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Abstract. We introduce a tsunami warning technology towards a global real-time analysis. The technology is based on the

analysis of acoustic signals generated together with the tsunami, due to the compression of the water layer. The acoustic

signals propagate much faster than the tsunami, and thus can be recorded at hydrophone stations, which in turn enables the

analysis in real-time. The presented technology comprises a collection of models that have been integrated into a software with

the goal to make it operational, to complement efforts by warning centres and provide a more reliable assessment, globally.5

The main models that were integrated in the software are presented and briefly discussed. Test cases performed by the software

are compared with DART buoy observations, showing satisfactory agreement though discrepancies arise in particular at far

distances and locations separated by land. The calculation time of a full global-scale analysis is in the order of tens of seconds

on a standard multi-core machine, without reliance on pre-computations, making it appropriate real-time forecast.

1 Introduction10

Tsunamis pose a significant threat to coastal communities around the world, necessitating the development of effective early

warning systems. The inception of tsunami warning systems can be traced back to the 1940s when Japan and the USA adopted

earthquake-centric approaches, utilising seismic data and applying empirical formulae for wave height, along with a shallow

water assumption for travel time. Challenges persisted, marked by numerous false alarms, inadequate coastal risk assessment,

and delayed warnings. Consequently, a significant shift occurred post-2004 towards global, tsunami-centric systems, incorpo-15

rating advanced methodologies such as pre-computed scenarios, empirical formulae, and tide gauge observations to enhance

accuracy. The 2004 Indian Ocean tsunami served as a catalyst for a global response, instigating a paradigm shift in worldwide

tsunami hazard reduction. This transformation involved integrating real-time tsunami observations and sharing advancements

on a global scale. The UN-coordinated global system underwent expansion, introducing regional warning centres and stan-

dardised procedures. Since the 1940s, tsunami warning technology has evolved with the establishment of extensive seismic20

networks, deployment of DART buoys, cabled observatories, and GPS buoys, providing real-time data. Advances in numerical

models, coupled with High-Performance Computing (HPC), contributed to a more effective warning system with reduced false

alarms (Tsuchiya and Shuto, 1995; Igarashi et al., 2011; Bernard and Titov, 2015; Kong et al., 2015). However, conventional

tsunami warning systems still struggle with significant challenges, resulting in a high incidence of false alarms and unrelia-
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bility. Igarashi et al. (2011) points out operational weaknesses in providing timely warnings for local tsunamis, especially in25

regions where the existing system relies on tsunami measurements, leaving insufficient time for warnings when the source and

destinations are in proximity. The dependence on earthquake information often leads to precautionary alerts, later cancelled

when sea level data indicates non-destructive waves. While this cautious approach prioritises safety, it unintentionally under-

mines the credibility of tsunami warning centres (TWCs) and fosters public scepticism, with people viewing alerts as frequent

false alarms. Since the 1950s, a substantial 75% of tsunami warnings that prompted evacuations turned out to be false, as30

illustrated by the economic losses exceeding 30 million USD during the evacuation of Honolulu in 1986. Addressing these

issues necessitates enhancing detection capabilities and public awareness to mitigate the credibility and economic challenges

associated with false alarms.

This paper presents a methodology integrated in a software which is currently under development for operational purposes.

In particular, the software is designed to enhance real-time early tsunami warning technology, integrating precursor signal35

detection, computational techniques, and deep-water tsunami detection. By employing cutting-edge mathematical and Artifi-

cial Intelligence (AI) models, the software analyses sound signals to assess tsunamis as they occur (currently virtually). The

methodology integrates data from various measurement sources and allows for the real-time mapping of risk areas, including

relevant travel paths, once the epicentre location is identified. By utilising a machine learning model, the earthquake magni-

tude is calculated and mode of strike is classified, in order to determine whether the earthquake is tsunamigenic or not. The40

earthquake fault angle, or dip, may be horizontal, vertical, or at an arbitrary angle. Faults are categorised by their slip direction:

dip-slip faults move along the dip plane, strike-slip faults move horizontally, and oblique-slip faults display both motions.

Tsunamigenic earthquakes usually involve motion normal to the surface. The strike mode is defined as either horizontal (less

likely to cause tsunamis) or vertical (most likely to cause tsunamis), see Gomez and Kadri (2021). Additionally, in cases where

the mode of strike exhibits a vertical element, an inverse problem model is employed to calculate the probability density func-45

tion of the fault’s geometry and dynamics. These properties are then used in a direct model to determine the tsunami amplitude

at each risk area. Notably, the computational time required for analysing a given acoustic segment is below 30 seconds on a

standard multicore PC station.

Furthermore, the methodology has been successfully validated through testing on previous earthquakes that resulted in

tsunamis (or in false alarms). Further enhancement to the machine learning model and the incorporation of more mechanisms50

for tsunami generation, such as due to landslides or volcanic eruptions, including meteotsunamis (Omira et al., 2022), can be

implemented as well. The future deployment of this technology in leading warning centres is expected to significantly reduce

false alarms and the associated costs, ultimately promoting the goals of inclusive, safe, resilient, and sustainable cities, as

outlined in SDG Goal 11 of the UNESCO1, and increasing the number of local Disaster Risk Reduction strategies which is

Target 5 of the Sendai Framework.55

1See https://sdgs.un.org/goals/goal11
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2 Scientific background

In this work, a methodology for a rapid tsunami warning system is presented. The methodology allows input data from various

measurement sources and integrates existing analysis techniques. In particular, the methodology allows real-time mapping of

risk areas of interest including relevant travel paths once the epicentre location is identified. Then live acoustic signals are

analysed using machine learning to classify the earthquake magnitude and mode of strike (Gomez and Kadri, 2021). If the60

mode of strike has a vertical element, then an inverse problem model (Kadri et al., 2017; Mei and Kadri, 2018; Gomez and

Kadri, 2023) can be employed to calculate the probability density function of the geometry and dynamics of the fault. These

properties are fed back into a direct model (Mei and Kadri, 2018; Williams et al., 2021) to obtain the tsunami amplitude at each

risk area. The CPU time required for analysing a given acoustic segment ranges from seconds up to a few minutes on a standard

multi-core PC station. The methodology has been successfully tested on previous earthquakes that resulted in tsunamis (Gomez65

and Kadri, 2023). This section provides a brief scientific background on the key models employed in the proposed technology.

2.1 Hotspot model: Dijkstra’s algorithm

The travel time is calculated on a triangular unstructured mesh with either global or regional coverage in the spherical coor-

dinate system. The mesh files include ocean depth and Lame’s elasticity constants λ, µ, and the earth density ρs. This data is

used to calculate the phase speed of surface gravity waves (tsunamis), acoustic modes in the water body, pressure-wave2 and70

shear-wave3 velocities, (cp and cs), in the solid earth. The mesh file includes the node ID, coordinates (longitude and latitude),

aforementioned variables, and the triangulation connectivity tables. The mesh can have uniform or spatially variable resolu-

tions depending on the wave type. For P and S waves, a uniform mesh is adequate while depth variable resolution is needed

for acoustic and gravity waves. The hotspot model calculates the propagation speed of P , S, acoustic waves and surface gravity

wave based on the following procedure:75

– P and S waves: the spatially variable speed of compressional cp and shear cs waves at the earth surface are related to

the Lame’s elasticity constants λ and µ, and the earth density ρs. The Lame’s constants are taken from the PREM model

(Dziewonski and Anderson, 1981), and anisotropic variability on spherical coordinate system (latitude, longitude) are

taken from (Panning et al., 2010),

cp =

√
λ+2µ

ρs
, cs =

√
µ

ρs
(2.1)80

The anisotropic, depth-dependent cp and cs values are subsequently interpolated onto a three-dimensional mesh. This

configuration permits P waves to propagate through the mantle, outer, and inner core, whereas S waves are unable to

penetrate the outer core.

