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for evaluating new AR characteristics in model simulations 20 
3. In climate models, landfalling AR precipitation shows dry biases globally, and AR 21 
tracks are farther poleward (equatorward) in the north and south Atlantic (south Pacific 22 
and Indian Ocean) 23 
 24 
 25 
Abstract 26 
 27 
We present a suite of new atmospheric river (AR) metrics that are designed for quick 28 
analysis of AR characteristics and statistics in gridded climate datasets such as model 29 
output and reanalysis. This package is expected to be particularly useful for climate 30 
model evaluation. The metrics include mean bias and spatial pattern correlation, which 31 
are efficient for diagnosing systematic AR biases in climate models. For example, the 32 
package identifies that in CMIP5 and CMIP6 models, AR tracks in the south Atlantic are 33 
positioned farther poleward compared to the ERA5 reanalysis, while in the south 34 
Pacific, tracks are generally biased towards the equator. For the landfalling AR peak 35 
season, we find that most climate models simulate a completely opposite seasonal 36 
cycle over western Africa. This tool is also useful for identifying and characterizing 37 
structural differences among different AR detectors (ARDTs). For example, ARs 38 
detected with the Mundhenk algorithm exhibit systematically larger size, width and 39 
length compared to the TempestExtremes (TE) method. The AR metrics developed 40 
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from this work can be routinely applied for model benchmarking and during the 41 
development cycle to trace performance evolution across model versions or generations 42 
and set objective targets for the improvement of models. They can also be used by 43 
operational centers to perform near real-time climate and extreme events impact 44 
assessment as part of their forecast cycle.  45 
 46 
 47 
1. Introduction 48 
  49 
Atmospheric rivers (ARs) are dynamically driven, synoptic-scale filamentary structures 50 
of water vapor jets that play important roles in the global water cycle and regional 51 
weather and hydrology (Ralph et al. 2013; Gimeno et al. 2014; Shields et al. 2019; 52 
Payne et al. 2020; O’Brien et al., 2022). These narrow, concentrated corridors of 53 
moisture in the atmosphere can carry an immense amount of water, often compared to 54 
the flow of multiple major rivers combined (Ralph and Dettinger, 2011), and account for 55 
a substantial portion, more than 90% of the poleward water vapor transport (Zhu and 56 
Newell, 1998; Newman et al. 2012; Ullrich et al. 2021). When approaching landmasses 57 
or interacting with mountainous regions, ARs usually bring extreme weather inland, 58 
such as heavy rainfall and strong wind, leading to severe flooding and landslides, 59 
causing devastating damages to natural landscapes, agricultural fields, infrastructure, 60 
human settlements, and disruption to businesses and services with significant economic 61 
losses (Ralph et al., 2006; Leung and Qian, 2009; Neiman et al., 2011; Neiman et al., 62 
2013; Gershunov et al., 2017). 63 
  64 
Previous studies have developed numerical algorithms for objective identification of ARs 65 
(e.g., Neiman et al., 2009; Dettinger, 2011; Ralph et al., 2013; Mundhenk et al. 2016; 66 
Ullrich and Zarzycki 2017; Ullrich et al., 2021). As noted by O’Brien et al. (2022), the 67 
different choices made by ARDT developers essentially amount to different definitions 68 
of ARs, all of which are qualitatively consistent with the definition in the AMS glossary 69 
(Ralph et al., 2018). ARDTs are generally threshold-based, mostly using the intensity of 70 
moisture transport with some geographical constraints that limit the AR spatial extent 71 
and some geometrical constraints that preserve their nature as “long and narrow” 72 
filaments of moisture. For example, the Mundhenk algorithm (Mundhenk et al. 2016) 73 
calculates integrated water vapor transport (IVT) anomalies relative to the historical 74 
period and uses a fixed relative threshold to identify ARs that are above a certain 75 
percentile of the historical simulation. The TempestExtremes (TE; Ullrich et al. 2021) 76 
method, as another example, uses relative threshold on the Laplacian of the IVT field 77 
rather than the IVT field itself. Although AR detectors (ARDTs) are usually designed 78 
with particular research questions in mind, they have widely facilitated broader studies 79 
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of AR characteristics and impacts (Shields et al., 2018; Rutz et al., 2019; O’Brien et al., 80 
2022).  81 
 82 
The number of climate models under active development and used in the research 83 
community has increased substantially in recent decades, with many supporting 84 
multiple configurations and parameterization choices. Meanwhile, newer versions of 85 
ARDTs have been developed , along with newer observational data products. As such, 86 
routine evaluation of ARs during model development lifecycles requires a quantitative 87 
climate data assessment evaluation workflow that is independent of ARDT and that 88 
allows comparing AR characteristics from different ARDTs. We believe progress in 89 
improving our understanding of ARs and their impacts could be accelerated with a 90 
dedicated tool for calculating AR statistics in climate models and gridded data products. 91 
 92 
Metrics have been widely used to quantify climate model performance in recent 93 
decades (Taylor 2001; Gleckler et al. 2008; Wilks 2011; Zarzycki et al. 2021). Similarly, 94 
a set of common metrics are also increasingly employed in AR studies over the past few 95 
years, such as mean bias (Guan and Waliser 2017; Chapman et al. 2019), weighted 96 
ensemble mean bias (Massoud et al. 2019), RMS error and relative RMS error (Guan 97 
and Waliser 2017), spatial pattern correlation (Chapman et al. 2019; Huang et al. 2021), 98 
ratio of spatial standard deviation (O’Brien et al. 2022), and skill scores for assessing 99 
AR predictions (Wick et al. 2013, Nardi et al. 2018) and model performance (Zhang et 100 
al. 2024). While these quantitative measures are case-specific and depend on the aim 101 
of these studies, there is value in synthesizing commonly used metrics in one 102 
comprehensive analysis tool.  103 
  104 
In this paper, we propose a set of metrics that is designed for easy quantification of AR 105 
characteristics and statistics in all types of gridded climate data, with the expectation 106 
that such a metric suite would be useful for climate model evaluation. Following the 107 
introduction, section 2 describes the general design of the AR metrics. Section 3 108 
presents several example model evaluation applications of using the metrics evaluation 109 
package. Conclusions and discussion are in section 4. 110 
  111 
  112 
2. Data and method 113 
  114 
2.1 Input data 115 

