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Abstract. Detector networks that measure environmental radiation serve as radiological surveillance and early warning net-

works in many countries across Europe and beyond. Their goal is to detect anomalous radioactive signatures that indicate

the release of radionuclides to the environment. Often, the background Ḣ∗(10) is predicted using meteorological informa-

tion. However, in dense detector networks the correlation between different detectors is expected to contain markedly more

information. In this work, we investigate how the joint observations by neighbouring detectors can be leveraged to predict5

the background Ḣ∗(10). Treating it as a stochastic vector, we show that its distribution can be approximated as multivariate

normal. We reframe the question of background prediction as a Bayesian inference problem including priors and likelihood.

Finally, we show that the conditional distribution can be used to make predictions. To perform the inferences we use PyMC.

All inferences are performed using real data for the nuclear sites in Doel and Mol, Belgium. We validate our calibrated model

on previously unseen data. Application of the model to a case with known anomalous behaviour – observations during the10

operation of the BR1 reactor in Mol – highlights the relevance of our method for anomaly detection and quantification.

1 Introduction

Networks that measure environmental radiation are operational in countries across Europe and beyond. Such networks monitor

the environment for aberrant radioactivity that could, e.g., indicate the anomalous release of radionuclides from a nuclear

facility. Within Europe, observations of national networks are collected on the EUropean Radiological Data Exchange Platform,15

EURDEP (Sangiorgi et al., 2020), including those of the Belgian radiological surveillance network and early warning system

Telerad (Sonck et al., 2010). Some stations come equipped with gamma-spectrometric capabilities that allow for observing

the contributing gamma energies, which can be used to tease out the responsible radionuclides. More often, however, stations

use Geiger–Müller tubes to measure the ambient gamma dose equivalent rate (nSv h−1), denoted as Ḣ∗(10). A difficulty with

detecting and quantifying anomalies based on Ḣ∗(10) is that gamma radiation also occurs naturally and varies as a function of20

time. To distinguish anomalous from normal behaviour using these detectors, therefore, one must establish what normal really

means.

Under normal conditions, terrestrial radiation contributes significantly to Ḣ∗(10). Potassium-40 is abundant in nature, as

are the radionuclides in the uranium and thorium decay chains. When those decay chains reach radon (radon-222) and thoron
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(radon-220), both noble gases, exhalation occurs from the soil to the atmosphere. Radon is usually dominant over thoron due25

to its much longer decay time (3.8 days versus 56 seconds). Only radon is long-lived enough that it can be transported over

considerable distances through air. During precipitation events radon daughters (lead-214 and bismuth-214) are deposited on

the ground again via wet scavenging (Sportisse, 2007), which accounts for increased Ḣ∗(10) (Mercier et al., 2009; Livesay

et al., 2014). Besides natural radionuclides, man-made contributions also exist. Caesium-137 fall-out from the atmospheric

nuclear weapons tests of the fifties and early sixties with some as late as 1980 (Bergan, 2002), and of the Chornobyl accident30

in 1986 still contributes to Ḣ∗(10) due to its long half life of 30.8 years according to a complex spatial pattern (European

Commission et al., 1998; ICRP, 2020). Other anthropogenic sources (e.g., medical or industrial) also contribute to the inventory

of environmental radionuclides (Maurer et al., 2018) although these will usually be too small to affect Ḣ∗(10). Finally, cosmic

radiation, at ground level mainly muons, contributes significantly to the background Ḣ∗(10). We refer to the sum of these

processes as background radiation.35

Our ability to identify and quantify anomalous radiation hinges on our ability to predict the behaviour of the background.

This is not only relevant for the aforementioned detector networks, but also for mobile measurement campaigns which were

used, e.g., in the aftermath of the Fukushima nuclear accident (Querfeld et al., 2020; Nomura et al., 2015). Even without fac-

toring in unknown sources, the background is a complex function of space and time governed by, e.g., geological properties of

the soil, land use and (space) weather. The multifacetedness of environmental radioactivity precludes first principles modelling,40

which makes predicting the background a difficult problem. In lieu of comprehensive first principles approaches, a rich variety

of data-driven solutions exist. Various machine learning approaches have been investigated to forecast background radiation

based on dose rate time series (Arahmane et al., 2024; Breitkreutz et al., 2023). Recently, Long Short-Term Memory networks

(LSTMs) have shown promise in predicting background radiation based on meteorological parameters like temperature, hu-

midity and wind speed (Liu and Sullivan, 2019; Breitkreutz et al., 2023). When the goal is spatial interpolation rather than45

temporal prediction, Kriging methods have been successfully employed to construct, e.g., national maps based on (airborne)

radiation measurements (Chernyavskiy et al., 2016; Folly et al., 2021). Bayesian approaches to background estimation ex-

ist predominantly in the context of source localisation, either using spectral data (Howarth et al., 2022) or gross count rates

(Michaud et al., 2021; Brennan et al., 2005). Often, such approaches do not resolve full posterior distributions, instead relying

on more computationally efficient maximum likelihood estimation (MLE). MLE approaches have also been used to discrim-50

inate between spatial background inhomogeneity in the built environment and temporal inhomogeneity due to precipitation

(Liu et al., 2018).

