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Abstract- Land subsidence, gradual or sudden sinking of the land, poses a significant global threat to infrastructure 11 

and the environment. This paper introducedstudy introduces a hybrid method based onapproach that combines deep 12 

convolutional neural networks (CNN) andwith persistent scatteredscatterer interferometric synthetic aperture radar 13 

(PSInSAR) to estimate land subsidence in areas where PSInSAR cannot provide reliable measurements. This approach 14 

involves trainingdata are unreliable or sparse. The proposed method trains a deep CNN withusing subsidence driving 15 

forces and PSInSAR data to learn spatial patterns and estimatepredict subsidence values. Our evaluation of the model 16 

shows its efficiency in overcoming thedemonstrates that the CNN effectively mitigates discontinuities observed in the 17 

PSInSAR results, producing a continuous and reliable subsidence surface. The deep CNNmodel's performance was 18 

evaluated onassessed using training, validation, and testing data, resulting indatasets, achieving root mean 19 

squaredsquare errors (RMSE) of 53.99 mm, 8.47 mm, and 9 mm, and 11 mm, respectively. In contrast, the 20 

krigingtraditional interpolation method showed a mean square error of 37.19 mm in the experimental data set. 21 

subsidence prediction using the deep CNN method showed a 70% improvement compared to themethods such as 22 

Kriging, inverse distance weighting (IDW), and radial basis function (RBF) interpolation method. yielded RMSE 23 
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values of 61.60 mm, 66.21 mm, and 61.76 mm, respectively, on the test dataset. Additionally, the coefficient of 24 

determination (R²) for CNN, Kriging, IDW, and RBF was 0.98, -0.06, -0.22, and -0.06, respectively. The deep CNN 25 

model demonstrated an 85% improvement in subsidence prediction accuracy compared to conventional interpolation 26 

methods, highlighting its potential for accurate and continuous land subsidence estimation. 27 

Index Terms— Convolutional Neural Network (CNN); Prediction of subsidence; PSInSAR; driving forces; Kriging 28 

interpolation. 29 

1. Introduction 30 

The gradual decrease in the height of the earth's surface, which is accompanied by slight horizontal displacements, is 31 

called subsidence. Due to the gradual nature of land subsidence, this phenomenon is also called "silent earthquake".  32 

Its harmful effects appear over a long period of time and carry significant risks. However, land subsidence is a global 33 

threat to urban areas around the world (Sun et al., 2023). This issue is an important global concern and is not limited 34 

to one region. Iran is facing an increasing challenge especially in this field.  Human activities, such as mining and 35 

excessive underground water extraction, contribute to this problem. To address it, effective groundwater management 36 

to prevent unauthorized water extraction would help. However, land subsidence is not only caused by human actions, 37 

natural factors also play an important role. These include water table fluctuations, soil characteristics, depth of the bed 38 

rock, terrain features like elevation and aspect, vegetation cover, and prevailing climate. All these factors together 39 

create a complex landscape of land subsidence occurrences. 40 

Precise leveling and GNSS observations offer high precision in measuring subsidence. Still, they are limited in their 41 

ability to investigate subsidence over a wide area due to their reliance on measuring sparse stations. These methods 42 

require multiple measurements at different locations, making it difficult to monitor subsidence over large areas (Fialko 43 

et al., 2005; Hu et al., 2012). On the other hand, Interferometric Synthetic Aperture Radar (InSAR), has emerged as a 44 

high spatial resolution and cost-effective technique for monitoring subsidence on a large scale (Chang et al., 2010; 45 

Tamburini et al., 2010; Tomás et al., 2011; Rucci et al., 2012; Amighpey & Arabi, 2016; Biswas et al., 2018; Gonnuru 46 

& Kumar, 2018; Khorrami et al., 2019). InSAR uses radar waves to carefully monitor changes in the Earth's crust 47 

surface over time. Methods that analyse radar images over time, known as time series analysis, make them very 48 

effective for monitoring subsidence, which usually occurs gradually over time. Persistent  Scatterer Interferometric 49 

Synthetic Aperture Radar (PSInSAR) is particularly valuable for monitoring urban land subsidence.  This is because 50 
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there are many high-density Persistent Scatterer (PS) points, mainly associated with buildings and man-made 51 

structures. This abundance significantly improves the quality of the data within interferograms  (Gao et al., 2019). 52 

Although these advantages are significant, dealing with the sparse and uneven distribution of PSs in both spatial and 53 

temporal dimensions is a significant computational challenge. The PSInSAR approach generates discontinuous results, 54 

as it calculates subsidence exclusively at PS points. Consequently, it becomes imperative to employ intelligent 55 

interpolation instead of mathematical or stochastic methods, between these data points to fill out these gaps (Naghibi 56 

et al., 2022).  57 

Subsidence is a complex physical phenomenon influenced by a multitude of factors, such as changes in groundwater 58 

levels, soil type, bedrock depth, slope, elevation, Aspect, etc.  To obtain the subsidence in the whole area, interpolation 59 

methods between PSs and artificial intelligence methods (which are trained with features affecting subsidence) can be 60 

used. Interpolation methods between PSs and artificial intelligence methods (trained with features affecting 61 

subsidence) can be used to obtain subsidence in the entire area. Classical interpolation methods (e.g. Kriging, IDW, 62 

RBF (Mehrabi & Voosoghi, 2018), RMLS (Mehrabi & Voosoghi, 2015)) do not consider the physics of the issue, 63 

making their results less reliable. So, it is very important to apply methods that take into account the real characteristics 64 

of the phenomenon, especially when monitoring the subsidence. Recently, machine learning methods specifically deep 65 

convolutional neural network (CNN) shows encouraging results in various applications. In the larger context of land 66 

subsidence prediction models, we find two main categories: Physical Process Models: These models simulate 67 

subsidence by incorporating factors like geotechnical mechanics, soil properties, and water dynamics. They are 68 

frequently used in large-scale projects but require a substantial amount of prior knowledge and data (Nie et al., 2015); 69 

Mathematical or Statistical Models: These models predict subsidence based on historical elevation data and past trends 70 

(Zhu et al., 2010). 71 

Several studies have investigated various forecasting models, methodologies, and influencing factors to improve our 72 

understanding of this field. Neural networks have emerged as powerful prediction tools, so neural networks have been 73 

used in the field of subsidence prediction using its driving forces. (Zhu et al., 2010; Azarakhsh et al., 2022; Ku & Liu, 74 

