  than  just  using  offline  XGB,  presumably 
 due  to  the  coupling  feedbacks  which  influence  the  vegetation  distribution.  So  as  it  stands, 
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 the  paper  doesn't  really  motivate  why  coupling  these  models  is  desirable;  if  you  just  want 
 burned  area  accuracy,  it's  better  to  use  the  XGB  model  offline.  The  key  benefit  is 
 presumably  the  feedbacks  on  vegetation  distribution,  carbon  fluxes,  etc.  One  would 
 imagine  that  the  interactive  vegetation  distribution  in  ELM  is  improved  when  it's  impacted  by 
 a  more  realistic  fire  distribution,  or  that  the  feedbacks  on  vegetation  due  to  changing  fire 
 regimes  over  time  are  better  simulated.  So,  it  would  be  nice  to  see  some  results  showing 
 how  vegetation-related  variables  are  impacted  by  the  coupling,  as  is  this  presumably  the 
 main advantage of having such a coupled model. 

 We  appreciate  the  reviewer's  recognition  of  the  value  in  our  hybrid  modeling  approach.  We 
 agree  that  wildfire  prediction,  given  its  inherent  unpredictability  and  sensitivity  to  numerous 
 climatic,  ecological,  and  anthropogenic  factors,  stands  to  benefit  substantially  from 
 data-driven  methods.  In  response  to  the  reviewer's  concerns,  we  have  thoroughly  revised 
 our  manuscript,  specifically  enhancing  the  model  description  section  to  clarify  the  underlying 
 architecture  and  the  integration  between  the  ML  fire  model  and  the  ELM  land  surface 
 model.  We  have  also  expanded  our  validation  section  to  address  the  reviewer's 
 recommendations. 

 Regarding  the  model  description  (Section  2):  Though  I  appreciate  that  the  underlying 
 land-surface  model  (ELM)  and  XGBoost  wildfire  model  have  been  documented  previously 
 (though,  the  current  XGB  implementation  appears  slightly  updated  re.  the  datasets  used, 
 time  period  etc.),  given  that  the  coupling  between  these  models  is  the  central  development 
 of  this  manuscript  I  felt  that  the  details  of  the  models  (particularly  XGB)  and  the  coupling 
 were  a  bit  brief,  and  it  was  hard  to  figure  out  the  answer  to  certain  relevant  details.  In 
 particular: 

 -  What  are  the  respective  model  timesteps,  and  what  is  the  coupling  timestep?  The  XGB 
 model  was  trained  (I  think?)  to  predict  GFED5  monthly  BA,  so  does  this  mean  it  runs  on  a 
 monthly  timestep?  But,  on  P6,  L62-63,  the  authors  say  "All  the  datasets  are  resampled  to 
 0.25×0.25  spatial  and  annual  temporal  resolution"  -  so  does  this  mean  that  it  actually  runs 
 on  an  annual  timestep?  But  then,  in  the  coupled  model,  it's  described  that  the  output  of 
 XGB  is  passed  to  ELM  to  affect  land  surface  properties  at  the  next  timestep,  and  vice  versa 
 -  I  don't  fully  understand  how  this  works  if  XGB  is  being  trained  with  annual  inputs  to  predict 
 monthly  or  annual  GFED5  BA.  ELM  (I  would  assume?)  has  a  much  shorter  timestep  than 
 annual/monthly,  at  least  for  properties  like  surface  fluxes,  soil  moisture,  LAI  etc.,  as  well  as 
 for the meteorological driving data used as input to the coupled model? 

 We  apologize  for  the  confusion.  The  ML  fire  model  is  trained  and  operates  at  a  monthly 
 scale.  While  the  ELM-BGC  is  driven  by  hourly  meteorological  forcing,  the  simulated  surface 
 meteorology  and  vegetation  conditions  are  aggregated  (averaged  or  accumulated)  to  a 
 monthly  scale.  At  the  end  of  each  month,  these  aggregated  variables  are  fed  into  the  ML 
 fire  model  to  predict  burned  areas,  which  are  then  used  to  update  the  vegetation  properties. 
 Section  2.3  has  been  rewritten  for  clarification.  Please  see  the  modification  quoted  at  end  of 
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 the response to this comment. 

 -  What  was  the  spatial  resolution  of  ELM  -  does  it  match  the  0.25  degree  GFED5  grid  that 
 the XGB model (presumably?) provides output on? 

 Correct,  both  ELM-BGC  and  XGB  file  models  have  0.25-degree  resolution.  We  have 
 clarified the model spatial resolutions in Section 2.3. 