In the current work, we present a Bayesian inference framework for the estimation of the background ambient dose equivalent

rate observed in densely packed local detector networks. What sets our work apart from other work is the fact that we allow

for correlations between the different detectors in the network. The Bayesian approaches mentioned in the previous paragraph55

all assume that the different observations are independent so that the likelihood given a large set of data simply becomes the

product of the likelihoods of the individual data points. Doing so simplifies sampling the posterior significantly. In allowing for

correlations, we add significantly to the dimensionality of the Bayesian inference problem – because it requires the estimation

of a correlation matrix between the detectors in the network – but we get a more truthful parameterisation. Using this model,
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we can estimate independent means for each detector, the variance that is intrinsic to each detector due to a combination of60

counting statistics and measurement noise, and the collective response of the network to meteorological drivers.

The rest of this paper is structured as follows. In Sect. 2, the data and methods are described. Starting from an introduction

of the Telerad detector network, specifically the sub networks around two nuclear facilities in Belgium, we derive a Bayesian

inference problem and describe how to solve it. Additionally, we describe how how the Bayesian inference problem can be

extended to also allow for predictive modelling. In Sect. 3, we describe calibration and verification of our Bayesian model using65

various sub sets of Telerad data. In Sect. 4, we show how calibrated models can be leveraged to make predictions. Finally, in

Sect. 5, we study a case that is relevant in an operational context. Using the detectors from one nuclear site (Doel) to predict

the dose rate at detectors from another nuclear site (Mol) while an atmospheric release is ongoing at the latter, shows how our

work can be useful in anomaly detections.

2 Data and methods70

2.1 The Telerad detector network

We first present the detector network that we try to model. Telerad, the radiological surveillance network and early warning

system in Belgium (Sonck et al., 2010), measures the extent of radiological contamination both in air, soil and in water using

a variety of techniques. For atmospheric measurements using gamma dosimetry, three sub networks exist. The Immission

Monitor for National area (IMN) covers the entire Belgian territory, the Immission Monitor for Agglomeration area (IMA)75

covers only those populated areas within several kilometres of nuclear facilities, and the Immission Monitor for Ring area

(IMR) covers the immediate vicinity of nuclear facilities.

We use data from IMR stations at two nuclear sites: the Belgian Nuclear Research Centre (SCK CEN) in Mol and the nuclear

power plant (NPP) in Doel. The layouts of the detector networks at Doel and Mol, as well as their locations in Belgium, are

shown in Fig. 1. Characteristic of the Doel site are the river Scheldt bordering it to the east and the flat farmland bordering it in80

other directions. Eighteen IMR stations, D01 through D18, sit along its perimeter. Characteristic of the Mol site is the largely

forested area. IMR detectors are set up more complicatedly than in Doel owing to the presence of several nuclear facilities.

Stations M07 through M13 surround the Belgian Reactor 1 (BR1), detectors M01 through M04, M14 and M15 surround the

Belgian Reactor 2 (BR2) and stations M05, M06 and M16 are South of the Belgian Reactor 3 (BR3). BR1 and BR2 are still

operational today; BR3 has been decommissioned and is being dismantled. Of these detectors, we exclude M12 from further85

analysis because of several corrupted entries in the database.

In this work, we analyse four different combinations of IMR stations. Case BR1 includes those IMR stations that form a

ring around the BR1 reactor. Case MOL includes all IMR stations at the SCK CEN. Case DOEL includes all IMR stations at

Doel NPP. Finally, case DOEL–BR1 includes a subset of IMR stations at Doel NPP plus the IMR station included in case BR1.

Details are listed in Table 1.90

All IMR stations measure the ten-minute-averaged ambient dose equivalent rate Ḣ∗(10), which is measured in nanosieverts

per hour (nSv h−1). According to the definition by the ICRP (2020): “the dose H∗(d), at a point in a radiation field, is the dose
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Figure 1. The left and top right panels depict maps of the Telerad stations at the Doel and Mol sites, respectively. The bottom right panel

depicts the locations of Doel and Mol in Belgium. The Cartopy package (Met Office, 2010 - 2015) was used to generate the maps using aerial

footage from Agentschap Digitaal Vlaanderen (2016) and geographic vector data from Natural Earth (2024).

Table 1. The four different combinations of IMR stations that are examined in this study.

