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Abstract. Detector networks that measure environmental radiation serve as radiological surveillance and early warning net-

works in many countries across Europe and beyond. Their goal is to detect anomalous radioactive signatures that indicate the

release of radionuclides to the environment. Often, the background ambient dose equivalent rate Ḣ∗(10) is predicted using

meteorological information. However, in dense detector networks the correlation between different detectors is expected to

contain markedly more information. In this work, we investigate how the joint observations by neighbouring detectors can be5

leveraged to predict the background Ḣ∗(10). Treating it as a stochastic vector, we show that its distribution can be approxi-

mated as multivariate normal. We reframe the question of background prediction as a Bayesian inference problem including

priors and likelihood. Finally, we show that the conditional distribution can be used to make predictions. To perform the infer-

ences we use PyMC. All inferences are performed using real data for the nuclear sites in Doel and Mol, Belgium. We validate

our calibrated model on previously unseen data. Application of the model to a case with known anomalous behaviour – ob-10

servations during the operation of the BR1 reactor in Mol – highlights the relevance of our method for anomaly detection and

quantification.

1 Introduction

Networks that measure environmental radiation are operational in countries across Europe and beyond. Such networks moni-

tor the environment for aberrant radioactivity that could, e.g., indicate the anomalous release of radionuclides from a nuclear15

facility. Within Europe, observations of national networks are collected on the EUropean Radiological Data Exchange Plat-

form, EURDEP (European Commission, 2024; Sangiorgi et al., 2020), including those of the Belgian radiological surveillance

network and early warning system Telerad (Sonck et al., 2010). Some stations come equipped with gamma-spectrometric capa-

bilities that allow for observing the contributing gamma energies, which can be used to tease out the responsible radionuclides.

More often, however, stations use Geiger–Müller tubes to measure the ambient gamma dose equivalent rate (nSv h−1), de-20

noted as Ḣ∗(10). A difficulty with detecting and quantifying anomalies based on Ḣ∗(10) is that gamma radiation also occurs

naturally and varies as a function of time. To distinguish anomalous from normal behaviour using these detectors, therefore,

one must establish what normal really means.
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Under normal conditions, terrestrial radiation contributes significantly to Ḣ∗(10). Potassium-40 is abundant in nature, as

are the radionuclides in the uranium and thorium decay chains. When those decay chains reach radon (radon-222) and thoron25

(radon-220), both noble gases, exhalation occurs from the soil to the atmosphere. Radon is usually dominant over thoron due

to its much longer decay time (3.8 days versus 56 seconds). Only radon is long-lived enough that it can be transported over

considerable distances through air. During precipitation events radon daughters (lead-214 and bismuth-214) are deposited on

the ground again via wet scavenging (Sportisse, 2007), which accounts for increased Ḣ∗(10) (Mercier et al., 2009; Livesay

et al., 2014). Besides natural radionuclides, man-made contributions also exist. Caesium-137 fall-out from the atmospheric30

nuclear weapons tests of the fifties and early sixties with some as late as 1980 (Bergan, 2002), and of the Chornobyl accident

in 1986 still contributes to Ḣ∗(10) due to its long half life of 30.8 years according to a complex spatial pattern (European

Commission et al., 1998; ICRP, 2020). Other anthropogenic sources (e.g., medical or industrial) also contribute to the inventory

of environmental radionuclides (Maurer et al., 2018) although these will usually be too small to affect Ḣ∗(10). Finally, cosmic

radiation, at ground level mainly muons, contributes significantly to the background Ḣ∗(10). We refer to the sum of these35

processes as background radiation. In the rest of this work, we will exclusively refer to background radiation to mean these

normally occurring processes and anomalous radiation to be everything other than these normally occurring processes.

Our ability to identify and quantify anomalous radiation hinges on our ability to predict the behaviour of the background.

This is not only relevant for the aforementioned detector networks, but also for mobile measurement campaigns which were

used, e.g., in the aftermath of the Fukushima nuclear accident (Querfeld et al., 2020; Nomura et al., 2015). Even without fac-40

toring in unknown sources, the background is a complex function of space and time governed by, e.g., geological properties of

the soil, land use and (space) weather. The multifacetedness of environmental radioactivity precludes first principles modelling,

which makes predicting the background a difficult problem. In lieu of comprehensive first principles approaches, a rich variety

of data-driven solutions exist. Various machine learning approaches have been investigated to forecast background radiation

based on dose rate time series (Arahmane et al., 2024; Breitkreutz et al., 2023). Recently, Long Short-Term Memory networks45

(LSTMs) have shown promise in predicting background radiation based on meteorological parameters like temperature, hu-

midity and wind speed (Liu and Sullivan, 2019; Breitkreutz et al., 2023). When the goal is spatial interpolation rather than

temporal prediction, Kriging methods have been successfully employed to construct, e.g., national maps based on (airborne)

radiation measurements (Chernyavskiy et al., 2016; Folly et al., 2021). Bayesian approaches to background estimation ex-

ist predominantly in the context of source localisation, either using spectral data (Howarth et al., 2022) or gross count rates50

(Michaud et al., 2021; Brennan et al., 2005). Often, such approaches do not resolve full posterior distributions, instead relying

on more computationally efficient maximum likelihood estimation (MLE). MLE approaches have also been used to discrim-

inate between spatial background inhomogeneity in the built environment and temporal inhomogeneity due to precipitation

(Liu et al., 2018).

