
Reviewer 1
We are very grateful to the reviewer for his/her constructive critiques and comments. In the
following, we state the referee’s comments (in blue) followed by the response and actions
taken (in black).

Add brief summaries to figure captions to clarify key observations, especially in Figures 8–9
and 16–17.

The captions are extended to include a summary of observations in Figures 8-9 for Tohoku
2011, 13-14 for Alaska 2018 and 16-17 for Tateyama 2009 events.

Four test cases are presented, highlighting different strengths of the methodology. While sat-
isfactory agreement is observed for many DART buoy observations, some cases show larger
deviations. How do the authors explain variations in model performance across different
test cases? For example, were there consistent factors (like earthquake depth, distance from
hydrophone) that influenced prediction accuracy? Could the authors include a summary
table comparing key performance metrics ( RMSE, computational time) to provide a clearer
picture of strengths and limitations?

The following description has been added, along with two new tables and an extended table,
to illustrate the model’s sensitivity to the source and its variations across different locations.

Among the four case studies discussed in the paper, Sumatra was triggered by a large
oblique-slip earthquake with a significant vertical component and prolonged duration, whereas
Tohoku and Tateyama involved thrust fault movements. Tohoku was a high-magnitude,
long-duration bottom-shaking event, while Tateyama was weaker and shorter in duration.
In contrast, the Alaska case was characterised by a strike-slip fault, dominated by horizon-
tal motion and moderately shorter duration compared to Sumatra and Tohoku. Despite
its large magnitude, the horizontal motion in Alaska resulted in only a minor tsunami.
The vertical ground motion played a critical role in tsunami generation for Sumatra, To-
hoku, and Tateyama, whereas the horizontal motion in Alaska limited tsunami generation.
Consequently, model performance depends heavily on earthquake magnitude and vertical
motion, as defined by the dip angle, with better results observed for large, vertically dom-
inant ground motions. Furthermore, the accuracy of model predictions improves when the
gauges are closer to the hydrophones. The reason is that AGWs are less dissipated due to
interactions with the seafloor geometry, allowing the inverse model to better capture and
estimate the fault geometry. (see Table 1).
From an observational perspective, ground-truth data for the Sumatra case are limited to
a few selected locations, as summarized in Table 2, while DART buoy observations were
available for the Tateyama, Tohoku, and Alaska cases, as outlined in Table 3. The accuracy
of the model at observation locations is further influenced by two key factors. The first
is the ratio of the shortest distance to the direct distance (SD/DD) between the epicentre
and the observation points; a ratio closer to 1 indicates wave propagation over relatively
consistent depths, aligning well with the assumptions of the direct model. The second is the
proximity of the observations to the source, as observations closer to the epicentre, reflected
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Table 1: Summary table for 4 case studies Ekström et al., 2012).
Case Sumatra Tateyama Tohoku Alaska
Date 26/12/2004 12/08/2009 11/03/2011 23/01/2018
Time (GMT) 01:01:09 22:48:55 05:47:32 09:32:04
Lon 94.26 140.68 143.05 -149.12
Lat 3.09 32.74 37.52 56.22
Moment Magnitude (Mw) 9 6.6 9.1 7.9
Depth [km] 28.6 55.2 20 33.6
Half Duration [s] 95 4.8 70 22.3
Strike [◦] 329 55 203 257
Dip [◦] 8 18 10 80
Slip [◦] 110 130 88 4
Type Oblique-slip Thrust Thrust Strike-slip
Hydrophone H08S1 H11N1 H11N1 H11N1
Lon 71.01 166.89 166.89 166.89
Lat -6.34 19.71 19.71 19.71
Distance [km] 2786 3005 3039 5427
Acoustic Travel Time [s] 1856 2003 2026 3485

Table 2: Direct Distance (DD), ration between Shortest Distance to Direct Distance
(SD/DD) and Travel Time (TT) for Sumatra 2004.

Location Lat Lon DD [km] SD/DD TT [hr]
Madras Bandar 13.14 80.45 1885 1.08 3.0

Batticaloa 7.71 81.69 1483 1.03 2.2
S Maldives -0.74 73.20 2379 1.06 3.5
Phuket 7.88 98.40 702 1.24 2.1

Banda Aceh 5.55 95.32 298 1.85 1.1

in shorter travel times, tend to show higher model accuracy.

Reference
Ekström, Göran, Meredith Nettles, and A. M. Dziewoński. ”The global CMT project
2004–2010: Centroid-moment tensors for 13,017 earthquakes.” Physics of the Earth and
Planetary Interiors 200 (2012): 1-9.
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Reviewer Comments #2, and
responses

1 General Summary:

This study presents GREAT v1.0, a new tsunami early warning system that
utilizes the analysis of acoustic signals generated by earthquakes under the
ocean. The approach considers the fact that acoustic waves travel much
faster than tsunami waves, allowing instantaneous assessment of tsunami
hazard. The system integrates several state-of-the-art models, spanning wave
path modeling to machine learning, direct tsunami amplitude inference, and
inverse problem solution, to make rapid and reliable forecasts.

The study is very interesting, well structured and provides concise insight
into the building blocks of the model, validation procedures, and potential
applications. Certain areas may need minor clarification to further advance
the paper and ease the transition to operational utilization.

We are very grateful to the reviewer for his/her constructive critiques
and comments. In the following, we state the referee’s comments (in blue)
followed by the response and actions taken (in black).

2 Minor Comments

2.1 Machine Learning Dataset Expansion

The authors acknowledge the current limitations of the dataset. It would
be helpful to learn more about their plans to expand it, e.g., if they an-
ticipate adding data from GPS buoys or regional seismic-acoustic networks.
Mentioning such details could reflect both the feasibility and timeline for
expanding the dataset.

