
FINAM - is not a model (v1.0): a new Python-based model coupling
framework
Sebastian Müller1,*, Martin Lange1,*, Thomas Fischer1, Sara König1, Matthias Kelbling1, Jeisson Javier
Leal Rojas1, and Stephan Thober1

1Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
*These authors contributed equally to this work.

Correspondence: Sebastian Müller (sebastian.mueller@ufz.de)

Abstract.

In this study, we present a new coupling framework named FINAM (short for "FINAM Is Not A Model"). FINAM is designed

to facilitate the coupling of independently developed source codes and enable seamless model extensions by wrapping existing

models into components with well-specified interfaces. Positioned between a coupling library and a full-fledged framework,

FINAM allows users to couple preexisting wrapped models or to build models from scratch using its components. The primary5

goal of FINAM is to leverage the power of Python, facilitating rapid prototyping and ease of use for complex workflows while

offloading computationally intensive parts to native models. FINAM supports bidirectional coupling of spatial models, enabling

fast in-memory data exchange, and provides a consistent interface for flexible coupling. The main assumption for a successful

coupling is that every model operates with a time loop at its core. This design of FINAM allows for straightforward model

extensions written in Python without altering the original model source code. Python’s robust interoperability features further10

enhance FINAM’s capabilities, allowing interfaces with various programming languages including Fortran, C, C++, Rust, and

others. This paper describes the main principles and modules of FINAM and presents example workflows to demonstrate its

features. These examples range from simple toy models to well-established models like OpenGeoSys and Bodium covering

features like bidirectional dependencies, complex model coupling, and spatio-temporal regridding.

1 Introduction15

Environmental models represent specific systems or parts of the environment like the water cycle, the carbon cycle, or

species distribution. They are usually developed to investigate specific research questions and phenomena such as hydro-

logical droughts or reduced plant productivity. However, some phenomena are the result of processes that are interlinked and

often occur at the same time. To study these complex phenomena, it is necessary to combine independently developed models.

Coupling models means that data is exchanged between them, which can be established at several levels (Brandmeyer and20

Karimi, 2000). There are three main approaches to exchange data between independently developed models: (i) using files, (ii)

using external coupling libraries, and (iii) using modeling frameworks.

1

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



File-based coupling means that output files from one model are used as input for another model and each model is run sepa-

rately for the entire simulation period. The advantage of this approach is that the two models can be executed asynchronously

and that there are no modifications of the models required. However, this gets infeasible if the data to exchange is large, for25

example, if the models work with a high spatial resolution and intermediate results and states have to be saved unnecessarily

for the entire simulation period. The even greater disadvantage of a file-based coupling is that dynamic feedbacks between

models require overly complex workflows to correctly manage the huge amount of data I/O. It is an infeasible approach for

complex systems with a large volume of data that needs to be exchanged. To overcome these issues, other approaches have

been developed.30

Coupling libraries enable data exchange between independently developed models. This is achieved by adding data exchange

calls to the code base of each model. The coupling library then handles the data conversion and regridding. An example of a

widely used coupling library is OASIS (short for "Ocean Atmosphere Sea Ice Soil"), particularly its latest version OASIS3-

MCT together with the Model Coupling Toolkit (MCT) (Craig et al., 2017). It is a powerful library designed for climate

modeling, known for its efficient parallel communication and its ability to handle high-resolution grids (Shrestha et al., 2014).35

Also Yet Another Coupler (YAC), a general-purpose coupling library, excels in efficient parallel communication and time syn-

chronization, written in C with bindings to Fortran and Python supporting diverse applications (Hanke et al., 2016; Hohenegger

et al., 2023). A disadvantage of these libraries is that the coupling needs to be configured explicitly. In other words, the coupler

needs to be configured correctly and, for example, does not derive data conversion from metadata of the exchanged variables.

This is an error-prone approach. The maintenance of the data exchange calls in each model creates additional work for model40

developers because they are not used in the "offline" model version.

The last approach to be mentioned is the integration of different model concepts within one larger model framework, re-

sulting in large and complex model systems, such as earth system models that represent atmospheric, terrestrial, and marine

compartments. The idea is to encapsulate processes of models in components provided by the coupling framework to have a

unified data exchange mechanism. Model coupling frameworks provide a platform for researchers and practitioners to combine45

different models with different scales, time horizons, and disciplinary perspectives to capture complex interactions and feed-

back mechanisms between different components of a system. A well-known example for such a framework is the Earth System

Modeling Framework (ESMF), which is widely used for its high-performance capabilities and standardized data structures,

making it suitable for large-scale climate and weather simulations (Collins et al., 2005; Molod et al., 2015). The disadvantage

of this approach is that it is not applicable for independently developed models with existing code bases because the framework50

is used to build model systems from scratch.

Here, we aim to overcome the mentioned disadvantages of the existing couplers by developing a new coupling framework

framework named FINAM (short for "FINAM Is Not A Model"). FINAM allows us to couple independently developed codes

and enable seamless model extensions by wrapping existing models in components with a well-specified interface. In the

context of the coupling options described above, FINAM is located in the middle between a coupling library and a coupling55

framework. The user can build models with components from scratch, but they can also couple existing wrapped models.

The primary goal of FINAM is to leverage the power of Python, which facilitates rapid prototyping and ease of use for fast

2

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



couplings while offloading computationally intensive parts to native models. FINAM allows for the bidirectional coupling of

spatial models in an easy and flexible manner, enabling fast exchange of data in memory. It provides a consistent interface

that supports flexible coupling based on the common assumption that every model operates with a time loop at its core. This60

allows for straightforward model extensions written in Python, enabling rapid prototyping without the need to alter the original

model source code. Python’s reputation as a "glue" language is well established, a characteristic that stems from its robust

interoperability features. This compatibility is based on a suite of libraries such as Cython (Behnel et al., 2011), scikit-build

(Fillion-Robin et al., 2018), f2py (Harris et al., 2020), pybind11 (Jakob et al., 2017), pyo31, ctypes2, swig3, and cffi4, all of

which facilitate the development of wrappers to integrate models regardless of their native programming languages.65

Within the following, we first describe the main principles and modules of FINAM, and then give examples for work-

flows to show some of the features of FINAM including bidirectional coupling, complex model coupling, and spatio-temporal

regridding. We further discuss future extensions and possible applications.