In the current work, we present a Bayesian inference framework for the estimation of the background ambient dose equivalent55

rate observed in densely packed local detector networks. We assume that the processes that drive changes in the background

occur at a scale that is larger than the typical scale of the local networks under consideration, and model the response to such

an external driver by looking at the effect that it has on all detectors. What sets our work apart from other work is the fact that
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we allow for correlations between the different detectors in the network, so that the external driver does not necessarily affect

all detectors equally. The Bayesian approaches mentioned in the previous paragraph all assume that the different observations60

are independent so that the likelihood given a large set of data simply becomes the product of the likelihoods of the individual

data points. Doing so simplifies sampling the posterior significantly. In allowing for correlations, we add significantly to the

dimensionality of the Bayesian inference problem – because it requires the estimation of a correlation matrix between the

detectors in the network – but we get a more truthful parameterisation. Using this model, we can estimate independent means

for each detector, the variance that is intrinsic to each detector due to a combination of counting statistics and measurement65

noise, and the collective response of the network to meteorological drivers.

The rest of this paper is structured as follows. In Sect. 2, the data and methods are described. Starting from an introduction

of the Telerad detector network, specifically the sub networks around two nuclear facilities in Belgium, we derive a Bayesian

inference problem and describe how to solve it. Additionally, we describe how the Bayesian inference problem can be extended

to also allow for predictive modelling. In Sect. 3, we describe calibration and verification of our Bayesian model using various70

sub sets of Telerad data. In Sect. 4, we show how calibrated models can be leveraged to make predictions. Finally, in Sect. 5,

we study a case that is relevant in an operational context. Using the detectors from one nuclear site (Doel) to predict the dose

rate at detectors from another nuclear site (Mol) while an atmospheric release is ongoing at the latter, shows how our work can

be useful in anomaly detections.

2 Data and methods75

2.1 The Telerad detector network

We first present the detector network that we try to model. Telerad, the radiological surveillance network and early warning

system in Belgium (Sonck et al., 2010), measures the extent of radiological contamination both in air, soil and in water using a

variety of techniques. For atmospheric measurements using gamma dosimetry, three sub networks exist. The Immission Mon-

itor for National area (IMN) covers the entire Belgian territory, the Immission Monitor for Agglomeration area (IMA) covers80

only those populated areas within several kilometres of nuclear facilities, and the Immission Monitor for Ring area (IMR)

covers the immediate vicinity of nuclear facilities. Such a network is not unique to Belgium, as described in the Introduction

(cf. Sect. 1), but the Belgian network is among the densest networks in the world. Hourly values for the IMN and IMA, dating

back many years, are also publicly available on a Belgian national platform (Federal Agency for Nuclear Control, 2024) similar

to EURDEP (European Commission, 2024).85

We use data from IMR stations at two nuclear sites: the Belgian Nuclear Research Centre (SCK CEN) in Mol and the nuclear

power plant (NPP) in Doel. The layouts of the detector networks at Doel and Mol, as well as their locations in Belgium, are

shown in Fig. 1. Characteristic of the Doel site are the river Scheldt bordering it to the east and the flat farmland bordering it in

other directions. Eighteen IMR stations, D01 through D18, sit along its perimeter. Characteristic of the Mol site is the largely

forested area. IMR detectors are set up more complicatedly than in Doel owing to the presence of several nuclear facilities.90

Stations M07 through M13 surround the Belgian Reactor 1 (BR1), detectors M01 through M04, M14 and M15 surround the

3



3°E 3.5°E 4°E 4.5°E 5°E 5.5°E4.252°E 4.255°E 4.258°E 4.261°E 4.264°E 4.267°E 4.27°E

51.319°N

51.3205°N

51.322°N

51.3235°N

51.325°N

51.3265°N

51.328°N

51.3295°N

IMR/D01
IMR/D02

IMR/D03

IMR/D04

IMR/D05

IMR/D06

IMR/D07

IMR/D08
IMR/D09

IMR/D10

IMR/D11

IMR/D12

IMR/D13
IMR/D14
IMR/D15
IMR/D16

IMR/D17

IMR/D18

51.1°N
51.2°N
51.3°N
51.4°N
51.5°N

Antwerp
Mol

Doel

Ghent

Eindhoven

5.08°E 5.085°E 5.09°E 5.095°E 5.1°E 5.105°E
51.2125°N

51.214°N

51.2155°N

51.217°N

51.2185°N

51.22°N

51.2215°N

IMR/M01
IMR/M02

IMR/M03

IMR/M04

IMR/M05 IMR/M06

IMR/M07

IMR/M08

IMR/M09 IMR/M10
IMR/M11

IMR/M12

IMR/M13

IMR/M14

IMR/M15

IMR/M16

Figure 1. The left and top right panels depict maps of the Telerad stations at the Doel and Mol sites, respectively. The bottom right panel

depicts the locations of Doel and Mol in Belgium. The Cartopy package (Met Office, 2010 - 2015) was used to generate the maps using aerial

footage from Agentschap Digitaal Vlaanderen (2016) and geographic vector data from Natural Earth (2024).

Table 1. The four different combinations of IMR stations that are examined in this study.

Case name Description Included IMR stations

BR1 IMR stations in a ring around the BR1 reactor M07–M11, M13

MOL All IMR stations at SCK CEN in Mol M01–M11, M13–M16

DOEL All IMR stations at Doel NPP D01–D18

DOEL–BR1
Low-variance IMR stations at Doel NPP and

IMR stations in a ring around the BR1 reactor

D02, D04, D06, D08, D10, D12, D14, D16,

D18, M07–M11, M13

Belgian Reactor 2 (BR2) and stations M05, M06 and M16 are South of the Belgian Reactor 3 (BR3). BR1 and BR2 are still

operational today; BR3 has been decommissioned and is being dismantled. Of these detectors, we exclude M12 from further

analysis because of several corrupted entries in the database.

