2. Rebuttal

The second point-by-point response to the reviews including a list of all relevant
changes made in the manuscript "FINAM - is not a model (v1.0): a new
Python-based model coupling framework”.

Sebastian Miiller Martin Lange Thomas Fischer
Sara Konig Matthias Kelbling Jeisson Javier Leal Rojas
Stephan Thober

February 25, 2025

Chapter 1

Reviewer: Anonymous
referee #3

1.1 General Comments:

Original comment:

It is an honor to review such a technically oriented research paper. All the
papers I have reviewed before focused on scientific issues, and technical prob-
lems were usually solved by researchers themselves while addressing scientific
questions. However, this paper attempts to solve many common problems that
researchers often encounter and provides an interesting solution. I am not pro-
fessionally engaged in developing coding tools, so I may not fully understand
some aspects, but I believe this work is meaningful and can provide convenience
for researchers.

Response:

Thank you for your positive feedback and for recognizing the value of our
approach. Our main goal is in fact to simplify and automate aspects of model
coupling that are often cumbersome in research workflows. We appreciate that
you find this work meaningful and convenient for researchers and hope that our
explanations and examples clarify the technical details for a broader audience.

1.2 Specific Comments:

Original comment:

1. In my own research, I often deal with model coupling, such as using the
output of one model as the input for subsequent models. However, many models
are encapsulated, and we cannot access their source code. Such models should
not be couplable in the FINAM system, which limits the application scope of
FINAM.

Response:

We acknowledge that fully encapsulated models can be challenging to couple
if no mechanisms exist to expose their inputs and outputs. FINAM’s approach

relies on 'wrapping’ models with a Python-based interface, where at least a por-
tion of the model’s functionality (e.g. initialization, stepping, data exchange) is
accessible. If the model is entirely closed source or offers no means of extracting
or injecting data programmatically, it cannot be directly coupled within FINAM.
However, as some users employ scripting interfaces or configuration-based 1/0
even for closed source applications (e.g., controlling runs via command-line ar-
guments, batch scripts or APIs), these can sometimes be wrapped with a "black-
box’ style component in FINAM. In other words, if there is any programmatic
handle - although minimal - we can integrate that into FINAM with suitable
wrappers. We already mentioned file-based couplings as the first approach to
combine models in the Introduction.

Manuscript changes:

We added a clarifying paragraph (Section 2.2): ”If no Python bindings of
the model exist, but it can be run as a black box for a single time-step, there
is also the possibility to create a component that prepares the required input
files for each time-step, calls the model, and reads the output files to provide
the data in the FINAM composition. But be aware that this approach may
introduce performance bottlenecks since it is basically a file based coupling.”

Original comment:

2. Through the example in Figure 1, I indeed grasped the purpose of the
FINAM tool. In similar computations, it is often necessary to read data, output
intermediate variables, read them again for further calculation, and then output
the results. This is a very cumbersome process. The FINAM tool has been
encapsulated into a Python package, eliminating a lot of intermediate work and
directly outputting results. I wonder if this process can also be edited using
Python’s parallel computing syntaz to achieve multithreaded computation?

Response:

FINAM is currently designed for serial execution and does not natively
support parallelization through multithreading or MPI as already mentioned.
However, one could think about integrating Python-based parallel computing
approaches (e.g., using multiprocessing, joblib, dask, etc.) around FINAM
if certain components are naturally parallelizable. In that scenario, FINAM
would still manage the data flow between components, while parallel execution
of selected tasks could be handled at the Python level or by the native models
themselves. We note that true multithreaded speedups in Python can be limited
by the Global Interpreter Lock (GIL), unless one uses libraries that release the
GIL (e.g., NumPy with native code sections). Full MPI-based parallelization
is currently out of scope, but we plan to investigate how FINAM can interface
with parallel libraries in future work as mentioned in the discussion.

Manuscript changes:

We added the following paragraph in the Discussion: ” There are also Python-
based parallelization approaches (multiprocessingﬂ joblikﬂ dasklﬂ etc.) that
could be used in the future to run independent parts of the composition in
parallel.”