 -  There's  insufficiently  clear  information  about  the  XGB  training  process  -  the  details  are 
 spread  out  in  different  parts  of  Section  2,  and  it's  hard  to  work  out  exactly  what  were  the 
 inputs  (including  the  time  resolution,  any  dimension  reduction  that  was  applied,  etc.),  what 
 was the target output, and what data was reserved for training vs validation. 

 We have rewritten Section 2.3 to clarify the input and output and the training process. 

 -  "To  reduce  overfitting,  we  build  a  separate  ML  model  for  each  year  from  2001  to  2020 
 using  the  remaining  19  years’  data"  -  I  would  stress  that  I'm  not  an  ML  expert,  so  maybe  this 
 is  a  simple  lack  of  subject  knowledge  on  my  part.  But  it's  unclear  to  me  what  is  meant  here 
 -  how  is  a  separate  model  trained  for  each  year,  using  data  from  other  years?  If  the  model 
 is  trained  to  predict  the  BA  in  one  year  based  on  the  meteorological  data  of  other  years,  it's 
 not  clear  how  it  would  learn  the  correct  relationships.  Or  do  the  authors  mean,  that  it  is 
 trained  to  predict  BA  relationships  for  all  the  other  years,  and  then  the  trained  model  is 
 applied  to  the  one  year  that  was  left  out,  as  the  validation  data?  I'd  appreciate  if  this  could 
 just  be  clarified  a  bit.  Additionally:  does  this  mean  that  the  model(s)  can  only  be  used  for 
 years  between  2001-2020?  If  so,  that  would  seem  to  greatly  limit  it's  usefulness  for 
 exploring future scenarios. 

 This  is  an  excellent  point,  which  was  also  raised  by  Reviewer  #1.  To  address  this,  we  have 
 modified  our  training  approach  to  build  a  canonical  model.  In  the  revision,  we  randomly  split 
 the  20-year  monthly  data  into  training  and  validation  datasets,  accounting  for  80%  and  20% 
 of  the  entire  dataset,  respectively.  The  offline-XGB  model  is  trained  using  only  the  training 
 dataset  to  learn  the  relationship  between  the  predictors  and  the  burned  area.  Then,  the 
 offline-XGB  is  applied  to  the  validation  dataset  to  evaluate  model  performance  on  data  not 
 used  during  training  .  After  successful  training  and  validation,  the  offline-XGB  is  fed  with 
 2001-2019 data to produce fire prediction for the final evaluation. 

 -  As  with  the  points  above  -  the  nice  schematic  (Fig  1)  shows  the  same  meteorological  and 
 fire-specific  input  datasets  being  passed  to  ELM  and  the  process-based  fire  model  as  to  the 
 XGB  model,  but  it's  unclear  whether  these  inputs  are  provided  at  the  same  temporal  and 
 spatial  resolution  to  the  respective  models,  or  whether  there  are  intermediate 
 pre-processing  steps.  I'm  not  sure  how  easy  this  is  to  depict  in  the  schematic,  but  as 
 mentioned it's also a little unclear from the text and table of inputs as well. 
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 Fire-specific  inputs,  such  as  lightning,  GDP,  and  population  density,  are  aggregated 
 annually.  ELM-BGC,  which  runs  with  hourly  meteorological  forcing  data,  retrieves  this 
 information  based  on  the  year  of  the  current  timestep.  The  process-based  fire  model  is 
 called  to  simulate  the  burned  area  every  hour,  while  the  XGB  model  is  trained  and  used  at 
 monthly  intervals.  To  achieve  this,  we  average  the  hourly  meteorological  conditions  and 
 simulated  vegetation  properties  to  obtain  monthly  means,  and  interpolate  fire-specific 
 variables  from  annual  to  monthly  intervals  using  the  nearest  neighbor  method.  The  XGB 
 model  is  then  trained  at  monthly  intervals.  When  the  offline-XGB  model  is  coupled  with 
 ELM-BGC,  the  XGB  model  is  called  at  the  end  of  each  month,  while  the  ELM-BGC  runs  at 
 hourly  timestep.  The  hourly  variables  are  accumulated  internally  to  calculate  the  monthly 
 mean at the end of each month. 

 We  found  it  is  challenging  to  illustrate  this  in  Figure  1;  however,  we  have  clarified  it  in  the 
 accompanying text. 

 -  As  I  understand  it,  the  XGB  model  is  initially  trained  using  PFT  distributions  diagnosed 
 from  a  prior  run  of  the  ELM  model  using  its  processed-based  fire  scheme.  However,  the 
 process-based  scheme  predicts  a  different  fire  distribution  to  the  XGB  model.  Does  this 
 therefore  introduce  an  inconsistency,  i.e.  that  the  XGB  model  is  trained  on  PFT  distributions 
 that  are  predicated  on  the  wrong  spatial  distribution  of  fires?  Could  this  be  improved  by  e.g. 
 repeated  iterations  of  running  the  ML4Fire-XGB  coupled  model  to  update  the  PFT 
 distributions,  and  then  re-training  the  XGB  model?  It  would  be  good  if  the  authors  could 
 comment on this. 