2 Design

2.1 Principles70

The core idea for FINAM is that existing models are wrapped in components with a well-specified interface to get and set data

and to update the respective model by one internal time step. Multiple Components that are linked to each other, potentially

using Adapters, are called a Composition in FINAM. A composition can be executed, and automatically manages updates of

the coupled models and the exchange of data between them.

This concept makes it easy for developers to wrap existing models (see Section 3.2), and for users to set up and run compo-75

sitions. Consequently, components can be developed in isolation without detailed knowledge of the potential coupling partner

models. Models can have their own temporal and spatial resolution, whereby FINAM mediates between them without user

interaction.

There are multiple ways to couple models, like merging their code bases, rewriting them using a specific framework like

ESMF, modifying source code with getters and setters from a native coupler like OASIS or YAC, or by exchanging files.80

Compared to these approaches, FINAM does not require framework-specific code in the models except for some very basic,

generally useful functionality (see Section 2.2). In addition, end-users need only minimal knowledge about coupled models,

while the specifics are all managed automatically. Finally, using Python as the common glue language allows for coupling of

models in virtually any programming language.

As a guiding light, we will use a simple but fully functional FINAM composition shown in Fig. 1. In this example, a model85

is coupled with a NetCDF reader to get the input data necessary to estimate the potential evapotranspiration (PET) using the

Hargreaves-Samani method (H. Hargreaves and A. Samani, 1985), and with a NetCDF writer to store the results. The actual
1https://github.com/PyO3/pyo3
2https://docs.python.org/3/library/ctypes
3https://www.swig.org
4https://github.com/python-cffi/cffi

3

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



source code for this example can be found at https://git.ufz.de/FINAM/finam-examples under the 01_Hargreaves-Samani

folder.

1 import datetime as dt

2 import finam as fm

3 import finam_netcdf as fm_nc

4 from component import PET

5 # config

6 start_time = dt.datetime(1990, 1, 1)
7 end_time = dt.datetime(1991, 1, 1)
8 day = dt.timedelta(days=1)
9 # components

10 pet = PET(start_time=start_time, step=day)
11 reader = fm_nc.NetCdfReader("data/temp.nc")
12 writer = fm_nc.NetCdfTimedWriter(
13 "results/pet.nc", inputs=["PET"], step=day)
14 # composition

15 composition = fm.Composition([pet, reader, writer])
16 composition.initialize()
17 # connections

18 reader.outputs["tmin"] >> pet.inputs["Tmin"]
19 reader.outputs["tmax"] >> pet.inputs["Tmax"]
20 reader.outputs["lat"] >> pet.inputs["lat"]
21 pet.outputs["PET"] >> writer.inputs["PET"]
22 # execution

23 composition.run(end_time=end_time)

Figure 1. A simple but fully working FINAM model consisting of three components: a reader providing data from a NetCDF file, a

writer storing results in a NetCDF file, and a pet (potential evapotranspiration) calculator. The model calculates PET from the minimum

and maximum daily air temperature and latitude values using the Hargreaves–Samani method (H. Hargreaves and A. Samani, 1985). First, the

components are created, then the composition is defined, then the data connections are established, and finally the composition is executed.

2.1.1 Components and adapters90

Components are the main building blocks of a FINAM Composition. Each component encapsulates a self-contained piece of

logic. Typically, a component represents a simulation model that is prepared for FINAM by providing the required interface

like pet in Fig. 1. But other types of components are also possible, such as I/O components to read and write files (like

reader and writer in Fig. 1), real-time visualizations, or statistical models.

As indicated in Fig. 2, components can have an arbitrary number of inputs handled by input slots and outputs handled by95

output slots. In addition, components can have an internal time step, but do not have to. Examples of components with a time

step are simulation models and components for reading time series data. Examples of components without a time step are

statistical models, static data providers, or analytical models. Components without a time step can be push-based or pull-based.

This means that they are executed when receiving input or when an output is requested, respectively.

4

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Inputs Outputs
Component

(e.g. a model)

Input OutputAdapter

Figure 2. Schema of a component and an adapter in FINAM.

Model A

Post-processor

Model B

Data reader

Figure 3. Example of a complex composition schema build with four components and several adapters.

The components are linked through their input and output slots, potentially involving adapters (Fig. 3). Adapters are similar100

to components in that they encapsulate a piece of logic in a self-contained way. In contrast to components, an adapter always has

exactly one input slot and one output slot and does not have a time step (see Fig. 2). Adapters transform the data that is passed

between components. Examples for adapters are the regridding from one grid specification to another, or time interpolation

and integration (see also section 3.3). Multiple adapters can be chained if needed.

The components and adapters use a unified interface required by FINAM. Both are created by implementing these respective105

interfaces, where FINAM provides abstract base classes for adapters and components with and without a time step. These base

classes implement the interface partially, so developers can focus on the decisive code while leaving the boilerplate to the base

classes. A minimal implementation requirement for a component is illustrated in Fig. 4. The required component methods

reflect FINAM’s core idea of a wrapped model. There needs to be a routine to initialize the model (_initialize), connect

it to other models it should exchange data with (_connect), and a routine to update (_update) the model for one internal110

time step. In order for FINAM to properly schedule the execution of the composition, a component must provide information

about its estimated next time step (next_time).

5

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



1 class PET(finam.TimeComponent):
2 @property
3 def next_time(self): ...
4 def _initialize(self): ...
5 def _connect(self): ...
6 def _update(self): ...

Figure 4. Pseudo code for implementing the PET component from the example above in FINAM. The _initialize method configures

the model, _connect prepares I/O slots and sets initial data, and _update executes a single time step of the model. The next_time

property returns the predicted simulation time of the next data pull.

2.1.2 Linking components

Components are linked through their input and output slots, with or without one or more adapters in between. The code example

in Fig. 5 shows how two models are linked via a regridding adapter. Note that adapters, such as regridding or time interpolation,115

can be chained in place for minimal coding effort and readability. In Fig. 1 the reader, writer and pet component are

linked in lines 18-21.

