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Abstract. We developed a strongly coupled aerosol-chemistry meteorology four-dimensional variational (4D-Var)

assimilation system, CMA-GFS-AERO 4D-Var, for investigating the feedbacks of chemical data assimilation on

meteorological forecasts. This system was developed on the basis of the framework of the incremental analysis scheme of

the China Meteorological Administration Global Forecasting System (CMA-GFS). CMA-GFS-AERO 4D-Var includes three15

component models: forward, tangent linear, and adjoint models. CMA-GFS-AERO forward model was constructed by

integrating an aerosol module containing main physical processes of black carbon (BC) aerosol in the atmosphere into the

CMA-GFS weather model. The tangent linear and the adjoint of the aerosol module was further developed and coupled

online with the CMA-GFS tangent linear and adjoint models, respectively. In CMA-GFS-AERO 4D-Var, the BC mass

concentration was used as the control variable and minimized together with atmospheric variables. The validation of this20

system includes the tangent linear approximation, the adjoint correctness test, the single-point observation ideal experiment

and the full observation experiment. The results show that CMA-GFS-AERO tangent linear model performs well in tangent

linear approximation for BC, and adjoint sensitivity agrees well with tangent linear sensitivity. Assimilating BC observations

can generate analysis increments not only for BC but also for atmospheric variables, highlighting the capability of

CMA-GFS-AERO 4D-Var in exploring the feedback effect of BC assimilation on atmospheric variables. The computational25

performance of CMA-GFS-AERO 4D-Var also indicates the potential in operational application. This study focuses on the

theoretical architecture and practical implementation of the system, the detailed analysis of the batch test will be described in

part 2 of this paper.

1 Introduction

Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that concurrently simulate30

meteorological processes and chemical transformations (Zhang, 2008; Baklanov et al., 2014; Bocquet, 2015). They are more
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recent compared to chemical transport models (CTM), which rely on meteorological fields as inputs (Seinfeld and Pandis,

1998). Moisture and temperature perturbations to dynamics resulting from aerosol microphysics and radiative forcing are

taken into consideration by CCMM, CCMM account for the feedback mechanism between aerosols and meteorology,

specifically the moisture and temperature perturbations resulting from aerosol microphysics and radiative forcing, which, in35

turn, affect atmospheric dynamics such as convection, circulation, and stability, whereas CTMs lack the capability to

incorporate these feedbacks mechanisms (Guerrette and Henze, 2015).

CCMM provides the possibility to assimilate both meteorological and chemical data, enabling the production of an optimal

initial condition forenabling to produce the optimal initial values for improving air quality predictions and developing

re-analysis of three-dimensional (3D) chemical concentrations over the past decades (Bocquet, 2015). One of the first40

applications of data assimilation with a CCMM was conducted at Météo-France. Semane et al. (2009) used four-dimensional

variational (4D-Var) data assimilation to assimilate the vertical profiles of ozone (O3) concentrations obtained from the

Microwave Limb Sounder (MLS) aboard the Aura satellite AURA/MLS into the ARPEGE/MOCAGE (Action de Recherche

Petite Echelle Grande Echelle/Modèle de Chimie Atmosphérique de Grande Echelle) chemistry meteorology integrated

system, and found that the assimilation of O3 reduces the wind bias in the lower stratosphere. This general approach is also45

adopted by the European Centre for Medium-range Weather Forecasts (ECMWF), although without considering the

influence of chemical species on meteorological variables (Flemming et al.,2011; Inness et al., 2013). Flemming et al. (2011)

utilized the 4D-Var system of the Integrated Forecast System (IFS) coupled with three different O3 chemistry mechanisms,

including a linear chemistry, the MOZART3 (Model for Ozone and Related Chemical Tracers, version 3) chemistry, and the

TM5 (Transport Model, version 5) chemistry, to assimilate O3 data from four satellite-borne sensors to improve the50

simulation of the stratospheric O3 hole in 2008. Inness et al. (2013) used 4D-Var system of IFS coupled with the MOZART3

CTM to produce re-analysis of atmospheric concentrations of four chemical species, including CO, NOx, O3, and

formaldehyde (HCHO), over an 8-year period, and the data assimilation results showed notable improvements for CO and

O3, but little effect for NO2, because of its shorter lifetime compared to those of CO and O3. Previous efforts have also

explored the application of ensemble-based methods for data assimilation with a CCMM (Pagowski and Grell, 2012;55

Bocquet et al., 2015). Pagowski and Grell (2012) assimilated surface measurements of fine aerosols using the Weather

Research and Forecasting-Chemistry model (WRF-Chem) and the Ensemble Kalman filter (EnKF) method. Bocquet et al.

(2015) also presented an application of the EnKF to assimilate surface fine particulate matter observations and

meteorological observations with the WRF-Chem model over the eastern part of North America. Results demonstrated that a

large positive impact of aerosol data assimilation on aerosol concentrations, while the effect of meteorological observation60

assimilation on aerosol concentration is rather minor. All the preceding studies have laid good foundations for data

assimilation with CCMM. However, since CCMM are fairly recent, the development and applications of data assimilation in
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CCMM are still limited. Further research and more attention are required, especially in terms of the potential feedbacks of

chemical data assimilation on meteorological forecasts. Additionally, EnKF estimates background error covariance through

ensemble forecasts, which rely on a limited number of ensemble members (Zhu et al., 2022). In high-dimensional problems,65

the limited number of samples may not be able to fully capture all the error characteristics, resulting the inaccurate of the

estimation of background error covariance. In contrast, 4D-Var generally offers higher accuracy for high-dimensional

problems by incorporating both the full observational data and model dynamics within the assimilation window, resulting in

more precise state estimation. While the flow dependence of the background error covariance is implicitly realized within the

assimilation window in 4D-Var, modeling the cross-variable component of the covariance presents a significant challenge in70

data assimilation for CCMM. Furthermore, the tangent linear model (TLM) and the adjoint model (ADM) are essential

components of 4D-Var, but their development is often fraught with difficulties.

As a method widely used by majorinternational mainstream numerical weather prediction centers, 4D-Var is considered

superior to three-dimensional variational (3D-Var) data assimilation, which ignores the time distribution of observations and75

assumes that observations within a time window are concentrated at the analysis moment (Lorenc and Rawlins, 2010).

4D-Var is an extension of 3D-Var in the time dimension, it can consider the observation time more accurately and can

implicitly propagate the initial background error covariance during the assimilation window (Lorenc and Rawlins, 2010). In

the development of 4D-Var, the adjoint model (ADM) plays a crucial role by offering the sensitivity and gradient of the cost

function with respect to the control variables. Significant efforts have been made in the field of atmospheric chemistry80

adjoint modeling. Elbern and Schmidt (1999) first constructed the ADM of a 3D CTM, EUARD (The University of

Cologne European Air Pollution Dispersion Chemistry Transport ModelEUARD) for the first time. Inspired by this work,

various ADM of CTM have been successively developed, mainly including CHIMERE (Menut et al., 2000; Vautard et al.,

2000; Schmidt and Martin, 2003), IMAGES (Intermediate Model of Global Evolution of Species; Müller and Stavrakou,

2005), STEM-III (Sulfur Transport Eulerian Model; Sandu et al., 2005), CAMx (Comprehensive Air Quality Model with85

Extensions model; Liu, 2005), CMAQ (Community Multiscale Air Quality model; Hakami et al., 2007) and GEOS-Chem

(Henze et al., 2007). An et al. (2016) and Wang et al. (2022) constructed the ADM of GRAPES-CUACE (Global/Regional

Assimilation and PrEdiction System coupled with CMA Unified Atmospheric Chemistry Environmental Forecasting System),

an independently developed CCMM in China (Wang et al., 2010, 2018). ADM of these widely used CTM play an important

role in inverse modelling and chemical data assimilation (Menut et al., 2000; Müller and Stavrakou, 2005; Sandu et al., 2005;90

Hakami et al., 2007; Henze et al., 2009). However, these CTM do not take into account the influence between chemical

species and meteorological variables, resulting in certain uncertainties in adjoint sensitivity, which in turn affects the
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effectiveness of 4D-Var. Although GRAPES-CUACE is a CCMM, its ADM only includes the adjoint of the chemical model

and not the adjoint of the meteorological model, leading to uncertainties in the sensitivity calculation as well.

Black carbon (BC) aerosol, a major component of the fine particulate matter is one of the major components of (PM2.5),95

defined by an aerodynamic diameter of 2.5 micrometers or less, primarily originates mainly from the incomplete combustion

of biomass and fossil fuels (Kuhlbusch, 1998). As an important atmospheric pollutant, BC is porous and adsorbs other solid

and gaseous pollutants (e.g., SO2, O3, etc.), and provides catalytic conditions for them, which plays an important role in

photochemical and heterogeneous reactions and gas-particle conversion processes (Koch, 2001). BC is also the main

optically absorbing component of atmospheric aerosols, effectively absorbing solar radiation in the visible to infrared100

wavelength range, thus affecting not only the surface temperature but also the 3D temperature field. The climatic effects of

BC have been widely reported, but the extent to which it affects weather forecasting requires further investigation (Chung

and Seinfeld, 2002; Menon et al., 2002; Bond et al., 2013).

