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Abstract. Ice-free land comprises 26% of Earth’s surface and holds liquid waters that delineate ecosystems, affect global

geochemical cycling, and modulate sea level. However, we currently lack capacity to simulate and predict these terrestrial

water changes over the full range of relevant spatial (watershed to global) and temporal (monthly to millennial) scales. To

address this gap in knowledge, we present the Water Table Model (WTM), which comprises coupled components to compute

dynamic lake and groundwater levels. The groundwater component solves the 2D horizontal groundwater-flow equation by5

using non-linear equation solvers in the C++ PETSc library. The dynamic lakes component makes use of the Fill-Spill-Merge

(FSM) algorithm to move surface water into lakes, where it may evaporate or affect groundwater flow. To demonstrate the

continental scale capabilities of the WTM, we simulate steady-state climate-driven present-day and Last Glacial Maximum

(LGM: 21,000 calendar years before present) water table for the North American continent. At the LGM, North America stored

6.0 cm sea-level equivalent (SLE) more water in lakes and groundwater than in the climate-driven present-day scenario. We10

then advance the simulation transiently from 21–16 ka, in which lake volume remains approximately constant but groundwater

storage drops by 4.5 cm SLE due to reduced precipitation. Open-source code for the WTM is available on Github and Zenodo.

1 Introduction

Over decades to millennia, global climate and hydrological systems jointly modulate the terrestrial water table (Fig. 1). The

water table, defined as the top of water-saturated conditions, controls both groundwater and lake-water storage volumes (Fan15

et al., 2007, 2013). The volume of stored water changes through time with water-table elevation as a result of seasonality, human

impacts, or longer-term changes in climate and topography. These changes in lake and/or groundwater systems significantly

impact the hydrological cycle on a global scale (Ni et al., 2018; Syed et al., 2008).

The upper 2 km of continental crust holds an estimated 22.6 million km3 of groundwater (Gleeson et al., 2016). This ground-

water provides baseflow to rivers and lakes, defines wetland locations (Fan et al., 2013; Zhu and Gong, 2014), and provides20

a large store of freshwater for human use (Wada, 2016). It also changes over time, with impacts on ecosystems (Amanambu
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et al., 2020; Cuthbert et al., 2019b; Hu et al., 2017), geochemical cycling (Dean et al., 2018; Ringeval et al., 2010; Zhang et al.,

2023b), and sea level (Konikow, 2011; Pokhrel et al., 2012; Sun et al., 2022; Wada et al., 2012). Meanwhile, although lakes

cover only about 3.7% of the Earth’s ice-free land surface (Verpoorter et al., 2014), they are numerous: Verpoorter et al. (2014)

recorded over 100 million lakes in their inventory. The total volume of the world’s lakes is about 181,900 km3 (Messager et al.,25

2016). This lake-water storage impacts hydrologic connectivity (Callaghan and Wickert, 2019), and therefore also sediment

and contaminant transport. Surface-water elevation also influences groundwater head, and may exert a stronger control on

head in gradient-based groundwater models than other factors, including recharge and hydraulic conductivity (Reinecke et al.,

2019a). The extent of these water stores highlights the importance of understanding how they change in the long term.

High-performance computing and efficient algorithm design have enabled continental-scale modelling of modern-day ground-30

water (Fan et al., 2013; Maxwell et al., 2015) and streamflow (Döll et al., 2009; NOAA, 2016). However, we lack models that

are capable of global-scale transient simulations lasting decades or longer. These time scales are highly relevant for our un-

derstanding of the impacts of changing sea level and climate on groundwater stores, and are of particular importance for

understanding changes to the hydrological system over human lifetimes. Existing models that include simulation of groundwa-

ter at large spatial scales either allow for steady-state simulation (Fan et al., 2013; Maxwell et al., 2015) or transient simulations35

at timescales from hours to a few years (Maxwell et al., 2015; Kollet, 2009; O’Neill et al., 2021). Some hydrologic projections

over longer time periods (decades) do exist (Döll et al., 2020; Märker and Flörke, 2003), but these do not explicitly simulate

the groundwater table.