1 hydro["runoff"] >> RegridLinear() >> stream["runoff"]

Figure 5. Data connections are denoted by the overloaded bit shift operator "»" (for visual reasons).

Data exchange between linked components and adapters takes place purely in memory, and no files are used here. During

the initialization process, the compatibility of the coupled slots is checked (see Data and metadata), and an error is raised in

case of incompatibility.120

2.1.3 Data and metadata

For all data exchanged, FINAM uses NumPy arrays(Harris et al., 2020), wrapped in pint5 quantities for unit handling. This

means that any exchanged data always has units, which can, however, be dimensionless.

Each coupling slot has associated metadata and a time stamp if it is not static data. Obligatory metadata are grid specification

and units. Grid specification types provided by FINAM allow for spatial and non-spatial data. Spatial data can be defined on125

structured and unstructured grids (i.e. meshes) in up to three dimensions. In addition to a grid specification and units, each

coupling slot can have arbitrary custom metadata fields. All metadata follows the NetCDF Climate and Forecast (CF) metadata

conventions (Hassell et al., 2017).
5https://pint.readthedocs.io

6

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



1 def _initialize(self):
2 self.inputs.add(
3 name="tmin", time=self.time,
4 grid=None, units="degC")
5 ...

Figure 6. Excerpt from the _initialize method of the PET component from the example above. An input "tmin" for minimum

temperature is created with metadata like units. The associated grid specification is undetermined at this point and will be inferred from the

metadata of the connected output in the connect phase.

During the connection phase, the compatibility of linked slots is checked with respect to their grid specifications and units.

When units are not equivalent, like mm/m2 and L, but compatible, like K and ◦C, they are converted automatically. If slots are130

not compatible regarding grids or units, an error is raised. However, adapters can be used for transformations between different

grids.

2.1.4 Scheduling algorithm

Component updates are scheduled by a central algorithm that decides which components will be updated next. An example of

a component update method is given in Fig. 7. Updating a model involves at least three steps: (i) advance the internal time step135

to the next one, (ii) retrieve the input data for the current time step, and (iii) calculate the outputs for the current time step and

push them to notify downstream components. In particular, the algorithm ensures that the required data for a component’s next

time step is available. For that sake, all time components must be able to report their current simulation time, as well as the

(latest) expected time after the next update, as this is the latest target time for the inputs of the component. An example of an

estimated next time stamp is given in Fig. 8.140

1 def _update(self):
2 # Increment model time

3 self.time = self.next_time
4 # Retrieve inputs

5 data = {inp: self[inp].pull_data(self.time)
6 for inp in self.inputs}
7 # calculate PET for the current time step

8 pet = self._calc_pet(data)
9 # Push model state to outputs

10 self.outputs["PET"].push_data(pet, self.time)

Figure 7. The _updatemethod of the PET component from the example above. First, the component time is update and the current required

input is pulled. Then, PET is calculated and pushed to the output.

7

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



In each iteration, the scheduler starts with the component with the earliest current time and recursively analyzes its depen-

dencies. The upstream components (the "provider") are then updated before the downstream components (the "consumer").

This ensures that the data required for the forthcoming time step is available, instead of, e.g. outdated data from the time step

before.

1 @property
2 def next_time(self):
3 return self.time + self.step

Figure 8. The next_time property of the PET component from the example above. Since this component uses a fix time step, we simply

advance the current model time by this step.

Time

Aa) b)

c) d)

B

C

Time

A

B

C

Time

A

B

C

Time

A

B

C

Figure 9. Illustration of the FINAM scheduling. Snapshots of a simulation featuring three components A, B and C with different time steps

are shown. Component A depends on B, and B depends on C. Solid lines and dots denote already simulated model steps. The right-most solid

dot of each component shows it’s current simulation time. Dashed lines and hollow dots show the predicted next pull time of a component.

The box denotes the active component.

Fig. 9 illustrates the scheduling algorithm with three components in FINAM. In panel a), A is selected as the active com-145

ponent because it is most back in time. The next pull time is determined, denoted by the hollow dot. A depends on B, which

is not yet at A’s next time, and thus becomes the active component. In panel b), B is the active component. Its next pull time

is determined, again denoted by the hollow dot. B depends on C, which is not yet at B’s next time, and thus becomes the

active component. In panel c), C is the active component. It has no dependencies and can thus be updated. Steps a) to c) are

repeated until C catches up with B’s next time. In panel d), all dependencies of B (i.e. C) have sufficiently advanced in time for150

B to update. As illustrated by the curly braces, it is guaranteed that the input data for B is available. Any kind of interpolation

between adjacent source component time steps can be applied to derive the input date. This is a responsibility of the adapters.

Particularly for components with large time steps, it is also possible to integrate over multiple source component time steps.

For example, component B could use the weighted average of the several steps C has performed since the last updates of B.

8

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



The update scheme explained so far only works if there are no cycles in the dependencies. In the case of circular or bidirec-155

tional coupling, one of the involved components must use data from the past or extrapolate in time. FINAM provides dedicated

adapters that resolve circular dependencies through delayed data usage or time extrapolation. This gives users full control over

how circular dependencies are resolved.

As mentioned earlier, there are also components without an internal time step. These can be updated either on pull by another

component, or on push. This allows for components like push-based file output or visualizations, or pull-based parametric data160

generators.

2.1.5 Iterative initialization

The initialization of the components may depend on other components. Possible examples are: (i) components depending on

grid specification from a data source (an I/O component), (ii) deduction of the regridding transformation from input and output

grid specifications, or (iii) transfer of units of measurements from or to components that perform generic operations.165

1 def _initialize(self):
2 ...
3 self.outputs.add(name="PET")
4 self.create_connector(
5 pull_data=self.inputs.names,
6 out_info_rules={"PET": [
7 FromInput("tmin", ["grid", "time"]),
8 FromValue("units", "mm/day")]})

Figure 10. Another excerpt from the _initialize method of the PET component from the example above. An output "PET" is created

along with a connector that is configured with rules to determine metadata for this output from given inputs (grid and time specification from

"tmin") or hard coded values (units set to "mm/day").