2Also known as Primary waves, or P waves.
3Also known as Secondary waves, or S waves.
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– Acoustic waves: the phase speed and group velocity are calculated from the solution of the following dispersion rela-

tion for acoustic waves, which accounts for water compressiblity and gravitational terms, neglecting the role of earth85

elasticity,

ω2[1− (γl/(2r))tanhrh] = gr(1− (γl/(2r))
2)tanhrh (2.2)

with

r2 = k2 −ω2/c2l + γ2/2, γl = g/c2l (2.3)

where r is the eigenvalue, k is the wavenumber, cl is the sound speed in water, and g is the gravitational acceleration90

constant. The imaginary roots of equation 2.2 describe both progressive and spatially decaying acoustic wave modes,

which are generated in a compressible fluid together with surface gravity waves (Abdolali and Kirby, 2017).

– Surface gravity waves: Considering the water compressibility, overlying a half-space elastic bed with gravitational terms,

the dispersion relation is written as (Abdolali et al., 2019),

tanh(rh) =
(C2 +C3/g)ω

2/r

C1C2ω2/r+C3 (1+ γlC1/r)
(2.4)95

where C1, C2, C3 are coefficients defined in appendix A, and q, and s are the eigenvalues,

q2 = k2 −ω2/c2p + γp
2/2, s2 = k2 −ω2/c2s + γs

2/2 (2.5)

where γq = g/c2p and γs = g/c2s. The real root of the dispersion relation is used to calculate the phase speed and group

velocity of tsunami waves.

At the initiation step of the hotspot model and per wave type, the nearest node in the mesh to the earthquake epicentre is100

identified. The weight for the elements’ edges is calculated based on the Haversine formula and the phase speed of a given

wave type between the nodes, as described earlier. In the second step, Dijkstra’s algorithm (Dijkstra, 2022) is used to calculate

the shortest path between the epicentre and all the nodes on the mesh (See appendix B for more details).

The implemented model takes tens of seconds on a global unstructured mesh with 5-50 km resolution on a standard desktop

machine and can do the simulations in parallel with other components of the system. The outputs of the model are the arrival105

time for the aforementioned waves and the transects from the source to all the nodes.
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2.2 Machine learning: earthquake source inversion from acoustic signals

The machine learning model was originally developed by Gomez and Kadri (2021). They applied a range of techniques to anal-

yse acoustic pressure signals generated by underwater earthquakes and calculate the effective fault size and dynamics in nearly

real-time. They used a dataset consisting of 201 earthquake signals recorded by the IMS hydroacoustic network, and used 10%110

of the data for validation, and 10% for testing. In addition, they used artificial data for further testing. The study compared

four different methodologies for extracting relevant features from these acoustic signals, including statistical moments, time

series analysis, power spectrum analysis, and wavelet transform coefficients analysis. Additionally, they employed two clas-

sification machine learning algorithms, Random Forest Classifier (RFC) and Support Vector Machine (SVM), to distinguish

between vertical motion events and achieved over 70% classification accuracy. Among these methodologies, the combination115

of wavelet transform feature extraction and SVM yielded the highest accuracy for both binary and multi-class scenarios.

Furthermore, the study applied regression machine learning algorithms to estimate the magnitudes of the tectonic events

from the vectorised signals data set. The machine learning algorithms provided more accurate predictions than simply using

the mean value of the data set, as confirmed by the Sum of Squared Errors (SSE) values. Notably, these algorithms, when

combined with the precomputed vectorised dataset, took less than one second on a standard desktop machine to estimate the120

source magnitude and slip type. These estimates can be used as input for an inverse problem model to calculate the fault’s

effective size and dynamics in real-time. The study, however, only considered shallow earthquakes to reduce uncertainties, and

the depth dependence of classification accuracy remains unanalysed, a potential area for future research.

2.3 Direct model: pressure field & water amplitude calculations

The main objective of the direct model is to provide analytical calculations of the tsunami amplitudes at all regions of interest.125

Additionally, the model can calculate the pressure field induced by the acoustic waves, at any point of interest, but particularly

at the hydrophone location which allows a direct comparison against observations.

The model is based on an approach that was proposed by Mei and Kadri (2018) who considered the fault rupture to be

slender – based on Liu (2013) – and invoked multiple scales analysis to obtain a closed form analytical solution for the

propagating acoustic modes. The earthquake fault is assumed to have a rectangular slender shape, characterised by a length130

of 2L and a width of 2b, where the slenderness parameter ϵ= b/L≪ 1. Due to this slender body assumption, Mei and Kadri

(2018) were able to apply multiple scales theory, introducing multiple scale coordinates, x,z,X = ϵ2x,Y = ϵy, to derive a

three-dimensional analytical solution of the pressure field (see equation 6.13 in Mei and Kadri (2018)). The closed form of the

solution makes it ideal for real-time analysis. For example, the pressure field induced by the leading acoustic mode in the far

field takes the form (see equation 8.5 in Mei and Kadri (2018)),135

p= ρlW0|A| 27/2cl√
π3x0k

sin(kb)sin(ΩT ), (2.6)

where ρl is the water density, W0 is the average uplift velocity of the fault, A=A(k,X,Y ) is the two dimensional envelope

generated in the farfield (defined in appendix B), x0 is the distance of the horizontal components at the observation point (e.g.,
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hydrophone), k is the wave number, Ω is the frequency, and T is the duration of the effective uplift. Note that only the pressure

induced by the first acoustic mode is considered here, as it carries most of the energy and information about the source (Mei140

and Kadri, 2018).

The solution by Mei and Kadri (2018) was modified later by Williams et al. (2021) who included the effects of gravity along

with multi-faults. While to first order the acoustic modes are governed by compressibility of water, and surface gravity waves

are governed by gravity, considering both gravity and compressibility (as well as elasticity effects) enhances the accuracy of

the tsunami phase speed as also shown by Abdolali et al. (2019). Similarly, including gravity modifies the dispersion relation145

of the acoustic modes, though in addition, it provides a closed-form solution for the generated tsunami. Thus, both the tsunami

and the acoustic waves can be calculated simultaneously, which enhances the real-time analysis. The envelope of the surface

elevation takes the form

η (x,y, t) =
W0

gπ
|A|8r sin(kb)sin(ΩT )cosh(rh)

k2 [2rh+sinh(2rh)]

√
2π/t

Γ′′(Ω)
(2.7)

where Γ′′(Ω) is given in appendix C. Thus, given the basic properties of the fault, the tsunami can be calculated in the far-field150

at extremely low computational cost.