  116 
The input data to the metrics package includes AR “tags” and optional climate variables 117 
of interest that are concurrent with AR activities, such as precipitation, winds, and 118 
temperature (Fig. 1). The AR tags can be products of any regional or global AR detector 119 
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(ARDT), including those based on relative (e.g., TempestExtremes or TE; Ullrich and 120 
Zarzycki 2017; Ullrich et al. 2021), fixed-relative (e.g., Mundhenk_v3; Mundhenk et al. 121 
2016), and absolute (e.g., Lora_v2; Lora et al. 2017) thresholds to the moisture field.  122 

  123 
For applications in section 3, we run and compare the TE ARDT on the 6-hourly 124 
integrated water vapor transport (IVT) data from three reanalysis products - ERA5 125 
(Hersbach et al. 2020), MERRA-2 (Gelaro et al. 2017) and JRA-55C (Japan 126 
Meteorological Agency, Japan 2015) to obtain AR tags for reanalyses. Given its longer 127 
data record and finer model resolution, we subsequently use ERA5 as the default 128 
reference in this study. To demonstrate how results are sensitive to the choice of 129 
ARDTs, we then use the Mundhenk_v3 tags from ERA5 data.  130 

  131 
To evaluate ARs in climate models, we use the archived AR tags from the Atmospheric 132 
River Tracking Method Intercomparison Project (ARTMIP) Tier 2 experiment, which is 133 
based on the coupled CMIP model simulations for the historical and 21st century 134 
projection periods. (Shield et al. 2019, Rutz et al 2019, O’Brien et al, 2022). The tag 135 
data include six of the CMIP5 models (CCSM4, CSIRO-Mk3-6, CanESM2, IPSL-CM5A-136 
LR, IPSL- CM5B-L, and NorESM1-M) and 3 of the CMIP6 models (BCC-CSM2-MR, 137 
IPSL-CM6A-LR, MRI-ESM2-0). For model evaluation purposes in our application 138 
examples, only TE tags from the archive are selected.  139 
 140 
We further use simulations from the Energy Exascale Earth System Model (E3SM; 141 
Golaz et al. 2019, Caldwell et al. 2019) high resolution (HR, 0.25°, ~28 km grid) and low 142 
resolution (LR, 1°, ~111 km grid) experiments to examine the sensitivity of ARs to 143 
model resolution. Except for their different horizontal grid spacing, both E3SM-HR and 144 
E3SM-LR use an identical set of physical parameters, and the simulations follow a 145 
similar protocol of the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring 146 
et al. 2016).  147 