 This  is  another  great  point.  The  reviewer  also  suggested  an  approach  that  could  enhance 
 consistency  between  the  XGB  model  and  ELM-BGC.  Currently,  ELM  is  configured  in  the 
 "biogeochemistry"  (BGC)  model,  with  PFT  distributions  prescribed  based  on  satellite 
 products.  We  have  clarified  this  in  the  revised  manuscript.  In  a  future  study,  we  are 
 implementing  our  hybrid  approach  to  ELM-FATES  (Functionally  Assembled  Terrestrial 
 Ecosystem  Simulator),  which  will  enable  updates  to  account  for  the  impacts  of  dynamic 
 vegetation and plant demography. 

 Overall,  regarding  the  comments  about  Section  2.  We  have  rewritten  this  section  as  follows 
 to address the comments. 

 Initialized  with  the  quasi-equilibrium  state  from  the  spin-up  simulation,  we  conduct  transient 
 simulations  with  the  process-based  fire  model  in  the  ELM-BGC,  driven  by  hourly  NLDAS-2 
 meteorological  forcings  at  a  0.25º  resolution  from  2001  to  2020.  The  process-based  fire 
 model  operates  on  an  hourly  basis,  matching  the  frequency  of  the  meteorological  inputs, 
 while  the  ML  fire  model  is  trained  and  applied  at  a  monthly  interval,  consistent  with  GFED5 
 data  intervals.  For  training  the  offline-XGB  model,  the  ELM-BGC  outputs,  including  LAI, 
 surface  soil  moisture,  and  PFT  fractions,  are  averaged  to  monthly  intervals,  combined  with 
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 monthly  mean  meteorological  conditions,  socioeconomic  variables  (GDP,  population 
 density),  and  lightning  (as  detailed  in  Table  1)  to  learn  the  relationship  between  predictors 
 and  burned  area.  To  reduce  overfitting,  the  20-year  dataset  is  split,  with  80%  used  for 
 training  and  20%  for  validation.  During  training,  grid  cells  with  fewer  than  30  months  of 
 non-zero  burned  area  (~two-thirds  of  the  total  number  of  grid  cells)  are  masked.  This  step  is 
 important  to  avoid  feeding  the  ML  model  distinct  predictor  combinations  that  all  correspond 
 to  zero  burned  areas,  which  could  skew  the  model's  learning  process.  Model  performance 
 was  evaluated  based  on  its  accuracy  in  predicting  the  spatial  distribution  and  temporal 
 variation  of  burned  areas.  Validation  metrics  included  root  mean  square  error  (RMSE)  and 
 the coefficient of determination (R  2  ). 

 We  then  integrate  the  offline-XGB  to  ELM-BGC,  forming  the  coupled  model 
 ELM2.1-XGBfire1.0.  The  coupled  model  runs  at  0.25º  and  hourly  resolutions,  where  the 
 hourly  model  predictions  are  accumulated  to  calculate  monthly  means.  At  the  end  of  each 
 month,  the  ML  fire  model  is  called  to  predict  the  monthly  burned  area,  updating  the  land 
 surface  properties  (e.g.,  LAI  and  vegetation  height),  carbon  cycling  (biotic  carbon  in  each 
 pool), and ecohydrology processes (photosynthesis and soil moisture) in ELM-BGC. 

 Regarding the comparison of burnt area results against four FireMIP models: 

 -  Why  those  particular  4  models?  E.g.,  the  authors  note  that  none  of  the  models  they 
 compare  against  included  a  crop  fire  scheme,  which  is  potentially  one  reason  for  poor 
 performance  over  central  US.  However  a  couple  of  the  FireMIP  models  that  are  not 
 included  here,  did  have  crop  schemes  -  so  it  seems  odd  to  omit  these.  To  be  clear,  I  fully 
 expect  the  ML4Fire-XBG  model  to  outperform  all  the  FireMIP  models,  it  just  seems  a  bit 
 arbitrary  why  the  comparison  is  made  only  against  these  four,  out  of  nine  FireMIP  models 
 that  were  included  in  the  Rabin  et  al.  (2017)  paper.  If,  for  instance,  these  were  the  four  best 
 performing  models  over  the  CONUS,  then  it  could  make  sense  to  compare  against  just 
 these  rather  than  against  all  of  them.  But  if  that  is  the  rationale,  I  couldn't  see  it  mentioned 
 anywhere (happy to be corrected though). 