2.4 Inverse problem: calculating fault properties from acoustic data

The inverse problem approach of Hendin and Stiassnie (2013), originally devised for a circular fault, has been extended by Mei

and Kadri (2018) to partially retrieve the main properties of a slender fault. Following that, a semi-analytical inverse problem

approach has been developed by Gomez and Kadri (2021) to estimate the geometry, dynamics, and orientation of the fault by155

analysing real pressure signals recorded on the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) hydrophones.

This approach allows for real-time calculation of the effective fault properties required in order to calculate the tsunami size. It

is important to note that the geometry and dynamics of the slender fault represent an effective vertical motion, simplifying the

more complex earthquake rupture dynamics. The ocean floor is assumed to move vertically at a constant speed.

The epicentre location and eruption time are usually known from seismic measurements, well before the acoustic data is160

available, and thus used as input parameters in the direct model. Nevertheless, an approximate calculation of the effective fault

distance (x0,y0) and orientation can be made, for validation purposes, by the inverse problem model. Though the hydrophone

station has to be sufficiently close, say within O(1000) km, so that the assumption of a Cartesian Coordinate system is valid.

Using triangulation, the bearing of the signal can be obtained from windowed entropy calculations (e.g., log energy Coifman

and Wickerhauser (1992)). Then, from the signal frequency evolution the distance and eruption time (relative to recorded time)165

can be calculated using (2.8-2.9). Knowing the bearing and horizontal (normal to fault) and vertical (parallel to fault) distances,

the location and orientation of the fault is then calculated. Only frequency distributions within a predefined range, as identified

by visual inspection of the spectrogram, are considered, leading to sets of solutions provided by the model. It is worth noting

that a similar solution for multi-fault rupture can be derived based on Williams et al. (2021).
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Figure 1. Test case 2004 Mw 9.1 Sumatra earthquake and tsunami. Analysed pressure signal. The signal was recorded at CTBTO’s hydroa-

coustic station at Diego Garcia, H08S1. The analysis has been done automatically by the software for the region highlighted in red. The

green and red curves, are the lower and higher envelopes. This plot was created by the developed software GREAT.

The comprehensive description of the inverse problem model can be found in Gomez and Kadri (2021). To briefly illustrate170

the inverse problem model algorithm we consider the test case acoustic recordings (blue signal) in figure 1 and perform the

following steps:

1. Choose the region to be analysed (highlighted in red in figure 1) - this can be done automatically or manually.

2. Calculate the frequency distribution Ωj at different times tj , j = 1,2,3, ..., e.g., at the blue dots in figure 1.

3. Substitute Ωj in the dispersion relation (2.4) to compute the wavenumbers kj .175

4. Calculate the location (i.e., distance relative to hydrophone location) and rupture time, x0, y0 and t0, using the equation

(Mei and Kadri, 2018),

x0 =
(tj − tj+1)cl{

1−
[

πcl
2hΩj+1

]2}−1/2

−
{
1−

[
πcl
2hΩj

]2}−1/2
(2.8)

y0 =
(
t20c

2
l −x2

0

)1/2
, t0 = tj −

x0

cl

{
1−

[
πcl
2hΩj

]2}−1/2

(2.9)180

where tj is the measured time for the j-th pressure point in the signal. The results are then compared with seismic data,

which are normally known well before the acoustic signal is recorded.
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Figure 2. Test case 2004 Mw 9.1 Sumatra earthquake and tsunami. Enlarged view of the analysed pressure signal segment. The signal was

recorded at CTBTO’s hydroacoustic station at Diego Garcia, H08S1. The times are chosen at the peaks: t1 = 407.03 s, t2 = 394.83 s. The

frequencies are calculated about each peak: Ω1 = 2π/0.35, Ω2 = 2π/0.7; cl = 1,500 m/s; the depth at the hydrophone location h= 1,889

m. The green and red curves, are the lower and higher envelopes. This plot was created by the developed software GREAT.

5. Calculate the fault width 2b. Choosing points j closest to the envelope (red and green curves), one can approximate

sin(kb) = 1 to find periodic solutions of the fault width following bm = π(m− 1/2)/kj , (m= 1,2,3...). Find a “rea-

sonable” range for m is possible from existing empirical relations by Wells and Coppersmith (1994). Repeating the185

process results in a probability density function of the possible solutions.

6. Calculate the duration 2T numerically by solving for the pressure amplitude ratio of two different measurement points.

Thus, from equation (2.6) we write (Gomez and Kadri, 2021),

pi
pj

=
|Ai|/

√
ki

|Aj |/
√
kj

sin(kib̄)

sin(kj b̄)

sin(ΩiT )

sin(ΩjT )
, (2.10)

where i ̸= j are two different measurement points.190

7. Compute uplift speed W0 and length 2L from equation(2.6), numerically. As before, solutions for L are constrained

following Wells and Coppersmith (1994), resulting in a probability density function of results.

The detailed inverse problem model procedure can be found in Gomez and Kadri (2021). A comparison between input and

calculated parameters by the inverse problem model can be found in Table II of Hendin and Stiassnie (2013), and Tables 3-4
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Global Real-time Early Assessment of Tsunami GUI

Figure 3. The design of the software GUI.

of Gomez and Kadri (2021). However, as an example for calculating the distance from the effective fault, we consider the195

signal in figure 1 of the Sumatra earthquake test case. Note that the epicentre is located at a distance of about 2,700 km from

hydrophone H08S1. The specifics of the parameters employed in the inverse model are provided in the enlarged view depicted

in Figure 2. From equations (2.8-2.9) we obtain: x0 = 2,481 km; y0 = 1,6232 km; and thus a distance of 2,965 km. Given the

bearing of 64.5o ± 0.5o, the approximate location of the effective fault can then be found.

3 Software architecture and workflow200

In order to facilitate the use of the technology in tsunami warning centres, as well as among the scientific community, we have

been developing a user-friendly software, using the Python programming language. The software has been named GREAT

(Global Real-time Early Assessment of Tsunami). It has the capability to automatically analyse incoming acoustic signals,

keeping the option of manual use, with the aim to be employed both for real-time signal analysis and for educational purposes.

A detailed description of the package, including the key considerations and the design philosophy that enables users to perform205

the analysis, the program structure, dependencies and documentations is given in appendix D.

As shown in figure 3, the analysis begins by receiving information on the epicentre of the earthquake. Knowing its coordi-

nates and the triangular mesh details, Dijkstra’s shortest path module calculates shortest paths from epicentre to all nodes on
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the mesh and their corresponding transects. Using coordinates of all hotspots, hotspot model calculates tsunami travel times,

acoustic wave travel times, P and S waves and shortest paths from epicentre to all hotspots and their corresponding transects.210

At this stage preliminary results are ready to be analysed and initial warnings can, virtually, be issued.

Next required input is the signal (or multiple signals) data, and various analysis parameters for inverse and direct models.