To deeply investigate the feedbacks of aerosolchemical data assimilation on meteorological forecasts, we utilized BC as a

starting point to develop the strongly coupled aerosol-chemistry meteorology 4D-Var system. Firstly, we constructed a105

coupled aerosol-meteorologyCCMM system, named CMA-GFS-AERO, by integrating an aerosol module (AERO-BC)

containing main aerosol physical processes of BC in the atmosphere into the operational version of the weather model

CMA-GFS V4.0 (Shen et al., 2023), which was developed by the China Meteorological Administration (CMA). Then, the

tangent linear and the adjoint of the AERO-BC module was constructed and coupled online with the tangent linear model

(TLM) and ADM of CMA-GFS (Liu et al., 2017, 2023; Zhang et al., 2019), respectively. Thus, CMA-GFS-AERO ADM110

includes not only the adjoint of physical processes of BC, but also the adjoint of the meteorological model. Moreover, the

BC adjoint variables and the meteorological adjoint variables mutually influence each other throughout the adjoint

integration process, leading to a notable enhancement in the precision of adjoint sensitivity of chemistry aerosol and

meteorology state. Based on the CMA-GFS-AERO forward model CCMM and its TLM and ADM, we further constructed

the CMA-GFS-AERO 4D-Var by adding the control variable of BC intoadding BC as a control variable into the incremental115

analysis scheme of CMA-GFS 4D-Var. The rationality and capability of CMA-GFS-AERO 4D-Var in capturing the

feedbacks of chemical data assimilation on meteorological analysis were verified using the single-point observation ideal

experiment and the full observation experiment. The following part is divided into four sections. Section 2 introduces the

methods, Section 3 describes the development of CMA-GFS-AERO 4D-Var, Section 4 provides the model setup, Section 54

presents the results, and the conclusions are found in Section 65.120
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2 Methodology

2.1 Model description

2.1.1 CMA-GFS

The China Meteorological Administration Global Forecasting System (CMA-GFS, formerly known as GRAPES-GFS) is an

operational global numerical weather model independently developed by the CMA (Chen and Shen, 2006; Chen et al., 2008;125

Shen et al., 2023). For this work, we used CMA-GFS version 4.0 (CMA-GFS v4.0). The dynamic core of CMA-GFS utilizes

the fully compressible non-hydrostatical equations formulated on spherical coordinate with latitude and longitude, and

adopts the height-based, terrain-following coordinate which is shown in Fig. S1 (Yang et al., 2007) . The model employs

semi-implicit and semi-Lagrangian in two-level time integration (Yang et al., 2007). The spatial differential adopts

Arakawa-C grid in the horizontal, and Charney-Philips variable staggering in the vertical. The large-scale transport processes130

utilize a hybrid Piecewise Rational Method (PRM) and Quasi-Monotone Semi-Lagrangian (QMSL) scheme (Su et al., 2013).

The physical parameterization schemes are freely combinable, which principally include cumulus convection, microphysical

precipitation, radiative transfer, land surface and boundary layer processes. The physical parameterization schemes used in

this work mainly include the Simplified Arakawa Schubert (SAS) cumulus convection scheme (Arakawa and Schubert,

1974; Liu et al., 2015), the double-moment cloud microphysics scheme (Liu et al., 2003a, 2003b; Li et al., 2024), the Rapid135

Radiative Transfer Model for the GCM (RRTMG) longwave and shortwave radiation schemes (Mlawer et al., 1997;

Morcrette et al., 2008), the Common Land Model (CoLM) land surface scheme (Dai et al., 2003), and the New Medium

Range Forecast (NMRF) boundary layer scheme (Hong and Pan, 1996; Han and Pan, 2011). The state variables of the

CMA-GFS nonlinear model (NLM) include non-dimensional pressure (𝜋), potential temperature (𝜃), the east-west

component of horizontal wind (u), the north-south component of horizontal wind (v), the vertical component of wind (𝑤ෝ ),140

and the specific humidity (𝑞).

2.1.2 CUACE

CUACE (CMA Unified Atmospheric Chemistry Environmental Forecasting System) is an air quality model developed by

the Chinese Academy of Meteorological Sciences to study both air quality forecasting and climate change (Gong and Zhang,

2008; Wang et al., 2010; Zhou et al., 2012). CUACE mainly includes three modules: the aerosol module, the gaseous145

chemistry module and the thermodynamic equilibrium module. CUACE adopts CAM (Canadian Aerosol Module; (Gong et

al., 2003)), which employs the size-segregated multicomponent aerosol algorithm, as its aerosol module. CAM involves six

types of aerosols: BC, sulfate (SF), nitrate (NI), sea salt (SS), organic carbon (OC) and soil dust (SD), and each of them

utilizes the sectional representation method (Gelbard et al., 1980; Meng et al., 1998; Gong et al., 2003), in which the aerosol

size distribution is generally approximated by a set of contiguous, nonoverlapping and discrete size bins, to represent particle150
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size distributions. The core of CAM is the major aerosol processes in the atmosphere, including hygroscopic growth,

coagulation, nucleation, condensation, dry deposition/sedimentation, and below-cloud scavenging.

2.2 Incremental 4D-Var

The CMA-GFS 4D-Var data assimilation system has been in operation at CMA since 1 July 2018 (Zhang et al., 2019).

CMA-GFS 4D-Var applies the incremental analysis scheme proposed by Courtier et al. (1994). The cost function is defined155

as

𝐽 𝛿𝑥 =
1

2
𝛿𝑥𝑇𝐁−1𝛿𝑥 +

1

2 𝑖=0
𝑛 𝐇𝑖𝐌0→𝑖𝛿𝑥 + 𝑑𝑖

𝑇𝐑𝑖
−1 𝐇𝑖𝐌0→𝑖𝛿𝑥 + 𝑑𝑖 + 𝐽𝑐∑ , (1)

where 𝛿𝑥 = 𝑥𝑎 − 𝑥𝑏 represents the analysis increment of the model variables, 𝑥𝑎 is the analysis filedfield, 𝑥𝑏 is the

background state, 𝑑𝑖 = 𝑯𝑖𝑴0→𝑖 𝑥𝑏 − 𝑦𝑖 is the observation innovationincrement at time 𝑖, 𝑦𝑖 is the observation at time 𝑖,

𝑯𝑖 represents the observation operator at time 𝑖, 𝑴0→𝑖 denotes the model integration from the analysis time to time 𝑖, 𝐇𝑖160

is the linear operator corresponding to 𝑯𝑖, 𝐌0→𝑖 is the linear modeloperator corresponding to 𝑴0→𝑖, 𝐁 represents the error

covariance matrix of 𝑥𝑏, 𝐑𝑖 denotes the observation error covariance matrix at time 𝑖, and 𝐽𝑐 is the weak constraint term

on the basis of the digital filter. 𝐽𝑐 is not relevant to the current work, so the formula described below omits 𝐽𝑐 term from

the cost function for the sake of simplicity.

After the physical and preconditioning transformations of the control variables, the cost function can be expressed as165

(Courtier et al., 1994; Lorenc et al., 2000; Zhang et al., 2019)

𝐽 𝑤 =
1

2
𝑤T𝑤 +

1

2 𝑖=0
𝑛 (𝐇𝑖𝐌0→𝑖𝑈𝑤 + 𝑑𝑖)

𝑇𝐑𝑖
−1(𝐇𝑖𝐌0→𝑖𝑈𝑤 + 𝑑𝑖)∑ , (2)

where 𝑤 denotes the control variables after the physical and preconditioning transformations, and the analysis increment is

expressed as 𝛿𝑥 = 𝑈𝑤, 𝑈 (𝑈𝑈𝑇 = 𝐁) is the square root matrix of the background error covariance matrix after the physical

and preconditioning transformations.170

The gradient of the cost function 𝐽 𝑤 with respect to the control variable 𝑤 is

∇𝑤𝐽 = 𝑤 +
𝑖=0
𝑛 𝑈𝑇𝐌0→𝑖

𝑇 𝐇𝑖
𝑇𝐑𝑖

−1(𝐇𝑖𝐌0→𝑖𝑈𝑤 + 𝑑𝑖)∑ , (3)

where 𝐇𝑖
𝑇 is the adjoint operator of 𝐇𝑖 , and 𝐌0→𝑖

𝑇 is the adjoint operator model of 𝐌0→𝑖 , which denotes the

backwardinverse integration of the ADM from the time 𝑖 to the analysis time.

Currently, the CMA-GFS 4D-Var system adopts a 6-h cycle and is performed four times a day, with assimilation windows of175

0300 UTC-0900 UTC, 0900 UTC-1500 UTC, 1500 UTC-2100 UTC and 2100 UTC-0300 UTC. The assimilation process is

divided into two parts: the outer loop and the inner loop. In the outer loop, the CMA-GFS NLM (𝑴0→𝑖) is integrated at high

resolution for 6 hours to obtain the trajectory, which is a collection of stored values of all model state variables at all time

steps within the assimilation window. The observation innovation increment 𝑑𝑖 is calculated in the outer loop as well. In the

inner loop, the CMA-GFS TLM and ADM are integrated at low resolution to calculate the cost function ( 𝐽 𝑤 ) and its180
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gradient (∇𝑤𝐽). The gradient is further provided to the Lanczos-CG algorithm (Lanczos, 1950; Liu et al., 2018) to perform

the minimization, obtaining the optimal analysis increments to control variables.

3 Development of CMA-GFS-AERO 4D-Var

The computational cost is an important factor to be considered when developing a coupled aerosolchemistry- meteorology

4D-Var system with potential for operational application (Flemming et al., 2015). The CUACE model is computationally185

expensive since it includes more than one hundred chemical variables for aerosols and gases, as well as hundreds of

gas-phase chemical reactions. It is difficult to construct a coupled aerosol-chemistry meteorology 4D-Var system directly

based on the CUACE model. On the other hand, BC has an important impact on the climate and can be used to study the

two-way feedback interactions between aerosolchemistry and meteorology (Chung and Seinfeld, 2002; Menon et al., 2002;

Bond et al., 2013). Therefore, we utilized BC as a starting point to construct the strongly coupled aerosol-chemistry190

meteorology 4D-Var system (CMA-GFS-AERO 4D-Var).

Creating CMA-GFS-AERO 4D-Var required three important components: (1) CMA-GFS-AERO forward model, (2)

CMA-GFS-AERO TLM and ADM, and (3) 4D-Var framework. This section provides a detailed description of the

construction of the CMA-GFS-AERO 4D-Var from these three aspects.

3.1 CMA-GFS-AERO CCMMforward model195

In this work, for the sake of interest in BC and the consideration of computational efficiency, we developed the

CMA-GFS-AERO forward model by integrating the aerosol module AERO-BC into CMA-GFS v4.0. The AERO-BC

module was created by extracting BC-related codes from the CUACE model, with its functionality aligning with the BC

aerosol processes in the CAM module of CUACE. In other words, the physical processes for BC in AERO-BC are identical

to those in the CAM module, with no changes made. The main differences lie in the engineering aspect: (1) while the CAM200

module was originally written in Fortran 77, the AERO-BC code has been rewritten in Fortran 90; (2) since CAM in

CUACE deals with six types of aerosols, the code structure is somewhat complex and redundant, whereas AERO-BC

focuses solely on BC, resulting in a simpler and more streamlined structure. These updates improve code readability and

enhance computational efficiency, without affecting the underlying physical processes.we extracted the codes related to BC

from the CUACE model and converted them from Fortran 77 format to Fortran 90 format. Meanwhile, we also optimized the205

program structure and interface scalability, making it easier to be developed into tangent linear and adjoint codes. The

resulting aerosol module is referred to as AERO-BC. The AERO-BC includes 18 subroutines in total: 1 emission flux

program (sf_bc), 4 vertical diffusion programs (trac_vert_diff and its subroutines), 6 programs related to the aerosol physical

processes of BC as mentioned in Section 2.1.2 (aerosol_bc and its subroutines), and 7 programs related to the constant
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definitions and the parameter calculations. We further integrated the AERO-BC into CMA-GFS v4.0 by constructing210

interface programs (black_carbon and bc_driver). Thus, we obtained the CMA-GFS-AERO CCMMforward model. The

structure of the CMA-GFS-AERO model is shown in Fig. S2.