All of these examples require the exchange of metadata between components (and adapters), potentially in both directions.

To make this possible in an automated way and without requiring a user to manually set all metadata, FINAM uses an iterative

initialization process (Fig. 10). In this way, metadata can be exchanged downstream and upstream, regardless of complex

dependencies, as long as they can be resolved.

Implementation-wise, this metadata exchange is realized by calling the connectmethod of components multiple times (see170

Fig. 11 for an example). Each time the method is called, the component can try to send or obtain metadata to/from its slots.

Components indicate their connect progress (ready, something exchanged, or nothing exchanged) to the scheduler, which can

thereby detect unresolvable dependency cycles. In this process, initial data exchange before the first time step is also handled.

The procedure is largely automated through a helper class ConnectHelper to minimize the effort required by component

developers. An example of the setup of such a connector is given in Fig. 10. FINAM users who just write coupling scripts do175

not need to deal with the connect phase at all.

9

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



1 def _connect(self, start_time):
2 push_data = {}
3 if (self.connector.all_data_pulled
4 and self.connector.data_required["PET"]):
5 push_data["PET"] = self._calc_pet(
6 self.connector.in_data)
7 self.try_connect(
8 start_time=start_time,
9 push_data=push_data)

Figure 11. The _connect method of the PET component from the example above. The initial value for "PET" is calculated as soon as all

required inputs are available.

2.2 Wrapping models

Wrapping an existing model requires (i) providing Python bindings for it and (ii) implementing FINAM’s Component inter-

face. Python bindings for an existing model need at least three features: (i) update the model by one time step, (ii) access state

variables desired as outputs, and (iii) alter state variables desired as inputs.180

Using Python bindings, the actual wrapper implementing the Component interface can be written with as few as 50 lines

of code for a simple use case similar to the implementations of the PET example above, where the interaction with the wrapped

model would be analogous to line 8 in Fig. 7. FINAM’s extensive documentation6 provides a detailed guide and examples for

this task.

2.3 Modules185

Following Python’s "batteries included" philosophy, the FINAM core package, along with its external packages, provides a

wide array of components and adapters designed to simplify common tasks in environmental modeling. This modular approach

ensures that users can install only the components they need, avoiding unnecessary dependencies and keeping their environment

clean and efficient.

FINAM includes regridding adapters based on robust libraries such as SciPy (core module) and ESMF (proved as sep-190

arate package finam_regrid), facilitating spatial data transformation between different grids. Temporal interpolation and

integration adapters align data from models operating at different time resolutions, ensuring coherent temporal data integration.

The framework supports file input/output (I/O) for commonly used formats in environmental modeling, such as NetCDF,

VTK, and CSV, simplifying data exchange and storage. Live plotting capabilities enable real-time visualization of time series

and spatial data, which is useful for monitoring ongoing simulations and making immediate adjustments. Additionally, live195

visualizations for scheduling and coupling composition provide an intuitive understanding of model interactions.

6https://finam.pages.ufz.de/finam/finam-book/development/components

10

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



To address dependency cycles, where components rely on each other’s data, FINAM includes adapters designed to break

these cycles, ensuring that one component uses past data to maintain simulation integrity. For rapid prototyping and testing,

FINAM offers components like noise generators and generic transformations, allowing simulation of various scenarios and

validation of model behavior without altering the core source code.200

By integrating these components, FINAM enhances its utility and flexibility, making it a powerful tool for environmental

modelers. The modular design simplifies installation and configuration, supporting the development and execution of complex

simulations with greater ease and efficiency. This comprehensive suite of tools underscores the commitment of FINAM to

providing a user-friendly and adaptable framework for the environmental modeling community.

3 Coupling examples205

In the following, we describe three workflows to demonstrate different features and fundamental concepts of FINAM. It should

be noted that the focus is not on the scientific outcome of these coupling examples but rather on the technical realization.

3.1 Bidirectional toy model

FINAM allows to create circular couplings, enabling compositions where the output of one component serves as the input for

another, and vice versa. There, iterative data exchange allows the development of complex and interconnected networks of210

components. This section presents this concept and provides an illustrative example of the bidirectional coupling features in

FINAM using simple toy models.

We couple a toy model that simulates the leaf area index (LAI) of the plant canopy with a toy model that calculates soil

moisture (SM) based on precipitation data. The toy models represent simplified first-order effects, where LAI decreases for a

dry soil, and new plant biomass can only be created with sufficient soil moisture. For soil moisture, it is a simple water balance215

with precipitation as a source term and transpiration, represented as a linear function of LAI, as a sink term. These models are

set up purely for demonstration purposes and the coupling is illustrated in Fig. 12. To demonstrate why a bidirectional coupling

is beneficial in this case, a second scenario was built, where SM is calculated using a fixed LAI value for the entire simulation

period (see Fig. A1).

The two toy models are defined by the following equations for SM (1) and LAI (2):220

sm(t) = sm(t− 1) +B · pre(t)−C · lai(t) (1)

lai(t) = A · lai(t− 1) + (1−A) · f(sm(t)), (2)

where t is the time step index, sm[−] is the soil moisture, lai[−] is the leaf area index, pre [mm/d] the precipitation, A is

a parameter to account for the relationship between LAI and SM, B[−] and C[−] are parameters to control the impact of

precipitation and vegetation characteristics on the evolution of soil moisture. The term f(sm(t)) represents the effect of soil225

moisture on LAI as a piecewise linear function. For a completely dry soil (that is, sm of zero), it is zero, increasing to a

11

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 12. FINAM coupling diagram of a bidirectional model between LAI and SM.

maximum of five at sm of 0.6, and decreasing to three for completely saturated soil. Soil moisture is bounded to be between

zero and one.