Operational software is designed to work with several signal input types. All of them are similar in terms of data structure as

they contain arrays of pressure values but they vary based on the file types. Those include Python NumPy array files (.npz),

Matlab data files (.mat) and text files with pressure values (.txt). Additionally, the system can take a json configuration file as215

an input, which will populate necessary analysis parameters alongside the signal data.

The signal data is used in a machine learning model to calculate additional earthquake parameters such as its magnitude

and mode of strike. Alternatively, earthquake magnitude can be provided directly as an input if known. Then all the necessary

parameters alongside the signal data are supplied to the inverse problem model, which returns probability density functions of

the geometry and dynamics of the fault. Lastly, the inverse problem model results are used as input for the direct model that220

returns pressure and surface elevation data at all hotspot locations. After analysis is complete, the developed system generates

an interactive map showing all the results and provides an option to save those into a file. There are two ways to export the

results, one of them is a NumPy array file (.npz) and the other is a NetCDF4 file (Rew and Davis, 1990). Those can be used

to load the results directly by the operational software to see the interactive map and full results at any convenient time or to

analyse the results further using different software packages.225

4 Results

We present four test cases to highlight different qualities of the technology under development, with two cases resulting in

mega-tsunamis, and one that caused a major false alarm. The first test case is the 2004 Mw 9.1 Sumatra earthquake and

tsunami. This test case highlights the promptness of the calculations and the timely assessment of the tsunami. It also shows

some of the software GUI and main plotting features, but comparison with only five DART buoy data were made. The second230

test case, is the Tohoku-oki 2011 tsunami. This test case emphasises the results by the hotspot model. Quantitative analysis

were made against all existing DART buoy data. The third test case concerns the 2018 Mw 7.9 Gulf of Alaska earthquake,

Location Observations Current model

[m] [m]

Madras/Bandar 1.7 1.93

Batticaloa 3.9 4.14

S. Maldives 3.1 3.21

Phuket 3.4 3.67

Banda Aceh 4.3 6.5
Table 1. Sumatra 2004 tsunami height comparison between observations reported by Lay et al. (2005) and current model.
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which led to a false alarm. This test case emphasises the capability of the presented technology to reducing the impact of false

alarms. Quantitative analysis were made against existing DART buoy data. The last test case is the Tateyama 2009 event, which

has a much smaller magnitude than the other test cases. This case is included to shed light on the effect of magnitude on the235

performance of the models. It is worth noting that all plots, apart from figures 8, 13, and 16), were done using the developed

software (GREAT).

4.1 Sumatra 2004

The 2004 Indian Ocean earthquake, which occurred on December 26, 2004, is one of the most powerful seismic events recorded

in history. The undersea megathrust earthquake had a magnitude of 9.1–9.3 off the west coast of northern Sumatra, Indonesia240

(Lay et al., 2005). Triggering a series of devastating tsunamis, it affected more than a dozen countries causing widespread

destruction and killing 227,898 people in 14 countries (Goff and Dudley, 2021). The earthquake was caused by the subduction

of the Indo-Australian Plate beneath the Eurasian Plate. The resulting displacement of the seafloor led to the release of a massive

amount of energy, generating tsunamis that reached coastal areas across the Indian Ocean. The catastrophe highlighted the need

for improved early warning systems and international collaboration in disaster preparedness and response.245

Acoustic data related to the event, were recorded on CTBTO hydroacoustic stations. The analysed pressure acoustic data

(recorded on H08S1) is presented in figure 1. The analysis has been done automatically by the software for the region high-

lighted in red. The epicentre location is highlighted by a yellow star shown in figure 4. CTBTO hydroacoustic stations, H08S

and H08N, are shown as blue circles, the tsunami arrival times are shown in black contours, and the location of DART buoys

are presented by green triangles. The coloured contours in figure 4(a) near the shorelines present the relative tsunami amplitude250

(in metres), with red for tsunami threat (η > 0.5), yellow for advisory (0.2< η < 0.5), and green for no threat (η < 0.2). These

values that define the criteria for tsunami risk, referred to as decision matrix in 4(a), are typical values used by TWCs. The

actual wave amplitudes are shown in figure 4(b). Note that the hydroacoustic station is at a distance of about 3,000 km, which

is in a location that might be ideal for nuclear activity monitoring, though not for tsunami warning. If the hydroacoustic station

was at a distance of 1,000 km that would have left enough alarm time even for the closest shorelines that had as little as 15 min255

from the rupture time until the tsunami impact. The software successfully predicts most of the tsunami threat regions (red),

even at very large distances such as Sri Lanka and Madagascar. The machine learning model predicted that this earthquake

should generate a tsunami. The total analysis by all models took a few minutes on a standard multi-core PC station. There

were no DART buoy data at the time of the event, to allow a more quantitative analysis of the results. However a qualitative

comparison with results shown by Lay et al. (2005) for five different locations is presented in Table 1. The calculations by the260

current model overpredict the observation by as little as 3%, in the case of S. Maldives to as high as 52%, in the case of Banda

Aceh.

4.2 Tohoku-oki 2011

The Tohoku-oki earthquake of 2011 was a momentous seismic event that struck off the northeastern coast of Japan on March

11, 2011. This megathrust earthquake, with a magnitude of 9.0–9.1, was caused by the Pacific Plate subducting beneath the265
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Figure 4. Screenshots of the software (GREAT) for test case 2004 Mw 9.1 Sumatra earthquake and tsunami. Yellow star: earthquake epicen-

tre. Green triangles: the location of current DART buoys. Blue circles: hydrophone stations H08S and H08N. Hotspots: user-defined points

of interest (red for high risk, yellow for middle risk). (a) A snapshot from the software for showing tsunami arrival times (black contours),

and size (coloured contours) at 50 m depth. (b) A snapshot from the software for showing tsunami evaluation contours at the coasts (red for

high risk, yellow for middle risk/advisory, and green for no risk) at 50 m depth. © OpenStreetMap contributors 2023. Distributed under the

Open Data Commons Open Database License (ODbL) v1.0. 12



Figure 5. Test case 2011 Mw 9.1 Tohoku earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic station

at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red curves,

are the lower and higher envelopes. The plot was created by the software GREAT.

North American Plate. The ensuing undersea earthquake triggered a massive tsunami that inundated the Japanese coastline and

caused widespread devastation. The disaster resulted in the Fukushima Daiichi nuclear disaster, further intensifying the crisis.

The analysed acoustic data (recorded on H11N1) is presented in figure 5. As before, the analysis has been done automatically

by the software for the region highlighted in red. The epicentre location is highlighted in figure 6 by a yellow star. The

hydroacoustic stations H11S and H11N are shown as green circles. Note that the hydrophones are located at the SOFAR270

channel depth, about 700 m deep. The location of DART buoys are presented by green triangles.