 -  All  the  figures  comparing  burnt  area  are  described  as  an  average  over  2001-2020. 
 However,  the  FireMIP  experiments  that  are  cited  in  Rabin  et  al.  (2017)  only  went  up  to 
 2013.  Even  the  most  recent  round  of  FireMIP  (aka  ISIMIP3a)  I  think  only  goes  up  to  2019. 
 So as far as I can understand, the FireMIP data can't be for the same time period. 

 We  understand  the  reviewer’s  concern.  In  our  manuscript,  we  used  outputs  from  FireMIP  Phase 
 II  (also  known  as  ISIMIP3a),  in  which  one  of  this  paper's  coauthors  participated.  Although  there 
 is  no  specific  protocol  paper  for  ISIMIP3a,  two  relevant  publications  have  recently  been  made 
 available (Burton et al., 2024; Park et al., 2024). 

 We  selected  ISIMIP3a  data  because  the  fire  simulations  are  conducted  with  updated  fire  models 
 and  with  an  extended  simulation  period  to  2019.  In  alignment  with  the  ISIMIP3a  simulation 
 period,  we  have  adjusted  our  comparison  period  to  2001–2019.  At  the  time  we  conducted  this 
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 research,  only  four  models  had  data  available.  We  have  now  updated  our  analysis  to  include 
 seven FireMIP models, as used in the latest FireMIP benchmarking study (Burton et al., 2024). 

 Reference: 

 Burton,  C.,  Lampe,  S.,  Kelley,  D.  I.,  Thiery,  W.,  Hantson,  S.,  Christidis,  N.,  Gudmundsson,  L., 
 Forrest,  M.,  Burke,  E.,  Chang,  J.,  Huang,  H.,  Ito,  A.,  Kou-Giesbrecht,  S.,  Lasslop,  G.,  Li,  W., 
 Nieradzik,  L.,  Li,  F.,  Chen,  Y.,  Randerson,  J.,  Reyer,  C.  P.  O.,  and  Mengel,  M.:  Global  burned 
 area  increasingly  explained  by  climate  change,  Nat  Clim  Change, 
 10.1038/s41558-024-02140-w, 2024. 

 Park,  C.  Y.,  Takahashi,  K.,  Fujimori,  S.,  Jansakoo,  T.,  Burton,  C.,  Huang,  H.,  Kou-Giesbrecht,  S., 
 Reyer,  C.  P.  O.,  Mengel,  M.,  Burke,  E.,  Li,  F.,  Hantson,  S.,  Takakura,  J.,  Lee,  D.  K.,  and 
 Hasegawa,  T.:  Attributing  human  mortality  from  fire  PM2.5  to  climate  change,  Nat  Clim  Change, 
 10.1038/s41558-024-02149-1, 2024. 

 -  The  authors  don't  mention  or  discuss  (as  far  as  I  could  see)  some  very  important  caveats 
 which  really  need  to  be  attached  to  the  comparison  with  FireMIP  models.  In  particular,  it 
 should  be  noted  that  the  process-based  FireMIP  models  were  run  with  different  reanalysis 
 driving  data,  at  a  much  coarser  spatial  resolution.  I  appreciate  that  being  able  to  run  much 
 higher  resolution  is  a  potential  advantage  of  using  an  ML  model.  But,  it  needs  to  be 
 acknowledged  that  it's  not  a  like-for-like  comparison  of  pure  model  process  accuracy.  The 
 different  driving  data  (from  a  different,  global  reanalysis  product,  provided  at  a  much  lower 
 resolution  than  the  North  America-specific  reanalysis  data  that  the  XGB  model  is  driven  by) 
 is  potentially  a  very  important  factor  -  a  fairer  comparison  of  performance  would  be  to  run 
 the XGB model driven by the FireMIP driving data. 

 Thank  you  for  pointing  this  out.  In  our  model  simulation,  we  adopted  the  same  lightning,  CO₂, 
 population  density,  and  GDP  data  used  in  ISIMIP3a,  with  the  exception  of  the  climate  forcing 
 data.  To  focus  on  fires  in  CONUS,  we  applied  the  upscaled  hourly  NLDAS-2  climate  forcing  at  a 
 spatial  resolution  of  0.25  º  ,  rather  than  the  daily  GSWP3-W5E5  forcing  at  0.5  º  used  in  ISIMIP3a. 
 This  different  reanalysis  data  source  and  differences  in  the  spatial  and  temporal  resolutions  of 
 the climate forcing could contribute to variations in burned area predictions. 