  148 
For the evaluation of AR characteristics, statistics gauging the consistency of latitude, 149 
longitude, width, length, and size are required as the input for metrics. In our case, we 150 
use the ‘BlobStats’ tool (Ullrich et al. 2021) to calculate the statistics, where latitude and 151 
longitude are weighted by the moisture field, width and length are based on principle 152 
component analysis (PCA; Inda-Díaz et al. 2021), and size is based on a count of the 153 
number of contiguous grid cells in the feature. This tool can be called and run within the 154 
AR metrics workflow, with a separate installation. Users can also optionally use their 155 
preferred statistical package for AR geometry calculation and then feed the data back to 156 
the metrics workflow. 157 
 158 
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2.2 Geographical Regions 159 
  160 

In this tool package, the AR metrics are calculated based on the data in user-defined 161 
geographic domains. In Fig. 1, the upper right panel shows examples of regions that 162 
were selected for landfalling AR diagnostics (red boxes in the panel, lat-lon boundaries 163 
are listed in the supplementary table S1). These regions, mostly located in the west 164 
coast of continents, are known to have frequently observed AR landfalls (Guan and 165 
Waliser 2015, Algarra et al. 2020). We purposely use rectangular region boundaries for 166 
easy use of the metrics tool, such that rather than needing a regional mask file, users 167 
can quickly sub-select the data by declaring latitude and longitude bounds of any 168 
specific region. For AR statistics, we group global ARs into 5 major ocean basins – the 169 
North Pacific, South Pacific, North Atlantic, South Atlantic, and South Indian Ocean 170 
(blue boxes in Fig. 1 upper right panel; lat-lon coordinates in table S1 in the 171 
supplement).  172 

  173 
2.3 Metrics 174 

  175 
2.3.1 Mean bias  176 

  177 
We use mean bias to measure how close a climate data product is with respect to the 178 
reference data, calculated as  179 

 𝑏# =  �̅� - 𝑦#  180 
where �̅� is the arithmetic mean of the test variable 𝑥 with sample size n, given by  181 
 182 

�̅� = !
"
∑ 𝑥#"
#$!  183 

 184 
and similarly, the 𝑦# is the arithmetic mean of the reference variable 185 

  186 
The statistical significance of the mean bias is measured using the Z-test, with the test 187 
statistics (z-score) formulated as 188 
 189 

 190 
 191 
where 𝑥%(  is sample arithmetic mean, 𝜇# is population mean, 𝑠# is sample variance, and 192 
𝑛# is sample size. A positive z-score indicates that the value is above the mean. The 193 
higher the z-score, the further above the mean the value is, and vice versa. A result is 194 
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considered statistically significant at the 95% confidence level if the magnitude of the z-195 
score is greater than 1.96.  196 
 197 
When comparing across different variables, a commonly used measure is the 198 
normalized bias, with the data normalized by the standard deviation of the reference 199 
field. In this study, we simply use z-score as the normalized bias, as it incorporates both 200 
bias and statistical significance in one succinct formula. 201 

  202 
2.3.2 Spatial pattern similarity 203 

  204 
The spatial pattern correlation is a measure used to quantify the similarity between two 205 
spatial fields without reflecting the magnitude of the difference. Here we compute the 206 
spatial pattern correlation using the Pearson correlation coefficient: 207 

 208 
where, 𝑥# and 𝑦# are the values of the two spatial patterns at location i (or grid point i in 209 

gridded data product), �̅� and 𝑦# are the means of the values of the two patterns, and n is 210 

the total number of locations. This equation essentially measures the degree to which 211 
the values of the two spatial patterns vary together. If they vary together perfectly, 𝑟	will 212 
be 1. If they vary together inversely, 𝑟	will be -1. If there's no linear relationship between 213 
the patterns, 𝑟 will be 0. 214 
 215 
The statistical significance of correlation is determined by the two-tailed p-value of the 216 
cumulative distribution function (CDF) of the t-statistic, as 217 
 218 

p = 2 ✕ (1 - CDF(t))  219 

 220 
The the t-statistic t is given by 221 

 222 
where r is the correlation coefficient, and ne is the effective sample size. Although there 223 
are a number of methods to estimate the effective geographic sample size (e.g., Griffth 224 
2013),  given that ARs present notable seasonal and interannual latitudinal shift 225 
patterns, we propose a new method to estimate ne as the number of Principal 226 
Component Analysis (PCA) modes required to explain more than 95% of the total 227 
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variance in the AR tag data. The cumulative variance explained by the principal 228 
components is expressed as 229 