Case name Description Included IMR stations

BR1 IMR stations in a ring around the BR1 reactor M07–M11, M13

MOL All IMR stations at SCK CEN in Mol M01–M11, M13–M16

DOEL All IMR stations at Doel NPP D01–D18

DOEL–BR1
Low-variance IMR stations at Doel NPP and

IMR stations in a ring around the BR1 reactor

D02, D04, D06, D08, D10, D12, D14, D16,

D18, M07–M11, M13

equivalent that would be produced by the corresponding expanded and aligned field in the ICRU sphere at a depth, d, on the

radius opposing the direction of the aligned field”. The ambient dose equivalent rate is the time derivative of the ambient dose

equivalent evaluated at a depth of d = 10 mm. Many IMR stations also have gamma-spectrometric capabilities, and at low dose95

rates the ambient dose rate is actually calculated as the accumulated spectrum rather than measured using the Geiger–Müller

detector. In this work, we only look at dose rate data. Data from three periods are used: 6 August through 13 August 2022, 30

August through 1 September 2022 and 10 through 12 September 2022. These data for are available on Zenodo (Frankemölle

et al., 2024b).

To supplement the data, we use source monitoring data for the BR1 and precipitation data. The former are necessary because100

the BR1 is an air-cooled reactor, the operation of which causes a noticeable artificial increase in on-site Ḣ∗(10). This is not the
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case for the other facilities. Source term data are obtained from an in-stack monitor (Frankemölle et al., 2022b). Precipitation

data are taken from nearby precipitation monitoring stations in Retie, approximately 2 km northwest of SCK CEN, and Melsele,

approximately 10 km south of Doel NPP (Vlaamse Milieumaatschappij, 2023).

2.2 Modelling background radiation using Bayesian inference105

To model measurements by the Telerad sub networks, we introduce a stochastic representation in Subsubsect. 2.2.1 that we use

to formulate a Bayesian inference problem in Subsubsect. 2.2.2. In Subsubsect. 2.2.3, we introduce the posterior predictive to

validate our Bayesian model.

2.2.1 Background radiation as a continuous stochastic vector

Consider the ambient dose equivalent (nSv) accumulated over a period T (equal to 10 minutes in the current study) as measured110

in our network

M = H+E (1)

with M = [M1, ...,Mk]⊤ the measurements reported in each sensor (1, ...,k), H = [H1, ...,Hk]⊤ the real accumulated ambient

dose equivalent in each sensor, and E = [E1, ...,Ek]⊤ the sensor measurement errors. We note that, typically, a dose rate is

reported, which corresponds to M/T (nSv h−1).115

We represent the measured dose as a continuous stochastic (random) vector, which is driven by the real ambient dose

equivalent, and the instrument error, which are both stochastic processes themselves. We discuss the parameterisation of their

distributions, which eventually leads to the parameterisation of the distribution of M.

Firstly, E represents the measurement noise. We can safely assume that errors are statistically independent between sensors.

We further make the stronger assumption that the errors are normally distributed with zero mean, so that E∼Nk (0,ΣE) with120

ΣE = diag [σE]Idiag [σE], where σE = [σE,1, ...,σE,k]⊤ are the standard deviations of the different sensors errors, which

we infer in the Bayesian framework later. We note that the assumption of zero bias makes sense if instruments are properly

calibrated, but validation of the Bayesian framework itself can also point to inconsistencies between sensor data which could

point to the need for recalibration.

Secondly, we consider the real dose H. It is the accumulation of photons arising from the decay of a range of radionuclides125

that are present in the background around the sensor network. This is a process that is driven by the weather and other environ-

mental phenomena, but also by the counting error resulting from the relatively low number of photons that hit the sensor. The

latter can be approximated by a Gaussian distribution, but the former is much less trivial to describe. For lack of any detailed

information on this distribution, and to arrive at an elegant overall framework, we also presume the radionuclides distribution

to be Gaussian, but unlike E, we expect a large spatial correlation over the sensor network (although some aspects, such as130

the counting error or small-scale terrain effects will not be correlated between sensors). With some further assumptions on the

variabilities of both processes, we arrive at a Gaussian process for H as well, so that H∼Nk (µ,ΣH), and consequently,

M∼Nk (µ,ΣH +ΣE) . (2)

5
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At this point, we do not know the covariance matrices ΣH and ΣE – in Subsubsect. 2.2.2 we use Bayesian inference to train

possible distributions of their elements. We have135

Σlm = ΣH,lm + ΣE,lm =





σ2
l ≜ σ2

H,l + σ2
E,l, if l = m.

σlσmRlm, otherwise.
(3)

where R with elements Rlm ≜ Σlm/σl/σm is the correlation matrix that we introduce here for later use. Thus, defining the

diagonal matrix S = diag [σ] (with elements σl on the diagonal), we can also express Σ = SRS.

Given k sensors and since R is symmetric, we have 3k +k(k−1)/2 unknowns (in µ, ΣE, ΣH, and R) which we will train

using Bayesian inference and a large dataset of measurements. However, given only measurements M, and no additional infor-140

mation on the measurement errors, it is impossible to obtain separate information on σH and σE. Only σ can be determined,

so that in fact 2k + k(k− 1)/2 unknowns remain.