Figures 6 and 7 show the arrival time of three precursors and the surface gravity waves (tsunami) for Tohoku Oki 2011

event, calculated by hotspot model. The arrival time of the P and S waves are presented in panels a and b respectively, where

spatially variable compressional cp and shear wave cs speeds are calculated from the Lame’s constants λ and µ of earth taken

from PREM model (Dziewonski and Anderson, 1981), as shown in equation 2.1. Panel (b) shows the arrival time of the four275

first acoustic modes. In order to calculate the phase speed, the dispersion relation for compressible ocean is used (Abdolali and

Kirby, 2017), as shown in equation 2.2. Figure 7 shows the arrival of tsunami waves where the dispersion relation for elastic

half-space is used (Abdolali et al., 2019), as shown in equation 2.4.

To gain a more quantitative understanding of the performance of the models, we compare DART buoy observations ηobs,

with calculations, ηcalc. Satisfactory agreement is in general observed at DART buoy stations closer to the epicentre, and at280

stations with less land separating them from the epicentre - see figure 8 and the corresponding map figure 9. The larger the

circles the lower the tsunami travel times to the DART buoy locations are, with the smallest circles representing approximately

10 hours. For consistency, the DART buoys are numbered, and the real DART station names are provided in appendix F. It is
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Figure 6. (a) P and (b) S wave travel times are computed using spatially varying compressional wave speed, cp, and shear wave speed,

cs, derived from the PREM model (Dziewonski and Anderson, 1981), with anisotropic variability in a spherical coordinate system (latitude,

longitude) as described by Panning et al. (2010). (c) The travel times of the first four dominant acoustic modes (governed by fault depth).

Bathymetry data from the General Bathymetric Chart of the Oceans (GEBCO) (Kapoor, 1981) is utilised to calculate arrival times for acoustic

waves.
14



Figure 7. Surface tsunami travel times for Tohoku 2011 event. Bathymetry data from the General Bathymetric Chart of the Oceans (GEBCO)

(Kapoor, 1981) is used for the dispersion relation.
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Figure 8. Tohoku 2011 study case, comparison of calculated amplitudes ηcalc vs. observed amplitudes ηobs at various DART buoy locations.

DART buoy locations legend is given in appendix F. Larger circles indicate shorter tsunami travel times to DART buoy locations, with the

smallest circles representing around 10 hours. Notably, most amplitude ratios fall within the range 0.5< ηcalc/ηobs < 2. Blue circles mark

DART buoy locations within this range, while red circles indicate locations outside it (see corresponding map in figure 9).
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Figure 9. Tohoku 2011 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreements, up to a factor of two,

between calculations and observations (and vice versa), are noted. Red triangles: location of DART buoys at which larger deviations between

calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.

remarkable that the majority of the amplitude ratio fall within the region 0.5< ηcalc/ηobs < 2. The blue circles represent DART

buoy locations where the amplitude ratio falls within the specified range, while the red circles represent locations where the285

amplitude ratio is outside of this range.

4.3 Alaska 2018

The Alaska earthquake of 2018, which occurred on January 23, was a significant seismic event with a magnitude of 7.9. Striking

in the Gulf of Alaska, it raised concerns about potential tsunamis along the coast. The quake was attributed to the subduction

of the Pacific Plate beneath the North American Plate. While the earthquake itself did not cause major damage or casualties,290

an error in the initial assessments led to a false alarm regarding a potential tsunami threat. The incident exposed flaws in the

emergency alert system, demonstrating the importance of accurate and timely information dissemination during such events.

The analysed acoustic data (recorded on H11N1) is presented in figure 10. As before, the analysis has been done automat-

ically by the software for the region highlighted in red. The epicentre location is highlighted in figure 11 by a yellow star.

The tsunami assessment clearly shows that there is no tsunami threat in this case - green contours which indicate no threat.295

The performance of the software can be assessed by comparing the calculated water elevation (tsunami amplitude) with DART

buoys. For example, the peak amplitude recorded at DART 46403 is of the same order of the calculated amplitude (figure 12). It

is also worth noting that the machine learning model predicted that this earthquake will not generate a tsunami. The prediction

time took a fraction of a second, and the total analysis time by the inverse and direct models took less than 30 seconds on a

standard multi-core PC station.300
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Figure 10. Test case 2018 Mw 7.9 Gulf of Alaska earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic

station at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red

curves, are the lower and higher envelopes. The plot was created by the software GREAT.

A quantitative analysis of the water elevation is shown in figure 13 corresponding to the map in figure 14. Again, a consistent

agreement is observed at DART buoy stations located closer to the epicentre, as well as at stations with less land separating

them from the epicentre.
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Figure 11. Screenshots of the software (GREAT) for test case 2018 Mw 7.9 Gulf of Alaska earthquake. A snapshot from the software for

showing tsunami evaluation contours at the coasts (red for high risk, yellow for middle risk/advisory, and green for no risk) at 50 m depth.

Yellow star: earthquake epicentre. Green triangles: the location of current DART buoys. The hydrophone stations (H11S/H11N) are not

shown. Hotspots: user defined points of interest (green for no tsunami). © OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.
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(a1)

(a2)

(a3)

(b)

Figure 12. Test case 2018 Mw 7.9 Gulf of Alaska earthquake. Subplots (a) were calculated by the software for the observation point at the

location of DART 46403: (a1) pressure signal; (a2) water elevation; (a3) sea bathymetry between the epicentre (star) and the observation

point (triangle), with the average depth presented by a dashed line. Subplot (b) is the observed water level at by DART 46403. These plots

were created by the software GREAT.
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Figure 13. Alaska 2018 study case, comparison of calculated amplitudes ηcalc vs. observed amplitudes ηobs at various DART buoy locations.

DART buoy locations legend is given in appendix F. A consistent agreement is observed at DART buoy stations located closer to the epicentre,

as well as at stations with less land separating them from the epicentre (see corresponding map in figure 14).
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Figure 14. Alaska 2018 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreement, up to a factor of two,

between calculations and observations (and vice versa), are noted. Red triangles: location of DART buoys at which larger deviations between

calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.
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Figure 15. Test case 2009 Mw 6.6 Tateyama earthquake. Analysed pressure signal. The signal was recorded at CTBTO’s hydroacoustic

station at Wake Island, H11N. The analysis has been done automatically by the software for the region highlighted in red. The green and red

curves, are the lower and higher envelopes. The plot was created by the software GREAT.

4.4 Tateyama 2009

The Tateyama earthquake of 2009, with a magnitude of 6.6, struck approximately 244 kilometres southeast of Tateyama,305

Japan. This seismic event occurred on August 12, 2009, and was associated with the subduction zone boundary between the

Pacific Plate and the Philippine Sea Plate. The earthquake resulted in moderate shaking in the region and raised concerns

about potential tsunami risks due to its offshore location. Again, the analysed acoustic data was recorded on H11N1, which is

presented in figure 15. However, for this test case, we focus attention on the analysis of the water elevation which is shown in

figure 16 corresponding to the locations in the map in figure 17. Once again, a consistent agreement is in general observed at310

DART buoy stations located closer to the epicentre, as well as at stations with less land separating them from the epicentre.

It is also notable that in this relatively small earthquake more deviation is noticed. This might be because the amplitudes are

smaller and thus more sensitive to deviations.