 Besides  ISIMIP3a  models,  we  also  conducted  ELM-BGC  (with  built-in  process-based  fire 
 model)  simulations  driven  by  the  same  set  of  climate  and  socioeconomic  forcing  data  as  used  to 
 drive  the  coupled  model  ELM2.1-XGBfire1.0.  The  results  show  that  the  burned  area  simulation 
 in  ELM-BGC  remains  unsatisfactory,  indicating  that  changes  in  climate  forcing  alone  do  not 
 account  for  all  limitations  in  burned  area  simulations  in  process-based  models  (at  least  for 
 ELM-BGC).  We  have  added  the  following  discussion  to  the  revised  manuscript  to  clarify  this 
 point (Line 362-366). 

 All  ISIMIP3a  fire  models  were  driven  by  daily  GSWP3-W5E5  forcings  at  a  0.5º  spatial  resolution. 
 Differences  in  forcing  data  could  lead  to  variations  in  burned  area  predictions.  However,  given 
 that  both  ELM-BGC  and  ELM2.1-XGBfire1.0  are  driven  by  the  same  set  of  forcings  yet  produce 

 20 



 markedly  different  burned  area  predictions,  we  suggest  that  limitations  in  physical 
 understanding  may  play  a  dominant  role  in  hindering  the  performance  of  the  process-based 
 model. 

 Regarding the discussion and model validation: 

 -  As  mentioned  above,  it  would  be  good  to  have  some  more  quantitative  discussion  on  the 
 advantages of having the coupling, e.g. for vegetation distribution 

 Thank  you  for  highlighting  this  point.  First,  we  would  like  to  clarify  that  in  our  current 
 configuration,  ELM  is  set  up  as  a  "biogeochemistry"  (BGC)  model,  with  PFT  distributions 
 prescribed  based  on  satellite  observations;  we  have  added  this  clarification  in  the  revised 
 manuscript.  Additionally,  we  are  working  to  implement  a  hybrid  approach  within  ELM-FATES 
 (Functionally  Assembled  Terrestrial  Ecosystem  Simulator),  which  will  allow  the  model  to 
 dynamically  update  vegetation  and  plant  demographics,  incorporating  the  impacts  of 
 changing vegetation structure over time. 

 Second,  within  the  CONUS,  fires  primarily  impact  the  terrestrial  carbon  cycle  at  localized 
 scales,  and  their  broader  influence  across  the  entire  region  is  limited.  ELM-BGC,  like  many 
 terrestrial  models,  currently  exhibits  a  significant  bias  in  gross  primary  production  (GPP) 
 predictions  across  the  CONUS  (refer  to  the  figure  below).  The  coupled  model, 
 ELM2.1-XGBfire1.0,  provides  a  significant  improvement  in  fire  prediction  and  slightly 
 reduces  the  GPP  underestimation  compared  to  ELM-BGC,  though  this  effect  remains 
 limited.  Furthermore,  converting  burned  area  into  carbon  loss  involves  several  uncertain 
 parameters, which we did not optimize in this study. 

 Nonetheless,  the  coupling  remains  valuable,  especially  for  higher-resolution  model  runs, 
 examining  fire-induced  tree  mortality,  post-fire  recovery,  fire  emissions,  and  fire-related  air 
 quality  issues.  This  importance  is  amplified  when  ELM  is  run  with  its  atmospheric 
 component,  E3SM,  where  the  influence  of  fires  on  air  quality,  cloud,  and  surface 
 meteorology becomes more significant. 

 Figure.  Observed  and  simulated  GPP  (gC  m-2  yr-1)  averaged  over  the  period  2001–2019. 
 The  dataset  names  are  listed  at  the  top  of  panels  a  and  b.  Panel  c  shows  the  difference 
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 between  ELMv2.1-XGBfire1.0  and  ELM-BGC.  The  numbers  indicate  the  mean  (M),  bias  (B), 
 pattern  correlation  (R)  against  MODIS,  and  difference  (Diff)  between  the  two  models  in 
 panel c. Black contours outline the eco-regions. 

 The following paragraph has been added to the discussion in our revision (Line 391-399). 

 Although  ELM2.1-XGBfire1.0  significantly  improves  the  simulation  of  burned  areas,  its 
 impact  on  terrestrial  carbon  fluxes  remains  limited.  Within  the  CONUS,  fires  primarily  affect 
 the  terrestrial  carbon  cycle  at  localized  scales  due  to  the  relatively  small  burned  areas. 
 ELM-BGC,  for  instance,  underestimates  gross  primary  production  (GPP)  by  approximately 
 30%  (figure  not  shown).  With  more  accurate  fire  predictions,  ELM2.1-XGBfire1.0  helps  to 
 slightly  reduce  this  negative  bias  (less  than  1%).  Additionally,  while  ELM-BGC  using 
 prescribed  PFT  distributions  can  suppress  the  effects  of  fires  on  the  ecosystem,  it  does  not 
 account  for  fire-induced  shifts  in  vegetation  species,  where  species  with  greater  resistance 
 or  fire-adaptive  traits  may  gradually  dominate.  Nonetheless,  the  coupling  remains  valuable, 
 especially  when  the  model  is  configured  at  higher  resolutions.  It  is  particularly  important  for 
 evaluating  fire-induced  tree  mortality,  post-fire  recovery,  fire  emissions,  and  their 
 subsequent  impacts  on  air  quality,  cloud  formation,  and  surface  meteorology,  particularly 
 when ELM is run as part of the E3SM. 