To enable a bidirectional coupling, we use a time delay adapter provided by FINAM as seen in Fig. 12. Since the components

implement the equations (1) and (2), where both variables need the other already calculated for the current time step, we need230

to provide one model with past data to break the dependency cycle. We offset the SM input of the LAI component by one

time step, which means that it uses the soil moisture of the previous day. A five-year precipitation time series (1989 - 1993)

was taken from the test domain of the mesoscale hydrological model (mHM) (Samaniego et al., 2010; Kumar et al., 2013), by

extracting data from a single coordinate in space. This data was stored as a CSV file for reading by the FINAM CsvReader

component.235

The results of both models (unidirectional and bidirectional) are shown in Fig. 13. The upper panel shows the precipitation

data used as input for the SM component in both models, while the lower panel showcases the two model results as time series

of LAI (dashed) and SM (solid).

A key observation is the deviation from the bidirectional model (blue) and the unidirectional model (orange), especially in

1992. A dry period results in a dryer soil that effectively reduces LAI. This then results in less transpiration and a steeper240

12

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 13. Precipitation (top figure), LAI (dashed lines), and SM (solid lines) time series for a FINAM uni- (orange) and bi- (blue) directional

model coupling (bottom figure). Ticks mark the beginning of the year.

increase in SM afterwards compared to the constant LAI case. This reflects the bidirectional interaction of the two toy models.

One should note that the cyclic coupling of the two components only needed two lines of code in the composition script.

Implementing bidirectional couplings in FINAM is notably straightforward due to its modular design and Python-based

architecture. FINAM manages the complexities of time-stepping, data exchange, and synchronization, allowing users to focus

on model development rather than integration logistics. This ease of use contrasts sharply with traditional frameworks, which245

often require significant effort to configure and manage bidirectional interactions. In comparison to unidirectional coupling,

where the data flow is one-way only and feedback loops are ignored, the difference in implementing bidirectional coupling

13

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 14. FINAM coupling diagram of BODIUM and OGS

with FINAM is minimal. Adjusting the data flow from a LAI generator to the LAI component, for instance, involves only a

few additional lines of code.

3.2 Coupling complex wrapped models250

One major application of FINAM is the coupling of complex models to answer scientific research questions where a single

model alone reaches its limits in terms of system boundaries or implemented processes. To demonstrate the applicability of

FINAM for such tasks, in this section we present a unidirectional coupling of the systemic soil model BODIUM (König et al.,

2023) and the component transport process implemented in OpenGeoSys (OGS) (Kolditz et al., 2012). BODIUM simulates the

most important processes in soil and at the plant-soil interface on the field scale, including plant growth, and is developed for255

agricultural systems. The lower boundary is the rooting layer or a few centimeters below. This is the spatial boundary where

a coupling to OGS is of interest. OGS is an open-source simulation software for thermo-hydro-mechanical-chemical (THMC)

processes in porous and fractured media. The partial differential equations used for modeling are solved numerically using the

finite element method.

Reducing the pollution of water bodies with nitrate from agricultural sources is an important challenge. To understand the260

fate and transport of nitrate from its application as a fertilizer to its entry into groundwater and rivers, model simulations

are a powerful tool. In this coupling example, we use BODIUM to simulate two hypothetical agricultural fields in different

locations managed with a winterwheat monoculture and different levels of nitrogen fertilization (170 kg/ha/a and 340 kg/ha/a,

respectively). The simulated nitrate leachate from each time step is passed through FINAM to OGS, where the transport within

groundwater and to a nearby river is simulated.265

BODIUM and OGS operate on the same temporal scale (daily time step) but on different spatial scales. While BODIUM

is a 1D model simulating on the field scale, OGS simulates on irregular grids on the catchment scale. However, the exchange

variable in this specific coupling example is given in mass per area and thus is independent of the exact spatial distribution.

Thus, we can apply a simple linear regridding within FINAM to overcome the spatial differences between the coupled models

with BODIUM simulating two different instances for the two agricultural field sites. The basic diagram in Fig. 14 shows270

the components involved (colored blue) and the linear regridding adapter (colored orange). The connection lines between the

components and adapters indicate data exchange controlled by FINAM, from white outputs to gray inputs.

The surface of the model domain with x-extent of 1830 m, y-extent of 830 m, and z-extent of 48 m is given by a topography

extracted from SRTM data. In the bottom panel of Fig. 15, the domain is exaggerated five times and the two agriculture sites

14

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 15. Top panel: nitrate leachate computed by BODIUM for the two different fields (field1 and field2); bottom: subsurface domain out-

line and (for visualization purposes translated as ’clouds’) boundary patches above coloured by BODIUM nitrate leachate; in the background

(exaggerated 5 times) nitrate concentration computed by OGS: left: after 264 days, right: after 680 days, in the front groundwater flow paths

coloured by velocity

are delineated by the two stripes, which move up a little bit for visualization purposes. In the upper panel of Fig. 15 the nitrate275

leachate is plotted over time.

15

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



For each agricultural site, a different BODIUM instance simulates nitrate leachate, which is passed to OGS at the specific

field locations via the FINAM linear regridding adapter. At all other parts of the simulation domain, nitrate leachate passed

to OGS is set to zero (assuming neglectable nitrate leaching in non-agricultural fields). The amount of nitrate leached into

groundwater depends on the time of fertilizer application, precipitation, and nitrogen uptake by plants, resulting in temporal280

peaks of nitrate passing from BODIUM to OGS (top panel of Fig. 15). After the nitrate has reached the subsurface, it is

transported along the groundwater flow field. The subsurface nitrate distribution is shown after 264days in the left part and

after 680days in the right part of Fig. 15. In order to create a more dynamic behavior, both fields have slightly different time

series of nitrate leach.

This example demonstrates how established complex models can be easily coupled via FINAM. However, note that both285

models had to be prepared for model coupling with existing python bindings and a FINAM wrapper, i.e. the interface shown

in Fig. 4 has to be implemented. In addition, to apply this coupling for advanced research questions, further extensions of the

coupling would be of interest, such as a bidirectional coupling by passing the hydraulic head from OGS to BODIUM.

3.3 Spatio-temporal regridding

Spatio-temporal regridding is a fundamental concept in the field of spatial data analysis and processing. It involves the trans-290

formation of data from one spatio-temporal grid or coordinate system to another. This regridding process plays a crucial role in

various disciplines such as atmospheric research, climate modeling, remote sensing, and environmental research. Regridding

algorithms are a big part of the mentioned coupling frameworks and libraries ESMF, YAC or OASIS.