Among the four case studies discussed in the paper, Sumatra was triggered by a large oblique-slip earthquake with a signifi-

cant vertical component and prolonged duration, whereas Tohoku and Tateyama involved thrust fault movements. Tohoku was315

a high-magnitude, long-duration bottom-shaking event, while Tateyama was weaker and shorter in duration. In contrast, the

Alaska case was characterised by a strike-slip fault, dominated by horizontal motion and moderately shorter duration compared

to Sumatra and Tohoku. Despite its large magnitude, the horizontal motion in Alaska resulted in only a minor tsunami. The

vertical ground motion played a critical role in tsunami generation for Sumatra, Tohoku, and Tateyama, whereas the horizontal
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Figure 16. Tateyama 2009 study case, comparison of calculated amplitudes ηcalc vs. observed amplitudes ηobs at various DART buoy locations.

DART buoy locations legend is given in appendix F. A consistent agreement is generally observed at DART buoy stations nearer to the

epicentre and those with minimal land separation from it (see corresponding map in figure 17). However, greater deviation is noted in this

relatively small earthquake, likely due to smaller amplitudes being more sensitive to variations.
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Figure 17. Tateyama 2009 DART buoy map. Blue triangles: location of DART buoys at which satisfactory agreement, up to a factor of two,

between calculations and observations (and vice versa), are noted. Red triangles: location of DART buoys at which larger deviations between

calculations and observations are noted. Grey triangles: no available data. © OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.

Table 2. Summary table for 4 case studies (Ekström et al., 2012).

Case Sumatra Tateyama Tohoku Alaska

Date 26/12/2004 12/08/2009 11/03/2011 23/01/2018

Time (GMT) 01:01:09 22:48:55 05:47:32 09:32:04

Lon 94.26 140.68 143.05 -149.12

Lat 3.09 32.74 37.52 56.22

Moment Magnitude (Mw) 9 6.6 9.1 7.9

Depth [km] 28.6 55.2 20 33.6

Half Duration [s] 95 4.8 70 22.3

Strike [◦] 329 55 203 257

Dip [◦] 8 18 10 80

Slip [◦] 110 130 88 4

Type Oblique-slip Thrust Thrust Strike-slip

Hydrophone H08S1 H11N1 H11N1 H11N1

Lon 71.01 166.89 166.89 166.89

Lat -6.34 19.71 19.71 19.71

Distance [km] 2786 3005 3039 5427

Acoustic Travel Time [s] 1856 2003 2026 3485
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motion in Alaska limited tsunami generation. Consequently, model performance depends heavily on earthquake magnitude320

and vertical motion, as defined by the dip angle, with better results observed for large, vertically dominant ground motions.

Furthermore, the accuracy of model predictions improves when the gauges are closer to the hydrophones. The reason is that

AGWs are less dissipated due to interactions with the seafloor geometry, allowing the inverse model to better capture and

estimate the fault geometry. (see Table 2).

From an observational perspective, ground-truth data for the Sumatra case are limited to a few selected locations, as sum-325

marised in Table F1, while DART buoy observations were available for the Tateyama, Tohoku, and Alaska cases, as outlined in

Table F2. The accuracy of the model at observation locations is further influenced by two key factors. The first is the ratio of the

shortest distance to the direct distance (SD/DD) between the epicentre and the observation points; a ratio closer to 1 indicates

wave propagation over relatively consistent depths, aligning well with the assumptions of the direct model. The second is the

proximity of the observations to the source, as observations closer to the epicentre, reflected in shorter travel times, tend to330

show higher model accuracy.

5 Discussion

The methodology and software presented in this paper is aimed to provide a complementary tool in the domain of real-time

early tsunami warning technology. By integrating state-of-the-art mathematical models and a machine learning model, our

software has demonstrated, virtually, the capability of analysing sound signals to assess tsunamis globally, potentially in real-335

time. The integration of data from diverse measurement sources has allowed for the dynamic mapping of high-risk areas,

streamlining the identification of the shortest travel paths once the epicentre location is established. The machine learning

model, classifies earthquake magnitude and strike mode, while the incorporation of an inverse problem model has contributed to

the calculation of probability density functions for fault geometry and dynamics. The calculated parameters are then employed

by the direct model to provide tsunami amplitude assessment at high-risk locations, all accomplished within a computational340

time-frame of seconds to a few minutes on standard multi-core PC stations.

However, it is important to acknowledge certain limitations in the presented technology. Notably, the data set size of the ma-

chine learning model is relatively modest, encompassing only earthquakes that meet specific conditions. This limited dataset,

while valuable for a proof of concept, does narrow the model’s applicability to a specific subset of seismic events. Conse-

quently, we view our research as a crucial initial step in demonstrating the potential of combining machine learning algorithms345

and semi-analytical solutions to infer properties of submarine tectonic events from acoustic radiation. The machine learning

model can be improved in two ways. Firstly, employing a much larger database the model can be trained to provide an angle

of strike, instead of a binary result, i.e., vertical or horizontal. Secondly, the training can involve corresponding DART buoys

as well as other sources, such as other tsunami measurements, including GPS buoys, tide gauges, or satellite altimeters. In-

corporating these sources into the current version of the software, where they are primarily used for validation, can enhance350

confidence in model reliability across various geographical locations (offshore, nearshore, and at varying distances from the

tsunami source). Such incorporation would exploit the database (since each event is associated with tens of DART buoys and

26



other sources). Consequently, the model will be trained to assess the tsunami height at the different locations by analysing

the acoustic signals directly, which is an ongoing research. Once validated, the machine learning (ML) component in the next

version of the model will be expanded to utilise these data as training datasets. This shift would alter their role from validation355

datasets to critical inputs, improving the model’s predictive capabilities.

Integrating more data sets, including surface elevation from DART and GPS buoy, pressure from SMART cable and fibre

optic cables, remote sensing (i.e., satellite altimetry) and acoustic waves, from sources other than CTBTO can enhance the

model and reduce uncertainty due to the sparseness of data. Increasing the number of datasets would enhance response time

for faster warnings and provide multiple datasets per event, improving confidence in detection and analysis. It is important to360

note that certain components of the software, such as the inverse problem model, require adjustments based on the sampling

rate. Therefore integrating publicly available data from sources like IRIS and Ocean Network Canada (ONC) requires system

fine-tuning. During the expansion of the software to incorporate diverse and non-unified data types, a key challenge is ensuring

that the software can distinguish data sources and account for differences in sampling rate, observational error, confidence

level, and data format. Addressing these variations is crucial for accurate analysis and effective data integration.365

Moreover, the presented quantitative analysis of the surface elevation (figures 8-9, 13-14, 16-17) indicate that the models

perform relatively well even at large distances. This is further supported by figure 18, which shows good agreement between

amplitude ratios and tsunami travel times for the Tateyama 2009, Tohoku 2011, and Alaska 2018 events across various DART

buoy locations, with a travel time limit of 24 hours. To mitigate minor arbitrary fluctuations in wave amplitude measurements,

a constant offset of 0.05 m is added to all values. A challenge with DART buoys is their hybrid sampling rate, which is too low370

[∆t= 15 min] under normal conditions and only increases [∆t= 1 min, 15 s] if triggered above a certain threshold. Typically,

at these locations, the DART buoys are not triggered, resulting in a low sampling rate and data dominated by irrelevant noise.