 230 
 231 

where the 𝜆i are the eigenvalues of the spatial correlation matrix of the data, and p is the 232 
total number of principal components. Estimating ne based on ERA5 reanalysis data, we 233 
find that the effective sample sizes for spatial pattern correlation are generally small, 234 
ranging from 14 - 27 for the 5 ocean basins (Table S2 in supplementary information). 235 
 236 
 2.3.3 Temporal detection similarity 237 

  238 
The AR binary occurrence time series refers to a binary time series equal to one when 239 
an AR is present in a given region and zero otherwise. The overlap between two AR 240 
occurrence time series is measured by the Intersection over Union (IoU) metric. The 241 
metric is written as 242 

 243 
where, A and B are binary AR occurrence time series. The IoU is useful for gauging the 244 
degree of temporal similarity of ARs detected in different ARDTs.  245 
 246 
2.3.4 Metrics and diagnostics implementation 247 
 248 
The metrics and diagnostics are pre-defined in the metrics framework, and they are fully 249 
customizable. Table 1 lists all the AR metrics and diagnostics used in this study. The 250 
AR metrics are composed of AR properties (as shown in the top row) and evaluation 251 
metrics. Similarly, the AR diagnostics are composed of AR properties and statistical 252 
diagnostics. The number of regions that these metrics are applied to are indicated by 253 
the numbers in the table. The metrics code is python-based, and it handles gridded AR 254 
tag and climate data using xCDAT (Xarray Climate Data Analysis Tools, 255 
https://xcdat.readthedocs.io), which is an extension of the Xarray package 256 
(https://xarray.pydata.org). 257 
  258 
 259 
3. Metrics applications 260 
 261 
In this section, we present five example applications using the metrics tool for assessing 262 
ARs in climate models, including evaluation of AR frequency and characteristics, 263 
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comparison of ARs in high- and low-resolution simulations, sensitivity of ARs to choice 264 
of ARDT, precipitation bias associated with ARs and landfalling AR seasonality.  265 
 266 
3.1 AR characteristics in CMIP5 and CMIP6 models  267 

  268 
3.1.1 AR frequency 269 

  270 
We first analyze the pattern of AR occurrence frequency over a 10-year period (1979-271 
1988) for the five major ocean basins from section 2.2. From the spatial distribution of 272 
the AR frequency, we calculate the pattern correlation between selected climate models 273 
and ERA5. The spatial pattern correlation coefficient is shown in Fig. 2. Notably the 274 
correlations are statistically significant for all models and regions. This suggests that 275 
climatologically, climate models simulate AR density and spatial distribution that broadly 276 
resemble reanalysis on planetary scale. This is evidenced in the spatial AR occurrence 277 
density maps in Fig. 3 (a-b) and (d-e).  278 
 279 
The high spatial correlation is mainly a result of the similar spatial gradient of the AR 280 
frequencies, rather than the similar magnitude of the frequency at each grid point in two 281 
datasets. For instance, if the AR frequency values in one map are doubled compared to 282 
those on the other map, the spatial patterns, or spatial structures of the two, can still be 283 
perfectly correlated. Since climatologically ARs are largely clustered along the storm 284 
track, with nearly no presence over a large portion of the basin domain, it is natural that 285 
the pattern correlations are significant in most cases. Similar high pattern correlations of 286 
AR frequencies are also noted in other studies (e.g., Huang et al. 2020; Guan et al. 287 
2023). In other words, the spatial correlation coefficient is not that indicative for the 288 
magnitude resemblance of the AR spatial frequency. Therefore, these metric results can 289 
be better interpreted together with AR frequency maps.  290 
 291 
While the spatial correlation coefficient synthesizes the level of pattern consistency,  292 
difference maps further reveal the spatial discrepancies. For example, Fig. 3c shows 293 
that South Pacific AR tracks shift farther towards the equator in the CSIRO model than 294 
in ERA5. While in the North Atlantic basin (Fig. 3f), AR tracks are displaced more 295 
poleward in the BCC model. The further north AR location is likely associated with the 296 
poleward jet stream bias in CMIP6 models (Bracegirdle et al. 2020; Harvey et al. 2020). 297 