1 import finam as fm

2 import finam_regrid as fm_rg

3 ...
4 # Adapters

5 method = fm_rg.RegridMethod.CONSERVE
6 regrid = fm_rg.Regrid(regrid_method=method)
7 mean = fm.adapters.AvgOverTime(step=0)
8 ...
9 # Connections

10 reader["pre"] >> regrid >> mean >> writer["pre"]

Figure 16. FINAM composition excerpt to regrid and average precipitation over time. The reader and writer modules specify the spatial and

temporal resolutions of the source and target precipitation data. The writer is pre-configured with a regular mesh and a writing frequency of

30 days. This implies that the regrid and mean adapters do not need further information about the data specification, as it is determined

from the connected components. The regridding method is set to CONSERVE in order to preserve the total amount of precipitation and the

averaging adapter is configured to interpret the data to be valid for the time span right before the time stamp (step=0).

FINAM provides built-in regridding adapters for linear and nearest-neighbor interpolation designed to easily transform data

from one model to another. For advanced regridding operations, we provide a dedicated package finam-regrid, which295

wraps the regridding algorithms of ESMF (Collins et al., 2005), covering a wide range of regridding methods, grid types, and

16

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



coordinate systems. For details, we refer to the documentation of finam-regrid7. These adapters are designed to translate

data between different grid formats - structured or unstructured - and adjust resolutions to ensure compatibility between models.

Incorporating regridding capabilities directly within the framework significantly reduces the workload on model developers and

users. Performing as a dynamic adapter, it automatically detects the specifications of the source and target grids and derives300

the required transformation. Despite the underlying complexity of this task, we have engineered the tool to be user-friendly,

ensuring that its advanced capabilities are accessible without the need for detailed knowledge about regridding of the involved

grid specifications.

pre NetCDF writer

preVTK reader regridder

mean

Figure 17. FINAM coupling diagram of the spatio-temporal regridding of precipitation.

In this example, we illustrate the spatio-temporal regridding capabilities of FINAM by converting daily precipitation data

from an unstructured grid, with a cell edge length of approximately 0.5 km, to a 30-day mean precipitation on a regular grid305

with 1 km cells, covering an area of five by four kilometers. To simplify the example, we utilize the finam-vtk package to read

the unstructured data time series stored in the PVD format and then write the data using the finam-netcdf module. However,

this workflow could also be integrated into a larger system in which meteorological data from an atmospheric model serves as

input for a crop yield estimator that operates on monthly data.

Fig. 16 shows the important parts of the coupling setup script, which shows the ease of configuring the data flow, while310

Fig. 17 shows the overall coupling scheme. We employ a five-year time series of daily data and apply a rolling mean with a

30-day window after regridding the data to the structured target grid. Fig. 18 shows the averaging of an extracted time series

from the top right grid cell. The time averaging adapter is capable of converting the data on the fly with almost no configuration.

Input and output time stepping is purly derived from the connected components, where the input precipitation is pushed daily

by the reader component and the writer will request data every 30 days. This highlights the ease of creating data streams, where315

users do not need to worry about time-stepping compatibilities. Furthermore, Fig. 19 shows the results of the regridding for a

single day on the unstructured grid and the average of one month on the target grid, which includes that day. To ensure that

the total amount of precipitation is preserved, conservative regridding was used in this example. Again, the adapter for spatial
7https://finam.pages.ufz.de/finam-regrid

17

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



1989
1990

1991
1992

1993
1994

Date

0

10

20

30

40

50

60

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

Precipitation time series for a single cell
daily
30 day mean

Figure 18. Temporal aggregation of precipitation data for a single grid cell. The five year input time series of daily data is shown in blue and

the 30-day rolling average is shown in black.

regridding will determine its configuration entirly from the data specifications of the connected components, which avoids

sources of error. A more detailed overview of different regridding constellations is given in the Appendix in Fig. B1.320

0 1 2 3 4 5
X (km)

0

1

2

3

4

Y 
(k

m
)

daily mean (30.12.1993)

0

5

10

15

20

25

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

0 1 2 3 4 5
X (km)

0

1

2

3

4

Y 
(k

m
)

Grid comparison

0 1 2 3 4 5
X (km)

0

1

2

3

4

Y 
(k

m
)

30 days mean (8.12.1993 - 6.1.1994)

0

5

10

15

20

25

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

Figure 19. This figure illustrates the regridding process of precipitation data. The left panel shows the input unstructured grid for a single day,

highlighting the original distribution and variability of the data on an irregular grid. The middle panel overlays the unstructured and resulting

structured grids, without displaying data, to emphasize the differences in grid configurations and cell outlines. The right panel presents the

resulting structured grid with time-averaged precipitation data over 30 days, including the single day from the left panel, demonstrating the

transformation and smoothing effect achieved through regridding.

This workflow demonstrates the ease of creating data workflows that connect components operating on different spatio-

temporal scales. By regridding daily precipitation data from an unstructured grid to a regular grid and aggregating it into

30-day means, it showcases the integration of various data formats and the seamless data flow configuration, highlighting the

potential for coupling diverse data-driven models.

18

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



4 Discussion325

In the development of the model coupling framework FINAM, our primary goal was to address the significant challenges

inherent in coupling models written in diverse programming languages, operating on different time steps and grid systems. The

selection of Python as the foundational language for this coupler was predicated on several of its intrinsic qualities that make

it exceptionally suited for such a complex task.

Python’s interoperability is enhanced by a variety of libraries that facilitate the development of wrappers for integrating330

models across different native programming languages like C, C++, Fortran, or Rust. Additionally, Python’s extensive ecosys-

tem and library support simplify the process of model creation and data processing, backed by a strong, global community of

developers and researchers. This supportive environment, combined with the cross-platform nature of Python and the ability to

rapidly prototype it, creates an optimal setting for the development and fast and easy testing of complex model couplings.