In this work, we analyse four different combinations of IMR stations. Case BR1 includes those IMR stations that form a95

ring around the BR1 reactor. Case MOL includes all IMR stations at the SCK CEN. Case DOEL includes all IMR stations at

Doel NPP. Finally, case DOEL–BR1 includes a subset of IMR stations at Doel NPP plus the IMR station included in case BR1.

Details are listed in Table 1.

All IMR stations measure the ten-minute-averaged ambient dose equivalent rate Ḣ∗(10), which is measured in nanosieverts

per hour (nSv h−1). According to the definition by the ICRP (2020): “the dose H∗(d), at a point in a radiation field, is the100
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dose equivalent that would be produced by the corresponding expanded and aligned field in the ICRU sphere at a depth,

d, on the radius opposing the direction of the aligned field”. The ambient dose equivalent rate is the time derivative of the

ambient dose equivalent evaluated at a depth of d= 10 mm. Many IMR stations also have gamma-spectrometric capabilities,

and at low dose rates the ambient dose rate is actually calculated as the accumulated spectrum rather than measured using the

Geiger–Müller detector. In this work, we only look at dose rate data. Data from three periods are used: 6 August through 13105

August 2022, 30 August through 1 September 2022 and 10 through 12 September 2022. Selection of these data was subject

to BR1 non-operation and no precipitation. The BR1 is not operated for a while during July–August, and we found the period

from 6 through 13 August to also be without precipitation. The other two periods were chosen to be several weeks later than

this initial period to check the temporal stability of the calibration, one requiring reactor non-operation (30 August through 1

September) and the other requiring reactor operation (10 through 12 September). Data for all three periods are available on110

Zenodo (Frankemölle et al., 2024b).

To supplement the data, we use source monitoring data for the BR1 and precipitation data. The former are necessary because

the BR1 is an air-cooled reactor, the operation of which causes a noticeable artificial increase in on-site Ḣ∗(10). This is not the

case for the other facilities. Source term data are obtained from an in-stack monitor (Frankemölle et al., 2022b). Precipitation

data are taken from nearby precipitation monitoring stations in Retie, approximately 2 km northwest of SCK CEN, and Melsele,115

approximately 10 km south of Doel NPP (Vlaamse Milieumaatschappij, 2023).

2.2 Modelling background radiation using Bayesian inference

To model measurements by the Telerad sub networks, we introduce a stochastic representation in Sect. 2.2.1 that we use to

formulate a Bayesian inference problem in Sect. 2.2.2. In Sect. 2.2.3, we introduce the posterior predictive to validate our

Bayesian model.120

2.2.1 Background radiation as a continuous stochastic vector

Consider the ambient dose equivalent (nSv) accumulated over a period T (equal to 10 minutes in the current study) as measured

in our network

M=H+E (1)

with M= [M1, ...,Mk]
⊤ the measurements reported in each sensor (1, ...,k), H= [H1, ...,Hk]

⊤ the real accumulated ambient125

dose equivalent in each sensor, and E= [E1, ...,Ek]
⊤ the sensor measurement errors. We note that, typically, a dose rate is

reported, which corresponds to M/T (nSv h−1).

We represent the measured dose as a continuous stochastic (random) vector, which is driven by the real ambient dose

equivalent, and the instrument error, which are both stochastic processes themselves. We discuss the parameterisation of their

distributions, which eventually leads to the parameterisation of the distribution of M.130

Firstly, E represents the measurement noise. We can safely assume that errors are statistically independent between sensors.

We further make the stronger assumption that the errors are normally distributed with zero mean, so that E∼Nk (0,ΣE) with
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ΣE = diag [σE]Idiag [σE], where σE = [σE,1, ...,σE,k]
⊤ are the standard deviations of the different sensors errors, which

we infer in the Bayesian framework later. We note that the assumption of zero bias makes sense if instruments are properly

calibrated, but validation of the Bayesian framework itself can also point to inconsistencies between sensor data which could135

point to the need for recalibration.

Secondly, we consider the real dose H. It is the accumulation of photons arising from the decay of a range of radionuclides

that are present in the background around the sensor network. This is a process that is driven by the weather and other environ-

mental phenomena, but also by the counting error resulting from the relatively low number of photons that hit the sensor. The

latter can be approximated by a Gaussian distribution, but the former is much less trivial to describe. For lack of any detailed140

information on this distribution, and to arrive at an elegant overall framework, we also presume the radionuclides distribution

to be Gaussian, but unlike E, we expect a large spatial correlation over the sensor network (although some aspects, such as

the counting error or small-scale terrain effects will not be correlated between sensors). With some further assumptions on the

variabilities of both processes, we arrive at a Gaussian process for H as well, so that H∼Nk (µ,ΣH), and consequently,

M∼Nk (µ,ΣH +ΣE) . (2)145

At this point, we do not know the covariance matrices ΣH and ΣE – in Sect. 2.2.2 we use Bayesian inference to train

possible distributions of their elements. We have

Σlm =ΣH,lm +ΣE,lm =

σ2
l ≜ σ2

H,l +σ2
E,l, if l =m.

σlσmRlm, otherwise.
(3)

where R with elements Rlm is the correlation matrix that we introduce here for later use. Thus, defining the diagonal matrix

S= diag [σ] (with elements σl on the diagonal), we can also express Σ= SRS (Barnard et al., 2000).150

Given k sensors and since R is symmetric, we have 3k+k(k−1)/2 unknowns (in µ, ΣE, ΣH, and R) which we will train

using Bayesian inference and a large dataset of measurements. However, given only measurements M, and no additional infor-

mation on the measurement errors, it is impossible to obtain separate information on σH and σE. Only σ can be determined,

so that in fact 2k+ k(k− 1)/2 unknowns remain.