  298 
3.1.2 AR geometric features in major ocean basins 299 

  300 
The portrait plots in Fig. 4 show normalized biases (as z-score) of AR characteristics in 301 
climate models for the 5 major ocean basins. Several striking results emerge. For 302 
instance, in the North Pacific, the CMIP5 and CMIP6 AR geometry, in terms of width 303 
and length, are significantly smaller than the ERA5 reanalysis. One possible cause of 304 
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such bias is that the AR blobs detected with TE in the relatively lower resolution climate 305 
models are geometrically less curvy, and less pointy at the ends. Fig. S1 shows an 306 
example time slice of AR blobs in the ERA5 and BCC model. It is clear that the 307 
highlighted AR blob in the BCC model exhibits a “cut-off” feature at both ends, thus 308 
shorter in length than the ERA5 reanalysis. And although visually the blob is wider, the 309 
PCA based width is actually narrower due to its less curvy blob geometry. In contrast, 310 
for all other ocean basins, the AR sizes (area) are generally bigger in climate models. 311 
The figures also show notable latitudinal model AR biases, such that compared to the 312 
reanalysis, ARs tend to shift towards higher latitudes in the North and South Atlantic 313 
and biased towards the equator in the South Pacific and Indian Ocean.  314 
  315 
Fig. 4 also helps identify outliers of a specific model or variable. For example, although 316 
most climate models tend to simulate larger ARs than observed (indicated by the 317 
positive values in the area columns), one notable exception is the CanESM2 model 318 
which has significantly smaller AR width, length, and area than other models and ERA5 319 
reanalysis. Taking a closer look into the AR width and length in the North Pacific in Fig. 320 
5, we see that CanESM2 simulates more smaller ARs and fewer bigger ARs than the 321 
reanalysis, resulting in negative mean biases. This type of histogram helps us better 322 
understand the AR distribution discrepancies.  323 

  324 
Another example is from the CCSM4 model simulations. The higher bounds of the 325 
model histogram in nearly all fields indicate that the CCSM4 model simulates more ARs 326 
than the reanalysis, with bigger size indicated as taller area bars in Fig. 5c. The higher 327 
ARs counts in the model are mostly located in the high latitudes and the tropics south of 328 
20°N (Fig. 5a), spreading across all longitude (Fig. 5b). Fig. 5d and 5e show that the 329 
additional ARs in CCSM4 are narrower and/or longer in shape.  330 
  331 
3.2 ARs in high and low resolution E3SM simulations 332 

  333 
We now apply the metrics and diagnostics identified in section 2.3.4, including the mean 334 
bias of AR latitude, longitude, area, width and length over 5 ocean basins, and AR 335 
induced precipitation over 16 landfall regions, to evaluate and compare AR 336 
characteristics in the E3SM HR and LR simulations. ARs in both HR and LR exhibit 337 
similar structural differences compared to the ERA5 (Fig. 6a, b). They are bigger in 338 
terms of area, width, and length, and biased towards higher latitudes in the North Pacific 339 
and South Atlantic. Zonally, ARs in E3SM are more westward distributed in the North 340 
Pacific, and more eastward distributed in the North Atlantic and South Pacific. One 341 
difference we see between the two experiments is that in the North Atlantic basin, AR 342 
tracks in the HR are shifted more northward than in the LR simulation.  343 

  344 

https://doi.org/10.5194/gmd-2024-142
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



10 

Figure 6c shows AR differences between E3SM HR and LR models. The most 345 
noticeable differences are that the HR simulates wider and longer ARs than the LR 346 
model over all ocean basins. The AR size, in the area column, however, shows mixed 347 
results which are not consistent with systematic biases in width and length. This is 348 
probably because of different AR geometric properties in the HR and LR simulations. 349 
For example, in Supplementary Figure S2, the highlighted AR blob in the North Atlantic 350 
is longer but smaller in the LR compared to the one in the HR simulation. Latitudinally, 351 
AR distributions show hemispheric contrast, as compared to the LR, ARs in HR are 352 
located more southward in the Pacific sector but more northward in the Atlantic sector.  353 

  354 
Figure 7 shows AR characteristic distribution in the North Pacific for E3SM HR, LR and 355 
ERA5. Apparently, E3SM produces more AR events than the reanalysis in nearly all 356 
fields and across all scales. We also evaluated the precipitation associated with 357 
landfalling ARs in California in both HR and LR simulations, as in Fig. 8. It is notable 358 
that both models simulate systematically higher precipitation than ERA5 for all rainfall 359 
intensity categories. It is also clear that the precipitation bias in HR simulation is larger 360 
than LR simulation, except in the light rainfall (< ~6mm/day) category. Similarly, better 361 
topographic representation in high resolution version of the model does not improve 362 
precipitation simulation is also reported in Harrop et al. (2023), especially when the bias 363 
in the low resolution model is substantially high.  364 