Built-in static assumptions and/or equilibrium approaches prevent existing models from adequately considering the possibly

of dramatic long-term changes to lake volume, especially when those involve changes in lake extent. Various land-surface40

models (Decharme et al., 2019; Koirala et al., 2014; Lawrence et al., 2019; Wiltshire et al., 2020; Yokohata et al., 2020;

Zeng et al., 2002, e.g.) provide complex depictions of surface and sub-surface hydrology. Some include lake components

that influence local climate (Oleson et al., 2010), but they do not incorporate dynamic changes in lake-water storage or lake

surface area through time. For example, Müller Schmied et al. (2021) comprehensively simulated surface hydrology, including

dynamics of lake and wetland storage (Döll et al., 2020), but relied on static mapped extents of lakes and wetlands. Many of the45

aforementioned models also have substantial data input and calibration requirements, complicating assessment of long-term

changes in the water table, which necessarily integrate across times for which requisite data are scarce.

To address the challenge of long-term transient simulation of the water table, we present the Water Table Model (WTM). The

WTM couples groundwater (Section 3) and lake-water (Section 4) levels and flow to simulate water-table elevation relative to

the land surface across spatial scales from local catchments to the globe and over time scales from months to thousands of years50

and beyond. By explicitly acknowledging the link between surface-water elevation and groundwater head, the WTM moves

beyond the common – but artificial – model truncation at the land surface, and instead solves the dynamically linked surface-

and groundwater system (Reinecke et al., 2019a, b). Input data to the WTM are commonly available for both the present day

and recent geological past, and are described in Appendix A1.

We designed the WTM with the following goals and philosophies: (1) Simplicity – the focus of the model is on the simu-55

lation of the water table alone. Vadose zone processes, climate, and streamflow are not directly simulated. (2) Computational
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efficiency – this allows the WTM to be run across hundreds of millions of cells for thousands of years. (3) Open-source model

code – the source code for the WTM is available on GitHub (https://github.com/KCallaghan/WTM/, v2.0.1) and Zenodo

(https://doi.org/10.5281/zenodo.10611076, v2.0.1) for other researchers to use and peruse. (4) Dynamic lakes – lake locations

are not predefined and evolve alongside the rest of the water table. (5) Broad applicability – the WTM can be used across a60

broad range of spatial scales, from catchment to global, and can produce both transient and steady-state water-table outputs.

The objective of this paper is to fully explain the methodological structure of the WTM and share examples of the results

it can produce. In Sections 2 to 5 and the related Appendices A to E, we describe in full this methodology. In Section 6, we

provide results from a steady-state climate-driven present-day WTM simulation for North America. Here, the climate-driven

present-day water table is impacted by recent, human-influenced climate and topography, but other anthropogenic impacts65

such as water extraction from pumping are not included. We also present a Last Glacial Maximum (LGM) WTM simulation

for North America, as well as a series of transient simulations for this region from 21,000 to 16,000 calendar years before

present.

Figure 1. The water table, incorporating groundwater and lake surfaces, is an integral part of the global hydrologic system, interacting with

all of the other major hydrologic stores, including ice, ocean, and atmosphere. In this figure, solid blue arrows indicate direction of surface-

water flow, and dotted darker blue arrows indicate direction of groundwater flow.

2 Model summary

The WTM (Callaghan, 2023) simulates water-table elevation relative to the land surface (here referred to as relative water table70

elevation, or zwr), inclusive of both groundwater and dynamically changing lake surfaces. Water table is controlled by sea level,

topography, and water inputs (precipitation, icemelt) and outputs (evapotranspiration, open-water evaporation). Groundwater

flow is dependent on local hydraulic conductivity, discussed further in Section 3.2, and slows in permafrost regions.
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Within the WTM, separate model components for simulation of groundwater (Section 3) and dynamic lakes (Section 4)