2023). Lee et al. (2023) employed data from an urban area in Korea to develop a machine learning-based model for 75 

predicting land subsidence risk. Their methodology incorporated historical land subsidence data along with attribute 76 

information pertaining to underground utility lines in the specified region. The research team utilized machine learning 77 

algorithms such as Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting 78 

Machine (LightGBM) for the analysis and prediction of land subsidence risks (Lee et al., 2023). Sadeghi et al. (2023) 79 
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combined full consistency decision-making (FUCOM) and GIS methodologies to assess Iran's vulnerability to land 80 

subsidence. Their approach resulted in the development of a hierarchical FUCOM-GIS framework, which highlighted 81 

critical factors such as water stress, groundwater depletion, soil type, geological time scale, and rainfall amount as the 82 

main drivers of land subsidence. Researchers commonly validate their results by comparing them with InSAR 83 

analyses, identifying areas exhibiting notable subsidence. Furthermore, the research assessed the risks to power 84 

transmission lines and substations, revealing structural issues such as pier sinking, electric insulator deviation, and 85 

cracking(Sadeghi et al., 2023). In another study focused on Dechen County, China, Wang et al. (2023) employed 86 

Backpropagation Neural Network (BPNN) and RF algorithms, in conjunction with various monitoring data sources, 87 

GIS, and SBAS technology, to predict trends in land subsidence. Their findings underscored Sugianto town as the 88 

most severely affected area, with an annual average subsidence rate of -40.71 mm per year. The study highlighted that 89 

changes in both deep and shallow groundwater levels were the primary drivers of land subsidence in this region.  90 

Notably, the BPNN model demonstrated higher prediction accuracy compared to the RF model, especially when 91 

considering changes in groundwater levels (Wang et al., 2023). Furthermore, Zhuo et al. (2020) demonstrated that the 92 

integration of the GM (1,3) model with neural networks and ground-related variables shows great potential for 93 

achieving highly accurate subsidence predictions. The proposed approach has the  94 

capability to replace traditional precise leveling methods in long-term subsidence forecasting, offering valuable 95 

insights for urban disaster prevention (Zhou et al., 2020). 96 

Deng et al. (2017) conducted research on the integration of PSInSAR with Grey system theory for monitoring and 97 

predicting land subsidence, as demonstrated in the Beijing plain (Deng et al., 2017). Precision mapping of complete 98 

subsidence basins faces challenges, especially when dealing with image pairs with limited temporal separation. Rapid 99 

deformations and vegetative changes in such scenarios introduce complexity. Strategies, such as combining 100 

differential interferometric synthetic aperture radar (DInSAR) with the probability integral model (PIM), have been 101 

introduced to effectively delineate subsidence basins resulting from mining activities (Fan et al., 2015). 102 

The remarkable effectiveness of the RF model in mapping the susceptibility of land subsidence deserves attention. 103 

This approach demonstrates exceptional capabilities in identifying key factors that contribute to subsidence 104 

occurrences, such as the proximity to faults, elevation, slope angle, land use patterns, and water table levels. These 105 

factors play a crucial role in influencing the likelihood of subsidence events  (Mohammady et al., 2019). In addition, 106 

the integration of fuzzy logic techniques and neural networks has been used to predict subsidence  (Ghorbanzadeh et 107 

al., 2020). 108 
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Land subsidence is a significant geological risk and predicting and investigating this phenomenon is vital. Traditional 109 

monitoring and forecasting methods have limitations and require more advanced approaches.   Kumar et al. (2022) 110 

utilize recurrent neural networks (RNNs), specifically Vanilla and Stacked Long Short-Term Memory (LSTM) 111 

models, to forecast land subsidence in the Jharia Coalfield, Dhanbad, India. Using data from 14 locations collected 112 

through the Modified PSInSAR technique, the study shows these models can effectively predict deformation rates, 113 

identifying critical subsidence levels at Nai-dunia basti, Digwadih, and Godhar. This research underscores the 114 

potential of integrating advanced monitoring techniques with sophisticated predictive models to better anticipate and 115 

mitigate land subsidence impacts (Kumar et al., 2022). 116 

The integration of InSAR processing with deep learning methods in modeling and predicting land subsidence has 117 

shown significant promise. This approach demonstrates substantial capabilities in identifying and predicting 118 

subsidence in regions around Lake Urmia by leveraging Sentinel-1 data and small baseline subsets (SBAS) InSAR 119 

methods. Key factors such as rainfall, groundwater levels, and lake area variations, measured using TRMM, GRACE, 120 

and MODIS satellite data, were critical in understanding subsidence dynamics. Moreover, the application of machine 121 

learning models, including multi-layer perceptron (MLP), convolutional neural network (CNN), and long short-term 122 

memory (LSTM) networks, has been instrumental in improving prediction accuracy. The ensemble model combining 123 

these networks outperformed individual models, achieving enhanced prediction reliability  (Radman et al., 2021). 124 

Predicting deformation is essential for early detection of abnormal conditions and timely intervention. A recent study 125 

introduced a deep convolutional neural network (DCNN) approach to forecast time-series deformation using InSAR 126 

data. The research, conducted at Hong Kong International Airport, demonstrated that the DCNN could effectively 127 

predict both linear land settlement and nonlinear thermal expansion of structures with high accuracy. The study's 128 

findings highlight the DCNN's potential to enhance early warning systems by providing precise short-term 129 

deformation predictions, thus enabling better risk management and mitigation strategies (Ma et al., 2020). 130 

In this study we used a CNN model trained over the area where subsidence is available through PSInSAR. Then this 131 

model is used over other areas where subsidence cannot be obtained from PSInSAR processing. The proposed method 132 

follows three main steps: Calculation of subsidence in PSs by PSInSAR method, calculation of subsidence driving 133 

factorsforces, and training CNN. 134 
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2. Methodology 135 

2.1 PSInSAR 136 

PSInSAR is a remote sensing technique that utilizes SAR images to monitor surface deformation over time. It relies 137 

on identifying PSs, which are stable points on the Earth's surface reflecting radar signals consistently. PSInSAR 138 

combines multiple interferograms created by comparing SAR images of the same area taken at different times. By 139 

analysing phase differences between radar signals in these interferograms, it detects changes in the Earth's surface 140 

over time. PSInSAR has significant advantages over DInSAR, as it effectively eliminates topographic errors, 141 

atmospheric noise, and addresses temporal and spatial correlation issues between radar images (Ferretti et al., 2001; 142 

Wasowski & Bovenga, 2014; Gonnuru & Kumar, 2018). PSInSAR, a form of differential interferometry, involves 143 

analysing a collection of at least 15 SAR images captured at  different times, all covering the same area (Crosetto et 144 

al., 2016). PSInSAR finds diverse applications, including monitoring subsidence in urban areas (Ferretti et al., 2000; 145 