One fundamental idea of FINAM is the assumption that temporal models inherently contain a time loop within their code335

structure. The coupler makes use of this characteristic by requiring that each model needs to be able to perform a single time

iteration. This should be controlled by interface routines provided in Python that also provide access to the internal states

between these iterations. Such an approach allows for the seamless implementation of a FINAM component to wrap around

any model, facilitating its integration into the coupling framework without necessitating direct further modifications to the

model’s source code, when Python-bindings are available.340

Compared against a pure pull-based approach, where models are only executed if data is requested by downstream compo-

nents, FINAM’s scheduling provides several advantages. Firstly, a pure pull-based approach requires a single component that

is the end point of the coupling, which drives the complete chain via pull. With FINAM’s approach, this is not required and

a coupling setup can have an arbitrary number of end points. Secondly, in a pull-based approach, it is not guaranteed that all

components run over the entire simulation time frame. In FINAM, this is guaranteed.345

In contrast, traditional coupling methods often involve the integration of routines in their supported languages directly into

the model source code, enabling data exchange during runtime (Hanke et al., 2016; Craig et al., 2017). However, this method

imposes a significant burden on modelers, who must ensure data compatibility with respect to units, grid definitions, and time

references, often necessitating extensive modifications to the original model code. FINAM distinguishes itself by offering

utilities to validate and process data on the fly, thereby simplifying the coupling process and minimizing the need for direct350

alterations to model code.

To further emphasize the practical advantages of the FINAM framework, it is essential to highlight the usability of the

adapters provided within the system. These adapters enable smooth data exchange between models with varying data require-

ments and formats, without the need for explicit configuration. As an example, regridding adapters automatically determine

their required transformation from the connected source and target components.355

In addition, FINAM includes a variety of readers and writers designed to handle multiple file formats, such as NetCDF, VTK,

or CSV. This versatility allows researchers to integrate models from different domains without the need for time-consuming

conversions or extensive preprocessing. All data exchanged in FINAM is wrapped by pint to enable automatic unit conversion

19

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



and checking. This means that incompatible inputs and outputs can never be connected by mistake, and, if required, a unit

conversion is performed on the fly.360

However, FINAM still has several limitations and potential for improvements and extensions. One of the main challenges

FINAM is currently facing is the issue of parallelization. Particularly, the integration of MPI (Message Passing Interface) for

parallel computing, to distribute models to different CPU cores, is work in progress. Other frameworks like YAC that are built

on top of MPI support this out of the box but follow a different approach of model coupling. Additionally, making a model

ready for FINAM can require a significant investment of time and resources. Although Python facilitates rapid prototyping and365

development, preparing a model to comply with FINAM’s requirements can be a demanding process, particularly for legacy

systems or highly complex models, depending on their internal structure. If the code base is well written and its functionality is

encapsulated in logical units, such as executing the time loop as a separate subroutine, the Python interface is reasonably easy

to implement.

Another technical limitation arises from the nature of Python itself. Preventing unnecessary data copying within the FINAM370

framework can become complicated due to different data representations in different models. By default, numpy masked arrays

are used to exchange data, but these arrays could hold copies instead of views to the underlying data. Efficiently managing

data without unnecessary copying is crucial for maintaining performance, especially when dealing with large datasets or high-

frequency data exchanges. This challenge underscores the need for ongoing development within the FINAM framework to

enhance its efficiency and reduce overhead, ensuring that it remains a viable solution for complex model coupling scenarios.375

A last area to mention is the handling of metadata and configuration. Although the basic infrastructure to track metadata

from components has been implemented, there is currently no best-practice guide on how to utilize this feature effectively.

Establishing such guidelines would help standardize metadata usage, making it easier for users to follow the FAIR data prin-

ciples (Barker et al., 2022). Together with metadata, there is the lack of a unified configuration system for compositions. This

can make it challenging to reuse compositions in complex computational workflows, potentially hindering the efficiency and380

reproducibility of simulations. Developing a unified configuration approach would streamline the setup process and simplify

the sharing and replication of complex model compositions.

A unique feature of FINAM is its support for bidirectional coupling by temporal delaying circular input/output connections.

Using this method, we do not require models to save and reset states, a process that can be overly demanding for many models.

The gained flexibility is further enhanced by FINAM’s approach to time representation. By assuming that valid time spans385

for data are defined by timestamps, with the current timestamp indicating the end of the reference period that started from the

previous timestamp, FINAM standardizes time representation across models. This method clarifies the time frame for extensive

variables, like total precipitation of a day, and provides a precise reference for intensive variables, such as air temperature for

a specific point in time, without requiring direct modifications to the handling of time of the models.

Furthermore, FINAM includes time adapters designed to bridge models with differing time steps and spans through tech-390

niques such as integration, summation, and temporal disaggregation. This capability not only enhances the framework’s flexibil-

ity, but also significantly reduces the complexity involved in model integration, allowing researchers to focus on the substantial

aspects of their work without being encumbered by technical incompatibilities.

20

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



5 Summary and Outlook

In this study, we present FINAM, short for "FINAM Is Not A Model", which is a Python based coupling framework designed to395

connect models written in diverse programming languages. Models are wrapped in components with a well-specified interface

that facilitates the exchange of data between them. Additionally, FINAM provides a set of tools to process data that includes

functionality such as regridding and unit conversion, but also reading and writing different file formats (such as NetCDF, VTK,

and CSV). FINAM handles data compatibility checks, unit conversion, and component scheduling, which makes the model

coupling process less error-prone. It provides a unique and intuitive mechanism to link components, which makes it easy to400

set up a coupled model. We presented three examples that highlight different features of FINAM. The first example consisted

of two toy models, simulating soil moisture and LAI with cyclic dependencies on each other to demonstrate the capabilities of

FINAM of handling dynamic feedbacks between components. The second example illustrates the usage of FINAMs to couple

the separately developed models BODIUM and OGS to simulate the transport of nitrate leachate in groundwater. In a third

workflow, we demonstrated important features to spatio-temporal regrid data within a FINAM coupling. To do so, we remapped405

the daily precipitation data of an unstructured grid to a coarser structured grid and applied a rolling average of 30 days.