2.2.2 Training the mean vector and covariance matrix using Bayesian inference155

Given a dataset M= [M1, ...,MN ], with M an N×k matrix of measurements by the entire network of k detectors described

in Sect. 2.1 at N different points in time, and given the random variables of interest described in Sect. 2.2.1, we can write down

Bayes’s theorem (cf. Appendix A) for the posterior distribution f(µ,S,R|M). In terms of the likelihood f(M|µ,S,R), the

prior f(µ,S,R) and the evidence f(M), this posterior is given as

f(µ,S,R|M) =
f(M|µ,S,R)f(µ,S,R)

f(M)
. (4)160

Strictly speaking, subscripts are required to indicate that Eq. 4 involves four different distributions. Instead, we denote all

four distribution functions – of the posterior, likelihood, prior and evidence – as f to avoid cluttering the equations. Their

varying arguments are, after all, sufficient to tell them apart.
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Here, we define the right-hand side of Eq. 4. The likelihood follows straightforwardly from Eqs. 2–3 as

f(M|µ,S,R) =
1

(2π)k/2 |Σ|1/2
N∏
i=1

exp

[
−1

2
(Mi −µ)

⊤
Σ−1 (Mi −µ)

]
(5)165

where Σ= SRS with |Σ| its determinant and Σ−1 its inverse. While Eq. 5 implies independence between Mi and Mj for

i ̸= j, we should be careful not to take that at face value. Rather, this is a consequence of using the marginal distribution of

some unknown higher-dimensional distribution that includes time. Since we are not interested in time, we marginalise the

distribution, i.e. we ‘integrate out’ the time. This is allowed even in the extreme case that E= 0 and H is perfectly correlated

in time. Marginalisation relates to drawing random samples from the time series, and so the only assumption that we actually170

make is sufficiently long that the time series covers the realisations of M.

The likelihood can be evaluated for any combination of µ, S and R to determine how likely the observations M are given

that combination. This difference is particularly important when considering the evidence. For given observations M, the

evidence f(M) is just a number that normalises the posterior. Since we are only interested in the shape of the posterior rather

than exact values, we can safely neglect it.175

Finally, we consider the priors. The joint prior distribution f(µ,S,R) can be simplified by assuming independence between

µ, S and R, i.e.

f(µ,S,R) = f(µ)f(S)f(R). (6)

For f(µ), we choose a weakly informative prior by following the principle of maximum entropy, which yields least informa-

tive priors given certain bounds on the support and statistical moments (Park and Bera, 2009). We know that µ is always equal180

to or larger than zero. Furthermore, we expect it to be centred on the time-averaged background level. The least informative

prior with support on [0,∞) and given mean is the exponential distribution

f(µ) =

k∏
l=1

f(µl) where f(x) = λl exp[−λlx] and
1

λl
=

1

N

N∑
i=1

Mli. (7)

For f(S), we choose the half-normal distribution (Gelman, 2006)

f(S) =

k∏
l=1

f(Sl) where f(x) =
1

σx

√
2

π
exp

[
− x2

2σ2
x

]
for x≥ 0. (8)185

Finally, we formulate f(R). This is not trivial, because not each combination of factors Rlm yields a matrix that is symmetric

and positive semi-definite. To this end, we employ the LKJ correlation distribution (Lewandowski et al., 2009) over all possible

correlation matrices. The advantage of the LKJ distribution is that it can be used as a prior for the correlation matrix R allowing

us to give a separate prior for the diagonalised scale vector S, as opposed to, e.g., the inverse-Wishart distribution which can

only be used as a prior for the full covariance matrix (Gelman et al., 2013). We need the LKJ distribution, in effect, to work190

with the decomposition Σ= SRS (Barnard et al., 2000) that was introduced in Sect. 2.2.1. To be complete, here we reproduce

from Lewandowski et al. (2009) the LKJ distribution function as

f (R) = ck |R|η−1 (9)
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with |R| the determinant of the k×k correlation matrix R, η the sole shape parameter of the distribution and ck the normalising

constant, which only depends on the dimensionality k, as195

ck = 2
∑k−1

l=1 (2η−2+k−l)(k−l)
k−1∏
l=1

[
B

(
η+

1

2
(k− l− 1) ,η+

1

2
(k− l− 1)

)]k−l

(10)

where B is the beta function, defined for two complex numbers z1 and z2 with positive reals, given as

B (z1,z2) =

1∫
0

tz1−1 (1− t)
z2−1

dt. (11)

The shape parameter η governs the probability of off-diagonal elements. For η > 1 the mode of the distribution is the identity

matrix (i.e. not favouring correlations), for 0< η < 1 there is a dip in the distribution at the identity matrix (i.e. favouring200

correlations) and for η = 1 all correlation matrices are equally likely. In this work, we select η = 1, which is the special case

where the dependence on R drops out, i.e.

f (R) = ck |R|0 = ck = 2
∑k−1

l=1 l2
k−1∏
l=1

[
B

(
l− 1

2
,
l− 1

2

)]k−l

. (12)

Combining Eqs. 4–12, we obtain the full posterior distribution. In a network of k detectors, there are k means, 2k scale

parameters, and k× (k− 1)/2 off-diagonal elements so that the dimensionality of the posterior scales as k2/2. As a result,205

brute force computation of the posterior is generally not possible. Therefore, we will employ a Markov Chain Monte Carlo

(MCMC) technique instead.