Luo et al., 2013) and tracking natural hazards such as landslides, earthquakes, and volcanic 146 

activity (Peltier et al., 2010). However, one drawback of PSInSAR is the lack of continuity between PSs, as they 147 

depend on the land use of the area. These PSs are more abundant in areas  with buildings, dams, oil wells, pipelines, 148 

electric fences, roads, rocks, and bridges (Din et al., 2015), but they are relatively scarce in vegetated areas. 149 

Consequently, PSInSAR performs best in urban areas and regions with rocky terrain (Oštir & Komac, 2007). 150 

In this article, the amplitude dispersion index is used to select the persistent scatterer points, Eq. (1). The usual 151 

threshold of the amplitude dispersion index is limited between 0.2 and 0.4 (Conway, 2016).  152 

𝐷𝐴 = 𝜎𝐴 𝜇𝐴⁄                                                                                                                                                                                               (1) 153 

where 𝜇𝐴  ,  𝜎𝐴 are standard deviation and mean values of the radiometrically corrected amplitude of pixels. In PSInSAR 154 

the amplitude data from SAR images is carefully examined to identify specific PSs while excluding those affected by 155 

space-time decoherence and atmospheric delay (Li et al., 2004). 156 

 157 

  2.2. Deep Convolutional neural network (CNN) 158 

CNN is a type ofCNNs, or Convolutional Neural Networks, are deep learning algorithmalgorithms widely employed 159 

for various image-related tasks likesuch as image recognition, classification, and regression. CNNs can automatically 160 

They learn and extract essential features from raw image. They accomplish this images by processing imagesthem 161 

through multiple layers of filters, known as "convolutions," which." This multi-layer processing progressively 162 
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extractextracts more abstract features. These filters are trained using backpropagation, a technique that adjusts filter 163 

weights based on the difference between predicted and actual outputs.  In addition to convolutional layers, CNN 164 

typically includes pooling layers to down sample the convolutional output and fully connected layers to use the 165 

extracted features for image classification. CNN has gained popularity, particularly after the success of AlexNet in 166 

the ImageNet challenge in 2012 and has since become the dominant approach for image recognition tasks. 167 

CNN is used in various fields, including medical imagery (Lee et al., 2017), classification (LeCun & Bengio, 1995), 168 

segmentation (Nair & Hinton, 2010; Van Do et al., 2024), image reconstruction (Christ et al., 2016; Lakhani & 169 

Sundaram, 2017; Elboushaki et al., 2020), and natural language processing (Kim et al., 2018). While CNN are often 170 

associated with categorical tasks, they are also highly effective in regression tasks, where the goal is to predict 171 

continuous output variables instead of discrete labels. In CNN regression, the network typically has a single output 172 

neuron in the final layer that generates a continuous value instead of a probability distribution for classification.  It is 173 

important to note that CNN requires a lot of input data, especially for image processing. As the network's depth 174 

increases, so does its complexity, resulting in a larger number of weight parameters, which can sometimes create 175 

challenges during training (Liu et al., 2018). CNN introduced the concept of local connections between layers with 176 

typical components including convolution, activation and pooling layers (Chen et al., 2018). The convolutional layer 177 

learns image features from small sections of input data through mathematical operations involving the input image 178 

matrix and a filter or kernel. The activation layer introduces nonlinearity into the network, commonly using the 179 

Rectified Linear Unit (ReLU) function. 180 

CNN regression is a valuable approach for predicting continuous output variables and has found applications in 181 

various fields including geology and civil engineering. CNN regression can also be used to predict subsidence. By 182 

training a CNN model with input-output pairs, where inputs are subsidence driving forces and outputs represent 183 

subsidence values, researchers can predict subsidence at single-pixel levels and provide valuable insights. 184 

To predict land subsidence, we trained a CNN regression model with the architecture shown in  Error! Reference 185 

source not found.. The CNN has 31 layers, including three 1×1 convolutional layers, three 3×3 convolutional layers 186 

followed by three 2×2 max-pooling layers, Batch Normalization layers, drop out layers with a rate of 0.1, and two 187 

fully-connected layers with 1024 Rectified Linear Unit (ReLU) activation neurons, two fully-connected layers with 188 

512 ReLU activation neurons, and a fully-connected layer with 256 ReLU activation neurons. The input dimensions 189 
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are 30×30×9, where 30×30 patches separated from the neighborhood of each scattered point and 9 features are used 190 

as network input.         191 

                                                                                                                            192 

 193 

Figure 1:1: Illustration of CNN Architecture 194 

                                                                                                                            195 

2.2.1. Hyperparameter Tuning Process 196 

 197 

After creating the model architecture, model inputs were normalized to a range of [0, 1] to ensure consistent input 198 

scaling, which is crucial for the stable performance of the neural network. Then we tuned the hyperparameters of the 199 

CNN regression model, including the loss function, optimizer, batch size, learning rate, activation function, and 200 

number of epochs. The best model was saved based on its performance metrics. The rationale for each hyperparameter 201 

is explained in detail and the optimal parameters for the model are given in Table 1 : 202 

• Activation function: We used the mean square error functionRectified Linear Activation (ReLU) function 203 

in the hidden layers due to its effectiveness in mitigating the vanishing gradient problem and promoting 204 

sparse activations. For the output layer, a Linear activation function was employed to ensure the model could 205 

predict a continuous range of values. 206 
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• Loss function: We considered both Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the cost 207 

function, a batch size of potential loss functions. MSE penalizes larger errors more heavily than MAE, 208 

making it suitable for scenarios where outliers significantly impact the model's performance. Given MSE's 209 

properties and its ability to improve the model's performance by reducing fluctuations and speeding up 210 

convergence, we selected MSE as our loss function. The MSE is calculated as follows: 211 

 𝑀𝑆𝐸 = 1
𝑁⁄ ∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑁
𝑖                                                                                                                                       (2)                                                       212 

where 𝑌𝑖  represents the actual values,  𝑌̂𝑖   represents the predicted values, and 𝑁 is the number of 213 

observations. 214 

• Batch Size: We experimented with batch sizes of 64 and 128, a . A larger batch size of 128 was chosen as it 215 

provided a good balance between training speed and model performance, allowing more stable gradient 216 

estimates. 217 

• Learning Rate: The initial learning rate was set to 0.001, but we found that a smaller learning rate of 0.0001, 218 

led to more gradual and trainedstable convergence, reducing the networkrisk of overshooting the optimal 219 

solution. 220 

• Optimizer: The Adam optimizer was selected for its adaptive learning rate capabilities and efficiency in 221 

handling sparse gradients. It combines the advantages of both the AdaGrad (Adaptive Gradient Algorithm) 222 

and RMSProp (Root Mean Square Propagation) algorithms, making it suitable for our regression task. 223 