2.2.2 Training the mean vector and covariance matrix using Bayesian inference

Given a dataset M = [M1, ...,MN ] of measurements by the entire network described in Subsect. 2.1 at N different points

in time and given the random variables of interest described in Subsubsect. 2.2.1, we can write down Bayes’s theorem (cf.145

Appendix A) for the posterior distribution f(µ,S,R|M). In terms of the likelihood f(M|µ,S,R), the prior f(µ,S,R) and

the evidence f(M), this posterior is given as

f(µ,S,R|M) =
f(M|µ,S,R)f(µ,S,R)

f(M)
. (4)

Strictly speaking, subscripts are required to indicate that Eq. 4 involves four different distributions (i.e. the symbol f repre-

sent four different functions in our notation). However, since this is clear from their different arguments, we omit subscripts to150

avoid cluttering the equations.

Here, we define the right-hand side of Eq. 4. The likelihood follows straightforwardly from Eqs. 2–3 as

f(M|µ,S,R) =
1

(2π)k/2 |Σ|1/2

N∏

i=1

exp−1
2

(Mi−µ)⊤Σ−1 (Mi−µ) (5)

where Σ = SRS with |Σ| its determinant and Σ−1 its inverse, and where we make the assumption that measurements are not

correlated in time.155

The likelihood can be evaluated for any combination of µ, S and R to determine how likely the observations M are given

that combination. This difference is particularly important when considering the evidence. For given observations M, the

evidence f(M) is just a number that normalises the posterior. Since we are only interested in the shape of the posterior rather

than exact values, we can safely neglect it.

Finally, we consider the priors. The joint prior distribution f(µ,S,R) can be simplified by assuming independence between160

µ, S and R, i.e.

f(µ,S,R) = f(µ)f(S)f(R). (6)
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For f(µ), we choose a weakly informative prior by following the principle of maximum entropy, which yields least informa-

tive priors given certain bounds on the support and statistical moments (Park and Bera, 2009). We know that µ is always equal

to or larger than zero. Furthermore, we expect it to be centred on the time-averaged background level. The least informative165

prior with support on [0,∞) and given mean is the exponential distribution

f(µ) =
k∏

l=1

f(µl) where f(x) = λl exp−λlx and
1
λl

=
1
N

N∑

i=1

Mli. (7)

For f(S), we choose the half-normal distribution (Gelman, 2006)

f(S) =
k∏

l=1

f(Sl) where f(x) =
1
σx

√
2
π

exp− x2

2σ2
x

for x≥ 0. (8)

Finally, we formulate f(R). This is not trivial, because not each combination of factors Rlm yields a matrix that is symmetric170

and positive semi-definite. This is solved by the LKJ correlation distribution (Lewandowski et al., 2009) over all possible

correlation matrices. It has one input η which governs the probability of off-diagonal elements. For η > 1 the mode of the

distribution is the identity matrix (i.e. not favouring correlations), for 0 < η < 1 there is a dip in the distribution at the identity

matrix (i.e. favouring correlations) and for η = 1 all correlation matrices are equally likely. In this work, we select η = 1 so

that175

f(R) = LKJDistribution(R|η = 1). (9)

Combining equations 4–9, we obtain the full posterior distribution. In a network of k detectors, there are k means, 2k scale

parameters, and k× (k− 1)/2 off-diagonal elements so that the dimensionality of the posterior scales as k2/2. As a result,

brute force computation of the posterior is generally not possible. Therefore, we will employ a Markov Chain Monte Carlo

(MCMC) technique instead.180

The posterior is calculated using the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) in PyMC (v5.13.1), a

Python-based framework for Bayesian inference using MCMC (Abril-Pla et al., 2023). To check for convergence, PyMC sam-

ples several independently initialised chains and then calculates the R̂ convergence metric (Gelman and Rubin, 1992; Vehtari

et al., 2021), since it is in general not feasible to check the traces of all different parameters. For the actual implementation

of this convergence check and many other postprocessing features (e.g., summary statistics, advanced plotting), PyMC relies185

on ArviZ (Kumar et al., 2019). All computations are performed on a Lenovo ThinkPad with an 11th Generation Intel Core

i5-1135G7 (4 cores, 8 threads, 2.4 GHz base clock and 4.2 GHz maximum turbo frequency) and 8 GB of RAM.

2.2.3 Validating the calibrated model using the posterior predictive

It is important to realise that a posterior distribution is contingent on the choice of parameterisation for the likelihood and

priors. Should the choice of parameterisation be poor, so are the results. Intuitively, we expect that if we draw new samples190

from our posterior and use these to generate new ‘observations’, that the distribution of those new ‘observations’ should be the
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same as that of the original dataset. The posterior predictive formalises this as

f(M̂|M) =
∫

Ω

f(M̂|µ,S,R)f(µ,S,R|M)dµdSdR. (10)

where M̂ represent the new observations. Here f(M̂|µ,S,R) is the likelihood over all new samples given a set of governing

parameters, and f(µ,S,R|M) is the posterior of those governing parameters given the original data M. By integrating the195

product over the entire sample space Ω of possible values for the governing parameters, the posterior predictive f(M̂|M) is

obtained. A good match between the posterior predictive and the distribution of the original dataset shows the choice for the

parameterisation of the likelihood and priors is a good one.