are run sequentially in a repeated cycle to permit feedbacks between ground- and surface water in the terrestrial hydrological75

system (see Fig. 2). Both groundwater and dynamic lake components use the same sets of input data and modify the same

water table array to produce one final water table, with groundwater represented as negative zwr values and lakes as positive

zwr values. Any water that exfiltrates during the groundwater step is moved downslope and into lakes or the ocean during the

surface-water step; conversely, seepage from lakes may occur during the surface-water step and lake-water is included in the

hydraulic head field used to calculate groundwater movement.80

The WTM is implemented in C++. The code can be acquired from Github (https://github.com/KCallaghan/WTM, last access

30 April 2024) and Zenodo (v2.0.1, https://zenodo.org/records/10611076).

The WTM captures broad natural patterns in water table elevations. Its simplified treatment of groundwater flow makes it

most appropriate for large spatial scales, from continent-spanning catchments to the globe, and its assumption that surface

water always completes its travel to depressions or to the ocean makes the WTM most appropriate for long temporal scales,85

from months to millennia. In addition to transient simulations, the WTM can also be used to simulate a steady-state water table

for any given set of conditions. For steady-state model runs, the user must run the model for long enough to allow the water

table to equilibrate to the given topography and climate. If users wish to monitor change in the water table, values indicating

the total change in the array are saved to a text file, and the full water table is saved at user-defined intervals. For transient runs,

the user will simply select the amount of time for which to run the simulation, and provide input data at the start and end points90

of the simulation. The input data required by the WTM are listed in Appendix A1. As an output, the WTM returns a 2D array

zwr, which equals the water-table elevation minus the land-surface elevation (positive values indicate exposed surface water

while negative values indicate groundwater).

Figure A1 demonstrates the steps followed within the coupled model. Note that the only practical difference between a

steady-state and a transient model run is that the transient model run includes the possibility for topographic and climatic95

change, which requires that input files be modified and the depression hierarchy be recalculated during the course of the

simulation.

3 The Groundwater Component

3.1 Computing the groundwater table

We compute the groundwater table at each time step using the 2D horizontal groundwater flow equation (Equation 1) for100

saturated groundwater flow in an unconfined, heterogeneous aquifer (Freeze and Cherry, 1979). This method invokes the

Dupuit–Forchheimer approximation, which posits the assumptions that flowlines are horizontal and that the hydraulic gradient

is equal to the slope of the water table and does not vary with depth below the water table.

Sy
∂h

∂t
=

∂

∂x

(
T

∂h

∂x

)
+

∂

∂y

(
T

∂h

∂y

)
+ R. (1)
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Figure 2. A schematic of the WTM. (a) A cross section across a hypothetical portion of a landscape, including hillslopes and a depression

that may hold a lake. Inputs to the WTM include precipitation (P), evapotranspiration (ET), surface-water evaporation (ESW, used in the

place of ET when lakes are present), topography, topographic slope, runoff ratio, hydraulic conductivity, porosity, and winter temperature.

A starting water table may be provided or, for steady-state runs, the water table will be initiated at the land surface. (b) The groundwater

component executes and groundwater flow modifies the water table. Here, the water table is deeper below the hilltops and exfiltration has

occurred on hillsides. (c) FSM (the dynamic lake component) has executed. Surface water is now distributed from hillslopes into lakes at

the bottom of depressions. Steps (a) to (c) repeat until the user-defined amount of time steps have been completed. (d) The simulation is

complete and the resulting water table is saved to a file.
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Here we solve for h, the groundwater head. T is the transmissivity (depth-integrated hydraulic conductivity, see Section 3.2). t105

is time. x and y are the two dimensions of groundwater movement. R is recharge; details on how values for R are selected are

given in Section 3.3. Sy is specific yield, here approximated as being equal to porosity and provided as input data by the user.