The posterior is calculated using the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) in PyMC (v5.13.1), a

Python-based framework for Bayesian inference using MCMC (Abril-Pla et al., 2023). To check for convergence, PyMC sam-

ples several independently initialised chains and then calculates the R̂ convergence metric (Gelman and Rubin, 1992; Vehtari210

et al., 2021), since it is in general not feasible to check the traces of all different parameters. For the actual implementation

of this convergence check and many other postprocessing features (e.g., summary statistics, advanced plotting), PyMC relies

on ArviZ (Kumar et al., 2019). All computations are performed on a Lenovo ThinkPad with an 11th Generation Intel Core

i5-1135G7 (4 cores, 8 threads, 2.4 GHz base clock and 4.2 GHz maximum turbo frequency) and 8 GB of RAM.

2.2.3 Validating the calibrated model using the posterior predictive215

It is important to realise that a posterior distribution is contingent on the choice of parameterisation for the likelihood and

priors. Should the choice of parameterisation be poor, so are the results. Intuitively, we expect that if we draw new samples

from our posterior and use these to generate new ‘observations’, that the distribution of those new ‘observations’ should be the

same as that of the original dataset. The posterior predictive formalises this as

f(M̂|M) =

∫
Ω

f(M̂|µ,S,R)f(µ,S,R|M)dµdSdR. (13)220
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where M̂ represent the new observations. Here f(M̂|µ,S,R) is the likelihood over all new samples given a set of governing

parameters, and f(µ,S,R|M) is the posterior of those governing parameters given the original data M. By integrating the

product over the entire sample space Ω of possible values for the governing parameters, the posterior predictive f(M̂|M) is

obtained. A good match between the posterior predictive and the distribution of the original dataset shows the choice for the

parameterisation of the likelihood and priors is a good one.225

2.3 Estimating the 10-min background using Bayesian inference

While the foregoing stochastic representation is interesting in its own right to understand the behaviour of the background

radiation in a detector network, there are other potential applications of Bayesian inference for background modelling. For

one, might we hope to estimate the noise-free background vector H from the noisy measurements M? This is a different

question from the one encapsulated in Eq. 4. Moreover, since Bayesian inference is also used for data imputation (Holt and230

Nguyen, 2023), we could think of a use case with missing observations. Here, missing can actually mean missing – one or

more detectors could be broken – or it might just mean compromised. In the latter case, the connection with anomaly detection

is readily made: in case of a local radiation source that impacts a limited number of detectors in the network, we can use the

remaining detectors to predict what background these detectors should have measured in lieu of the anomaly, and within what

uncertainty bounds. That in turn allows us to quantify the size of the anomaly.235

This does, however, still require ‘expert knowledge’ in the sense that the model itself does not know which detectors are

affected. Physics wise, this is related to the fact that the model is, by construction, time independent (cf. Sect. 2.2.2). Corre-

lations in time of the individual detectors, a strong drop in which could point at atypical excursions of the dose rate (like the

ones discussed later in Sect. 5) are not taken into account. While there may be engineering solutions even within the frame of

the currently discussed method that could allow for this method to autonomously detect anomalies, consideration of those is240

beyond the scope of this work.

To estimate the distribution of the background radiation vector H of a given 10-minute time interval, for which data M are

available, using the distribution for Σ (e.g., obtained using the method described in Sect. 2.2) as prior information, we write

down a different inference problem from Eq. 4. Here, we are interested in the posterior f(H|M), which is equal, by Bayes’s

theorem (cf. Appendix A), to245

f(H|M) =
f(M|H)f(H)

f(M)
. (14)

Neglecting the evidence as before, we can fill in the likelihood and priors which follow from the discussion in Sect. 2.2.1, to

obtain

f(H|M)∝ exp

[
−1

2
(H−M)

⊤
Σ−1

E (H−M)

]
exp

[
−1

2
(H−µ)

⊤
Σ−1

H (H−µ)

]
∝ exp

[
−1

2
(H−M)

⊤
Σ−1

E (H−M)− 1

2
(H−µ)

⊤
(SRS−ΣE)

−1
(H−µ)

]
, (15)250

where in the second step we use ΣH = SRS−ΣE. We observe that the argument of the exponent in Eq. 15 is equal to the cost

function associated with the Kalman filter (Evensen et al., 2022, p. 67), where in the current case the measurement operator is

9



the identity matrix I. Clearly, the above relation can only be used meaningfully if we can estimate σE. For this, extra data are

needed since we only have knowledge of S from the calibration described in Sect. 2.2.2.

We now elaborate on a particular scenario that is of interest to anomaly detection. We presume that we know ΣH either255

because we have extra information σE or because measurement errors in the calibration data are small, i.e. ∥σE∥≪ σH, so

that ΣH ≈ SRS =Σ. For the spectroscopic detectors at least, which have counting-statistics-driven uncertainties on the order

of 0.5nSv h−1 while typical excursions due to meteorological drivers (captured by H) are much larger, this assumption is very

acceptable.