2.3 Estimating the 10-min background using Bayesian inference

While the foregoing stochastic representation is interesting in its own right to understand the behaviour of the background200

radiation in a detector network, there are other potential applications of Bayesian inference for background modelling. For

one, might we hope to estimate the noise-free background vector H from the noisy measurements M? This is a different

question from the one encapsulated in Eq. 4. Moreover, since Bayesian inference is also used for data imputation (Holt and

Nguyen, 2023), we could think of a use case with missing observations. Here, missing can actually mean missing – one or

more detectors could be broken – or it might just mean compromised. In the latter case, the connection with anomaly detection205

is readily made: in case of a local radiation source that impacts a limited number of detectors in the network, we can use the

remaining detectors to predict what background these detectors should have measured in lieu of the anomaly, and within what

uncertainty bounds. That in turn allows us to quantify the size of the anomaly.

To estimate the distribution of the background radiation vector H of a given 10-minute time interval, for which data M are

available, using the distribution for Σ (e.g., obtained using the method described in Subsect. 2.2) as prior information, we write210

down a different inference problem from Eq. 4. Here, we are interested in the posterior f(H|M), which is equal, by Bayes’s

theorem (cf. Appendix A), to

f(H|M) =
f(M|H)f(H)

f(M)
. (11)

Neglecting the evidence as before, we can fill in the likelihood and priors which follow from the discussion in Subsubsect.

2.2.1, to obtain215

f(H|M)∝ exp
[
−1

2
(H−M)⊤Σ−1

E (H−M)
]
exp

[
−1

2
(H−µ)⊤Σ−1

H (H−µ)
]

∝ exp
[
−1

2
(H−M)⊤Σ−1

E (H−M)− 1
2

(H−µ)⊤ (SRS−ΣE)−1 (H−µ)
]
, (12)

where in the second step we use ΣH = SRS−ΣE. We observe that the argument of the exponent in Eq. 12 is equal to the cost

function associated with the Kalman filter (Evensen et al., 2022, p. 67), where in the current case the measurement operator is

the identity matrix I. Clearly, the above relation can only be used meaningfully if we can estimate σE. For this, extra data are220

needed since we only have knowledge of S from the calibration described in Subsubsect. 2.2.2.
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We now elaborate on a particular scenario that is of interest to anomaly detection. We presume that we know ΣH either

because we have extra information σE or because measurement errors in the calibration data are small, i.e. ∥σE∥≪ σH,

so that ΣH ≈ SRS = Σ. Let us further assume that in the current 10-minute time interval, we do not use measurements at

all sensors, e.g., because they are not available, or we do not trust them. Whatever the reason, we are limited to a subset of225

observations Mo. Thus, we split the detector network in an observed part and an unobserved part, and we reorder the sensors

and backgrounds at these detectors such that H = [Hu Ho]
⊤. Then Eqs. 11–12 reduce to

f(H|Mo) =
f(Mo|H)f(H)

f(Mo)

∝ exp
[
−1

2
(Ho−Mo)

⊤Σ−1
E,o (Ho−Mo)−

1
2

(H−µ)⊤Σ−1
H (H−µ)

]
. (13)

We now introduce the block matrices230

ΣH =


ΣH,uu ΣH,uo

ΣH,ou ΣH,oo


 . (14)

and partition the mean vector as µ = [µu µo]⊤. This allows us to split the inference problem into two parts. The first one is for

the sensors that are observed and gives

f(Ho|Mo)∝ exp
[
−1

2
(Ho−Mo)⊤Σ−1

E,o(Ho−Mo)−
1
2
(Ho−µo)

⊤Σ−1
H,oo(Ho−µo)

]
, (15)

which can be calculated first. A second inference problem follows from applying the chain rule in two different ways:235

f(H,Mo) = f(H|Mo)f(Mo); (16)

f(H,Mo) = f(Hu|Ho,Mo)f(Ho|Mo)f(Mo). (17)

This gives us two known distributions (cf. Eq. 13 and Eq. 15) and two unknown distributions: f(Hu|Ho,Mo) and f(Mo). By

equating Eqs. 16–17, we can eliminate the latter unknown to finally obtain

f(Hu|Ho,Mo) =
f(H|Mo)
f(Ho|Mo)

240

∝ exp
[
−1

2
(H−µ)⊤Σ−1

H (H−µ)
]
exp

[
1
2
(Ho−µo)

⊤Σ−1
H,oo(Ho−µo)

]
. (18)

Given Eq. 18 a closed form of f(Hu|Ho,Mo) can in fact be found. Using the block matrices described in Eq. 14 it can be

shown (Holt and Nguyen, 2023) that the posterior is normally distributed, Nku(µu|o,Σu|o) where

µu|o = µu +ΣH,uoΣ−1
H,oo(Ho−µo); (19)