In the AERO-BC, BC is represented by 6 bins with particle diameters of 0.01-0.04, 0.04-0.16, 0.16-0.64, 0.64-2.56,

2.56-10.24, and 10.24-40.96 μm, where the radius range is calculated by the geometric progression method to satisfy 𝑖 =

1 + ln 𝑟𝑖/𝑟1
3 /ln[𝑉𝑅𝐴𝑇], and 𝑉𝑅𝐴𝑇 is the average volume ratio between adjacent bins (Jacobson et al., 1994). Thus, six215

new prognostic variables for the mass mixing ratio of BC, denoted as 𝜓𝑏𝑐 𝜓𝑏𝑐
𝑛 (unit: kg/kg), where 𝑛 = 1, …, 6, are added in

the dynamical framework of CMA-GFS.

The main processes in AERO-BC include: (1) calculating the emission flux of BC through the surface flux calculation

module, (2) calculating the vertical diffusion trend of BC by solving the vertical diffusion equation, and (3) simulating key

BC aerosol processes in the atmosphere, including hygroscopic growth, coagulation, nucleation, condensation, dry220

deposition/sedimentation, and below-cloud scavenging. For more details, please refer to the relevant literature on the CAM

module (Gong et al., 2003; Gong and Zhang et al., 2008; Wang et al., 2010; Zhou et al., 2012). In the integration of

AERO-BC with CMA-GFS, the interface programs transfer meteorological parameters (e.g., temperature, wind, and

humidity) from CMA-GFS to AERO-BC, extend the spatial dimension from 1-D to 3-D, and read emissions for AERO-BC.

The transport processes for 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 are the same as that those for the variables associated with the different water species225

water-matter variables in CMA-GFS, using the hybrid PRM and QMSL schemes (Su et al., 2013).

Besides, according to the vertical distribution characteristics of BC in the MERRA-2 (Modern-Era Retrospective analysis for

Research and Applications, Version 2) reanalysis data (https://daac.gsfc.nasa.gov), we observed that the BC mass mixing

ratio decreases rapidly in magnitude after entering the stratosphere, reaching values ofto about 10-12 kg/kg., Thiswhich is 2-3

orders of magnitude smaller relative compared to the surface., To improve computational efficiency and balance memory230

usage with the effectiveness of BC forecasting, we set the height of 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 in the CMA-GFS-AERO model to 65 levels

(approximatelyabout 30 hPa), which corresponds to the middle layer of the stratosphereapproximately the middle layer of

the stratosphere, to improve calculation efficiency and balance the memory usage and the effectiveness of BC forecast.

Regarding the absence of BC above model level 65, we handled vertical transport by assuming that any BC concentrations

above this level are negligible. This approximation does not significantly affect the model’s performance, as the BC mass235

mixing ratio is very small in the upper layers. Correspondingly, in the adjoint code, BC concentrations above model level 65

are also treated as negligible, and this does not significantly affect the adjoint calculations.

3.2 CMA-GFS-AERO TLM and ADM

In developing the TLM and ADM of the CMA-GFS-AERO model, we firstly constructed the tangent linear and adjoint

codes of the AERO-BC module, subsequently coupled them with the TLM and ADM of CMA-GFS model (Liu et al., 2017,240
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2023; Zhang et al., 2019), respectively. Since adjoint codes generated by automatic differentiation tools often suffer from

issues such as poor readability and maintainability, low efficiency and even errors due to the complexity of numerical models

(Zou et al., 1997), theThe tangent linear and adjoint codes in this study were written line-by-line manually, without using any

automatic differentiation tool.

The AERO-BC can be symbolically written as245

𝑌 = 𝑭(𝐶) ,

(4)

where 𝑭 denotes the AERO-BC model operator, 𝐶 and 𝑌 are vectors representing the input and output variables of the

AERO-BC, respectively.

The TL of the AERO-BC can be obtained by linearizing 𝑭, expressed as250

𝛿𝑌 = 𝐅𝛿𝐶 =
𝜕𝑭

𝜕𝐶
𝛿𝐶, (5)

where 𝐅 is the TL model operator, 𝛿𝐶 and 𝛿𝑌 represent perturbations of input and output variables of the AERO-BC,

respectively.

The AERO-BC TL contains the tangent linear programs corresponding to the emission flux, vertical diffusion, and aerosol

physical processes as mentioned in Section 3.1. We further integrated the AERO-BC TL into the CMA-GFS TLM by255

constructing the interface program (tl_black_carbon and tl_bc_driver). The tangent linear of BC transport processes is the

same as that for the water-matter variables in CMA-GFS TLM, using the tangent linear of QMSL. Thus, we obtained the

CMA-GFS-AERO TLM.

The adjoint of the AERO-BC is essentially the transpose of the AERO-BC TL, expressed as

𝛿𝐶∗ = 𝐅𝑇𝛿𝑌∗, (6)260

where 𝐅𝑇 is the adjoint operator of 𝐅 , 𝛿𝑌∗ and 𝛿𝐶∗ represent input and output variables of the adjoint of AERO-BC,

respectively.

In constructing the TL and the adjoint of AERO-BC, no simplifications were made to the AERO-BC processes. Specifically,

no regularization was applied to the nonlinear equations, nor were any complex processes, which were difficult to linearize,

omitted. As a result, the TL and the adjoint of AERO-BC fully include all processes related to emission flux, vertical265

diffusion, and aerosol physical processes as described in Section 3.1.

The TL and the adjoint of AERO-BC are 1-D modules with fixed latitude and longitude coordinates. To extend them to 3-D,

the tangent linear and the adjoint of the interface programs were also constructed. Furthermore, the tangent linear and the

adjoint of BC transport processes follow the same framework as those for the variables associated with the different water

species in the CMA-GFS TLM and ADM, utilizing the tangent linear and the adjoint of QMSL. In this way, the 3-D270

parameters could be transferred from CMA-GFS to AERO-BC. Thus, we obtained the CMA-GFS-AERO TLM and ADM.
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The adjoint of AERO-BC, which includes the adjoint of the emission flux (ad_sf_bc), the adjoint of the vertical diffusion

(ad_trac_vert_diff and its subroutines), and the adjoint of aerosol physical processes of BC (ad_aerosol_bc and its

subroutines), was coupled with the CMA-GFS ADM through the adjoint of the interface programs (ad_black_carbon and

ad_bc_driver). The adjoint of BC transport processes is also the same as that for the water-matter variables in CMA-GFS275

ADM, using the adjoint of QMSL. In this way, we got the CMA-GFS-AERO ADM. The structure of CMA-GFS-AERO

ADM is shown in Fig. S3.

3.3 CMA-GFS-AERO 4D-Var

On the basis of the CMA-GFS-AERO CCMM forward model and its TLM and ADM, we further constructed the

CMA-GFS-AERO 4D-Var by adding the control variable of BC intoadding BC as a control variable into the incremental280

analysis scheme introduced in Section 2.2. We also provided a detailed introduction to the BC observation and errors, the BC

observation operator, and the background error covariance for BC.

3.3.1 BC mass concentration as control variable

The establishment of a strongly coupled aerosol-chemistry meteorology 4D-Var system based on the CMA-GFS 4D-Var

requires the addition of atmospheric chemistry aerosol analysis. Although the six variables for the mass mixing ratio of BC285

(𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐) have been used in the CMA-GFS-AERO forward model, they can constitute a heavy burden for the analysis if they

are all included in the control vector. The reasons for this, as mentioned by Benedetti et al. (2009), mainly include: (1)

background error statistics would have to be generated for all variables separately, (2) the control vector would be

significantly larger in size, which would consequently increase the cost of the iterative minimization, and most importantly,

(3) the BC analysis would be under constrained since the surface observations of BC are mass concentrations (unit: μg/m3),290

which do not distinguish between size bins, resulting in one observation of BC mass concentration being used to constrain

six BC variables. To address these issues, the BC mass concentration is selected as the control variable, denoted as 𝐶𝑏c (unit:

μg/m3), and is added to the control vector (𝑥𝑢 = 𝜓, 𝜒𝑢, 𝜋𝑢, 𝑞
𝑇 , 𝜓 is the stream function, 𝜒𝑢 is the unbalanced velocity

potential, 𝜋𝑢 is the unbalanced Exner pressure, and 𝑞 is the specific humidity) of CMA-GFS 4D-Var. Thus, the control

vector for the CMA-GFS-AERO 4D-Var is 𝑥𝑢 = 𝜓, 𝜒𝑢, 𝜋𝑢, 𝑞, 𝐶𝑏𝑐
𝑇 , assuming that these five variables are independent of295

each other.

The conversion relationship between 𝐶𝑏c and 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 is

𝐶𝑏c = 𝑛=1
6 𝜓𝑏𝑐

𝑛 𝜓𝑏𝑐
𝑛 ∗ 𝜌 ∗ 109∑ , (7)

where 𝜌 is the atmospheric density, 𝑛 denotes the size bin of BC, and 𝜓𝑏𝑐
𝑛 represents the BC mass mixing ratio for size

bin 𝑛 . In order to obtain the BC initial field that can be used in the CMA-GFS-AERO model from the analysis field, it is300

also necessary to convert 𝐶𝑏c to 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐

𝑛 . Firstly, calculating the distribution weights (𝜔𝑛) of each size bin of 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐

𝑛 in
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the background field are calculated based on the entire three-dimensional domain, following the equation 𝜔𝑛 = 1
𝑁𝜓𝑏𝑐

𝑛∑

𝑛=1
6

1
𝑁𝜓𝑏𝑐

𝑛∑∑
,

where 𝑁 represents the number of three-dimensional grid points. Secondly, calculating the analysis increment of 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐

𝑛

(𝛿𝜓𝑏𝑐
𝑛 𝛿𝜓𝑏𝑐

𝑛) is calculated based on the analysis increment of 𝐶𝑏c (𝛿𝐶𝑏c), following the equation

𝛿𝜓𝑏𝑐
𝑛 𝛿𝜓𝑏𝑐

𝑛 = 𝜔𝑛 ∗
𝛿𝐶𝑏c

𝜌∗109
, (8)305

Finally, 𝛿𝜓𝑏𝑐
𝑛 𝛿𝜓𝑏𝑐

𝑛 is interpolated and superimposed on 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐

𝑛 in the background field to obtain the initial field of BC.