In summary, FINAM embodies a forward-thinking approach to model coupling, leveraging Python’s unique features to

facilitate the integration of diverse models. By minimizing the need for direct modifications to the model code and offering

innovative solutions to handle time representation and data compatibility, FINAM represents a significant advancement in the

field of computational modeling.410

Code availability. The code of FINAM is developed at https://git.ufz.de/FINAM/finam and available via Zenodo at https://doi.org/10.5281/

zenodo.7602944. It is distributed under the GNU LGPL v3.0 license. The documentation, which includes a quick start guide, a more in-

depth hand book, and a complete overview of the API, can be accessed via https://finam.pages.ufz.de. All mentioned expansion modules and

examples are hosted under https://git.ufz.de/FINAM.

Author contributions. Martin Lange and Sebastian Müller are the main developers of FINAM and contributed both equally to all sections415

of the text. Sara König and Thomas Fischer wrote the section about coupling complex wrapped models and helped proofreading the text.

Jeisson Javier Leal Rojas wrote the section on the bidirectional toy model. Stephan Thober wrote the introduction and the summary and

supervised the project. Matthias Kelbling helped with implementation details and helped to improved the text.

Competing interests. The authors declare that they have no conflict of interest.

21

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Acknowledgements. Sara König was funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the420

funding measure ’Soil as a Sustainable Resource for the Bioeconomy—BonaRes’, project ’BonaRes (Module B): BonaRes Centre for Soil

Research’. This work is a contribution to the LandTrans simulator initiative at the Helmholtz Centre for Environmental Research - UFZ.

Appendix A: Unidirectional coupling of LAI and SM

Figure A1. FINAM coupling diagram of a unidirectional model between LAI and SM.

22

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Appendix B: Regridding of different resolutions

Figure B1. Regridding cell associated data from unstructured grids with different triangular edge lengths (top row, ∼ 0.5, ∼ 1.0, ∼ 2.0 in

columns 1-3) to uniform grids with different cell sizes (0.25, 0.5, 1.0, in rows 2-4) using conservative regridding provided by the ESMF

library.

23

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



References425

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gru-

enpeter, M., Martinez, P. A., and Honeyman, T.: Introducing the FAIR Principles for research software, Scientific Data, 9, 622,

https://doi.org/10.1038/s41597-022-01710-x, publisher: Nature Publishing Group, 2022.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K.: Cython: The Best of Both Worlds, Computing in Science

Engineering, 13, 31–39, https://doi.org/10.1109/MCSE.2010.118, conference Name: Computing in Science Engineering, 2011.430

Brandmeyer, J. E. and Karimi, H. A.: Coupling methodologies for environmental models, Environmental Modelling & Software, 15, 479–

488, https://doi.org/10.1016/S1364-8152(00)00027-X, 2000.

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang, W., Hill, C., and da Silva, A.: Design and Implemen-

tation of Components in the Earth System Modeling Framework, The International Journal of High Performance Computing Applications,

19, 341–350, https://doi.org/10.1177/1094342005056120, publisher: SAGE Publications Ltd STM, 2005.435

Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geoscien-

tific Model Development, 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, publisher: Copernicus GmbH, 2017.

Fillion-Robin, J.-C., McCormick, M., Padron, O., Smolens, M., Grauer, M., and Sarahan, M.: jcfr/scipy_2018_scikit-build_talk: SciPy 2018

Talk | scikit-build: A Build System Generator for CPython C/C++/Fortran/Cython Extensions, https://doi.org/10.5281/zenodo.2565368,

2018.440

H. Hargreaves, G. and A. Samani, Z.: Reference Crop Evapotranspiration from Temperature, Applied Engineering in Agriculture, 1, 96–99,

https://doi.org/10.13031/2013.26773, place: St. Joseph, MI Publisher: ASAE, 1985.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0: new aspects for coupling software in Earth system modelling, Geosci-

entific Model Development, 9, 2755–2769, https://doi.org/10.5194/gmd-9-2755-2016, publisher: Copernicus GmbH, 2016.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J.,445

Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy,

Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and Taylor, K. E.: A data model of the Climate and Forecast metadata conventions (CF-

1.6) with a software implementation (cf-python v2.1), Geoscientific Model Development, 10, 4619–4646, https://doi.org/10.5194/gmd-450

10-4619-2017, publisher: Copernicus GmbH, 2017.

Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp,

J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr,

O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S.,

Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A. K., Paccini, L., Peinado, A., Praturi, D. S., Putrasahan, D.,455

Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan,

C. C., von Storch, J.-S., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B.: ICON-Sapphire: simulating

the components of the Earth system and their interactions at kilometer and subkilometer scales, Geoscientific Model Development, 16,

779–811, https://doi.org/10.5194/gmd-16-779-2023, publisher: Copernicus GmbH, 2023.

Jakob, W., Rhinelander, J., and Moldovan, D.: pybind11 – Seamless operability between C++11 and Python, 2017.460

24

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.-O., Fischer, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., Park,

C. H., Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, A. K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y.,

Xie, M., Xu, W., and Zehner, B.: OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical

(THM/C) processes in porous media, Environmental Earth Sciences, 67, 589–599, https://doi.org/10.1007/s12665-012-1546-x, 2012.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales465

and locations, Water Resources Research, 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013.

König, S., Weller, U., Betancur-Corredor, B., Lang, B., Reitz, T., Wiesmeier, M., Wollschläger, U., and Vogel, H.-J.: BODIUM—A systemic

approach to model the dynamics of soil functions, European Journal of Soil Science, 74, e13 411, https://doi.org/10.1111/ejss.13411,

2023.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from470

MERRA to MERRA2, Geoscientific Model Development, 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, publisher: Coperni-

cus GmbH, 2015.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water

Resources Research, 46, https://doi.org/10.1029/2008WR007327, 2010.

Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A Scale-Consistent Terrestrial Systems Modeling Platform Based on475

COSMO, CLM, and ParFlow, Monthly Weather Review, 142, 3466–3483, https://doi.org/10.1175/MWR-D-14-00029.1, publisher: Amer-

ican Meteorological Society Section: Monthly Weather Review, 2014.

25

https://doi.org/10.5194/gmd-2024-144
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.