Σu|o = ΣH,uu−ΣH,uoΣ−1
H,ooΣH,ou. (20)245

These are the mean vector and covariance matrix of the unobserved part of the network conditional on the observed part of the

network (Holt and Nguyen, 2023), respectively. It is tempting at this point to insert the maximum a posteriori (MAP) estimates

of µ and Σ to calculate MAP estimates of µu|o and Σu|o. However, since the posterior distributions of µ and Σ are actually

available (cf. Subsect. 2.2), we choose to construct the full posterior distributions of µu|o and Σu|o instead.
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Figure 2. Posterior predictive distributions for all four analysed cases. Solid blue lines represent predicted distributions of observations. Each

line is made by randomly drawing a set of parameters from the posterior distributions of parameters. Dashed orange lines represent the mean

predicted distributions. Finally, the distribution of actual observations is represented in black – a kernel is used to interpolate to a continuous

distribution.

3 Calibration and verification250

For the calibration of µ, S, and R, we select an eight-day period in the summer of 2022, August 6 through 13. We check that

the BR1 is not operational in this period and there is no rain. We calibrate our model for the four different cases described in

Table 1. In all cases, the NUTS algorithm is set up to discard the first 1000 samples (the ‘burn in’) and then to take another

1000 samples that are used to construct the posterior. To test whether the calibrated models adequately describe the data, we

calculate posterior predictive checks.255

Posterior predictives, plotted in Fig. 2, are a powerful tool to test the quality of Bayesian models. In all four cases, the close

agreement between the black lines (observations) and orange lines (model) shows that the multivariate normal distribution is

an excellent parameterisation for the distribution of the ambient dose equivalent rate vector M/T . It shows that even if some

detectors experience much higher local dose rates – the right-most peak for the MOL case (panel (b) of Fig. 2) corresponds

to detector M06, which is adjacent to a radioactive waste storage – the way that they covary can still be captured with a260

multivariate normal distribution. Likewise, it does not matter that some detectors are of a different make – the much wider

central peak for the DOEL case (panel (c) of Fig. 2) is due to larger intrinsic variance of some of the detectors.
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Figure 3. A ‘prediction’ of detector M13 based on observations by M07 through M11. Time indices denote consecutive ten-minute periods

starting at 00:00 CEST on August 6 2022 and ending at 00:00 CEST on August 14 2022.

The quality of the Bayesian model also becomes clear using the predictive formalism described in Subsect. 2.3. Using the

original training data but leaving out one or more detectors, the conditional distribution can be used to ‘predict’ the observations

by the excluded detectors. Here, we show the results for two cases: BR1 and DOEL. For the BR1 case, we ‘predict’ the265

observations by M13 using observations by M07 through M11. Results of these ‘predictions’ versus actual observations are

plotted in Fig. 3. Again, the agreement is excellent. The calibrated model correctly captures not only the offset and the diurnal

variations but also the generally rising trend. Moreover, the 1σ (68% confidence) and 2σ (95% confidence) intervals predicted

by the model match the spread of the observations very well. This shows that the model not only captures the trends but also

remaining uncertainties.270

For the DOEL case, we ‘predict’ the observations by D01 through D09 using observations by D10 through D18. These results

are plotted in Fig. 4. The even-numbered stations have similar characteristics to the detectors around BR1. While offsets vary,

the diurnal fluctuations, rising trend and approximate uncertainties do not vary much between these detectors and their BR1

counterparts. Meanwhile, the odd-numbered detectors have almost an order of magnitude more uncertainty – likely owing to

considerably worse counting statistics – in their model ‘predictions’, which is in excellent agreement with the actual spread275

in the Telerad time traces. There is no evidence of diurnal variations or the rising trend any more, as these are dwarfed by

the uncertainty inherent to the detectors. We observe that the ‘predictions’ by the Bayesian algorithm are not impacted. The

algorithm simply sets Sl of those detectors to high values while setting Rlm to low values so that the covariance with other

detectors, SlSmRlm, remains low.
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Figure 4. ‘Predictions’ for the Doel detectors D01 through D09 based on observations by D10 through D18. Time indices denote consecutive

ten-minute periods starting at 00:00 CEST on August 6 2022 and ending at 00:00 CEST on August 14 2022.

4 Predictions using the conditional distribution280

Using the calibrated models described in Sect. 3, trained on data between 6 and 13 August 2022, we now make predictions

using data that were obtained at a different point in time in order to validate our Bayesian model. Here, we present the results

for two cases, MOL and DOEL, for September 10–12 of 2022. We start with the former. Similar to the BR1 case, we exclude

detector M13 and try to predict observations made by that detector using the other detectors as inputs. We then compare the

prediction to the actual observations. The results can be found in Fig. 5. Focusing first on days two and three (from time index285

150 onwards), the calibrated model predicts both the baseline dose rate and the peaks (around 200 and 350, so around dawn)

quite well while the variance appears to be slightly overestimated over the entire period.