However, there is a need to analyse many more events, as well as study results at each DART buoy location individually, before

a solid conclusion is established, and the software becomes fully operational. It must be noted that the inverse problem model

analysis made here was done automatically, whereas a more careful selection of the analysed envelopes can largely improve375

the results.

To enhance the operational capabilities of the software and its real-time analysis, it has been deployed since June 2024

at the Tsunami Warning Centre of the Instituto Português do Mar e da Atmosfera (IPMA), where it has access to real-time

hydrophone data provided by CTBTO. This deployment aims to assess the system’s performance under operational conditions,

addressing key challenges such as hardware limitations, data transmission delays, and potential sensor failures. A detailed380

evaluation of these factors is ongoing, with results to be published upon the study’s completion.

Note that a major limitation of the current real-time assessment is the sparse distribution of hydorphone stations. CTBTO

operates six hydrophone stations globally, of which access is currently available for only four. The geographic distribution of

these hydrophones restricts the technology’s applicability to specific regions. The system is most effective within a 1,000 km

radius of each station, enabling an end-to-end assessment within an average of less than six minutes. Using these figures as an385

indicator for optimised global hydrophone station density, approximately 30 hydrophone stations would be required.
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Figure 18. Amplitude ratio against tsunami travel time for Tateyama 2009, Tohoku 2011 and Alaska 2018 study cases at various DART buoy

locations with tsunami travel time up to 24hr.

In conclusion, our work represents a complementary approach towards more effective early tsunami warning systems. While

we acknowledge certain limitations, our methodology and software provide a robust foundation upon which future research

and enhancements can be built. We hope this work encourages further research and development, and provides a platform for

integrating other efforts, both conservative and innovative that would contribute to the overarching goal of ensuring the safety390

and resilience of coastal communities worldwide.

Appendix A: Coefficients C1, C2, C3

C1 = ω2/rg− γl/r, (A1)

C2 = [q+ γp]ρl

(
k2 − s2 − 2sγs − γ2

s

k2 + s2 +2sγs + γ2
s

)
(A2)395

C3 =

(
4µk2[s+ γs][q+ γp]

k2 + s2 +2sγs + γ2
s

+(ρsω
2 − 2µk2)− 2γp(q+ γp)(λ+2µ)

)
(A3)

where ρl is the water density.
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Figure A1. Schematic view of nodes connectivity (grey lines) and weight (travel time).

Appendix B: Dijkstra’s algorithm

The Dijkstra algorithm works on graphs that have non-negative weights on their edges. It uses a greedy approach to iteratively400

explore nodes and update the shortest path distances from the starting node to all other nodes. The algorithm maintains a set

of "visited" nodes and a priority queue, initially containing only the starting node with a distance of zero. Here are the main

steps of Dijkstra’s algorithm, adapted for P , S, acoustics and tsunami waves:

1. Initialise the distance from the starting node to all other nodes as infinity (or a very large value) except the starting node

itself, which is set to 0. Also, set the starting node as the current node. While there are unvisited nodes:405

2. Mark the current node as visited.

3. Update the distance of all neighboring nodes that are not yet visited. The new distance is calculated as the minimum of

the current distance to the neighbor and the sum of the distance from the current node to the neighbor (edge weight).

4. Choose the unvisited node with the smallest distance as the next current node and repeat step 3.

Once all nodes have been visited or there are no more reachable nodes, the algorithm terminates, and the distances calculated410

are the shortest path distances from the starting node to all other nodes in the graph. Upon completion, the algorithm produces

a set of distances that represent the shortest path from the starting node to all other nodes in the graph. By following the

sequence of nodes that produce these distances, the actual shortest paths are reconstructed. A schematic view of a triangular

mesh, connectivity between nodes, and edge weight is shown in figure A1 and Dijkstra algorithm, applied to find the shortest

path between the source node (A) to the rest of nodes are given in table A1. Note that the calculation of tsunami and acoustic415
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wave travel times occurs on an unstructured mesh spanning the Earth’s surface, facilitating the propagation of these waves

across the planet’s exterior. Meanwhile, a three-dimensional mesh is employed for the modelling of P and S waves, enabling

the propagation of P waves through the Earth’s mantle, outer and inner core, and S waves through the mantle.

Appendix B: Envelope equation

The envelope in equation (2.6) is given by Mei and Kadri (2018)420

A(k,X,Y ) =
1− i
2

[
C(z)

(√
2

πX Y+

)
+C(z)

(√
2

πX Y−

)]

+
1+ i
2

[
S(z)

(√
2

πX Y+

)
+S(z)

(√
2

πX Y−

)]
(B1)

where C(z) and S(z) are Fresnel integrals (Abramowitz and Stegun, 1948),

X =
X

2kn
, 2Y+ = l+Y, 2Y− = l−Y. (B2)

Appendix C: Stationary phase approximation

To obtain the stationary phase approximation we consider the phase term Γ0(ω) for the general case (following Williams et al.425

(2021)),

Γ0(ω) = k0(ω)
x

t
−ω, Γ′

0(ω) = k′0(ω)
x

t
− 1 = 0, Γ′′

0(ω) = k′′0 (ω)
x

t
(C1)

where single and doubles primes denote first and second derivatives with respect to ω:

k′0 =
1

k0

( ω

c2
+ r0r

′
0

)
. (C2)

The stationary phase approximation requires a second derivative of k0,430

k′′0 (ω) =
1

k0

(
1

c2
+(r′0)

2
+ r0r

′′
0

)
− 1

k20

( ω

c2
+ r0r

′
0

)
k′0. (C3)

Appendix D: Software Development

D1 Program structure

The operational software was written using the Python programming language, which was chosen as it has numerous libraries

and frameworks that can handle complex mathematical operations quickly and efficiently. That makes it a top choice program-435

ming language for the development of any kind of scientific applications (Raschka et al., 2020). It is highly memory-efficient,

easy to write and debug. Additionally, it is fully cross-platform, which is one of the key requirements of the operational soft-

ware. The software can be compiled on Unix, MAC and Windows operational systems and scalable on High Performance

Computing (HPC) platforms that are conventionally used in forecast centres.
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The developed system has a modular structure with each model written as an independent component. Those modules440

include machine learning model, inverse problem model, direct model, and hotspot model (Dijkstra’s shortest path algorithm).

Many other functions that the main modules are dependent on are also implemented as modules in order to simplify the code

and reuse as much existing knowledge as possible. Those functions include basic functionality to read data, calculate distances

between points on the map, extract contours from meshes etc. The modular structure allows convenient and efficient adjustment

to various parts of the system without breaking core software functionality.445

To further increase the efficiency of the developed system and produce high-quality results in less time, calculations are done

in parallel. Parallelisation is applied both to inverse and direct models. Inverse problem model calculations are concurrently

performed for all signals with the probability density functions of the geometry and dynamics of the fault combined after all

the signals are fully analysed. The direct model is concurrently applied to all the hotspots in batches depending on the total

number of hotspots supplied into the system. To achieve the required high efficiency, concurrent.futures Python module is450

used for parallelisation. On top of being effective, it provides a convenient way of asynchronous execution of tasks both with

threads and processes (Sodian et al., 2022). Additionally, it allows Python to automatically scale calculations depending on the

available computational power, number of CPUs etc. That makes operational software highly efficient on all kinds of systems

and utilise its full potential.