To solve Equation 1, we use the Scalable Nonlinear Equations Solvers (SNES) component of PETSc (Portable, Extensible

Toolkit for Scientific Computation) (Balay et al., 1997, 2022a, b) in C++. Full details on the discretisation and implementation

of this equation are given in Appendix B.110

In the simulations included within this paper, we use the Anderson (1965) Mixing method (selectable at runtime), which

iteratively solves nonlinear equations, to compute groundwater head, h, at regular time intervals. Converting h to the relative

water-table elevation, zwr, is trivial: zwr = z + h, where z is the elevation of the land surface.

3.2 Transmissivity

Transmissivity (T ) — the depth-integrated hydraulic conductivity from −∞ to zwr — is needed to solve for groundwater flow115

(see Appendix B). To obtain T , we require knowledge of hydraulic conductivity values through the entire depth of the aquifer.

Data on variability of hydraulic conductivity with depth are not available at the spatial scales we assess here, so we follow

the common assumption that this value decreases exponentially with depth (Ameli et al., 2016; Cardenas and Jiang, 2010; Fan

et al., 2013). Users provide a single near-surface hydraulic conductivity value in each cell of the domain, which is used from

the land surface to a depth of 1.5 m because global soil datasets are representative of the conditions until approximately this120

depth. We term this K1.5. Beyond depths of 1.5 m, hydraulic conductivity decays exponentially from this near-surface value.

We specify the rate of this exponential decay using an e-folding depth (fd). Local terrain slope is used as a modifier: steeper

slopes support less sediment and so hydraulic conductivity decays more rapidly. A temperature-dependent modifier (Tf ) further

decreases the e-folding depth at locations where seasonal frost or permafrost occur:

fd = f ×Tf , (2)125

where f is the slope-dependent term, defined as:

f = max
(

fmin ,
a

1 + bS

)
, (3)

where S is the terrain slope; and a, b, and fmin are user-selected calibration constants.

Tf is incorporated into the e-folding depth following the method and temperature ranges used by Fan et al. (2013). When the

average winter temperature drops below−5◦ C, we assume that seasonal frost inhibits groundwater flow. When average winter130

temperatures fall below −14◦ C, we assume that groundwater flow is affected by permafrost. This limits lateral drainage,

reducing the effective hydraulic conductivity (Fan and Miguez-Macho, 2011). We define Tf as:

Tf =





1, if (TC >−5◦C)

1.5 +0.1TC , if (−14◦C < TC <−5◦C)

max(0.17 +0.005TC , 0.05), if (TC <−14◦C),

(4)
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where TC is the temperature in degrees Celsius.

With this hydraulic conductivity structure in hand, we calculate transmissivity. We consider three possible cases:135

1. The water table lies below 1.5 m depth, where the exponential decay of hydraulic conductivity comes into play. We must

use the fd values computed earlier.

2. The water table lies in the shallow subsurface, above 1.5 m depth, where the unmodified hydraulic conductivity from our

input data are representative of conditions at the water table.

3. The water table lies above the land surface. In this case, hydraulic conductivity is calculated at the level of the land140

surface (i.e. it is identical to that for a fully saturated substrate). The dynamic lake component (Section 4) later moves

the surface water into depressions or out of the domain as appropriate.

Based on these three cases for hydraulic conductivity, we follow the methods used by Fan et al. (2013) to calculate transmis-

sivity as:

T =





fd×K1.5× exp
(

zwr+1.5
fd

)
, if (zwr <−1.5m) ← deep subsurface

K1.5× (zwr + 1.5 + fd), if (−1.5m≤ zwr ≤ 0m) ← shallow subsurface

K1.5× (0 +1.5 + fd), if (0m < zwr) ← above surface,

(5)145

where T is the transmissivity, fd is e-folding depth (Equation 2), K1.5 is the shallow sub-surface horizontal hydraulic con-

ductivity (assumed valid to a depth of 1.5 m), and zwr is the relative water-table elevation. See Fan et al. (2013) for more

information on the derivation of these formulæ.