• Number of Epochs: We initially set 100 epochs but extended this to 150 epochs.  to ensure the model had 224 

sufficient time to learn the underlying patterns in the data without overfitting. 225 

• To divide the data,: we initially allocated 15% to the test data, 15% to the validation data, and 70% to the 226 

training data. However, we noticedobserved high-cost function fluctuations forin the training and validation 227 

data, so. To mitigate this issue, we increasedadjusted the training data split to 80%, % for training and 228 

allocated 10% each to the testfor testing and validation data. This, which helped to reduce the fluctuations 229 

(Table 1). 230 

 231 

 232 

Table 1. Key parameters of the CNN 233 

parameters value 
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Activation function of hidden layer, input layer ReLu 

Activation function of output layer Linear 

Input shape 30×30×9 

Loss function MSE 

Batch size 128 

Learning rate 0.0001 

Epoch 150 

Train-validation-test 80% -10% -10% Of total data 

 234 

2.3. Driving forces of subsidence  235 

Previous research in this field has identified several factors that impact land subsidence. These factors include changes 236 

in the water table, soil type, depth of the rock bed, elevation, slope, aspect, rainfall patterns, vegetation cover, flow 237 

index, topography index, distance from rivers, distance from faults, lithologyThe selected driving factors for predicting 238 

subsidence—NDVI, distance from wells, land use, water table map, altitude, slope, SPI, TWI, and aspect—are well-239 

supported by extensive research and have been identified as significant predictors in previous studies  (Yang et al., 240 

2014; Fan et al., 2015; Conway, 2016; Abdollahi et al., 2019; Andaryani et al., 2019; Mohammady et al., 2019; Zang 241 

et al., 2019; Ghorbanzadeh et al., 2020; Shi et al., 2020; Zhou et al., 2020; Zhao et al., 2021; Wang et al., 2023) . By 242 

incorporating these factors into the subsidence prediction model, this study ensures a comprehensive approach that 243 

reflects the complexity of subsidence phenomena.  244 

1. NDVI is a crucial indicator of vegetation health and land cover changes. Changes in NDVI can reflect 245 

alterations in land use practices, such as urbanization or agricultural expansion, which are closely linked to 246 

subsidence. Healthy vegetation typically reduces the need for excessive groundwater extraction, while barren 247 

or urbanized areas might correlate with higher subsidence due to increased groundwater use.  248 

2. The distance from groundwater extraction wells is a critical factor in subsidence studies. Areas closer to high-249 

density exploitation wells often experience more severe subsidence due to the localized impact of extensive 250 

groundwater withdrawal.  251 
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3. Land use changes, including urbanization, agricultural expansion, and deforestation, influence subsidence 252 

rates. Urban areas often experience higher subsidence due to increased groundwater extraction for residential, 253 

industrial, and agricultural purposes.  254 

4. Groundwater level changes, as depicted in water table maps, are directly linked to subsidence. Over-255 

extraction of groundwater leads to a drop in the water table, causing the ground to compact and subside nce. 256 

Groundwater depletion is a primary contributor to subsidence, emphasizing the importance of preventing 257 

unauthorized withdrawals and effectively managing water resources. 258 

5. Altitude influences subsidence through its effect on hydrological processes. Altitude affects the distribution 259 

and movement of groundwater. Higher altitudes typically receive more precipitation, which can infiltrate the 260 

ground and recharge aquifers. At lower altitudes, reduced precipitation and higher evaporation rates can lead 261 

to a lowering of the water table. When groundwater is extracted faster than it is replenished, it can result in 262 

subsidence. The amount of water in the soil, influenced by altitude through precipitation and drainage 263 

patterns, affects soil compaction. High altitude areas with abundant rainfall can lead to saturated soils which 264 

are less prone to subsidence. Conversely, in lower altitude areas with less precipitation, soils may dry out and 265 

compact more easily, contributing to subsidence. 266 

6. Slope affects water runoff and infiltration rates. Steeper slopes may reduce infiltration, leading to less 267 

groundwater recharge and potentially higher subsidence rates in adjacent flat areas.   268 

7. Aspect affects solar radiation and, consequently, evaporation and soil moisture levels. Different aspects can 269 

lead to variations in vegetation cover and groundwater recharge, influencing subsidence. Additionally, the 270 

slope and aspect of an area can influence drainage patterns, erosion, and sediment production, all contributing 271 

to subsidence. 272 

8. The Stream Power Index (SPI) measures the power of water flow in depositing and causing soil erosion. As 273 

a result, this index can be an important input for subsidence prediction models. The equation used to calculate 274 

SPI is as follows (Pradhan et al., 2014): 275 

SPI = ⍺ ∗ tanβ                                                                                                                                                                                  (4) 276 

Here, ⍺ flow accumulation, and β represents the slope.  277 
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9. The Topographic Wetness Index (TWI) is a mathematical formula that quantifies the effect of local 278 

topography on the flow of surface water. It is a physically based index that can be used to determine flow 279 

direction and accumulation and has many practical applications in fields such as hydrology, agriculture, and 280 

geology. TWI indicates areas of potential soil moisture accumulation. Areas with high TWI values are likely 281 

to have more groundwater recharge, which can mitigate subsidence.  282 

 In rainfall runoff modeling, TWI can be used to predict the amount and timing of runoff in a specific area, 283 

while in soil moisture modeling it can be used to predict the spatial distribution of soil moisture.  Overall, the 284 

TWI is a useful tool for understanding and predicting the movement of water across the landscape (Qin et 285 

al., 2011). Also, TWI identifies areas that can be affected by flooding from rainfall events (Ballerine, 2017). 286 

TWI equation is as follows (Moore et al., 1991): 287 

TWI = ln( ⍺ tanβ⁄ )                                                                                                                                                                              (23)                                                       288 

Where  ⍺  the upslope contributing area and β is slope. TWI is calculated utilizing a Digital Elevation Model 289 

(DEM) of the study areas. The flow power indexWhere  ⍺ the upslope contributing area and β is slope. TWI 290 

is calculated utilizing a Digital Elevation Model (DEM) of the study areas. 291 

1.  (SPI) measures the power of water flow in depositing and causing soil erosion.  As a result, this index can 292 

be an important input for subsidence prediction models. The equation used to calculate SPI is as follows 293 