Let us further assume that in the current 10-minute time interval, we do not use measurements at all sensors, e.g., because260

they are not available, or we do not trust them. Whatever the reason, we are limited to a subset of observations Mo. Thus, we

split the detector network in an observed part and an unobserved part, and we reorder the sensors and backgrounds at these

detectors such that H= [Hu Ho]
⊤. Then Eqs. 14–15 reduce to

f(H|Mo) =
f(Mo|H)f(H)

f(Mo)

∝ exp

[
−1

2
(Ho −Mo)

⊤
Σ−1

E,o (Ho −Mo)−
1

2
(H−µ)

⊤
Σ−1

H (H−µ)

]
. (16)265

We now introduce the block matrices

ΣH =

ΣH,uu ΣH,uo

ΣH,ou ΣH,oo

 . (17)

and partition the mean vector as µ= [µu µo]
⊤. This allows us to split the inference problem into two parts. The first one is for

the sensors that are observed and gives

f(Ho|Mo)∝ exp

[
−1

2
(Ho −Mo)

⊤Σ−1
E,o(Ho −Mo)−

1

2
(Ho −µo)

⊤Σ−1
H,oo(Ho −µo)

]
, (18)270

which can be calculated first. A second inference problem follows from applying the chain rule in two different ways:

f(H,Mo) = f(H|Mo)f(Mo); (19)

f(H,Mo) = f(Hu|Ho,Mo)f(Ho|Mo)f(Mo). (20)

This gives us two known distributions (cf. Eq. 16 and Eq. 18) and two unknown distributions: f(Hu|Ho,Mo) and f(Mo). By

equating Eqs. 19–20, we can eliminate the latter unknown to finally obtain275

f(Hu|Ho,Mo) =
f(H|Mo)

f(Ho|Mo)

∝ exp

[
−1

2
(H−µ)⊤Σ−1

H (H−µ)

]
exp

[
1

2
(Ho −µo)

⊤Σ−1
H,oo(Ho −µo)

]
. (21)

Given Eq. 21 a closed form of f(Hu|Ho,Mo) can in fact be found. Using the block matrices described in Eq. 17 it can be

shown (Holt and Nguyen, 2023) that the posterior is normally distributed, Nku(µu|o,Σu|o) where

µu|o = µu +ΣH,uoΣ
−1
H,oo(Ho −µo); (22)280

Σu|o =ΣH,uu −ΣH,uoΣ
−1
H,ooΣH,ou. (23)
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Figure 2. Posterior predictive distributions for all four analysed cases. Solid blue lines represent predicted distributions of observations. Each

line is made by randomly drawing a set of parameters from the posterior distributions of parameters. Dashed orange lines represent the mean

predicted distributions. Finally, the distribution of actual observations is represented in black – a kernel is used to interpolate to a continuous

distribution.

These are the mean vector and covariance matrix of the unobserved part of the network conditional on the observed part of the

network (Holt and Nguyen, 2023), respectively. It is tempting at this point to insert the maximum a posteriori (MAP) estimates

of µ and Σ to calculate MAP estimates of µu|o and Σu|o. However, since the posterior distributions of µ and Σ are actually

available (cf. Sect. 2.2), we choose to construct the full posterior distributions of µu|o and Σu|o instead.285

3 Calibration and verification

For the calibration of µ, S, and R, we select an eight-day period in the summer of 2022, August 6 through 13. We check that

the BR1 is not operational in this period and there is no rain. We calibrate our model for the four different cases described in

Table 1. In all cases, the NUTS algorithm is set up to discard the first 1000 samples (the ‘burn in’) and then to take another

1000 samples that are used to construct the posterior. To test whether the calibrated models adequately describe the data, we290

calculate posterior predictive checks.

Posterior predictives, plotted in Fig. 2, are a powerful tool to test the quality of Bayesian models. In all four cases, the close

agreement between the black lines (observations) and orange lines (model) shows that the multivariate normal distribution is

an excellent parameterisation for the distribution of the ambient dose equivalent rate vector M/T . It shows that even if some
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Figure 3. A ‘prediction’ of detector M13 based on observations by M07 through M11. Time indices denote consecutive ten-minute periods

starting at 00:00 CEST on August 6 2022 and ending at 00:00 CEST on August 14 2022.

detectors experience much higher local dose rates – the right-most peak for the MOL case (panel (b) of Fig. 2) corresponds295

to detector M06, which is adjacent to a radioactive waste storage – the way that they covary can still be captured with a

multivariate normal distribution. Likewise, it does not matter that some detectors are of a different make – the much wider

central peak for the DOEL case (panel (c) of Fig. 2) is due to larger intrinsic variance of some of the detectors.

The quality of the Bayesian model also becomes clear using the predictive formalism described in Sect. 2.3. Using the

original training data but leaving out one or more detectors, the conditional distribution can be used to ‘predict’ the observations300

by the excluded detectors. Here, we show the results for two cases: BR1 and DOEL. For the BR1 case, we ‘predict’ the

observations by M13 using observations by M07 through M11. Results of these ‘predictions’ versus actual observations are

plotted in Fig. 3. Again, the agreement is excellent. The calibrated model correctly captures not only the offset and the diurnal

variations but also the generally rising trend. Moreover, the 1σ (68% confidence) and 2σ (95% confidence) intervals predicted

by the model match the spread of the observations very well. This shows that the model not only captures the trends but also305

remaining uncertainties.

For the DOEL case, we ‘predict’ the observations by D01 through D09 using observations by D10 through D18. These results

are plotted in Fig. 4. The even-numbered stations have similar characteristics to the detectors around BR1. While offsets vary,

the diurnal fluctuations, rising trend and approximate uncertainties do not vary much between these detectors and their BR1

counterparts. Meanwhile, the odd-numbered detectors have almost an order of magnitude more uncertainty compared to the310

even-numbered detectors – likely owing to considerably worse counting statistics – in their model ‘predictions’, which is in

excellent agreement with the actual spread in the Telerad time traces as evidenced by the fact that the shaded areas in Fig. 4

(which represents the uncertainty of the measurements) are much larger for the odd- than for the even-numbered detectors.