 -  All  the  comparison  of  BA  performance  is  performed  against  GFED5,  which  is  the  same 
 data  that  the  model  was  trained  on.  Arguably,  it's  quite  unsurprising  that  an  ML  model 
 trained  to  predict  GFED5  over  CONUS  from  2001-2020,  would  do  better  at  predicting 
 GFED5  over  CONUS  from  2001-2020,  compared  with  global  process-based  models  that 
 were  not  specifically  optimised  to  do  this.  Ideally,  performance  would  be  evaluated  with 
 out-of-sample  tests  -  for  example,  by  running  the  ML4Fire-XGB  model  with  the  FireMIP 
 inputs  as  mentioned  previously,  or  by  comparing  against  alternative  datasets  and/or  over 
 different time periods to the training period. 

 We  thank  the  reviewer  for  this  valuable  comment.  We  agree  that  the  global  process-based 
 models  were  not  specifically  optimized  for  GFED5  and,  importantly,  not  tailored  for  the 
 CONUS  region.  Historically,  the  CONUS  has  not  been  a  fire-prone  area,  and  it  has  unique 
 fire  characteristics  that  may  not  be  well  represented  in  global  models.  Our  analysis 
 underscores  that  critical  processes  relevant  to  fire  activity  in  CONUS  may  be  missing  in 
 these  global  fire  models.  Improving  the  physical  understanding  of  these  processes  and 
 refining  model  parameters  could  enhance  the  performance  of  process-based  models  in 
 capturing fire regimes over the CONUS. 

 In  our  original  manuscript,  we  addressed  the  concern  about  overfitting  by  using  a 
 leave-one-year-out  cross-validation  approach.  Specifically,  we  trained  the  ML  model  using 
 19  years  of  data  (e.g.,  2001–2010  and  2012–2020)  to  predict  the  burned  area  for  the 
 held-out  year  (e.g.,  2011).  The  trained  model  for  each  year  (e.g.,  ML2011)  was  then  driven 
 by  the  predictors  for  that  specific  year  to  generate  out-of-sample  predictions  of  the  burned 
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 area.  By  repeating  this  process  for  all  years,  we  ensured  that  all  predictions  were  evaluated 
 in an out-of-sample manner. 

 In  the  revised  manuscript,  and  as  suggested  by  Reviewer  #1,  we  built  a  single  model  that 
 can  generalize  to  years  outside  the  2001–2020  period.  To  achieve  this,  we  randomly  split 
 the  20-year  dataset  into  80%  for  training  and  20%  for  validation.  This  approach  ensures  that 
 only  80%  of  the  data  were  seen  by  the  ML  model  during  training.  The  evaluation  on  the 
 validation  dataset  demonstrates  a  high  correlation  coefficient  of  0.96,  indicating  robust 
 performance even in this new configuration. 

 In  response  to  the  reviewer’s  suggestion,  we  have  added  a  new  figure  (Fig.  3,  also  shown 
 below)  to  include  GFED4s  and  FireCCI5.1  as  additional  reference  datasets  to  account  for 
 observational  uncertainties.  Both  GFED4s  and  FireCCI5.1  show  a  comparable  spatial 
 distribution  to  GFED5,  with  a  spatial  correlation  coefficient  exceeding  0.66.  GFED5  includes 
 more  small  fires,  which  are  not  detected  in  GFED4s  and  FireCCI5.1,  leading  to  a  burned 
 area  estimate  that  is  110%  larger  than  the  other  two  datasets.  All  process-based  models 
 overestimate  burned  areas  when  compared  to  GFED5,  suggesting  an  even  greater 
 overestimation relative to GFED4s and FireCCI5.1. 

 We  also  highlighted  that  the  process-based  models  were  calibrated  towards  GFED4s  or 
 earlier versions in the discussion. 

 Figure  3:  Observed  burned  area  fraction  (%  yr-1).  (a)  GFED5  (2001-2019),  (b)  GFED4s 
 (2001-2016),  and  (c)  FireCCI5.1  (2001-2019).  The  numbers  indicate  the  mean  (M)  burned 
 area  fraction  and  burned  area  (in  Mha)  in  brackets  for  each  dataset.  The  pattern  correlation 
 (R)  against  GFED5  is  also  shown,  with  an  asterisk  (*)  denoting  significance  at  the  0.01 
 level. Black contours outline the ecoregions. 