D2 Dependencies455

As Python offers an extensive collection of libraries that simplify complex computations and data analysis, the developed

system depends on some of the external packages. All the packages are open source, free and maintained by their respective

developers and the community. Those include popular and highly efficient packages such as NumPy and SciPy. NumPy is a

numerical mathematics extension of Python, which adds support for multi-dimensional arrays along with a number of high-

level mathematical operations on these arrays. SciPy is an extension of NumPy and provides more specific mathematical460

algorithms and convenience functions that are used in the main modules of the developed software. Machine learning is

performed using scikit-learn Python library, which is designed on top of NumPy and SciPy packages and features various

classification, regression, and clustering algorithms.

Matplotlib package is used for visualisation purposes. This is a general and comprehensive plotting library for Python and

NumPy, which can be used for creating both static and interactive figures. Python supports a number of graphical user interface465

(GUI) development frameworks. Among those Tkinter was chosen as it is a free GUI framework best suited for developing

desktop stand-alone applications. It is minimalistic and easy to use, and it is built on top of Python standard GUI framework

with a vast collection of widgets covering all the needs of the operational software development. To keep the GUI as consistent

as possible while keeping the modern look, the developed system depends on CustomTkinter library.

D3 Documentation470

Writing adequate documentation is an important aspect of continuous software development that helps future users and devel-

opers of the software. A comprehensive documentation using Python Sphinx documentation generator was developed alongside
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Table F1. Direct Distance (DD), ration between Shortest Distance to Direct Distance (SD/DD) and Travel Time (TT) for Sumatra 2004.

Location Lat Lon DD [km] SD/DD TT [hr]

Madras Bandar 13.14 80.45 1885 1.08 3.0

Batticaloa 7.71 81.69 1483 1.03 2.2

S Maldives -0.74 73.20 2379 1.06 3.5

Phuket 7.88 98.40 702 1.24 2.1

Banda Aceh 5.55 95.32 298 1.85 1.1

the operational software. It automatically transforms descriptions of each function functionality, inputs and outputs into an in-

teractive documentation HTML website with many convenient additions, i.e., contents index and search. This website can be

easily rebuilt when any adjustments are made to the code. An excerpt from the documentation is shown in figure E1. It provides475

the opportunity to transition into an open community paradigm, where parallel development is under consideration, following

best practice coding standards. The main advantages of using automated documentation generator are that the documentation

is non-intrusive and is never out of sync. This way coding and documenting are a part of the same task and are performed

simultaneously (Theunissen et al., 2022).

Appendix F: DART Buoy Stations Legend480

DART buoy station locations are coded according to Table F2.

Code availability. The current version of GREAT, including the software, and input files to produce the results, shown in this paper, can be

accessed at the Zenodo archive: https://doi.org/10.5281/zenodo.12785421 under Custom Apache License, Version 2.0 (Kadri et al., 2024).

Data Availability Access to the IMS network’s data of the hydroacoustic stations is available to National Data Centres of the CTBTO and

can be made available to others on request through the virtual Data Exploitation Center (vDEC) at https://www.ctbto.org/specials/vdec.485
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Figure E1. An excerpt from the documentation of the Global Real-time Early Assessment of Tsunami Software.
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Table F2. DART buoy stations legend: Direct Distance (DD), ration between Shortest Distance to Direct Distance (SD/DD) and Travel Time

(TT) for Tateyama 2009, Tohoku 2011 and Alaska 2018 events.

Tateyama Tohoku Alaska

Index DART Lat Lon DD [km] SD/DD TT [hr] DD [km] SD/DD TT [hr] DD [km] SD/DD TT [hr]

1 21418 38.71 148.67 992 1.11 1.5 509 1.08 0.7 4867 1.07 6.2

2 21413 30.55 152.12 1137 1.09 1.7 1139 1.07 1.4 5317 1.07 6.7

3 52404 20.94 132.31 1544 1.01 2.4 2115 1.10 2.9 7385 1.06 9.4

4 21419 44.46 155.74 1851 1.08 2.6 1312 1.05 1.7 4003 1.09 5.2

5 52401 19.29 155.77 2145 1.10 3.0 2373 1.06 3.0 6097 1.05 7.7

6 21416 48.04 163.49 2567 1.04 3.4 2027 1.05 2.5 3287 1.13 4.4

7 52405 12.88 132.33 2364 1.06 3.4 2939 1.07 3.9 8110 1.06 10.3

8 52402 11.58 154.59 2771 1.04 3.7 3106 1.02 3.8 6885 1.06 8.7

9 21415 50.17 171.84 3214 1.05 4.3 2678 1.07 3.4 2645 1.13 3.6

10 21414 48.94 178.27 3602 1.05 4.7 3088 1.04 3.8 2315 1.11 3.1

11 52403 4.03 145.60 3247 1.13 4.8 3733 1.09 5.0 8120 1.06 10.5

12 46413 48.67 -174.59 4107 1.04 5.3 3602 1.04 4.5 1896 1.10 2.5

13 46408 49.63 -169.87 4460 1.05 5.8 3950 1.05 4.9 1554 1.06 2.1

14 46402 50.44 -165.02 4812 1.05 6.2 4297 1.04 5.3 1219 1.07 1.7

15 46403 52.65 -156.93 5374 1.06 6.9 4844 1.05 6.1 626 1.04 0.9

16 52406 -5.33 165.08 4979 1.07 7.0 5283 1.05 7.0 7990 1.04 10.5

17 46409 55.30 -148.50 5904 1.07 7.7 5359 1.07 6.8 89 1.05 0.1

18 46410 57.50 -144.00 6148 1.09 8.2 5594 1.09 7.4 356 1.20 0.6

19 51407 19.63 -156.51 6371 1.05 8.3 6119 1.06 7.9 4091 1.09 5.6

20 55012 -15.80 158.50 5739 1.07 8.4 6145 1.07 8.6 9350 1.08 12.7

21 51425 -9.50 -176.25 6574 1.08 8.7 6726 1.05 8.4 7701 1.04 9.9

22 46419 48.76 -129.62 7332 1.04 9.8 6801 1.03 8.9 1544 1.02 2.4

23 46404 45.86 -128.78 7521 1.04 10.0 7000 1.04 9.1 1809 1.02 2.7

24 46407 42.60 -128.90 7666 1.05 10.1 7161 1.04 9.3 2078 1.06 3.1

25 46411 39.35 -127.01 7971 1.06 10.5 7477 1.04 9.7 2464 1.04 3.6

26 46412 32.25 -120.70 8860 1.05 11.5 8385 1.05 10.7 3435 1.05 5.0

27 55023 -14.80 153.59 5478 1.08 8.0 5921 1.07 8.2 9493 1.10 13.3

28 56003 -15.02 117.99 5829 1.06 8.9 6403 1.07 9.4 11563 1.06 15.9
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