Similarly, in the minimization process of the inner loop of CMA-GFS-AERO 4D-Var, the conversion between the tangent

linear variable of BC (𝛿𝜓𝑏𝑐
𝑛 𝛿𝜓𝑏𝑐) and the analysis increment of 𝐶𝑏c (𝛿𝐶𝑏c) is also calculated according to the derivative of

Eq. (7) (𝛿𝐶𝑏c = 𝑛=1
6 𝛿𝜓𝑏𝑐

𝑛 𝛿𝜓𝑏𝑐
𝑛 ∗ 𝜌 ∗ 109∑ ) and Eq. (8).

3.3.2 BC observation and errors310

The BC observations used in the CMA-GFS-AERO 4D-Var system are the BC surface concentrations obtained from the

China Atmospheric Monitoring Network (CAWNET), which was established by the CMA and has been monitoring the BC

surface mass concentration in China since 2006 (Xu et al., 2020). The BC observation data were collected from 32 stations

(Guo et al., 2020), including 11 urban, 17 rural and 4 remote stations. and the The distribution of these stations is shown in

Fig. S24. The monitoring of BC in CAWNET was conducted using an Aethalometer, AE31, which is one of the models315

produced by Magee Scientific (USA, https://www.aerosolmageesci.com). The AE31 determines mass concentration of BC

particles collected from air samples, flowing through a quartz filter. The instrument measures the transmission through the

filter over a wide spectrum of wavelengths from 370 nm to 950 nm. Light at the selected wavelength is transmitted through

control and sample filters, and the attenuation change in the filter is then translated into the BC mass concentration. In this

study, we used the BC concentration measured at the recommended wavelength of 880 nmThe BC observation instrument of320

CAWNET is the AE31 BC meter produced by Magee, USA, which uses continuous optical grayscale measurement method

to calculate BC concentration in real time (Gong et al., 2019). The BC concentrations adopted here are hourly averages.

They have undergone strict quality control before use and several invalid sites have been eliminated. The AE31 measures

BC concentrations every 5 minutes. We performed quality control on the original data and obtained the hourly average

values, which were used in the BC assimilation experiments. The quality control procedures are as follows:325

(1) Eliminating abnormal values. During the calculation of hourly averages from the 5-minute sampled data, any BC

concentration values that differ significantly from the hourly average (i.e., those where the absolute difference exceeds

three times the standard deviation) are considered abnormal and discarded. Additionally, any bad data flagged by the

instrument’s monitoring system are also removed.

(2) Filling in missing values. If more than one-third of the data for a given hour is missing, or if there are more than330

three consecutive missing values, the entire hour’s data is discarded. For other cases, linear interpolation is applied to

anonymous
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fill in the missing values.

The observation error covariance matrix 𝐑 in Eq. (1) contains both measurement and representativeness errors. Following

the formula described by Chen et al. (2019), which is an improvement on the method proposed by Pagowski et al. (2010) and

Schwartz et al. (2012), we calculated the measurement error 𝜀0. The formula is expressed as335

𝜀0 = 1.0 + 0.0075 × 𝑂𝑏c, (9)

where 𝑂𝑏c denotes the observed BC concentrations (unit: μg/m3).

Representativeness errors reflect the inaccuracies in the forecast forward model and in the interpolation from the model grid

to the observation location. We used the representativeness error (𝜀𝑟) expression defined by Elbern et al. (2007) as follow

𝜀𝑟 = 𝛾𝜀0
∆𝑥

𝐿
, (10)340

where 𝛾 is an adjustable parameter scaling 𝜀0 (𝛾 = 0.5 was used here), ∆𝑥 is the grid spacing (100 km in this work), and

𝐿 is the radius of influence of a BC observation. According to Elbern et al. (2007), 𝐿 was set to 2 km, 10 km, and 20 km for

urban, rural, and remote stations, respectively(set to 10 km here). The total BC observation error (𝜀𝑏𝑐) was defined as

𝜀𝑏𝑐 = 𝜀02 + 𝜀𝑟2, (11)

which constituted the diagonal elements in the 𝐑 matrix.345

3.3.3 BC observation operator

The observation operator in the CMA-GFS-AERO 4D-Var system performs two basic tasks: (1) transforming model state

variables into observed physical quantities, and (2) interpolating the background field (or analysis field) to the location of the

observation. The transformation of the physical quantities is related to the type of observations, and the spatial interpolation

operator consists of both horizontal and vertical interpolation. Since the CMA-GFS-AERO 4D-Var system adopts the350

Charney-Philips staggered gridvariable staggering in the vertical direction and the Arakawa-C grid in the horizontal

direction, the observation operator must account for the staggered locations of different physical variables. To minimize

errors introduced by variable transformations and spatial interpolation, appropriate handling of horizontal staggering

and vertical layer transitions is requiredin the physical transformation of the observation operator, point jumps in the

horizontal direction and layer jumps in the vertical direction should be performed according to the location of each element355

to reduce the errors introduced by variable transformation and spatial interpolation. The steps to construct the BC

observation operator are as follows:

(1) Based on Eq. (7), the BC mass mixing ratios (𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 ) of six size bins are accumulatedsummed and converted into the

mass concentrations (𝐶𝑏𝑐), which are further interpolated to the observation locations by the horizontal bilinear interpolation

to obtain the equivalent BC concentrations that are consistent with the units of the observations.360

(2) According to the heights of BC surface observations, the corresponding vertical interpolation schemes are selected to

anonymous
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obtain the equivalent BC observations. If the height of BC surface observation is greater than the height of the first model

layer, the cubic spline interpolation is used to process the BC concentration interpolation. If the observation height is less

than the height of the first model layer, and the difference between the two heights is less than 300 meters, the BC

concentration at the first model layer is regarded as the equivalent BC observation;. whileHowever, if the difference between365

the two heights is greater than or equal to 300 meters, the data from that site is discarded.

3.3.4 Background error covariance for BC

The variable fields involved in variational assimilation are all three-dimensional, and it is challenging to directly deal with

the correlations of these three-dimensional fields due to their high dimensionality. Therefore, in the CMA-GFS 4D-Var

assimilation system, a simplification is made by assuming that the correlation coefficient can be expressed as the product of370

the vertical correlation coefficient and the horizontal correlation coefficient (Zhang et al., 2019). And tThe horizontal

correlation is calculated using the spectral filtering method, while the vertical correlation is calculated through EOF

decomposition (Zhang et al., 2019).

In the CMA-GFS-AERO 4D-Var system, the background error covariance for the control variable BC adopts a modeled

structure. The background error variance varies with height as shown in Fig. 1a. The vertical correlation model of the375

background error is derived through a combination of theoretical considerations (Bergman, 1979) and experimental tuning,

with particular reference to the methodology used for humidity in the CMA-GFS 4D-Var system. It is expressed as

𝑅 𝑧𝑖, 𝑧𝑗 =
1

1+𝑘𝑧(𝑧𝑖−𝑧𝑗)
2 , (12)

where 𝑧𝑖 and 𝑧𝑗 are the model terrain heights of level 𝑖 and 𝑗, respectively. 𝑘𝑧 =
𝑔2

(𝑅𝑑𝑅𝑇0)
2 𝑘𝑝, 𝑔 denotes the gravitational

acceleration, 𝑅𝑑𝑅 represents the gas constant for dry atmospheric air , 𝑇0 is the standard temperature (273.15 K), and 𝑘𝑝380

is the constant coefficient (Bergman, 1979). taken as Following the value of 𝑘𝑝used for the control variable of humidity in

the CMA-GFS 4D-Var system, we set 𝑘𝑝 to 10 here for the control variable BC. Figure 1b depicts the distribution of the

vertical correlation coefficients of the background error of the 1st, 10th, and 20th layers with other layers.
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(a) (b)

385
Figure 1: (a) Vertical profile of background error variance for BC, Background error and (b) vertical correlation coefficients of

background error between the 1st, 10th, and 20th layers with other layers for BC.

The horizontal correlation of the background error for the control variable BC is calculated by the second-order

auto-regressive (SOAR) correlation function, which is commonly used in operational data assimilation systems (Ballard et390

al., 2016), expressed as

𝑟𝑖,𝑗 = 1 +
𝑑𝑖,𝑗

𝐿
exp −

𝑑𝑖,𝑗

𝐿
, (13)

where 𝑑𝑖,𝑗 is the arc length of the great circle between two points 𝑖 and 𝑗, 𝐿 is the characteristic horizontal length scale,

and tThe length scale for the control variable BC varies with height in the model, following the way the length scale of the

humidity variable varies with height in the CMA-GFS 4D-Var systemis referenced to the relationship between the length395

scale of humidity and the height in CMA-GFS 4D-Var, which is shown in Table 1.

Table 1: Characteristic horizontal length scales of the background error.

Height (km) length scale (km)

0.50 165

1.43 172

5.56 175

10.5 209

16.3 234

23.9 234
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3.3.5 Flow-dependent background error covariance in CMA-GFS-AERO 4D-Var400

In the strongly coupled aerosol-meteorology assimilation system, interactions between the atmospheric variables and BC

allow BC observations to influence the analysis increment of atmospheric variables and vice versa. The incremental 4D-Var

algorithm implicitly evolves the background error covariances (𝐁) throughout the assimilation window according to the TL

model dynamics. This process modifies prior background error variance estimates and induces non-zero correlations between

model variables (Smith et al., 2015). By utilizing the fully coupled TLM and ADM in the inner loops of the strongly405

coupled assimilation system, cross-covariance information between BC and atmospheric variables is generated. This enables

observations of one variable to produce analysis increments in the other, leading to more consistent analyses.

Specifically, if the BC observation is assumed to take place at the initial of the assimilation window, the 4D-Var assimilation

is equivalent to the 3D-Var assimilation. Since the BC variable is assumed to be uncorrelated with the atmospheric variables

in the static 𝐁, and there is no direct relationship between the BC observation operator and the atmospheric variables, the410

BC observation does not lead to the generation of the analysis increments of atmospheric variables. In this case, the merits of

a coupled data assimilation system cannot be fully manifested by only assimilating a BC observation at the beginning of the

window. If the BC observation is assumed to take place at the middle and the end of the assimilation window, 𝐁 evolves

within the assimilation time window through the TLM 𝐌0→𝑖 , obtaining the implicit background error covariance matrix

𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 that evolves with time. 𝐌0→𝑖𝐁𝐌0→𝑖

𝑇 includes the cross-covariances information of BC and atmospheric415

variables, and can realize the feedback of the BC observation to the atmospheric variables through the CMA-GFS-AERO

ADM 𝐌0→𝑖
𝑇 , further producing analysis increments of atmospheric variables.