  365 
3.3. Sensitivity of AR characteristics to ARDT 366 

  367 
In this application of the metrics package, we examine how ARs in ERA5 are sensitive 368 
to the choice of ARDT. In addition to TE-based AR tags, we use AR tags detected using 369 
the Mundhenk_v3 algorithm for comparison. Despite significant differences in their 370 
associated algorithms, results from ARTMIP showed their performance was similar and 371 
close to the mean among all ARDTs (Shields et al., 2018). Table 2 shows agreement of 372 
landfalling ARs detected using these two ARDTs, as % values of IoU (AR concurrence 373 
normalized by total occurrence of the ARs in both methods). The level of consistency 374 
ranges from 56% to 83%, which suggests that TE and Mundhenk detect ARs 375 
concurrently most of the time, but with asynchronous discrepancies, possibly at the 376 
timing of the landfall and the end of the AR life cycle.  377 

  378 
For AR characteristics over the oceans, the Mundhenk method detects larger ARs in 379 
area, width, and length compared to TE (Fig. 9). ARs are also present at more 380 
northward latitudes with Mundhenk than TE. Zonally, AR distributions exhibit more 381 
hemispherical contrast, with Mundhenk showing more westward located ARs in the 382 
Pacific sector but more eastward located ARs in the Atlantic sector.  383 

  384 
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3.4 Landfalling AR precipitation in CMIP5/6 models 385 
 386 

Precipitation is an important indicator of the intensity of a landfalling AR. Here we 387 
evaluate landfalling AR precipitation in the CMIP5 and CMIP6 models, with the ERA5 388 
reanalysis and MSWEP (Beck et al. 2017) gridded product as reference. Fig. 10 shows 389 
that compared to the observations, landfalling precipitation differences in the models are 390 
generally much larger than in reanalysis. The models show dry biases in most regions, 391 
particularly large in California, Pacific Northwest, Iceland and Greenland.  392 

  393 
As it is unclear if these biases are mainly due to general precipitation biases, or AR 394 
activity bias, we further examine model precipitation bias diagnostics regardless of AR 395 
activity (Fig. 11a) and AR frequency bias metrics (Fig. 11b) separately. For total 396 
precipitation in the models, structural biases as in Fig. 10 are absent, but AR landfalls 397 
are less frequent in the Pacific Northwest, Iceland, and Greenland. This suggests that 398 
the systematic dry AR precipitation biases over these regions are primarily due to the 399 
insufficient number of landfalling ARs in the models. For California, similar results do not 400 
hold for all the models, for example, total precipitation in CCSM4 is higher than the 401 
reanalysis and AR landfalls are more frequent, but the AR-related rainfall has a 402 
significant dry bias. This suggests that landfalling ARs in CCSM4 are less intense, 403 
suggesting a potential direction for model improvement. 404 

  405 
3.5 Landfalling AR peak day 406 

  407 
3.5.1 Comparison among reanalyses 408 

  409 
Seasonality of AR landfalls is one of the important metrics for understanding AR 410 
variability and impacts. Here we analyze landfalling AR seasonality over various regions 411 
of the globe among three reanalysis products. We perform a Fourier transform on the 412 
10-year long-term daily mean AR histogram to find its peak date based on the phase of 413 
the first Fourier mode. Results indicate that the AR peak days agree well among 414 
reanalyses for most regions, with small differences of only a few days. Large 415 
discrepancies are noted for Australia and western Africa: In Australia, AR landfall peaks 416 
nearly a month behind in JRA-55C than MERRA-2, while in west Africa, AR landfall in 417 
MERRA-2 peaks 46 days behind ERA5.  418 

  419 
Details of these differences are depicted in the histogram plots. For West Africa, AR 420 
landfalls have two peaks in ERA5 and MERRA-2, one being in September, followed by 421 
another peak in November. In ERA5, the peak in November is the main peak, while in 422 
MERRA-2, the September peak is comparable to the November peak, resulting in an 423 
earlier peak day from the Fourier phase spectrum. JRA-55C, in contrast, has only one 424 

https://doi.org/10.5194/gmd-2024-142
Preprint. Discussion started: 20 August 2024
c© Author(s) 2024. CC BY 4.0 License.