There is no evidence of diurnal variations or the rising trend any more, as these are dwarfed by the uncertainty inherent to the

12
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Figure 4. ‘Predictions’ for the Doel detectors D01 through D09 based on observations by D10 through D18. Time indices denote consecutive

ten-minute periods starting at 00:00 CEST on August 6 2022 and ending at 00:00 CEST on August 14 2022.

detectors. We observe that the ‘predictions’ by the Bayesian algorithm are not impacted. The algorithm simply sets Sl of those315

detectors to high values while setting Rlm to low values so that the covariance with other detectors, SlSmRlm, remains low.

4 Predictions using the conditional distribution

Using the calibrated models described in Sect. 3, trained on data between 6 and 13 August 2022, we now make predictions

using data that were obtained at a different point in time in order to validate our Bayesian model. Here, we present the results

for two cases, MOL and DOEL, for September 10–12 of 2022. We start with the former. Similar to the BR1 case, we exclude320

detector M13 and try to predict observations made by that detector using the other detectors as inputs. We then compare the

prediction to the actual observations. The results can be found in Fig. 5. Focusing first on days two and three (from time index

150 onwards), the calibrated model predicts both the baseline dose rate and the peaks (around 200 and 350, so around dawn)

quite well while the variance appears to be slightly overestimated over the entire period. This is confirmed by comparing
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Figure 5. Prediction of the dose rate measured by detector M13 based on observations by the other detectors on the SCK CEN site. Time

indices denote consecutive ten-minute periods starting at 00:00 CEST on September 10 2022 and ending at 00:00 CEST on September

13 2022 so three diurnal cycles are included in the prediction. The larger peak between time index 25 and 75 coincided with a period of

precipitation.

the mean of the 1-h running variances of the Telerad data, (0.15± 0.10) nSv2 h−2, to the mean of the predicted variances,325

(0.21± 0.01) nSv2 h−2 (excluding time indices smaller than 100 because of the rain peak).

Most striking in Fig. 5 is the larger peak between time indices 25 and 75. It coincides with a period of precipitation measured

by the station in Retie (Vlaamse Milieumaatschappij, 2023), which is known to coincide which rising dose rates (Mercier et al.,

2009; Livesay et al., 2014). While our model was not trained on precipitation data, the match is nonetheless quite good. It

appears that over the extent of the Mol site, precipitation has the same effect as other meteorological drivers (e.g., pressure),330

which cause the variations over time observed in Figs. 3–4. However, that does not mean that our choice of parameterisation is

ideal in precipitating conditions: part of the variance in such cases might be driven by, e.g., fluctuations in the precipitation rate,

which may not necessarily be Gaussian. Moreover, that our model can describe the effect of precipitation has a downside in

an operational context. A plume (cloud) of radioactivity that is released far enough from the site is homogeneously distributed

over the site, and cannot be distinguished from other background effects by on-site detectors. Our model is thus only useful to335

spot aberrant radioactivity at a typical scale that is smaller than that of the network, i.e. local releases.

Next, we present the DOEL case. Based on the observations made by detectors D10 through D18, the calibrated model

predicts the observations by D01 through D09. The results are plotted in Fig. 6. Overall, the same conclusions can be drawn as

for the MOL case. The precipitation peak, although a fair bit more jagged than before, is still resolved well. Some limited drift

on the mean vector µ is present, and small under- or overestimations are present for some of the detectors. The fluctuations in340

the dose rates are still captured well, however. That there should be a drift in the vector of means is interesting, and suggests the

involvement of a process that causes decorrelation in time. Such a process cannot be modelled under the assumptions presented

in our work, because we have chosen to neglect temporal correlations. Moving from a temporally independent model into, e.g.,
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2022 so three diurnal cycles are included in the prediction.

a first-order Markov system, would increase the dimensionality of the joint pdf from k2 to (2k)2. This would have significant

computational repercussions, and may not be feasible.345

In the special case of the multivariate normal distribution presented in this work, solutions might exist (e.g., Kalman filter)

However, by moving into the Kalman filter approach one loses the option to move away from the normality assumption at a

later stage – this could be a problem, potentially, when introducing the effect of precipitation. An alternative that would not

necessitate moving away from the Bayesian inference method would be to serve the calibrated coefficients of the background

model as a prior in the predictive step, and allow small posterior updates to the vector of means to correct for drift.350

5 Predictions during operation of the BR1 reactor

Finally, we present simulations for the DOEL–BR1 case between 30 August and 1 September 2022. To expedite the calibration

and prediction steps, we only include the even-numbered detectors in Doel. As can be seen in Figs. 4 and 6, these detectors have
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on three days on end which is apparent from the three large peaks that are not described by the background model prediction.

considerably higher dose rate resolution than their odd-numbered counterparts and hence contain much more information. The

results are shown in Fig. 7. The match between the background prediction and the actual observations is poor during several355

intervals which coincide with operation of BR1. The BR1 was operational between approximately 9:00 and 16:00 on these three

days (time indices 54–96, 198–240 and 342–384). Outside of those intervals, the predictions by our model and the observations

match very well.

It is perfectly possible to describe the effect that the BR1 – which is an air-cooled reactor that emits argon-41 during operation

– has on the detectors using atmospheric dispersion modelling (Frankemölle et al., 2022a). However, because it is an effect that360

varies over a characteristic length scale that is much smaller than that of the network (ca. 50 km here) it cannot be captured

by our background model. This is exactly what our background modelling can be useful for: spotting anomalies. To quantify

the size of the anomaly, a good estimate of the background level can be crucial, particularly for smaller atmospheric releases.