4 Model setupResults

Model setup

In this work, the horizontal resolution of the CMA-GFS-AERO CCMM forward model in the outer loop was set to 0.25°,420

with an integration step of 300 s, and the horizontal resolution of the CMA-GFS-AERO TLM and ADM in the inner loop

was 1.0°, with an integration step of 900 s. The model has 87 vertical layers, with the top being approximately 0.1 hPa (Fig.

S1). Referring to the running scheme of the CMA-GFS 4D-Var system described in Section 2.2, the CMA-GFS-AERO

4D-Var system also adopts the same 6-h cycling schedule and assimilation windowsa 6-h cycle and is performed four times a

day, with assimilation windows of 0300 UTC-0900 UTC, 0900 UTC-1500 UTC, 1500 UTC-2100 UTC and 2100 UTC-0300425

UTC. The forecast of the CMA-GFS-AERO model started at 0300 UTC on October 1, 2016, and was restarted every 6 h.

The meteorological initial fields for each 6-h cycle were obtained from the operational CMA-GFS analysis. The BC field
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was initialized with null concentrations at 0300 UTC on October 1, 2016. From the second forecast cycle onward, the initial

conditions of BC were derived from the BC field at the end of the previous 6-h forecast, allowing the BC field to be

cycledwas restarted every 6 h from operational CMA-GFS analysis, with BC field initialized from null concentrations at430

0300 UTC on October 1, 2016. The BC field at the end of a given 6 h forecast was passed as initial conditions to the next 6 h

forecast. And tThe first 9 days were used as the spin-up time to establish a realistic BC distribution. The maximum

minimization iteration number in the inner loop was set to 50, while the outer loop was performed only once. This setting is

consistent with the operational configuration of the CMA-GFS 4D-Var system and has been found sufficient for achieving

convergence in our experiments. The atmospheric observations used in this work are shown in Table S1.435

Anthropogenic emission sources used in this study were from the Multi-resolution Emission Inventory for China (MEIC) (Li

et al., 2017; Zheng et al., 2018), the Copernicus Atmosphere Monitoring Service global and regional emissions (CAMS)

(Granier et al., 2019), and the global datasets of the Task Force Hemispheric Transport of Air Pollution (HTAP)

(Janssens-Maenhout et al., 2015) datasets at a global scale. These inventories include various gases (NOx, CO, SO2, NH3,

CH4 and NMVOC) and particulates (OC, BC, PM2.5 and PM10), where PM10 refers to the inhalable particulate matter with an440

aerodynamic diameter of 10 micrometers or less. whichThese data were processed into grid-point emission data applicable to

the CUACE model through the EMIPS emission source processing system (Chen et al., 2023) . To improve computational

efficiency, they were further simplified into emission source data containing only BC as input to the CMA-GFS-AERO

model.

At present, we have run the CMA-GFS-AERO 4D-Var system for three months from October 1, 2016. This section mainly445

shows the experiment results of random time in these three months to present the rationality and stability of the system. The

detailed results analysis of the batch test of the system will be further elaborated in part 2 of this paper.

5 Results

5.1 Validation of CMA-GFS-AERO TLM andADM

Validation of the tangent linear and adjoint models is an important part of introducing a new modeling component, such as450

the AERO-BC module an important part of introducing an adjoint model. Considering that CMA-GFS TLM and ADM have

been validated and documented in Liu et al. (2017, 2023) and Zhang et al. (2019), here we mainly present the validation of

tangent linear and adjoint of the newly developed AERO-BC module.

The correctness of the AERO-BC TL can be verified by checking whether the following equation is satisfied (Mahfouf and

Rabier, 2000; Liu et al., 2017; Tian and Zou, 2020):455

Φ 𝛼 =
𝑭 𝐶+𝛼∙𝛿𝐶 −𝑭 𝐶

𝐅 𝛼∙𝛿𝐶
= 1 + 𝛰 𝛼 , (14)

where . denotes the norm of the vector, 𝛼 is the scale factor of initial perturbations with the range from 1.0 to 10-14. As
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the scale factor 𝛼 becomes smaller and smaller, the function Φ 𝛼 is expected to approach unity in an approximately linear

manner.way.

We firstly verified all submodules in the AERO-BC TL, finding that the tangent linear approximation of each submodule was460

correct. Subsequently, we conducted a set of six experiments with the integration time from 1 to 6 h to verify the correctness

of the full AERO-BC TL. The background field and analysis increment generated by the CMA-GFS-AERO 4D-Var system

were used as the basic-state initial field and the perturbation initial field of the CMA-GFS-AERO TLM for 6-hour

forecasting. The atmospheric and BC state variables 𝐶 and their perturbations 𝛿𝐶 of these six time periods were used as

inputs of the AERO-BC and its TL, and the tangent linear approximation of the output variable (the perturbation of the mass465

mixing ratio of BC, 𝛿𝜓𝑏𝑐
𝑛 𝛿𝜓𝑏𝑐) of the AERO-BC TL is tested using Eq. (14).

Figure 2 shows the results of the six correctness experiments. As expected, in each verification experiment, as the scale

factor 𝛼 becomes smaller and smaller for certain ranges of 𝛼 values, the values of Φ 𝛼 gradually get closer and closer to

unity. When 𝛼 is too small (such as 10-12), the accuracies of the Φ 𝛼 values start to be affected by the machine round-off

errors and drift away from unity. This indicates that the tangent linear approximation of the AERO-BC TL is correct.470
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Figure 2: Variations in the function 𝚽 𝜶 − 𝟏 for the correctness check of the AERO-BC TL for the 6-h forecast length, where

𝜶 is the scale factor of initial perturbations.475

We further diagnosed the impact of linearized physical processes on the forecast effectiveness of CMA-GFS-AERO TLM.

Generally, the diagnostic method is to calculate the relative error (𝑟) between the tangent linear perturbation forecast 𝐌(𝛿𝑥)

and the nonlinear perturbation forecast ∆𝑴(𝛿𝑥) (Mahfouf, 1999; Liu et al., 2019; Zhang et al., 2019), which can be

expressed as480

𝑟 =
𝐌(𝛿𝑥)−∆𝑴(𝛿𝑥)

∆𝑴(𝛿𝑥)
. (15)

The nonlinear perturbation forecast ∆𝑴(𝛿𝑥) is the difference between the NLM forecasts from two different initial

conditions: the analysis filedfield 𝑥𝑎 and the background filedfield 𝑥𝑏, that is ∆𝑴(𝛿𝑥) = 𝑴(𝑥𝑎) − 𝑴(𝑥𝑏). And the tangent

linear perturbation forecast 𝐌(𝛿𝑥) is integrated using the analysis increment 𝛿𝑥 (𝛿𝑥 = 𝑥𝑎 − 𝑥𝑏) as the initial perturbation

field. 𝑟 needs to be calculated for each model variable at each grid.485

The forecast period for this experiment was 6 h starting from 0300 UTC on October 25, 2016 (randomly selected time). For

the nonlinear perturbation test, which includes the full physical processes, the two initial conditions were the analysis

filedfield 𝑥𝑎 and the background filedfield 𝑥𝑏 generated by the CMA-GFS-AERO 4D-Var system at 0300 UTC on October

25, 2016. For the tangent linear perturbation test, the initial condition was the analysis increment 𝛿𝑥 (𝛿𝑥 = 𝑥𝑎 − 𝑥𝑏) at 0300

UTC on October 25, 2016. The model trajectory required for the tangent linear perturbation forecast was calculated by the490

CMA-GFS-AERO NLM including the full physical process with the background field 𝑥𝑏 as the initial field. The nonlinear

and tangent linear models were performed at the same resolution of 1.0°, and the analysis field 𝑥𝑎 and the background field

𝑥𝑏 were interpolated from 0.25° to 1.0° based on the 3D interpolation method (Huo et al., 2022).

Figure 3 depicts the results of the nonlinear perturbation forecast and the tangent linear perturbation forecast. Figure 3a-b

show the differences in vertically accumulated and latitudinally averaged BC mass concentration (unit: μg/m3) after 6-h495

integration of the CMA-GFS-AERO NLM with two initial conditions of 𝑥𝑎 and 𝑥𝑏, respectively, and Fig. 3c-d present the

vertically accumulated and latitudinally averaged BC mass concentration perturbations after 6-h integration of
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CMA-GFS-AERO TLM with the initial condition of 𝛿𝑥 (𝛿𝑥 = 𝑥𝑎 − 𝑥𝑏), respectively. It can be seen that after 6-h forecast,

the distribution of the results of CMA-GFS-AERO NLM and TLM, both horizontally and vertically, are very similar with

only minor differences. This indicates that CMA-GFS-AERO TLM shows good performance in tangent linear approximation500

for BC.

(a) (b)

(c) (d)

Figure 3: Differences in (a) vertically accumulated and (b) latitudinally averaged BC mass concentration (unit: μg/m3) after 6-h

integration of the CMA-GFS-AERO NLM with two initial conditions of 𝒙𝒂 and 𝒙𝒃 , and perturbations inof (c) vertically505

accumulated and (d) latitudinally averaged BC mass concentration after 6-h integration of CMA-GFS-AERO TLM with the initial

condition of 𝜹𝒙 (𝜹𝒙 = 𝒙𝒂 − 𝒙𝒃).

The vertical distribution of the globally averaged relative error between the perturbation forecasts of CMA-GFS-AERO

TLM and NLM, which was calculated according to Eq. (15), is shown in Fig. 4. It can be seen that below the 20th model510

layer, the tangent linear approximation for BC is better than that for wind field, potential temperature, and specific humidity.

Although the tangent linear approximation for BC is slightly worse above the 20th model layer, it is still far better than that

for specific humidity. It’s worth noting that the BC concentration above the 20th model level is quite low (Fig. 3b), so the

impact of the tangent linear approximation is minimal. This phenomenon indicates that, in comparison to variables such as

potential temperature and specific humidity, as a coupled variable similar to a physical process variable in the515

CMA-GFS-AERO model, the tangent linear approximation for BC is quite effective, making it well-suited for constructing a

4D-Var system.
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Figure 4: The vertical distribution of the globally averaged relative error between the perturbation forecasts ofin the520

CMA-GFS-AERO TLM with simple physics with respect to the and NLM with full physics at the resolution of 1.0° . (black line:

non-dimensional pressure, blue line: potential temperature, red line: BC, magenta line: u-wind, cyan line: v-wind; green line:

specific humidity).