1. https://docs.python.org/3/library /multiprocessing.html
2. https://joblib.readthedocs.io
3. https://www.dask.org/

https://docs.python.org/3/library/multiprocessing.html
https://joblib.readthedocs.io
https://www.dask.org/

Original comment:

8. Although it is difficult to directly couple encapsulated models with other
models, it seems possible to use syntaxr to drive the model for computation,
output results, and then couple the result file with other models. If this can be
operated within the FINAM framework, it could also reduce simulation time to
some extent.

Response:

Yes, a "file-based” or “black-box” approach can be used for models that
do not expose sufficient source code or direct I/O routines. In this scenario, a
FINAM component wrapper orchestrates the external model run by generating
the necessary input files, executing the model, and reading its output files back
into FINAM for subsequent coupling steps. While this still involves intermedi-
ate file I/0, it can be streamlined by a single controlling workflow in Python,
potentially saving user time and reducing the complexity of manual data han-
dling. However, the simulation time benefit depends heavily on how frequently
data needs to be exchanged. For very frequent exchanges, file-based I/O may
become a bottleneck. FINAM aims to be flexible enough to accommodate this
style of coupling, but its primary design still favors in-memory data transfer for
accessible source code or APIs.

Manuscript changes:

We expanded Section 2.2 as described above.

Original comment:

4. In the field of hydrology, surrogate or alternative models have been very
popular recently. A complex model can be learned using regression algorithms
to understand its inputs and outputs, and then the constructed regression model
can be used as an alternative model. It appears that coupling alternative models
directly with FINAM would be much easier.

Response:

We agree that surrogate modeling is becoming increasingly prominent, par-
ticularly in hydrology and other domains where computationally heavy models
can be approximated by faster regressions or machine learning algorithms. FI-
NAM’s Python-centric design is well-suited to integrating such surrogate mod-
els, as these models often come in the form of Python packages or can be accessed
via scikit-learn, TensorFlow, PyTorch, etc. Wrapping a surrogate model in FI-
NAM typically involves creating a wrapper that runs the regression or neural
network for each time step, and the rest of FINAM handles data exchange with
other components. This can be done in the exact same way as we described
the PET component. We see this as a major advantage for users who wish to
experiment with hybrid or alternative modeling approaches without altering the
underlying code of the original more complex model. Since the model structure
is not relevant for FINAM we do not want to add another paragraph for specific
types of models, since any time-step-based model is suitable to be coupled with
FINAM.

Manuscript changes:

In the Summary, we now acknowledge that surrogate models are candidates
for couplings.

Original comment:

5. It is also currently popular to couple machine learning models with tradi-
tional models. Could machine learning be considered for future development?

Response:

Yes, machine learning (ML) integration is one possible use case for FINAM.
Since FINAM is built on Python, it is relatively straightforward to couple ML
models and traditional numerical models within the same workflow since they
only need to be wrapped in a component. As the internal model structure (like
process-based or ML-based) is irrelevant for FINAM, we would like to not bloat
the text further with specific sorts of models or give the impression FINAM has
a special relation to machine learning.

Manuscript changes:

In the Summary we now acknowledge that ML models are candidates for
couplings.

Chapter 2

Reviewer: Nils-Arne Dreier

2.1 General Comments:

Original comment:

The article "FINAM - is not a model (v1.0): a new Python-based model
coupling framework” describes a novel coupling framework whose main focus is
to simplify the coupling configuration, with Python as the fundamental language
for composing model components. The authors provide a detailed explanation of
the concepts of FINAM and explain the decisions made during the development
process. Furthermore, they provide examples of how to use FINAM.

This article is fitting within the journal’s context and is of high quality,
hence, my recommendation for its publication with minor revisions.

Response:

Thank you for your positive feedback and your recommendation for publi-
cation. We are pleased that you find our approach and detailed explanations
aligned with the scope of the journal.