While small errors in the mean and the intrinsic variance of the background are largely irrelevant for large anomalies (e.g.,

M08), they are relevant in situations where both effects are of the same order (e.g., M11). When release levels are even lower365

and occur during a much shorter interval – as was the case for, e.g., the selenium-75 incident at SCK CEN (Frankemölle et al.,

2022b) – a good understanding of the background becomes even more critical.

16



6 Conclusions and outlook

In this work, we presented a Bayesian inference framework for background estimation in a densely packed local detector

networks. We treated the background ambient dose equivalent rate observed in a dense detector network as a multivariate370

stochastic vector. We derived a physics-informed likelihood – a multivariate normal distribution – and priors and used these

to calculate the posterior pdfs of several parameters of interest. Using data from the Immission Monitors for the Ring area

(IMRs), part of the Telerad network (Sonck et al., 2010), on the sites of the Belgian Nuclear Research Centre in Mol (SCK

CEN) and the Doel nuclear power plant (NPP) in Belgium, we then put the Bayesian framework to the test.

In Sect. 3, we validated the suitability of our chosen parameterisation. That this parameterisation was a suitable choice375

became clear from the posterior predictive checks. The actual distribution of the observations matched very well with the

modelled distribution of observations. Moreover, leave-one-out and leave-many-out checks, which leveraged the conditional

distribution, were successfully used to reconstruct the training data. In Sect. 4, actual leave-one-out and leave-many-out predic-

tions were made using new observational data in combination with a model that was calibrated using month-old training data.

While the model predictions had drifted away slightly from the actual observations, the calibration overall proved to be rather380

stable. Diurnal fluctuations were reproduced well and the short-term variance was matched decently. Finally, Sect. 5 showed

an application of our model where detectors at Doel NPP were used to predict the observations by detectors at the SCK CEN

during operation of the BR1. This application demonstrates the relevance of our work in the field of anomaly detection and,

importantly, quantification.

Looking at the model from an operational perspective, the slow drift of the mean vector away from its calibration precludes385

usage of year-old calibrated models. However, the drift within a month is only very limited, so if the Bayesian model were

recalibrated every week using the latest available data – which is possible thanks to the limited computational cost – the drift

should not be a problem. In fact, the model itself could be used to automatically determine whether next week’s data are suitable

for recalibration (which amounts to checking whether no anomalies are present). Of course, in the specific case of SCK CEN

– with regular anomalies due to the BR1 – finding non-anomalous data can be problematic. In this case, coupling to a near-390

range atmospheric dispersion model is likely necessary. This would also require extending the Bayesian framework to include

additional uncertainties arising from the dispersion modelling. Ideally, a similar provision would be made for precipitation

which – as discussed in this work – might come with its own temporal and spatial uncertainties.

Finally, future work could include a temporal correlation to the parameterisation of the background vector, but care should

be taken that the computational complexity does not grow out of hand. Should the multivariate normal distribution that was395

used in this work remain the best fit for the job, then recasting this work into a Kalman filter formulation might do much to

alleviate these issues. Conversely, rather than taking the calibration as fixed the vector of means might be updated as part of

the prediction process, i.e. formalising the recalibration process described in the previous paragraph. The posterior obtained by

calibration on training data then becomes a prior for the prediction data.
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Appendix A: Bayesian inference400

To describe the detector networks, we use statistical inference. Statistical inference is the process of inferring the properties

of a population from a limited sample, or in other words, the process of determining the probability distribution of a random

variable (RV) from a limited number of observations of that RV. Statistical inference comes in two flavours: the Bayesian

and the frequentist. Bayesians treat the properties of a population as intrinsically random RVs in turn, whose distributions are

constrained by the available observations and by a subjective belief, while frequentists treat them as fixed values that can be405

determined up to some uncertainty threshold based solely on the available data (Pishro-Nik, 2014). In our work, we take the

former perspective. The simplest form of Bayes’s theorem, which can be found in statistics handbooks (e.g. Pishro-Nik, 2014;

Hogg et al., 2018), is

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
(A1)

which defines the posterior probability mass function PX|Y (x|y) as the product of the likelihood function PY |X(y|x) and the410

prior probability mass function PX(x) over the marginal likelihood function PY (y). They are usually simply referred to as

the posterior, likelihood, prior and evidence. The subscripts X and Y are RVs and X = x and Y = y are realisations of those

RVs. When dealing with multiple unknowns, RVs generalise to random vectors whose elements are RVs. Rather than with X

and Y we then deal with X= [X1, ...,Xk]
⊤ and Y = [Y1, ...,Yk]

⊤ with realisations x= [x1, ...,xk]
⊤ and y = [y1, ...,yk]

⊤.

Moreover, when dealing with continuous rather than discrete RVs, probability mass functions P (pmfs) become probability415

density functions f (pdfs). The multivariate formulation of Bayes’s theorem for continuous random vectors, finally, reads

fX|Y(x|y) =
fY|X(y|x)fX(x)

fY(y)
(A2)

where the posterior, likelihood, prior and evidence are now joint pdfs. Since, in the current work, we are always dealing with

joint pdfs, we often refer to them as joint distributions or even simply as distributions.

Formally, we should always distinguish between random variables and vectors (X and X) and their realisations (x and x).420

However, this makes notation cumbersome and does not always add much in the way of clarity, so in the main text we often

ignore the difference.

Code and data availability. The Python code that contains the Bayesian model (calibration and prediction) and the analysis scripts is avail-
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