 -  On  that  note:  the  authors  assume  GFED5  is  the  ground  truth  in  evaluating  that  the  XGB 
 model  outperforms  process-based  models,  but  it  should  be  acknowledged  that  there  is  a 
 large  uncertainty  in  the  observation-based  BA  data.  This  observational  uncertainty  should 
 also  be  addressed,  for  example  by  including  comparisons  not  just  against  GFED5,  but 
 against  alternative  BA  datasets  that  are  available,  for  example  the  USGS  Landsat  Burned 
 Area product for the CONUS, or one of the FireCCI BA products. 
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 We have added GFED4s and FireCCI51 in the revision. Please see the response above. 

 -  P16,  L51-53:  "However,  the  ML-fired  process  exhibits  high  accuracy,  as  demonstrated  by 
 the  Offline-XGB  model,  making  it  a  reliable  tool  for  evaluating  the  fired  area  under  different 
 warming  scenarios"  -  the  authors  show  that  the  XGB  model  captures  well  the  trend  in 
 GFED5  BA  due  to  warming  during  the  2001-2020  period.  However,  this  is  the  same  period 
 that  the  model  was  trained  to  perform  well  on.  How  reliable  an  indication  is  this  that  the 
 model  will  still  be  accurate  under  high-end  future  warming  scenarios,  where  the  degree  of 
 climate  change  over  the  US  will  substantially  exceed  that  observed  over  2001-2020?  This 
 should be discussed. 

 We  have  removed  the  warming-temperature  experiment  from  this  paper,  as  suggested  by 
 Reviewer  #1.  We  appreciate  the  reviewer’s  insight,  and  we  are  evaluating  the  model 
 responses to high-end future warming scenarios in a separate study. 

 Minor/technical clarifications: 

 P2,  L27-29:  "Over  the  globe,  climate  change  has  contributed  to  a  16%  increase  in  the 
 global  burned  area  over  the  past  two  decades,  while  human  influences,  including  ignition 
 and  suppression,  have  reduced  by  27%  (Burton  et  al.,  2023;  Jones  et  al.,  2022)"  -  as  it 
 reads,  I  don't  think  this  isn't  an  accurate  paraphrasing  of  the  studies  being  referenced. 
 Currently  it  reads  (to  me)  like:  there  has  been  a  16%  increase  in  BA  over  the  last  two 
 decades,  to  which  climate  has  been  a  main  driver,  while  the  influence  of  humans  has 
 reduced  by  27%.  This  isn't  what  either  of  these  studies  showed.  Burton  et  al.  find  (based 
 on  FireMIP  model  data)  that  climate  change  since  1901  has  made  average  BA  (median 
 over  the  2003-2019  period)  16%  higher  than  it  would  have  been  if  climate  stayed  fixed  at 
 circa  ~1901.  However,  they  also  find  that  human  influences  have  made  median  BA  19% 
 lower  in  the  present  compared  with  early  20th  Century,  suggesting  the  net  effect  over  the 
 20th  Century  is  a  small  decline  in  BA.  Jones  et  al.  show  that,  in  MODIS  BA  data,  total 
 global  BA  has  declined  by  27%  over  the  last  two  decades.  This  is  similar  to  previously 
 reported  results  from  GFED4  and  GFED5,  which  both  show  ~24%  declines  in  total  global 
 BA  over  the  last  two  decades.  The  reason  for  this  decline  has  been  attributed  mainly  to 
 human influences (c.f. also Andela et al. 2017). 

 (As  an  aside:  since  the  present  manuscript  was  submitted,  the  Burton  et  al.  (2023)  pre-print 
 that  is  referenced  has  now  been  published  as  a  final  article,  and  so  the  citation  should  be 
 updated accordingly:  https://www.nature.com/articles/s41558-024-02140-w  ) 

 Thank  you  for  pointing  this  out.  The  abovementioned  studies  did  show  that  direct  human 
 influences  (suppression,  agriculture  expansion)  have  played  a  negative  role  in  the  increased 
 global  burned  area.  We  apologize  for  the  confusing  words  in  the  previous  sentence.  We  have 
 updated  the  text  to  reference  satellite-based  observations  in  place  of  Burton’s  conclusions  on 
 global fire (Lines 27–29) and have revised the citation accordingly. 
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 In  the  past  two  decades,  satellite-derived  data  suggest  that  the  global  total  burned  area  has 
 declined  by  over  20%,  with  this  trend  primarily  attributed  to  human  influences  (Jones  et  al.  2022; 
 Andela et al. 2017). 