Response to comment

Each component of the GREAT software has a different sensitivity to ad-
ditional data. For example, incorporating new tsunami measurements, such
as GPS buoys, tide gauges, or satellite altimeters, into the current version
of the software—where they are primarily used for validation—can enhance
confidence in model reliability across various geographical locations (offshore,
nearshore, and at varying distances from the tsunami source).
In the next version of the model, the machine learning (ML) component will

1



Figure 1: Amplitude ratio against tsunami travel time for Tateyama 2009,
Tohoku 2011 and Alaska 2018 study cases at various DART buoy locations
with tsunami travel time up to 24hr.

be expanded to utilize these data as training datasets. This shift would alter
their role from validation datasets to critical inputs, improving the model’s
predictive capabilities.
Regarding acoustic datasets beyond the sparse CTBTO hydrophone data,
there are two key considerations. First, increasing the number of datasets
would enhance response time for faster warnings and provide multiple datasets
per event, improving confidence in detection and analysis. Second, we are
currently testing alternative sources, such as ONC hydrophones, which intro-
duce challenges related to variations in data format, accuracy, and frequency
range. Addressing these differences requires careful consideration to ensure
proper integration and account for potential observational errors.

2.2 Far-Field and Land-Separated Prediction Differences

The model seems to be most accurate near the earthquake epicenter but less
so at distant locations or at locations separated by land masses. Would the
refinement of bathymetric data or the inclusion of more sophisticated coastal
models enhance these discrepancies?

Response to comment

The accuracy of the model is assessed using DART data. A challenge with
DART buoys is their hybrid sampling rate, which is too low [∆t = 15 min]
under normal conditions and only increases [∆t = 1 min, 15 s] if triggered
above a certain threshold. Typically, at these locations, the DART buoys
are not triggered, resulting in a low sampling rate and data dominated by

2



irrelevant noise.
Another factor is that when amplitudes are too small, the uncertainty is

too high. However, in such cases, a tsunami threat does not exist, making
it less relevant for real-time analysis. We have revised the results section
to include a threshold of 0.05 m to minimize noise and exclude excessively
small amplitudes (see Figure 1, which we added in the discussion section).

2.3 Minimum Hydrophone Density for Effective Detection

An order-of-magnitude estimate of the minimum hydrophone station density
that would be needed to reliably detect and characterize near-field tsunamis
in high-risk areas would be beneficial. This would guide sensor deployment
planning in the future.

Response to comment

One significant challenge facing this emerging technology is the limited num-
ber of available hydroacoustic stations. Specifically, the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO) operates six hydrophone
stations worldwide, from which we have access to four stations. Moreover,
the geographic distribution of these hydrophones limits the technology’s ap-
plicability to specific regions. For seismic source tsunamis, the technology
is most effective within a 1,000 km radius of each station - which allows an
end-to-end assessment within an average of less than six minutes. Employ-
ing these figures as an indicator for an optimised global hydrophone station
density, would require roughly 30 hydrophone stations.

2.4 CTBTO Hydrophone Network Configuration

As the system relies heavily on the CTBTO network (initially designed for
nuclear monitoring), have the authors addressed whether its current density
and position are ideally suited for tsunami detection? Would the supple-
mentation of sensors in high-risk regions enhance performance, especially for
smaller or maybe more remote events?

Response to comment

See response above.

2.5 Operational Reliability and Everyday Use

Whereas computational efficiency is commendable, greater insight into actual-
world performance beneath operating conditions will be helpful. This might
include discussion of potential hardware limitations, data transmission time
delays, or even sensor failure, and the way these are addressed.

3



Response to comment

Since its deployment at the Instituto Português do Mar e da Atmosfera
(IPMA) in June 2024, our tsunami warning technology has been subjected
to real-time operational testing. This phase aims to assess the system’s
performance under actual operating conditions, addressing challenges such as
hardware limitations, data transmission delays, and potential sensor failures.
A comprehensive analysis of these factors is underway, with findings to be
published upon the study’s conclusion.

2.6 Model Integration and Error Propagation

GREAT v1.0 is made up of a number of sub-models (fault geometry estima-
tion, wave speed calculation, etc.). How do the authors think that the tiny
errors in one component may or may not be magnified and lead to erroneous
tsunami predictions in another? Have they performed an uncertainty analy-
sis to quantify and minimize these risks? The addition of surrogates of some
components might be useful in carrying out a sensitivity or uncertainty anal-
ysis economically. This would allow the investigation of situations of error
propagation without excessive computational cost.

Response to comment

• Given that the analytical solutions are linear, small changes in input
properties do not result in large deviations, making error magnification
unlikely;

• The machine learning (ML) model operates independently from the an-
alytical model. Thus, a strong match between the two models increases
confidence in the assessment. Since they are complementary and in-
dependent, they can be treated as ensemble members for probabilistic
analysis;

• we have DART buoys integrated in the system which provides another
independent way to assess the analysis (in the case the data is avail-
able in real-time) - integrating more real-time data can provide an
additional layer of validation of the results;

• In the worst case scenario where there is no convergence among the
models, or the results don’t seem to be reasonable, since the tech-
nology is complementary, at that stage the traditional (conservative)
approach can be employed.

Overall, error propagation between components can be mitigated by intro-
ducing limiters and thresholds to prevent unrealistic estimates.
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GREAT v1.0 is an organized, valuable and promising tsunami warn-
ing system. Dataset increase, spacing of the sensors, accuracy of far-field
forecasts, and reliability of operation—and uncertainty analysis—are minor
issues that will further establish its practical usefulness. Transparency on
these aspects will allow easier transition to operational use.

Citation: https://doi.org/10.5194/gmd-2024-139-RC2
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