The correctness of the AERO-BC adjoint can be verified by checking whether the following equation is satisfied (Mahfouf525

and Rabier, 2000; Liu et al., 2017; Tian and Zou, 2020)

𝐅 𝛿𝐶 , 𝐅 𝛿𝐶 = 𝛿𝐶, 𝐅𝑇 𝐅 𝛿𝐶 , (16)

where , denotes the inner product. Using 𝛿𝐶 as the input of the AERO-BC TL, the output of the AERO-BC TL 𝐅 𝛿𝐶

can be obtained and the left-hand side (LHS) of Eq. (16) can be calculated. Then, taking 𝐅 𝛿𝐶 as the input of the

AERO-BC adjoint, we can get its output 𝐅𝑇 𝐅 𝛿𝐶 and calculate the right-hand side (RHS). If the AERO-BC adjoint is530

developed correctly, the LHS and RHS of Eq. (16) is expected to agree with the machine accuracy of the data type declared

in the program, which is double precision in the AERO-BC.

Following Eq. (16), we set conducted five experiments with the integration time equal to 1, 6, 12, 24, and 36 steps with the

time step of 900 s. Considering the mass mixing ratio of BC (𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐) as an example, for each experiment, the atmospheric

variables and 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 perturbations in the analysis increment generated by the CMA-GFS-AERO 4D-Var system was used535

as the input of the AERO-BC TL. We run the tangent linear codes once to obtain the value of the tangent linear output, and

calculated the LHS of Eq. (16). Then, taken the tangent linear output as input, the AERO-BC adjoint codes was run once to
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obtain the sensitivity value, which further was used to calculated the RHS of Eq. (16) with the 𝜓𝑏𝑐
𝑛 𝜓𝑏𝑐 perturbation. The

validation results are presented in Table 2. The resulting LHS and RHS from the five tests agree with the precision of

machine accuracies, indicating the correctness of the AERO-BC adjoint model.540

Table 2: Correctness check results of the newly developed AERO-BC adjoint model when it is integrated for 1, 6, 12, 24, and 36

steps.

Step LHS RHS (LHS-RHS)/LHS

1 6. 048801009887637E-015 6. 048801009887634E-015 5.2166431260112900E-16

6 5. 661147803064362E-015 5. 661147803064381E-015 3.3443150371477720E-15

12 5. 608184349558140E-015 5. 608184349558160E-015 3.6572234893387934E-15

24 5. 694921201673081E-015 5. 694921201673082E-015 1.3852007381406021E-16

36 5. 845344664075793E-015 5. 845344664075791E-015 2.6991082666833257E-16

LHS: left-hand side of Eq. (16); RHS: right-hand side of Eq. (16).

545

5.2 Single-point observation ideal experiment

In order to evaluate the rationality of the CMA-GFS-AERO 4D-Var system, we performed set the single-point observation

ideal experiment for BC. The experiment period was 6 h starting from 0300 UTC on November 24, 2016 (randomly selected

time), and the forecast field of the CMA-GFS-AERO model at this time was selected as the background filedfield. During

the assimilation process, no atmospheric observations were added. We adopted the BC surface observation at Nanjiao station550

(116.47°E, 39.8°N), which is located in Beijing, at 0300 UTC on November 24, 2016. The altitude of Nanjiao station is 31.3

meters, and the observed BC concentration is 10.0 μg/m³. Figure S5 shows the location of the BC observation and the wind

field at 925hPa, which moves from northwest to southeast. The BC observation was set placed at 0300, 0600, and 0900 UTC,

respectively, corresponding to the initial, the middle, and the end of the assimilation time window.

Theoretically, the analysis increment at the initial time for 4D-Var assimilation is 𝛿𝑥 = 𝐁
𝑖=0
𝑛 𝐌0→𝑖

𝑇 H𝑖
𝑇 H𝑖𝐌0→𝑖𝐁𝐌0→𝑖

𝑇 H𝑖
𝑇 +∑555

𝐑𝑖
−1 −𝑑𝑖 . If we only assimilate the observation at time 𝑡𝑖 , the analysis increment at the observation time is 𝐌0→𝑖𝛿𝑥 =

𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 𝐇𝑖

𝑇 𝐇𝑖𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 𝐇𝑖

𝑇 + 𝐑𝑖
−1

−𝑑𝑖 . When assimilating the single point observation, 𝐇𝑖𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 𝐇𝑖

𝑇 +

𝐑𝑖
−1 −𝑑𝑖 is a vector with only one factor. If the observation position and the analysis grid coincide, the spatial

interpolation in the observation operator can be ignored. Thus, the analysis increment at the observation time can reflect the

structure of the background field error covariance 𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 at the observation time. Figure 5 shows the analysis560

increments of BC at the first model layer at the observation times, with the BC observation set placed at 0300, 0600, and

0900 UTC, respectively. When the BC observation is placed set at 0300 UTC (the observation innovation increment (𝑑𝑖 =
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𝑯𝑖𝑴0→𝑖 𝑥𝑏 − 𝑦𝑖 ) is -1.2 μg/m3 at 0300 UTC), the 4D-Var assimilation is equivalent to the 3D-Var assimilation, and the

horizontal distribution of the BC analysis increment is determined by the static background field error covariance model 𝐁.

Since the CMA-GFS-AERO 4D-Var system uses a homogeneous second-order autoregressive spatial correlation model, the565

BC analysis increment at 0300 UTC (Fig. 5a) is essentially isotropic, and only the background field error covariance, which

varies with latitude, causes the analysis increments to differ somewhat in the north-south direction. When the BC observation

is placed set at 0600 UTC (the observation innovation increment is -9.5 μg/m3 at 0600 UTC) and 0900 UTC (the observation

innovation increment is -9.0 μg/m3 at 0900 UTC), the BC analysis increments show anisotropic characteristics (Fig. 5b-c),

which is consistent with the movement of the wind at 925hPa (Fig. S35), indicating that the background field error570

covariance varies with the weather situation. Meanwhile, it can also be seen that the values of the BC analysis increments at

0600 and 0900 UTC are much larger than those at 0300 UTC. This is because the BC observation innovation increments at

0600 and 0900 UTC are greater than those at 0300 UTC.

575
Figure 5: The analysis increments of BC at the first model level at the observation times, with the BC observation set placed at (a)

the initial of the assimilation time window, 0300 UTC; (b) the middle of the assimilation window, 0600 UTC; (c) the end of the

assimilation time window, 0900 UTC. The black triangle represents the ideal observation location (116.47°E, 39.8°N).

Figure 6 presents the evolved analysis increments of BC at the first model level at the end of the assimilation time window580

(0900 UTC) obtained by CMA-GFS-AERO TLM, with the BC observation set placed at 0300 and 0600 UTC, respectively.

For the case where the BC observation is placed at 0300 UTC, the initial analysis increment at 0300 UTC (Fig. 5a) exhibits

an isotropic structure due to the static B . In contrast, the propagated analysis increment at the end of the assimilation time

window (0900 UTC, Fig. 6a) exhibits an anisotropic structure under the influence of the flow-dependent M0→iBM0→i
T .

Similarly, when the BC observation is placed at 0600 UTC, both the initial analysis increment at 0600 UTC (Fig. 5b) and the585

propagated analysis increment at 0900 UTC (Fig. 6b) exhibit an anisotropic structure. In addition, the horizontal distribution

structure of the BC analysis increments in Fig. 6a and Fig. 6b closely resembles that of the analysis increments at the

observation time of 0900 UTC (Fig. 5c). This indicates the significant impact of flow-dependent dynamics on the evolution

of the analysis increments. The BC analysis increments show a more similar horizontal distribution structure relative to the

analysis increments at the observation time of 0900 UTC (Fig. 5c). This is because no No matter what time the observation is590
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set placed at, the spatial propagation of the observation information is effectively achieved through the model integration.

In this idealized single-point observation experiment, the propagation of BC increments is primarily dominated by

advection due to the limited observational constraint. When more comprehensive observations are assimilated,

advection remains a key factor, but its dominance is less pronounced as other processes also influence the adjustment

of BC distributions (see Section 5.3).595

Figure 6: The analysis increments of BC at the first model level at the end of the assimilation time window, 0900 UTC, with the BC

observation set placed at (a) the initial of the assimilation window, 0300 UTC; (b) the middle of the assimilation window, 0600 UTC.

The black triangle represents the ideal observation location (116.47°E, 39.8°N).600

As mentioned above, when the BC observation is assumed to take place set at 0300 UTC, the 4D-Var assimilation is

equivalent to the 3D-Var assimilation. Since the BC variable is assumed to be uncorrelated with the atmospheric variables in

the static 𝐁, and there is no direct relationship between the BC observation operator and the atmospheric variables, the BC

observation does not lead to the generation of the analysis increments of atmospheric variables. In this case, although the BC605

control variable is minimized together with the atmospheric variables in the CMA-GFS-AERO 4D-Var system, it still cannot

be considered as the coupled assimilation in essence. Figure 7 depicts the analysis increments of temperature at the first

model level at the initial time of the assimilation time window (0300 UTC), with the BC observation set placed at 0600 and

0900 UTC, respectively. It can be seen that when the BC observation is set placed at 0600 and 0900 UTC, positive analysis

increments of temperature are generated, with the value of about 0.02 K near the observation location. The mechanism610

behind the generation of these temperature increments is detailed in Section 3.3.5. 𝐁 evolves within the assimilation time

window through the TLM 𝐌0→𝑖 , obtaining the implicit background error covariance matrix 𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 that evolves with

time. 𝐌0→𝑖𝐁𝐌0→𝑖
𝑇 includes the error co-correlation information of BC and atmospheric variables, and can realize the

feedback of the BC observation to the atmospheric variables through the CMA-GFS-AERO ADM 𝐌0→𝑖
𝑇 , further producing

positive analysis increments of temperature, with the value of about 0.02 K near the observation location (Fig. 7). This615

indicates that the temperature of the analysis field will increase due to the assimilation of the BC observation.
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Figure 7: The analysis increments of temperature at the first model layer at the initial of the assimilation time window, 0300 UTC,

with the BC observation set placed at (a) the middle of the assimilation window, 0600 UTC; (b) the end of the assimilation time620

window, 0900 UTC. The black triangle represents the ideal observation location (116.47°E, 39.8°N).