Most striking in Fig. 5 is the larger peak between time indices 25 and 75. It coincides with a period of precipitation measured

by the station in Retie (Vlaamse Milieumaatschappij, 2023), which is known to coincide which rising dose rates (Mercier et al.,

2009; Livesay et al., 2014). While our model was not trained on precipitation data, the match is nonetheless quite good. It290

appears that over the extent of the Mol site, precipitation has the same effect as other meteorological drivers (e.g., pressure),
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Figure 5. Prediction of the dose rate measured by detector M13 based on observations by the other detectors on the SCK CEN site. Time

indices denote consecutive ten-minute periods starting at 00:00 CEST on September 10 2022 and ending at 00:00 CEST on September

13 2022 so three diurnal cycles are included in the prediction. The larger peak between time index 25 and 75 coincided with a period of

precipitation.

which cause the variations over time observed in Figs. 3–4. However, that does not mean that our choice of parameterisation is

ideal in precipitating conditions: part of the variance in such cases might be driven by, e.g., fluctuations in the precipitation rate,

which may not necessarily be Gaussian. Moreover, that our model can describe the effect of precipitation has a downside in

an operational context. A plume (cloud) of radioactivity that is released far enough from the site is homogeneously distributed295

over the site, and cannot be distinguished from other background effects by on-site detectors. Our model is thus only useful to

spot aberrant radioactivity at a typical scale that is smaller than that of the network, i.e. local releases.

Next, we present the DOEL case. Based on the observations made by detectors D10 through D18, the calibrated model

predicts the observations by D01 through D09. The results are plotted in Fig. 6. Overall, the same conclusions can be drawn as

for the MOL case. The precipitation peak, although a fair bit more jagged than before, is still resolved well. Some limited drift300

on the mean vector µ is present, and small under- or overestimations are present for some of the detectors. The fluctuations in

the dose rates are still captured well, however. That there should be a drift in the vector of means is interesting, and suggests the

involvement of a process that causes decorrelation in time. Such a process cannot be modelled under the assumptions presented

in our work, because we have chosen to neglect temporal correlations. Moving from a temporally independent model into, e.g.,

a first-order Markov system, would increase the dimensionality of the joint pdf from k2 to (2k)2. This would have significant305

computational repercussions, and may not be feasible.

In the special case of the multivariate normal distribution presented in this work, solutions might exist (e.g., Kalman filter)

However, by moving into the Kalman filter approach one loses the option to move away from the normality assumption at a

later stage – this could be a problem, potentially, when introducing the effect of precipitation. An alternative that would not
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Figure 6. Prediction of the dose rate measured by detectors D01 through D09 based on observations by detectors D10 through D18. Time

indices denote consecutive ten-minute periods starting at 00:00 CEST on September 10 2022 and ending at 00:00 CEST on September 13

2022 so three diurnal cycles are included in the prediction.

necessitate moving away from the Bayesian inference method would be to serve the calibrated coefficients of the background310

model as a prior in the predictive step, and allow small posterior updates to the vector of means to correct for drift.

5 Predictions during operation of the BR1 reactor

Finally, we present simulations for the DOEL–BR1 case between 30 August and 1 September 2022. To expedite the calibration

and prediction steps, we only include the even-numbered detectors in Doel. As can be seen in Figs. 4 and 6, these detectors have

considerably higher dose rate resolution than their odd-numbered counterparts and hence contain much more information. The315

results are shown in Fig. 7. The match between the background prediction and the actual observations is poor during several

intervals which coincide with operation of BR1. The BR1 was operational between approximately 9:00 and 16:00 on these three

days (time indices 54–96, 198–240 and 342–384). Outside of those intervals, the predictions by our model and the observations

match very well.
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Figure 7. Prediction of the dose rate measured by the BR1 ring detectors (M07 through M11 and M13) using as inputs measurement by the

even-numbered Doel detectors. Time indices denote consecutive ten-minute periods starting at 00:00 CEST on August 30 2022 and ending

at 00:00 CEST on September 2 2022 so three diurnal cycles were included in the prediction. During this period, the BR1 reactor was turned

on three days on end which is apparent from the three large peaks that are not described by the background model prediction.

It is perfectly possible to describe the effect that the BR1 – which is an air-cooled reactor that emits argon-41 during operation320

– has on the detectors using atmospheric dispersion modelling (Frankemölle et al., 2022a). However, because it is an effect that

varies over a characteristic length scale that is much smaller than that of the network (ca. 50 km here) it cannot be captured

by our background model. This is exactly what our background modelling can be useful for: spotting anomalies. To quantify

the size of the anomaly, a good estimate of the background level can be crucial, particularly for smaller atmospheric releases.

While small errors in the mean and the intrinsic variance of the background are largely irrelevant for large anomalies (e.g.,325

M08), they are relevant in situations where both effects are of the same order (e.g., M11). When release levels are even lower

and occur during a much shorter interval – as was the case for, e.g., the selenium-75 incident at SCK CEN (Frankemölle et al.,

2022b) – a good understanding of the background becomes even more critical.