2.2 Specific Comments:

2.2.1 Introduction:
L5:

Original comment:

"such as YAC, ESMF, or OASIS” I wondered if there was a specific reason
behind the order of the stated ”coupling solutions”. If not, it might be advisable
to list them alphabetically. The same applies to their mentions later in the text.

Response:

Thank you for pointing this out. There is no particular reason for the existing
order. We will adjust the text to list them alphabetically for consistency and
clarity. Where these coupling solutions are cited again, we will maintain the
alphabetical order.

Manuscript changes:

In the Abstract and other relevant sections, we changed the list to: “ESMF,
OASIS or YAC.” In other places like the Introduction we kept the order (OASIS,
YAC and ESMF) since this is the logical order to introduce FINAM (first plain
couplers, then frameworks).

2.2.2 Section 2:

Original comment:

By the conclusion of this section, I became curious about any other adapters
and utilities that FINAM provides to formulate coupled experiments. While 1
found this information in the online documentation, it would be helpful if the
authors could include a brief summary of the key adapters and utilities towards
the end of this section to offer a deeper understanding of the potent adapter
concept.

Response:

We appreciate this suggestion. We realize that providing a short overview
of existing adapters and utilities within the manuscript clarifies the potential
of FINAM for new readers without requiring them to consult external docu-
mentation. We will briefly summarize the available adapters (e.g., for file-based
I/0, time shift/delay, regridding) and mention how new adapters can be imple-
mented.

Manuscript changes:

We added a subsection “2.3 Key Adapters and Utilities” that lists com-
monly used adapters (e.g., DelayFixed, Regrid, FileIO) and briefly describes
their functionalities, referencing the online documentation for more detailed us-
age examples.

L151:

Original comment:

"When units are not equivalent, like L/m2 and mm, but compatible, like K
and °C, they are converted automatically.” I'm a bit confused with the units
here:

e [don’t understand why L/m? (volume/area = length) and mm (length)
are not equivalent?

e The authors might need to explicitly define what they mean by ”equivalent”
and ”compatible”.

Response:

Thank you for highlighting this confusion. The original wording was indeed
ambiguous. In our implementation, we differentiate between units that require
a conversion (e.g., °C to K), and those that are essentially the same (e.g., L/m?
and mm).

Manuscript changes:

We updated the sentence to: ”Data with compatible units such as K and °C
will be automatically converted. Equivalent units such as L/m? and mm will
not cause a conversion.”

2.2.3 Section 3.1:

Original comment:

From my understanding, integrating the ”DelayFized” adapter changes equa-
tion (2) so that sm(t — 1) instead of sm(t) is used. This should be explicitly
highlighted.

I was also wondering whether the system of equations could be solved without
modifying the actual timestepping scheme, e.g. by using a fized-point iteration
or Newton solver. This would require recomputing timesteps of a component or
compute differentials. I understand that this goes beyond the scope of this paper
and could be considered in future work.

Response:

We agree that the “DelayFixed” adapter effectively shifts the time depen-
dency so that the components use the state of the previous time step instead of
the current one. This is essential for modeling lagged dependencies or simulating
bidirectional couplings where circular references would otherwise appear.

Regarding the possibility of solving the system via fixed-point iterations,
Newton solvers, or more advanced numerical schemes, we think this would im-
ply a huge impact on model developers since models would need to be able to
save their state and reset if needed. As our focus is on models that were devel-
oped for stand-alone usage, we think this to be a major requirement that would
raise the bar to high for many users. FINAM currently focuses on explicit time
stepping at the component level, but an extension to iterative or implicit cou-
pling methods might be valuable for problems requiring tighter convergence or
strongly coupled feedbacks but would need an investigation how to incorporate
that with the current focus.

Manuscript changes:

We added a sentence in Section 3.1 clarifying that: “Integrating the De-
layFized adapter replaces sm(t) with sm(t — 1) in the coupled equation, thus
delaying the effect of changes by one timestep.”

	Reviewer: Anonymous referee #3
	General Comments:
	Specific Comments:

	Reviewer: Nils-Arne Dreier
	General Comments:
	Specific Comments:
	Introduction:
	Section 2:
	Section 3.1:

