10

15

20

25

30

Reviewer 2 (RC2)

The article details a plugin functionality added to the ICON model, based on a com-
mon adaptor library to be used by both the ICON model and the plugins. Entry point
hooks are inserted in the ICON model to execute the plugins at various places. The au-
thors introduce the concepts in a structured manner comparing all possible approaches
to extend models with external components. The described code is open-source and read-
ily available to explore, including documentation and examples. Various conceivable
scenarios are considered in how plugins operate with the given ICON data fields. The
article fits well in the context of this journal and is of high quality. I therefore recommend
it for publication.

One question. Given that it is possible for plugins to share the data pointers with
ICON, is there an optional safety mechanism provided (e.g. by checksumming the data)
in order to ensure or verify that no data has been modified inadvertently?

Thank you for this positive evaluation of our work.

At the moment no such safety mechanism is provided, as Comln is operating with
Fortran pointers and memory access restrictions are not implemented in the language
standard. The access information provided in ComIn when receiving a data pointer will
be used in the future on the host side for synchronisation operations to provide updated
variable fields via the pointers according to the requested access patterns. However, a
possible extension of ComIn might use the information if a data field is obtained only
to read or also to write and throw a warning in the former case if the data is indeed
changed. As these checks would add an overhead on a simulation, this option would
only be available in a debug mode, not in the standard configuration. We will provide
this information in the manuscript and extend Section 3.5 accordingly (changes/updates
are given in bold font below).

"The implementation of how the ICON data fields and descriptive data are made
available to ComIn impacts the overhead and usability of ComIn. The smallest memory
overhead is achieved when sharing pointers to the ICON memory addresses. However,
this adds the possibility that a plugin can (inadvertently or incorrectly) change the
value of such a field. Via the usage of Fortran pointers, no access restrictions are
implemented, as these are not supported by the language standard. Implementing
memory access restrictions would add additional undesired execution overhead. It



35

40

45

50

55

was thus decided to share pointers to data fields via ComIn without safety mecha-
nisms.

So far the memory argument (ComlIn should be lightweight) was considered more
important also in the case of descriptive data, even though most descriptive data are
constant in time and their size not excessive. Thus, with a few exceptions, pointers
to the ICON descriptive data are shared directly. Another advantage of this approach
is that inconsistencies in data copies can be prevented. Exceptions include the cell prop-
erties longitude and latitude, as their storage format has been simplified in Comln to
eliminate a further dependence on the host model’s data structures. It is thus the re-
sponsibility of the user to ensure that the descriptive data are handled correctly and that
descriptive data are not accidentally modified."

We have also updated the description of the associated point in Section 6 (line 480 in
the old version of the manuscript):

"When a plugin requests an ICON data field it does this for a specific list of en-
try points. This information can be used by ICON to determine the exchange of data
throughout the simulation. With the additional information of the desired access, i.e.
if data is just read, adapted by a plugin or also required for halo synchronization, the
host model could detect incorrect access patterns and return an error or a warning
if access restrictions are violated. The latter part is currently not implemented but a
potential expansion for the future, probably available only in a debug mode of ComlIn
as this option would add an overhead. Additionally, this information can be used to
support asynchronous execution of plugins and to enable efficient halo synchronization
through ComlIn."