(Pradhan et al., 2014): 294 

SPI = ⍺ ∗ tanβ                                                                                                                                                                                  (3) 295 

Here, ⍺ flow accumulation, and β represents the slope. Land subsidence results from a combination of factors, 296 

including both topographic and altitude-related features, such as rainfall and lithology. Research has demonstrated 297 

that areas at lower altitudes tend to experience more subsidence. Additionally, the slope and aspect of an area can 298 

influence drainage patterns, erosion, and sediment production, all contributing to subsidence. The amount of 299 

vegetation, as measured by the Normalized Difference Vegetation Index (NDVI), also plays a significant role. Less 300 

vegetation often indicates a higher risk of subsidence. The distance from a river and distance from faults are other 301 

crucial subsidence driving forces. Groundwater depletion is a primary contributor to subsidence, emphasizing the 302 

importance of preventing unauthorized withdrawals and effectively managing water resources. It's essential to 303 

recognize that examining one factor alone is not enough to predict subsidence. A linear relationship between 304 

groundwater level changes and subsidence may exist in certain regions, but this linear relationship does not exist in 305 
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all regions. Each region has unique characteristics such as soil type, fault lines and slope, etc. Subsidence is a complex 306 

phenomenon that requires a comprehensive investigation that takes into account all relevant factors. Therefore, 307 

thorough analysis is necessary to obtain a comprehensive understanding of subsidence in a particular area (Azarm et 308 

al., 2023). 309 

3. Study Area and Datasets 310 

3.1. Study area 311 

The studied area is in Isfahan province and includes the cities of  Isfahan, Mahyar, Khomeinishahr and Falavarjan. 312 

This region has a rich history of human habitation, diverse cultural heritage and a wide range of economic activities. 313 

Covering approximately 7000 square kilometers, this area displays various uses, including urban, agricultural and 314 

industrial areas. Its climate is semi-arid, characterized by hot summers and cold winters. The primary sources of water 315 

in this area are the Zayandeh-Rud River and several underground aquifers that provide various uses such as agriculture, 316 

drinking water, and industrial needs (Neysiani et al., 2022) (Fig. 2). To effectively monitor and predict land subsidence 317 

in this study area, we used advanced techniques such as radar interferometry and convolutional neural networks 318 

(CNN). Our goal was to provide an accurate and reliable estimate of land subsidence in the study area by integrating 319 

these techniques and considering complex subsidence driving forces. 320 

           321 

 322 

 323 

 324 

 325 

 326 

 327 
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Figure 2: Geographic overview of the study area. (© Google Earth)   

 328 

 329 
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Figure 2: Geographic overview of the study area. (© Google Earth) 

 

 

 338 

3.2. Datasets 339 

3.2.1. Sentinel-1A Radar Images 340 

This study usesutilizes 73 radar images obtained from the Sentinel-1A satellite to analyseanalyze subsidence trends 341 

in the study area over a sixseven-year period, from 2014 to 2020. The data was collected from the Ascending track 342 

28. The Sentinel-1A satellite, launched by the European Space Agency (ESA), operates in C-band and provides 343 

Synthetic Aperture Radar (SAR) imagery with a spatial resolution of 5 meters by 20 meters. The images were acquired 344 

at six-day intervals, ensuring high temporal resolution for detecting ground movements. The Interferometric Wide 345 

(IW) swath mode was used, offering comprehensive coverage of the study area. 346 
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The PSInSAR technique was applied to the Sentinel-1A data using the Sarproz software. The 30 meters SRTM DEM 347 

ofThis method is particularly effective in urban and semi-urban areas where permanent scatterers are abundant. The 348 

precise processing steps involved coregistration, interferogram generation, phase unwrapping, and geocoding to 349 

produce detailed subsidence maps (Ferretti et al., 2001). 350 

the study area, with a spatial resolution of 30 meters, was used3.2.2. Digital Elevation Model (DEM) 351 

The 30-meter Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) was employed to calculate 352 

thevarious topographical and hydrological indices, including SPI, TWI, slope, and aspect. These indices were 353 

computed using the ArcMap software. The obtained data provided , providing essential insights into the terrain 354 

characteristics influencing subsidence driving forces (Fig. 3, Fig.4). 355 

    356 

  357 

      358 
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 359 

  

  

Figure 3:3: Subsidence driving forces - (a) AltitudeElevation, (b) Slope, (c) SPI, (d) TWI  360 

 361 
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(b) (a) 

(e) 
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  362 

Figure 4: Subsidence driving force – (e) Aspect 363 

The 3.2.3. Optical Satellite Images 364 

Optical images from the Landsat 8 satellite, launched by NASA provided optical images that, were used in this study 365 

to extract the NDVI and land use information in the study area for the year 2020. AverageThe Landsat 8 images, with 366 

a spatial resolution of 30 meters, were processed using Envi software to calculate average annual changes ofin NDVI 367 

between 2014 and 2020 were calculated with Envi software. The relationship between subsidence and groundwater . 368 

This analysis helps in understanding the impact of vegetation and land use changes on subsidence (Fig. 5). 369 

3.2.4. Groundwater Monitoring Data 370 

Groundwater level changes should bewere investigated over a long period of time. Therefore, in this research, using 371 

the using data from piezometric wells of the region, thewithin the study area. The groundwater monitoring data, 372 

covering the period from 2014 to 2020, were sourced from Isfahan Regional Water Authority. These data were 373 

collected monthly and provided detailed information on the groundwater table fluctuations. The data were processed 374 

to generate water table map was calculated for the period of 2014 to 2018In areas where the densitymaps, which were 375 

then analysed in relation to subsidence patterns. In areas with high densities of exploitation wells is higher due to the 376 

extraction of underground water resources, the probability of subsidence is higher in those areas, so theincreases due 377 

to significant groundwater extraction. The distance from exploitationthese wells was calculated and included as one 378 

of the driving forces for subsidence (Fig. 45). 379 
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Figure 45: Driving forces of subsidence- (a) NDVI (b) Distance of Wells (c) Land use, (d) Water table map in 20182014 to 383 

2020 384 

 385 

 386 

 387 

 388 

4. Result 389 

4.1. Results of CNN 390 

 391 

CNN was trained using the calculated driving forces and subsidence at the PSs and the performance of the network 392 

by analysing the graphs of the cost function (mean squared error) for the training and validation data, as shown in 393 