12 

peak in November, and the AR landfall event counts are fewer than the other two 425 
products over the entire year, indicative of smaller year to year variability.  426 

  427 
Seasonal distribution of AR landfalls in Australia in the three reanalyses exhibit similar 428 
differences to those in western Africa. In ERA5 and MERRA-2, there are two peaks in 429 
February and June, but only one peak presents in JRA-55C in June. This explains the 430 
relative late peak day in JRA-55C. While the main peak in ERA5 is in June, in MERRA-431 
2, the main peak is in February, which is consistent with the metrics result that MERRA-432 
2 has the earliest peak day. Similarly, the JRA-55C has a smaller number of landfalling 433 
ARs, although the interannual variability is comparable to the other two reanalyses.  434 

  435 
3.5.2 Evaluation of climate models 436 

  437 
Figure 13 shows CMIP5 and CMIP6 models’ performance in simulating AR peak 438 
season compared to ERA5 reanalysis. To explore how model biases compare to the 439 
discrepancies among reanalyses, we also include AR peak day bias for MERRA-2 and 440 
JRA-55C reanalysis in the left two columns of the metrics plot. Perhaps unsurprisingly, 441 
the model spread is much larger than the spread among reanalysis products, which are 442 
tightly constrained by data assimilation.  443 

  444 
In regions like South America, Baja, UK and Western Europe, the models show 445 
systematic late peak biases, and in South Africa, AR peaks earlier than the reanalyses. 446 
The exact cause of these structural biases in the models is likely indicative of persistent 447 
and ubiquitous timing issues in the shift of the storm track that is common among 448 
models. It is worth noting that the model biases in the West Africa region are 449 
significantly larger than other regions, with peak day difference up to 6 months as 450 
compared to the reanalysis. Looking at the AR counts histograms over the course of the 451 
year in this region in the CCSM3 and MRI-ESM2-0 models (Fig. 14), it is clear that AR 452 
landfall seasonality in both models is completely out of phase with ERA5. This is 453 
especially true for the MRI-ESM2-0 model, where AR landfall peaks in June, which is in 454 
opposition to the climatology in ERA5. The large discrepancy is probably because of the 455 
large spread in the atmospheric circulations in climate models over the West Africa 456 
region, as large spread among CMIP5/6 models in capturing atmospheric dynamic 457 
responses (Monerie et al. 2020), the lack of jet-rainfall coupling (Whittleson et al. 2017), 458 
and bias in simulating mesoscale convective systems (Jenkins et al. 2002) in climate 459 
models are noted. Although high resolution regional modeling may be capable of 460 
improving rainfall in this region (Sylla et al. 2009), the dynamics-rainfall coupling does 461 
not appear to be improved in high resolution global models such as the E3SM (Caldwell 462 
et al. 2019; Golaz et al. 2019). Therefore, challenges remain in modeling the AR water 463 
cycle in west Africa.  464 
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  465 

4. Summary and discussion 466 
  467 
In this study we have introduced a workflow for the objective evaluation of ARs in 468 
climate models and reanalysis, and have illustrated the potential for its use with five 469 
example case-studies to illustrate the scope of potential applications. The metrics-based 470 
analyses are designed for systematic diagnosis of AR biases in climate models. For 471 
example, applying the package to CMIP5 and CMIP6 models, we have shown that AR 472 
tracks in the south Atlantic are positioned farther poleward compared to the ERA5 473 
reanalysis, while in the south Pacific, tracks are biased towards the equator. Over 474 
western Africa, we found that most climate models do a poor job at capturing the AR 475 
peak season. In addition to model evaluation, we have shown how our tool can be used 476 
to identify structural differences resulting from the choice of AR detector (ARDT). For 477 
instance, we demonstrated that ARs detected with the Mundhenk method are 478 
systematically larger in size, width and length compared to TE.  479 
  480 
The workflow and metrics presented in this study can be used for a variety applications, 481 
e.g., to contrast the differences between AR features in historical and future scenarios 482 
as simulated by climate models. Objectively quantifying projected changes in landfall 483 
frequency, duration, and intervals between landfall events are of particular interest. 484 
Further confidence in this and other model evaluation applications can be gained by 485 
assessing what impact the choice of the ARDT can have on any conclusions concerning 486 
model quality. Our tool makes this and other sensitivity tests more tractable. 487 
 488 
Our tool also pools a diverse suite of established and newly introduced AR metrics into 489 
one framework, facilitating objective evaluation of ARs with a diverse suite of input data, 490 
as well as intercomparison of ARs as simulated by multiple climate models. These 491 
metrics can be routinely applied for model benchmarking and during development 492 
cycles to monitor changes in AR characteristics across model versions or generations 493 
and set objective targets for the improvement of models. One expected application is 494 
the routine benchmarking of AR in simulations with increasingly higher resolution 495 
models. More frequent metrics evaluation of simulated ARs such as this could further 496 
our understanding of model bias and error characteristics, and potentially assist 497 
developers in making choices associated with new model versions. Furthermore, it 498 
effectively provides a quantitative measure for operational centres to perform near real-499 
time climate and extreme events impact assessment along with their forecast cycles, 500 
which can facilitate their decision-making process.  501 
 502 
Our metrics tool is developed with Xarray (Hoyer et al., 2017), XCDAT (Vo et al., 2024), 503 
and the PCMDI Metrics Package (PMP; Lee et al. 2024), which are compatible with one 504 
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another, readily available and easy to install.   At the time of the submission of this 505 
manuscript, our tool is being configured to be a part of the PMP.   Looking forward, we 506 
welcome community contributions to successive development of the package. Inspired 507 
by Zarzycki et al. (2021), there is also a potential that these metrics can be applied for 508 
research beyond ARs, such as mesoscale meteorological features, regional 509 
hydrological extremes such as floods and droughts, and large-scale climate modes.  510 
 511 
 512 
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 738 