Figure 8 shows the analysis increments of pressure, east-west component of horizontal wind, and relative humidity at the

first model level at the initial of the assimilation time window (0300 UTC), with the BC observation set placed at 0900 UTC.

It is obvious that the single-point BC observation assimilation produces a certain degree of analysis increments of pressure,625

east-west component of horizontal wind, and relative humidity in North China, which shows that the CMA-GFS-AERO

4D-Var coupled assimilation system can reflect the impact of BC assimilation on atmospheric increments. In factreality,

unlike the single observation experiment, the BC observation is distributed within the assimilation time window, rather than

just at a fixed moment, thus, the advantages of the CMA-GFS-AERO 4D-Var strong coupling assimilation system can be

fully utilized to explore the feedback effect of BC assimilation on atmospheric variables.630

Figure 8: The analysis increments of (a) pressure, (b) east-west component of horizontal wind, and (c) relative humidity at the first

model layer at the initial of the assimilation time window, 0300 UTC, with the BC observation setplaced at the end of the

assimilation time window, 0900 UTC. The black triangle represents the ideal observation location (116.47°E, 39.8°N).635

5.3 Case study on BC and atmosphere assimilation

On the basis of the single-point observation ideal experiment, we further conducted set the full observation experiment for

BC and atmospheric variables. The experiment period was also 6 h starting from 0300 UTC on November 24, 2016 (the

same time as the experimental setup in Section 5.24.3), and the forecast field of the CMA-GFS-AERO model at this time640

was selected as the background filedfield. We conducted a set of four experiments, to investigate the impact of different BC
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assimilation strategies on both BC and atmospheric variables. These experiments are listed in Table 1.and the observations

assimilated in each experiment are shown in Table 3. It’s worth noting that in EXP3, operational meteorological observations

were assimilated first, followed by BC surface observations, and atmospheric variables and the BC variable were minimized

separately. This is actually the weakly coupled assimilation. While in EXP4, BC surface observations and operational645

meteorological observations were assimilated simultaneously, and the BC variable and atmospheric variables were

minimized together, which is the strongly coupled assimilation. Different from the single-point observation ideal experiment

in Section 5.24.3, in which the observations are placed at a fixed time, we assimilated all available BC observations with an

hourly frequency within the assimilation time window in the full observation experiment. In the following analysis, we

primarily compare the BC analysis increments obtained from DA_BC, DA_MET_then_BC, and DA_MET_BC_simult650

experiments, noting that the BC analysis increments from the DA_MET experiment are very small (figure omitted).

Additionally, we compare the atmospheric analysis increments caused by BC assimilation in DA_BC, DA_MET_then_BC

(DA_MET_then_BC-DA_MET), and DA_MET_BC_simult (DA_MET_BC_simult-DA_MET).

Table 3: Design of four assimilation experiments.655

Experiments Description

DA_BC
Assimilating only BC surface observations while excluding operational

meteorological observations

DA_MET
Assimilating only operational meteorological observations while excluding

BC surface observations

DA_MET_then_BC
First assimilating operational meteorological observations, then assimilating

BC surface observations

DA_MET_BC_simult
Assimilating both operational meteorological and BC surface observations

simultaneously

Experiments Assimilated observations

EXP1 Only BC surface obs.

EXP2 Only operational meteorological obs.

EXP3 Operational meteorological obs. and BC surface obs., minimized separately

EXP4 Operational meteorological obs. and BC surface obs., minimized together

Figure 9 presents the analysis increments of BC at the first model layer from the DA_BC, DA_MET_then_BC, and
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DA_MET_BC_simult experimentsEXP1, EXP3, and EXP4. When only BC surface observations are assimilated

(DA_BCEXP1), the BC analysis increment is mainly concentrateddistributed in North China and Eastern China, with a660

maximum value of about 6.0 μg/m3 (Fig. 9a). When operational meteorological observations are assimilated first, followed

by BC surface observations (DA_MET_then_BC), or when both operational meteorological and BC surface observations are

assimilated simultaneously (DA_MET_BC_simult), the distribution and the value of BC analysis increments are nearly

identical to those of DA_BC, with only minor differences (Fig. 9b-c). This indicates that the three BC assimilation strategies

have similar assimilation effects on BC, further demonstrating that the assimilation of meteorological observations has a665

relatively small impact on BC analysis increments.When both operational meteorological observations and BC surface

observations are assimilated (EXP3 and EXP4), regardless of whether the BC variable and atmospheric variables are

minimized together, the distribution and the value of BC analysis increments are basically consistent with EXP1, with slight

differences (Fig. 9b-c). This implies the slight impact of assimilation of meteorological observations on BC analysis

increments, and also indicates the similar assimilation effects of the weakly coupled assimilation and the strongly coupled670

assimilation on BC.

Figure 9: The analysis increments of BC at the first model layer from (a) DA_BCEXP1, (b) DA_MET_then_BCEXP3, and (c)675

DA_MET_BC_simultEXP4.

We further explored the impact of different BC assimilation strategies on analysis increments of atmospheric variables.

Figure 10 shows the analysis increments of temperature, pressure, east-west component of horizontal wind, and relative

humidity at the first model layer, resulting from BC assimilation in DA_BC, DA_MET_then_BC, and DA_MET_BC_simult.680

The increments in Fig. 10 are excluded the contributions from the assimilation of operational meteorological observations.

Panels 10a, 10d, 10g, and 10j display the analysis increments of these variables from BC assimilation in DA_BC. Panels 10b,

10e, 10h, and 10k show the increments due to BC assimilation in DA_MET_then_BC, obtained by subtracting the

atmospheric increments in DA_MET from DA_MET_then_BC (DA_MET_then_BC-DA_MET). Panels 10c, 10f, 10i, and
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10l illustrate the increments caused by BC assimilation in DA_MET_BC_simult, obtained similarly by subtracting the685

increments in DA_MET from DA_MET_BC_simult (DA_MET_BC_simult - DA_MET).

We further explored the impact of assimilating BC surface observations on analysis increments of atmospheric variables.

Figure 10a, 10d, 10g, and 10j present the analysis increments of temperature, pressure, east-west component of horizontal

wind, and relative humidity, respectively, at the first model layer from EXP1, showing the impact of assimilating only BC

surface observations on the analysis increments of atmospheric variables. Figure 10b, 10e, 10h, and 10k are the analysis690

increments of these four atmospheric variables at the first model layer from EXP3, presenting the impact of assimilating BC

surface observations on the analysis increments of atmospheric variables in the weakly coupled assimilation. Figure 10c, 10f,

10i, and 10l depict the differences of analysis increments of these four atmospheric variables between EXP4 and EXP2

(EXP4 minus EXP2), reflecting the impact of assimilating BC surface observations on the analysis increments of

atmospheric variables in the strongly coupled assimilation. It can be seen that when only BC surface observations are695

assimilated (EXP1), there are certain degrees of analysis increments of temperature (Fig. 10a), pressure (Fig. 10d), east-west

component of horizontal wind (Fig. 10g), and relative humidity (Fig. 10j) distributed in North China and Eastern China,

which is consistent with the distribution of BC analysis increments (Fig. 9). The value of the analysis increments of

temperature, pressure, east-west component of horizontal wind, and relative humidity can reach about 0.1K (Fig. 10a), ±

0.04Pa (Fig. 10d), -0.14m/s (Fig. 10g), and 3.5% (Fig. 10j), respectively. When both operational meteorological observations700

and BC surface observations are assimilated in a weakly coupled manner (EXP3), the distributions and the values of the

analysis increments of these four atmospheric variables (Fig. 10b, e, h, k) are basically consistent with those of EXP1. This

indicates that the impact of the weakly coupled assimilation on the analysis increments of atmospheric variables is almost the

same as the impact of assimilating only BC observations.

705
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Figure 10: The analysis increments of (a, b, c) temperature, (d, e, f) pressure, (g, h, i) east-west component of horizontal wind, and

(j, k, l) relative humidity at the first model layer caused by BC assimilation. (a, d, g, j) are analysis increments from EXP1DA_BC,

(b, e, h, k) are analysis increments from EXP3 the differences in analysis increments between DA_MET_then_BC and DA_MET710
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(DA_MET_then_BC minus DA_MET), and (c, f, i, l) are the differences in analysis increments between

DA_MET_BC_simultEXP4 and DA_METEXP2 (DA_MET_BC_simultEXP4 minus DA_METEXP2).

When only BC surface observations are assimilated (DA_BC), analysis increments of temperature (Fig. 10a), pressure (Fig.

10d), east-west component of horizontal wind (Fig. 10g), and relative humidity (Fig. 10j) are present in North China and715

Eastern China. The value of the analysis increments for temperature, pressure, east-west component of horizontal wind, and

relative humidity reach approximately 0.1 K (Fig. 10a), 0.1 Pa (Fig. 10d), -0.2 m/s (Fig. 10g), and 0.8% (Fig. 10j),

respectively. When operational meteorological observations are assimilated first, followed by BC surface observations

(DA_MET_then_BC), the distributions and the values of the analysis increments of these four atmospheric variables due to

BC assimilation (Fig. 10b, e, h, k) are basically consistent with those of DA_BC. This is because, although720

DA_MET_then_BC first assimilates operational meteorological observations and then BC surface observations, the BC

assimilation step only incorporates BC observations, just like in DA_BC. Therefore, the analysis increments of atmospheric

variables caused by BC observations in both DA_MET_then_BC and DA_BC are similar. Additionally, the values in each

sub-image of the middle panel in Fig. 10 differ slightly from those on the left. These differences are attributed to the distinct

basic-state values of the atmospheric variables used in the two experiments. In DA_BC, the basic-state values of the725

atmospheric variables used in the tangent linear and adjoint processes are derived from the atmospheric background field

information without assimilating operational meteorological observations, while in DA_MET_then_BC, the basic-state

values are based on the atmospheric analysis field information after assimilating the operational meteorological observations.

The overall distribution and pattern of the analysis increments of temperature (Fig. 10c), pressure (Fig. 10f), and the

east-west component of horizontal wind (Fig. 10i) caused by BC assimilation in DA_MET_BC_simult are consistent with730

those in DA_BC and DA_MET_then_BC. However, the increment values in DA_MET_BC_simult are smaller, with values

reaching approximately 0.02 K (Fig. 10c), 0.002 Pa (Fig. 10f), and -0.05 m/s (Fig. 10i), respectively. The analysis increment

of relative humidity (Fig. 10l) due to BC assimilation in DA_MET_BC_simult shows a small positive value distribution,

whereas in DA_BC and DA_MET_then_BC, it exhibits a negative value distribution. The differences in analysis increments

of the four atmospheric variables caused by BC assimilation between DA_MET_BC_simult and735

DA_BC/DA_MET_then_BC may be due to the fact that information fusion reduces the impact of individual observation. As

mentioned above, DA_MET_then_BC is similar to DA_BC in that, in the process of BC assimilation, only BC surface

observations are incorporated into the assimilation system. At this stage, the system relies solely on BC observations to

correct the initial field. In the absence of atmospheric observations, BC observations play a dominant role, leading to larger

analysis increments of atmospheric variables. In contrast, in DA_MET_BC_simult, both operational meteorological740

observations and BC surface observations are assimilated simultaneously. In this scenario, atmospheric observations provide

more comprehensive or reliable information, which may reduce the dominant influence of the BC observations on the
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analysis increments of atmospheric variables. As a result, a more balanced adjustment of atmospheric variables is achieved

in DA_MET_BC_simult.

The preliminary results obtained from this set of four experiments indicate that different BC assimilation strategies have little745

impact on BC analysis increments but significantly affect the analysis increments of atmospheric variables. When only BC

observations are assimilated, the influence of BC on atmospheric variables is more pronounced, whereas the simultaneous

assimilation of meteorological observations moderates this influence. This suggests that in BC assimilation, meteorological

observations can help constrain the uncertainty introduced by BC observations on atmospheric variables, thereby improving

the reliability of the assimilation results. Moreover, these results demonstrate the successful implementation of the newly750

developed CMA-GFS-AERO 4D-Var system and highlight it as an effective approach for investigating the feedback of BC

data assimilation on meteorological forecasts. In the future, we will conduct batch experiments using CMA-GFS-AERO

4D-Var to gain deeper insights into the role of BC assimilation in numerical weather prediction and further refine the system

for broader applications.

From the differences between EXP4 and EXP2, it can be found that the distribution of the analysis increments of755

temperature (Fig. 10c), pressure (Fig. 10f), east-west component of horizontal wind (Fig. 10i), and relative humidity (Fig.

10l) are similar to those of EXP1 and EXP3. Although the distribution of the pressure analysis increments is not as extensive

as those of EXP1 and EXP3, it also shows a pattern of negative values in the west of North China and positive values in the

east of North China. It is worth noting that the values   in each sub-image of the right panel in Fig. 10 are about an order

of magnitude smaller than those on the left and the middle. This implies that when both operational meteorological760

observations and BC surface observations are assimilated in a strongly coupled manner (EXP4), the feedback on

atmospheric analysis is constrained by the atmospheric observations, resulting in the analysis increments being much smaller

than assimilating BC observations alone and the weakly coupled assimilation. Therefore, when considering the feedback

effect of BC assimilation on atmospheric analysis, it is necessary to assimilate atmospheric observations and BC

observations in a strongly coupled manner, otherwise the feedback effect may be amplified.765

5.4 Computational performance of CMA-GFS-AERO 4D-Var

This section presents the computational performance of CMA-GFS-AERO 4D-Var from three aspects: (1) forward model, (2)

TLM and ADM, and (3) 4D-Var system. We firstly evaluated the computational performance of a CMA-GFS-AERO

simulation and compared it with that of the CMA-GFS simulation. Table 4 shows the computational costs for 6 h, 24 h, and

120 h integrations of CMA-GFS and CMA-GFS-AERO models. It can be seen that for 6 h, 24 h, and 120 h forecasts with770

the same integration time step (300 s), the same horizontal resolution of 0.25°, and the same number of CPU cores (1920

cores), the CMA-GFS-AERO simulations increase only about 10% of the computational time of the CMA-GFS simulations

(As a reference, the microphysics process accounts for approximately 5% of the total computation time in CMA-GFS
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simulations). This shows the high efficiency of CMA-GFS-AERO forward model CCMM, which is an important factor in

developing a strongly coupled chemistry aerosol-meteorology 4D-Var system.775

Table 4: Computational costs (unit: s) for 6 h, 24 h, and 120 h integrations of CMA-GFS and CMA-GFS-AERO models.

Model/Integration time 6 h 24 h 120 h

CMA-GFS 111.5 366.6 1725.2

CMA-GFS-AERO 121.9 403.5 1930.5

Note: The CMA-GFS and CMA-GFS-AERO models are integrated with the same time step (300 s), the same horizontal resolution of

0.25°, and the same CPU cores (1920 cores).

780

Table 5 presents the computational costs for 12 h integrations of CMA-GFS TLM/ADM and CMA-GFS-AERO TLM/ADM,

and Table 6 shows the computational costs for 6 h integrations of CMA-GFS 4D-Var and CMA-GFS-AERO 4D-Var. It is

apparent that with an increasing number of CPU cores, the acceleration effects of CMA-GFS-AERO TLM, ADM, and

4D-Var are comparable to those of CMA-GFS TLM, ADM, and 4D-Var. When using 1440 CPU cores, the total time of

CMA-GFS-AERO TLM, ADM, and 4D-Var are approximately 1.1 times, 1.2 times, and 1.4 times those of CMA-GFS TLM,785

ADM, and 4D-Var, respectively. This highlights the high efficiency and good scalability of CMA-GFS-AERO TLM, ADM,

and 4D-Var, making the coupled aerosol-chemistry meteorology 4D-Var system potentially suitable for operational

application.

Table 5: Computational costs (unit: s) for 12 h integrations of CMA-GFS TLM/ADM and CMA-GFS-AERO TLM/ADM.790

Model\CPU core 480 960 1440

CMA-GFS TLM 14.63 8.95 7.04

CMA-GFS ADM 19.25 11.14 8.07

CMA-GFS-AERO TLM 16.58 10.18 7.55

CMA-GFS-AERO ADM 22.92 12.96 9.31

Note: CMA-GFS TLM/ADM and CMA-GFS-AERO TLM/ADM are integrated with the same time step (900 s) and the same horizontal

resolution of 1°.

Table 6: Computational costs (unit: s) for 6 h integrations of CMA-GFS 4D-Var and CMA-GFS-AERO 4D-Var.

4D-Var system\CPU core 480 960 1440

CMA-GFS 4D-Var 803 515 428

CMA-GFS-AERO 4D-Var 1013 640 591
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Note: CMA-GFS 4D-Var and CMA-GFS-AERO 4D-Var are integrated with the same time step of 300 s/900 s (outer loop/inner loop), the795

same horizontal resolution of 0.25°/1° (outer loop/inner loop), and the same number of minimization iteration of 35 steps.

6 Conclusions

In this study, we developed CMA-GFS-AERO 4D-Var, a strongly coupled aerosol-chemistry meteorology data assimilation

system, under the framework of the incremental analysis scheme of CMA-GFS 4D-Var. CMA-GFS-AERO 4D-Var includes800

three component model componentss: forward, tangent linear, and adjoint models. CMA-GFS-AERO forward model was

constructed by integrating the AERO-BC module, an aerosol module containing main aerosol physical processes of BC in

the atmosphere, the code of which was extracted from the CUACE air quality model and further optimized in this work, into

the CMA-GFS weather model. The tangent linear and the adjoint of the AERO-BC module was developed and coupled

online with the TLM and ADM of CMA-GFS, respectively. Thus, CMA-GFS-AERO ADM includes not only the adjoint of805

physical processes of BC, but also the adjoint of the meteorological model. The BC mass concentration was used as the

control variable and minimized together with atmospheric variables. The background error covariance of the control variable

BC adopted a modeled structure. The assimilation system used BC surface observations from the China Atmospheric

Monitoring Network. The observation error and the observation operator of BC were described in detail as well.

CMA-GFS-AERO TLM and ADM were verified by tangent linear approximation and adjoint correctness test. The results810

show that CMA-GFS-AERO TLM exhibits good performance in tangent linear approximation for BC, and adjoint sensitivity

agrees well with tangent linear sensitivity. The CMA-GFS-AERO 4D-Var system was validated for its accuracy and

rationality by the single-point observation ideal experiment and the full observation experiment. The results show that

assimilating BC observations can generate analysis increments not only for BC but also for atmospheric variables such as

temperature, pressure, wind field, and relative humidity. Furthermore, weakly coupled assimilation may amplify the815

feedback effects of BC assimilation on atmospheric analysis, while the strongly coupled assimilation, constrained by

atmospheric observations, does not amplify the feedback effects, highlighting the capability of the CMA-GFS-AERO

4D-Var strongly coupled assimilation system in exploring the feedback effects of BC assimilation on atmospheric variables.

This demonstrates the successful implementation of the newly developed CMA-GFS-AERO 4D-Var system and highlights it

as an effective approach for investigating the feedback of BC data assimilation on meteorological forecasts. Additionally, the820

computational performance of CMA-GFS-AERO 4D-Var was evaluated, and the results indicate that when using 1440 CPU

cores for 6 h integrations, the total time of CMA-GFS-AERO 4D-Var are approximately 1.4 times that of CMA-GFS 4D-Var,

highlighting the high efficiency of CMA-GFS-AERO 4D-Var and the potential in operational application.

The next steps are as follows. We intend to explore the impact of assimilating surface BC observations on the forecast fields

of BC and atmospheric variables through batch tests. The CMA-GFS-AERO 4D-Var still needs to be applied to control825
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variables for BC emission scaling factors. Further development of CMA-GFS-AERO 4D-Var will aim to assimilate more

aerosol species while ensuring computational efficiency, providing an effective way to study the impact of aerosol

assimilation on the analysis and forecast fields of atmospheric variables.

Data and code availability. The CMA-GFS model and its 4D-Var system and CUACE model were distributed by

CMA Earth System Modeling and Prediction Centre (CEMC) and the Chinese Academy of Meteorological Sciences830

(http://www.camscma.cn/), respectively. The model was run on the PI-SUGON high-performance computer with an Intel

Fortran Compiler. Due to copyright restrictions of CEMC, the full codes of the system are not freely available, interested

users can contact the operational management department of CEMC or the author, Y. Liu (liuyzh@cma.gov.cn), for further

assistance. Codes related to this study, including the tangent linear and adjoint interface codes for black carbon (BC), the

observation operator codes for BC and the CMA-GFS-AERO 4D-Var main program, are available on Zenodo835

(https://zenodo.org/records/1488042013735640; Liu et al., 20245). Model outputs of the four assimilation experiments of

BC and atmosphere used in this study are also available at this website.
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