Figure 56, the MSERMSE values of this model for the training, validation and test data are 5, 93.99, 8.47 and 119 394 

mm, respectively.  395 

(c) 
(d) 
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 396 

    397 

Figure 56: Cost function of training and validation data 398 

 399 
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4.2. Comparison between CNN and Krigingtraditional interpolation methods 400 

We In our study, we employed twofour distinct methods to create continuous subsidence surface: interpolation and 401 

CNN. To establisha continuous subsidence surface: a Convolutional Neural Network (CNN) and three traditional 402 

interpolation methods—Kriging, Inverse Distance Weighting (IDW), and Radial Basis Function (RBF). The 403 

traditional interpolation methods were utilized to interpolate between Persistent Scatterers (PSs) and calculate the 404 

subsidence across all pixels within the study area, based solely on the spatial distribution of the PSs. However, these 405 

methods do not account for the subsidence driving forces, and their accuracy can be compromised by irregular 406 

distributions of PSs. 407 

In contrast, the CNN approach was trained using subsidence driving forces to predict subsidence and generate  a 408 

continuous subsidence surface within the study area, we utilized Kriging interpolation.. This method only performs 409 

interpolation between the PSs and calculates the subsidence of all the pixels is particularly effective in the study area 410 

and does not consider the subsidence driving forces. In contrast, a CNN was trained using subsidence  driving forces 411 

and used to predict subsidence, producing a continuous subsidence surface with higher reliability.   CNN can 412 

effectively handlehandling irregularly distributed data points, making themit suitable for scenarios where PSs may not 413 

be evenlyare unevenly distributed across the study area. Kriging relies on the spatial distribution of data points, and 414 

irregular distributions can impact its accuracy. By incorporating subsidence driving forces, the CNN can provide a 415 

more reliable prediction of subsidence compared to the traditional interpolation methods.  To evaluate the accuracy of 416 

these methods in predicting subsidence, we used several performance metrics, including the Root Mean Squared Error 417 

(RMSE), Mean Absolute Error (MAE) and R-squared (R2), The values of these metrics for each method on the train 418 

and test data are given in Table 2. To further validate the superiority of the CNN model, we conducted statistical 419 

significance tests. A t-Test was performed to compare the performance metrics, with the results indicating a 420 

statistically significant improvement in the CNN model's performance over the traditional interpolation methods (p-421 

value < 0.05). These results indicate a statistically significant improvement in the accuracy of the CNN compared to 422 

the traditional interpolation methods. 423 

To assess the accuracy of these methods in predicting subsidence, we calculated MSE for both the methods, MSE of CNN, 424 
Kriging is 11 and 37.19 mm, respectively. By comparing these outcomes, we can evaluate the effectiveness of both 425 
interpolation and CNN in predicting land subsidence.Table 2 . Compare between interpolation methods to predict 426 
subsidence (Train data) 427 

Train data Test data 
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Method RMSE (mm)        MAE (mm) R2 score RMSE 

(mm)        

MAE 

(mm) 

R2 score 

CNN 3.99 2.18 0.99 9.06 3.69 0.98 

Kriging 62.78 39.19 -0.09 61.60 37.90 -0.06 

IDW 67.32 40.52 -0.25 66.21 39.30 -0.22 

 RBF 62.67 38.95 -0.08 61.76 37.92 -0.06 

  428 

Error distribution maps are visual tools that illustrate the spatial distribution of prediction errors across the study area. 429 

These maps play a crucial role in evaluating the performance of subsidence prediction models, such as the 430 

Convolutional Neural Network (CNN) and traditional interpolation methods (Kriging, IDW, and RBF). 431 

By plotting the differences between the predicted and PSInSAR subsidence values at various locations, error 432 

distribution maps help identify patterns or areas where the models perform well or poorly. Clusters of high errors 433 

indicate that traditional interpolation methods do not perform well in areas where the range of subsidence values is 434 

greater than the average values of the entire study area and in areas with sparse PS distribution. These methods tend 435 

to have the highest errors at these points, which are often critical for accurate subsidence assessment. In contrast, the 436 

CNN demonstrates more consistent performance due to its training on subsidence driving forces, resulting in lower 437 

errors in these high-variance regions. 438 

In our study, the error distribution maps confirmed the findings from the quantitative performance metrics (RMSE, 439 

MAE, and R² score). The CNN showed a more uniform error distribution, indicating its effectiveness in handling 440 

irregular data distributions and incorporating subsidence driving forces. This visual evidence supports the conclusion 441 

that the CNN provides a more reliable and accurate subsidence prediction compared to traditional interpolation 442 

methods (Fig. 7). 443 
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 444 

  445 

Figure 7: Error distribution map of (a) CNN (b) RBF (c) Kriging (d) IDW 446 

 447 

4.3 Subsidence of Study area 448 

In our analysis of land subsidence in the Isfahan region, we processed a total of 73 Sentinel-A images using the 449 

PSInSAR method. Through this process, we identified PSs by applying a range amplitude dispersion index threshold 450 

of 0.2 and a temporal correlation threshold of 0.8. The maximum velocity for these PSs was observed in the northeast 451 

of the study area, specifically near Shahid Beheshti Airport in Isfahan, measuring at -67 mm per year. This significant 452 

rate resulted in a cumulative displacement of approximately -33 cm in the period from 2014 to 2020 (Fig. 68). 453 

(a) 

(b) 

(c) (d) 
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 454 

 455 

Figure 68: Cumulative displacement of PSs in 2014 to 2020 456 

A velocity map was created using Kriging interpolation between PSs. The results showed that the highest velocity, 457 

approximately 67 mm per year, was observed in the northeast of the study area (Fig. 79).  458 
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 459 

 460 

Figure 79: Velocity map using Kriging 461 

In this research, in order to obtain a continuous subsidence surface of a specific area, two methods, Kriging and CNN, 462 

Kriging method is based on mathematics and interpolation between cumulative displacement of PSs. The maximum 463 

amount of cumulative displacement obtained by the Kriging method in the studied area is approximately 36 cm (Fig. 464 

810). 465 
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 466 

 467 

Figure 810: Cumulative displacement using Kriging in 2014 to 2020 468 

The CNN method was trained with the cumulative displacement of PSs and the subsidence driving forces in these 469 

points, and finally the subsidence of the entire area was predicted with this model. The maximum amount of 470 

cumulative displacement obtained by the CNN method in the studied area is approximately 33 cm (Fig. 911).  471 
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 472 