6 Conclusions and outlook

In this work, we presented a Bayesian inference framework for background estimation in a densely packed local detector330

networks. We treated the background ambient dose equivalent rate observed in a dense detector network as a multivariate

stochastic vector. We derived a physics-informed likelihood – a multivariate normal distribution – and priors and used these

to calculate the posterior pdfs of several parameters of interest. Using data from the Immission Monitors for the Ring area
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(IMRs), part of the Telerad network (Sonck et al., 2010), on the sites of the Belgian Nuclear Research Centre in Mol (SCK

CEN) and the Doel nuclear power plant (NPP) in Belgium, we then put the Bayesian framework to the test.335

In Sect. 3, we validated the suitability of our chosen parameterisation. That this parameterisation was a suitable choice

became clear from the posterior predictive checks. The actual distribution of the observations matched very well with the

modelled distribution of observations. Moreover, leave-one-out and leave-many-out checks, which leveraged the conditional

distribution, were successfully used to reconstruct the training data. In Sect. 4, actual leave-one-out and leave-many-out predic-

tions were made using new observational data in combination with a model that was calibrated using month-old training data.340

While the model predictions had drifted away slightly from the actual observations, the calibration overall proved to be rather

stable. Diurnal fluctuations were reproduced well and the short-term variance was matched decently. Finally, Sect. 5 showed

an application of our model where detectors at Doel NPP were used to predict the observations by detectors at the SCK CEN

during operation of the BR1. This application demonstrates the relevance of our work in the field of anomaly detection and,

importantly, quantification.345

Looking at the model from an operational perspective, the slow drift of the mean vector away from its calibration precludes

usage of year-old calibrated models. However, the drift within a month is only very limited, so if the Bayesian model were

recalibrated every week using the latest available data – which is possible thanks to the limited computational cost – the drift

should not be a problem. In fact, the model itself could be used to automatically determine whether next week’s data are suitable

for recalibration (which amounts to checking whether no anomalies are present). Of course, in the specific case of SCK CEN350

– with regular anomalies due to the BR1 – finding non-anomalous data can be problematic. In this case, coupling to a near-

range atmospheric dispersion model is likely necessary. This would also require extending the Bayesian framework to include

additional uncertainties arising from the dispersion modelling. Ideally, a similar provision would be made for precipitation

which – as discussed in this work – might come with its own temporal and spatial uncertainties.

Finally, future work could include a temporal correlation to the parameterisation of the background vector, but care should355

be taken that the computational complexity does not grow out of hand. Should the multivariate normal distribution that was

used in this work remain the best fit for the job, then recasting this work into a Kalman filter formulation might do much to

alleviate these issues. Conversely, rather than taking the calibration as fixed the vector of means might be updated as part of

the prediction process, i.e. formalising the recalibration process described in the previous paragraph. The posterior obtained by

calibration on training data then becomes a prior for the prediction data.360

Appendix A: Bayesian inference

To describe the detector networks, we use statistical inference. Statistical inference is the process of inferring the properties

of a population from a limited sample, or in other words, the process of determining the probability distribution of a random

variable (RV) from a limited number of observations of that RV. Statistical inference comes in two flavours: the Bayesian

and the frequentist. Bayesians treat the properties of a population as intrinsically random RVs in turn, whose distributions are365

constrained by the available observations and by a subjective belief, while frequentists treat them as fixed values that can be
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determined up to some uncertainty threshold based solely on the available data (Pishro-Nik, 2014). In our work, we take the

former perspective. The simplest form of Bayes’s theorem, which can be found in statistics handbooks (e.g. Pishro-Nik, 2014;

Hogg et al., 2018), is

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
(A1)370

which defines the posterior probability mass function PX|Y (x|y) as the product of the likelihood function PY |X(y|x) and the

prior probability mass function PX(x) over the marginal likelihood function PY (y). They are usually simply referred to as

the posterior, likelihood, prior and evidence. The subscripts X and Y are RVs and X = x and Y = y are realisations of those

RVs. When dealing with multiple unknowns, RVs generalise to random vectors whose elements are RVs. Rather than with X

and Y we then deal with X = [X1, ...,Xk]⊤ and Y = [Y1, ...,Yk]⊤ with realisations x = [x1, ...,xk]⊤ and y = [y1, ...,yk]⊤.375

Moreover, when dealing with continuous rather than discrete RVs, probability mass functions P (pmfs) become probability

density functions f (pdfs). The multivariate formulation of Bayes’s theorem for continuous random vectors, finally, reads

fX|Y(x|y) =
fY|X(y|x)fX(x)

fY(y)
(A2)

where the posterior, likelihood, prior and evidence are now joint pdfs. Since, in the current work, we are always dealing with

joint pdfs, we often refer to them as joint distributions or even simply as distributions.380

Formally, we should always distinguish between random variables and vectors (X and X) and their realisations (x and x).

However, this makes notation cumbersome and does not always add much in the way of clarity, so in the main text we often

ignore the difference.
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