 739 

Fig. 1.  AR metric tool workflow. Input data include time slices of AR 740 
tags from ARDTs of user choice, and optional climate data 741 
associated with ARs. The data are then subset into user-defined 742 
rectangular domains (blue boxes for ocean basins, red boxes for 743 
landfall regions) for regional tags and masks. User preferred 744 
statistical tools are applied on the regional AR tags to obtain AR 745 
characteristics. Finally, AR characteristics and AR masked climate 746 
data are presented as metric results. 747 

  748 
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 749 
 750 

Table 1. List of AR metrics and diagnostics in this study. Numbers in the 751 
table indicate the number of regions where the metrics are applied. Each 752 
column is one AR property. Underscored items are model evaluation 753 
metrics, items in italic form are diagnostics of AR properties. 754 

 755 

  756 
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 757 

Fig. 2. Spatial pattern correlation of AR frequency for the period 1979-758 
1989 between ERA5 and climate models for major ocean basins.  759 
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 761 
 762 
Fig. 3. AR frequency in the South Pacific for (a) CSIRO-MK3-6-763 
0, (b) ERA5 and their difference (c) as (a) - (b). AR frequency in 764 
the North Atlantic for (d) BCCCSM2-MR, (e) ERA5 and their 765 
difference (f) as (d) - (e) 766 

 767 
 768 
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 771 

 772 

Fig. 5 North Pacific AR characteristics distribution for (a) central latitude, (b) 773 
central longitude, (c) area, (d) width and (e) length,  in ERA5 reanalysis, 774 
CanESM2 and CCSM4 model  775 
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 776 
 777 

 778 
 779 
 780 
 781 
Fig. 6.  AR characteristics bias in E3SM (a) HR and (b) LR simulations. (c) 782 

is the difference between HR and LR. Hatching indicate that the differences 783 
are statistically insignificant.  784 
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 787 
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 789 
 790 
 791 

 792 
 793 
 794 
 795 
Fig. 8.  Landfalling AR precipitation histogram in California from 1990-1999 796 
in the ERA5 reanalysis, E3SM HR and LR simulations. 797 
  798 
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 799 
 800 
 801 
 802 
 803 
Table 2. AR landfall concurrence in Mundhenk and TE, normalized by total 804 
counts of AR landfalls detected in both ARDTs for different regions. Values 805 
are shown in percentage. 806 
 807 
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 812 
 813 
 814 

Fig. 9.  AR characteristic difference between Mundhenk and TE in ERA5 815 
 816 
 817 
 818 
  819 
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 822 
 823 
 824 

Fig. 10. Landfalling AR precipitation bias in climate models relative to ERA5 825 
(the first column).  The MSWEP data is also included in the second column 826 
as an additional reference data, showed as the difference between ERA5.    827 
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 832 

Fig. 11. (a) Total precipitation bias and (b) landfalling AR frequency bias   833 
  834 
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 835 

 836 
 837 
 838 
Fig. 12  (a) Landfalling AR peak day in ERA5, MERRA2, and JRA55C 839 
reanalysis. (b-g) show examples of probability distribution. Height of the 840 
blue bars indicate the time mean counts. Black dots represent peak day for 841 
each individual year, and vertical bars are the standard deviation range in 842 
the 10-year data from 1979-1988 843 
 844 
 845 
 846 
 847 
 848 
 849 
 850 
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 853 
 854 

Fig. 13. Landfalling AR peak day bias in reanalyses and models compared 855 
with ERA5.   856 
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 864 
 865 

 866 
Fig. 14. Landfalling AR counts in (a) CCSM4 and (b) MRI-ESM2-0 for 867 
western Africa region. Height of the blue bars indicate the time mean 868 
counts. Vertical lines represent the standard deviations. Black dots 869 
represent counts for each individual year. Red bars show ERA5 values as 870 
the reference.  871 
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