 473 

Figure 11: Cumulative displacement using CNN in 2014 to 2020 474 

 475 

Shahid Beheshti Airport in Isfahan is currently facingexperiencing a concerning situationcritical rate of land 476 

subsidence, with thean estimated velocity reaching more thanexceeding 45 mm eachper year. This alarming rate of 477 
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deformation has resulted in a significant cumulative displacement of approximately 41 cm in the region frombetween 478 

2014 toand 2020. In additionMoreover, the CNN-generated subsidence map produced by CNN shows that thereveals 479 

a slightly higher maximum cumulative displacement in this area has reached of 42 cm. Our study also revealed 480 

noteworthy in the region, suggesting that deep learning models provide a more comprehensive and accurate 481 

representation of land deformation. These findings for Mahyar and Nasr Abad Jarqouye. In thesehighlight the urgency 482 

of addressing subsidence-related risks, particularly in critical infrastructure areas, the velocity is approximately 5 cm 483 

per year, resulting in a maximum cumulative displacement of approximately 33 cm between 2014 and 2020.  such as 484 

airports, where even slight ground movements can lead to substantial damage. The maximum cumulative displacement 485 

using kriging interpolation showed approximately 35 cm. However, the maximum cumulative displacement using 486 

CNN showed approximately 32 cm (Fig. 10).model’s ability to detect and quantify subsidence in regions with sparse 487 

data further underscores its potential as a valuable tool for monitoring and mitigating land deformation across various 488 

urban and industrial settings (Fig. 12).  489 

 490 
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 502 

Figure 12:4: Cumulative Displacement of Shahid Beheshti Airport and Mahyar and Nasr Abad Jarqouye in 2014 to 2020: 503 

(a), (b) Continuous surface of cumulative displacement using Kriging interpolation between PSs (c), (db) Cumulative 504 

displacement of PSs (c) Continuous surface of cumulative displacement (e), (f) Cumulative displacement of PSs 505 

InOur study revealed significant subsidence patterns in the Mahyar and Nasr Abad Jarqouye regions, highlighting the 506 

severity of land deformation over the observation period. The analysis indicates an average subsidence velocity of 507 

approximately 5 cm per year, leading to a substantial cumulative displacement of around 33 cm between 2014 and 508 

2020. When applying the Naqsh-Kriging interpolation method, the estimated maximum cumulative displacement 509 

reached approximately 35 cm. In contrast, our deep learning-based CNN model predicted a slightly lower maximum 510 

cumulative displacement of around 32 cm (Fig. 13). These findings underscore the variations in prediction accuracy 511 

between traditional geostatistical methods and data-driven deep learning approaches. The discrepancy between 512 

Kriging and CNN estimates suggests that while Kriging may slightly overestimate extreme displacement values due 513 

to its spatial smoothing effect, the CNN model, trained directly on observed deformation patterns, offers a more data -514 

driven approach to subsidence prediction. 515 

 516 

 517 

 518 

   519 
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  520 

Figure 5: Cumulative Displacement of Mahyar and Nasr Abad Jarqouye in 2014 to 2020: (a) Continuous surface of 521 

cumulative displacement using Kriging interpolation between PSs (b) Cumulative displacement of PSs (c) Continuous 522 

surface of cumulative displacement  523 

In the Naqsheh Jahan area, the maximum cumulative displacement estimated throughusing the krigingKriging and 524 

CNN methods between 2014 and 2020 was approximately 6 cm and 12 cm, respectively.  Meanwhile atSimilarly, in 525 

the Si-o-Se Pol area, the Kriging method estimated a maximum cumulative displacement estimated through the kriging 526 

and CNN methods between 2014 and 2020 was approximatelyof around 6 cm and , while the CNN predicted a 527 

significantly higher value of approximately 19 cm, respectively (Fig. 11). . These discrepancies highlight fundamental 528 

differences between geostatistical interpolation and deep learning-based predictive modeling. While Kriging 529 

interpolation effectively fits observed PSs, it struggles with accurate extrapolation in regions where measurement 530 

points are sparse or absent. Conversely, CNN approach identifies significant deformation trends that Kriging fails to 531 

detect, emphasizing the potential of deep learning techniques for more reliable and spatially comprehensive 532 

subsidence prediction (Fig. 14). 533 
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 537 

  538 

    539 

Figure 11:6: Cumulative Displacement of Naqsh-Naghsheh Jahan and Si-o-Se Pol area, 2014 to  2020: (a), (b) Continuous 540 
surface of cumulative displacement using Kriging interpolation between PSs (c), (d) Cumulative displacement of PSs (e), 541 
(f) Continuous surface of cumulative displacement resulting from CNN (e), (f) Cumulative displacement of PSs 542 

 543 

The city of Khomeini Shahr is facing a concerning situation where the velocity has been estimated to be more than 45 544 

mm per year. Unfortunately, this has resulted in displacement in residential areas, with the maximum cumulative 545 

displacement of PSs reaching 30 cm from 2014 to 2020. According to the map generated using CNN, the maximum 546 

cumulative displacement is currently at 31 cm. It has been estimated that the velocity in Falavarjan city is more than 547 

23 mm per year, which is concerning. As a result, there has been a maximum cumulative displacement of 16 cm in 548 

the area from 2014 to 2020. According to the CNN-generated map, the maximum cumulative displacement in 549 

Falavarjan is 23 cm (Fig. 12).A comparative analysis of Kriging interpolation and the CNN model against PSInSAR 550 

observations reveals key methodological differences. The Kriging interpolation method, while effective in fitting 551 

observed data points, primarily relies on mathematical interpolation and spatial smoothing. This often leads to 552 
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inaccuracies in regions with a lower density of PS points, as it lacks the ability to infer displacement patterns beyond 553 

the available observations. In contrast, the CNN model estimates settlement values based on learned structural 554 

relationships, capturing complex spatial dependencies and underlying deformation mechanisms more effectively. This 555 

advantage allows the deep learning model to provide a more continuous and spatially coherent subsidence map, 556 

improving predictive accuracy in areas with sparse measurement data (Fig. 15). 557 
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  562 

 563 

Figure 12:7: Cumulative Displacement of Khomeini Shahr and Falavarjan, 2014 to  2020: (a), (b) Continuous surface of 564 
cumulative displacement using Kriging interpolation between PSs (c), (db) Cumulative displacement of PSs (c) Continuous 565 
surface of cumulative displacement resulting from CNN (e), (f) Cumulative displacement of PSs 566 

 567 

In Falavarjan city, the estimated subsidence velocity exceeds 23 mm per year, highlighting a concerning rate of land 568 

deformation. Over the period from 2014 to 2020, this has resulted in a maximum cumulative displacement of 569 

approximately 16 cm based on conventional geostatistical estimates. However, the CNN-generated subsidence map 570 

indicates a significantly higher maximum cumulative displacement of around 23 cm. The discrepancy between 571 