 Section  2.2.3:  From  the  looks  of  it,  the  authors  use  existing  Level  1  EPA  ecoregions  for  their 
 analysis  regions  1,  2,  and  3,  but  then  for  their  regions  4  and  5  they  split  the  Eastern 
 Temperature  Forest  Level  1  EPA  region  into  two.  What  was  the  rationale  for  subdividing 
 this  region  but  not  the  others?  Also,  this  section  seems  oddly  located  in  the  middle  of  the 
 model  description,  in  between  the  description  of  the  individual  model  components  (2.1)  and 
 the  description  of  the  coupling  (2.3),  even  though  it  relates  only  to  the  analysis  of  the  final 
 results  and  is  not  part  of  the  model  description.  It  would  be  better  to  have  this  section  on 
 analysis methods after all the description of the models and model coupling, I think. 

 We  used  a  combination  of  Level  I  and  Level  II  EPA  ecoregions.  In  the  Level  II  data,  Regions 
 4  and  5  are  further  divided:  Region  4  (southeastern  U.S.)  includes  the  Southeastern  Plains 
 and  Appalachian  Forests,  while  Region  5  (northeastern  U.S.)  includes  the  Mixed  Wood 
 Plains  and  Atlantic  Highlands.  These  two  regions  exhibit  distinct  fire  patterns,  as  shown  in 
 Figure 3 of the manuscript. 

 Following  your  suggestion,  we  have  moved  this  section  to  follow  the  descriptions  of  the 
 models and model coupling. Thank you for the helpful feedback. 

 P8,  L04-05:  "According  to  the  GFED5,  the  CONUS  experiences  an  averaged  burned  area 
 fraction  (BAF)  of  0.6–0.9%  yr-1  (4.8–7.1  Mha  yr-1),  which  is  consistent  with  Chen  et  al., 
 (2023)"  -  Not  quite  sure  what  the  authors  intended  here.  Chen  et  al.  (2023)  is  itself  the 
 GFED5  burned  area  description  paper,  so  trivially  GFED5  burnt  area  is  consistent  with 
 itself. 

 “Which is consistent with Chen et al. (2023)” has been removed from the revision. 

 P8,  L05-06:  "High-burned  areas  are  predominantly  observed  in  the  WUS"  -  this  seems  an 
 confusing  statement,  since  the  authors  then  go  on  to  list  other  areas  which  have  higher  BA 
 than  the  WUS,  and  indeed  Figure  3  seems  to  show  other  areas  of  the  US  where  BA  is 
 higher and more widespread. 

 This sentence has been rewritten as: 

 The  BAF  over  the  WUS  (Western  Forested  Mountains  and  NA  Desert)  ranges  between 
 0.4–0.9% yr  -1  (1.1–2.3 Mha yr  -1  ). 

 P10,  L33-34:  "indicating  that  the  ML  model  effectively  describes  crop  fire  thereby  utilizing 
 data  on  crop  fraction  and  LAI"  -  Is  this  referring  to  the  crop  PFT  fraction  in  the  ELM  model? 
 (Rather than agricultural land use fraction, which isn't listed as an input)? 
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 Yes. It refers to the crop PFT fraction in the ELM model. 

 P10,  L52-53:  "Notably,  none  of  the  process-based  models  has  activated  the  explicit 
 cropland  fire  model.  That  says  all  vegetation  models  treat  pastures  as  natural  grasslands."  - 
 This  statement  is  slightly  confusing  and  conflates  two  things.  Pasture  is  not  the  same  as 
 cropland,  and  they  are  usually  represented  as  different  land  cover  types  in  DGVMs. 
 Similarly crop residue burning is a very different fire regime to pasture fires. 

 Thank  you  for  raising  this  point.  We  agree  that  there  are  fundamental  differences  between 
 cropland  fires  and  pasture  fires.  To  clarify,  all  FireMIP  models  in  this  study  exclude  cropland 
 fires  (Burton  et  al.,  2024;  Extended  Data  Table  1).  Additionally,  all  models  except  the 
 LPJ-GUESS  DGVMs  do  not  explicitly  represent  pasture  as  a  separate  land  cover  type  and, 
 therefore,  do  not  include  pasture  fires  (Teckentrup  et  al.,  2019).  We  have  revised  this 
 sentence for clarity in Lines 280-283. 

 As  noted  by  Teckentrup  et  al.  (2019)  and  Burton  et  al.  (2024),  none  of  the  process-based 
 models  has  activated  the  explicit  cropland  fire  model.  While  LPJ-GUESS-SIMFIRE-BLAZE 
 incorporates  harvesting  in  pastures,  reducing  biomass  and  influencing  fire  dynamics,  all 
 other  process-based  vegetation  models  do  not  distinguish  pastures  from  natural  grasslands 
 for both vegetation growth and fire processes. 
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