PSInSAR estimates and CNN predictions highlights fundamental differences in their modeling approaches. While 572 

conventional methods rely on spatial interpolation and statistical assumptions, CNNs leverage spatial dependencies 573 

and structural patterns learned from observed data, allowing for more accurate and continuous subsidence mapping. 574 
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This suggests that deep learning-based approaches may provide a more reliable representation of ground deformation, 575 

particularly in regions with a sparse distribution or absence of PSs (Fig. 16). 576 

   

 

Figure 8: Cumulative Displacement of Falavarjan, 2014 to  2020: (a) Continuous surface of cumulative displacement using Kriging 

interpolation between PSs (b) Cumulative displacement of PSs (c) Continuous surface of cumulative displacement resulting from CNN  

 

Data Availability 577 

The SAR Sentinel-1A dataset used in this study is freely available for access on the web at 578 

https://dataspace.copernicus.eu 579 

The data used in this study consists of subsidence measurements obtained from Sentinel -1A and Landsat 8 images 580 

over the period of 2014-2020. The subsidence was calculated using the Sarproz and driving forces of subsidence was 581 

calculated using the ENVI software tools. Sentinel-1A Data: The Sentinel-1A images were used to Calculation of 582 

subsidence through PSInSAR in Sarproz (Version [pcodes_2019-10-02]). Landsat 8 Data: The Landsat 8 images were 583 

used to calculate Land use and NDVI using ENVI (Version [5.3]). Digital Elevation Model:  DEM was used to 584 

calculate TWI, SPI, Aspect, Slope, Altitude  using ArcGIS (Version [10.7.1] 585 
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5.  Conclusion 586 

The PSInSAR method has proven to be a dependable technique for investigating gradual land deformation, particularly 587 

subsidence. However, it yields discrete results limited to PSs only, making it less suitable for areas with vegetation . 588 

In such scenarios, Kriging interpolation between PSs is commonly used to create a continuous subsidence surface. 589 

Nevertheless, this approach has its limitations due to the complex nature of subsidence influenced by various factors. 590 

In our study, we tackled this challenge by generating a continuous subsidence surface for the entire study area using 591 

a CNN. We factored in the driving forces of subsidence in this process. We evaluated the accuracy of both Kriging 592 

interpolation and CNN methods by calculating the mean square error on the test data.  The results revealed that the 593 

study area experienced more than 38 cm of subsidence between 2014 and 2020. Notably, the velocity was estimated 594 

to be over 45 mm per year at Shahid Beheshti airport, exceeding 54 mm per year in the Mahyar Plain, and around 6 595 

mm per year in Naqsh-Jahan and Sio-Se-Pol Bridges. The mean square error values for the training, validation, and 596 

test data using the CNN were determined to be 5 mm, 9 mm, and 11 mm, respectively. These results indicated a 597 

significant improvement of 70% in the prediction of subsidence with intelligent interpolation CNN compared to the 598 

kriging interpolation method. This CNN-based method offers a robust and accurate interpolation approach, even when 599 

dealing with sparse and irregularly distributed data. 600 

This study presents an innovative deep learning framework utilizing a Convolutional Neural Network (CNN) to 601 

generate a continuous subsidence surface across the study area. Unlike traditional methods that rely on discrete 602 

geodetic measurements, the proposed approach integrates multiple key driving factors—including NDVI, distance 603 

from wells, land use, water table depth, altitude, slope, SPI, TWI, and aspect—providing a more comprehensive and 604 

data-driven understanding of subsidence dynamics. The CNN model effectively addresses the limitations of PSInSAR, 605 

which, despite its reliability in detecting gradual land deformation, is restricted to persistent scatterers (PSs) and 606 

performs poorly in vegetated or low-coherence areas. By leveraging deep learning, the proposed model enables 607 

subsidence estimation even in regions where PSInSAR measurements are unavailable, addressing a critical gap in 608 

geospatial monitoring. 609 

The superiority of the CNN-based approach was demonstrated through a comparative analysis against conventional 610 

interpolation techniques, including Kriging, IDW, and RBF. The CNN model achieved significantly lower RMSE 611 

values (3.99 mm, 8.47 mm, and 9 mm for the training, validation, and test datasets, respectively) and an R² score of 612 

0.98, whereas traditional methods exhibited considerably higher RMSE values (Kriging: 61.60 mm, IDW: 66.21 mm, 613 
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RBF: 61.76 mm) and negative R² scores, highlighting their limitations in subsidence prediction. The study also 614 

identified severe land subsidence in key areas, with rates exceeding 45 mm per year at Shahid Beheshti Airport and 615 

over 54 mm per year in the Mahyar Plain. The CNN model demonstrated an 85% improvement in prediction accuracy 616 

over traditional methods, underscoring its robustness and effectiveness, particularly in areas with sparse and 617 

irregularly distributed data.  618 

Despite these advancements, some challenges remain. The model’s performance is influenced by the availability and 619 

quality of input data, and its computational demands necessitate high-performance GPUs for efficient training. 620 

Additionally, regional variations in subsidence mechanisms may require model adaptations to ensure accuracy across 621 

diverse landscapes. Future research should focus on enhancing the model’s generalizability across different 622 

geographical regions, developing real-time monitoring capabilities for early warning systems, and integrating 623 

additional datasets—such as climate variables and bedrock depth—to further refine predictive accuracy. Furthermore, 624 

exploring hybrid deep learning architectures, such as CNN-LSTM models, may enhance computational efficiency and 625 

improve temporal prediction capabilities. Addressing these aspects will further establish deep learning -based 626 

subsidence modeling as a scalable and effective tool for geospatial analysis, environmental monitoring, and urban 627 

planning. 628 

Code and data availability 629 

 630 

The code for the CNN model and related data, as described in the paper, can be accessed via the Zenodo archive using 631 

the following link: https://zenodo.org/records/10956394 (Azarm,2024) 632 

The Excel file in the Zenodo repository contains 62,000 data points corresponding to permanent scatterers obtained 633 

from the PSInSAR method. The nine satellite images used as inputs for the model, which include NDVI, Landuse, 634 

etc., were calculated using Landsat 8 and DEM images from the area. These images are also available in the Zenodo 635 

repository. Additionally, the Python code for the CNN model used in this paper are accessible through the Zenodo 636 

archive at the following link: https://zenodo.org/records/12721120 (Azarm, 2024). 637 
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