3.3 Recharge and evaporation

We use the climatic water input (Win, including precipitation and any other incoming water, such as icemelt), overland evap-150

otranspiration (ET ), and open-water evaporation (ESW ) input arrays (see Appendix A1 for a full list of all required input

arrays) along with the optional runoff ratio array (rr) to determine how much water is available to recharge the groundwater

table and how much surface water will evaporate.

When surface water is present, evaporation rates typically increase. Physically, this is because actual evaporation is able

to equal potential evaporation. Both physically and algorithmically, this typically acts as a feedback that slows runaway lake155

growth by decreasing the catchment-wide water balance as the lake surface area increases. If lakewater is present in a cell, then

sufficient evaporation can subtract water from the cell; in cells that do not contain lakes, sufficient evapotranspiration can mean

that there is no water available to add to groundwater, but the earth surface shields the groundwater itself from evaporation.

To account for the changes in evaporation dependant on the presence of surface water, the WTM recalculates the total water

input to each cell (Equation 6) at the beginning of each groundwater–surface-water model cycle. This total water input (Wtot)160

is given by:

Wtot =





max(Win−ET,0) if zwr ≤ 0 ← subsurface

Win−ESW if zwr > 0 ← above surface,
(6)
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Optionally, a user can provide a spatially distributed runoff ratio, rr, which sets the proportion of incoming water that runs off

over the land surface rather than infiltrating into the subsurface. This runoff is routed overland via the dynamic lake component

of the model, discussed in Section 4, and the remaining water is treated as local recharge and applied to the water table. If165

unassigned, rr = 0 by default.

The amount of runoff, r, in each cell where Wtot > 0 is:

r = rrWtot. (7)

As its complement, recharge is defined as:

R = Wtot− r. (8)170

Equation 8 indicates that the WTM neglects unsaturated-zone processes. We made this design decision for three reasons.

First, we sought to maintain the simplicity of the modelling framework in order to understand and interpret its results. Sec-

ond, the time-scale of unsaturated-zone processes becomes increasingly negligible with longer-term simulations (Sousa et al.,

2013), and so we choose to neglect these in the multi-millennial-scale simulations we include here. Third and most impor-

tantly, simulating the unsaturated zone is computationally expensive (Maxwell et al., 2015) and prohibits the multi-millennial175

continental scale model runs that we show in this work.

4 The dynamic lake component

The dynamic lake component uses a parsimonious graph-based approach to move surface water into depressions and to com-

pute surface-water storage within these depressions. Depressions are defined as inwardly draining regions within the topogra-

phy, where water would naturally pool without being able to flow away. The dynamic lake component proceeds in two steps:180

(1) It computes a depression hierarchy (Barnes and Callaghan, 2020) based on an input digital elevation model (DEM), and (2)

it uses the Fill–Spill–Merge method, modified to include lake seepage and, optionally, infiltration, to rapidly allocate runoff to

these depressions (Barnes et al., 2021) and to calculate the resulting depth of surface water in all of the depressions.

4.1 The depression hierarchy

Understanding the topological and geographical relationships between depressions in the landscape allows us to more rapidly185

calculate how these depressions will trap and store water. An unfilled depression will retain water that flows into it, while a

depression that is already filled with water will overflow either to another depression or to the ocean. The depression-hierarchy

algorithm builds the depression hierarchy data structure (Barnes and Callaghan, 2019) by analysing the input topography to

determine the locations of internally drained depressions and their catchments. We use this data structure (see Barnes and

Callaghan, 2019, 2020, for a full description) to compute surface-water flow using Fill–Spill–Merge, discussed in Section 4.2.190

The depression hierarchy is scale independent, though the accuracy of the computed depression network depends on the quality

and resolution of the input DEM.
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In this work, we have modified the original depression-hierarchy code described by Barnes et al. (2020) in two critical ways.

First, we relaxed the assumption of uniform grid-cell size. Second, we now account for groundwater storage in each cell.

4.1.1 Latitude-dependent variable cell areas195

When performing computations using geospatial data represented on a latitude-longitude grid, cells at higher latitudes will have

smaller areas than cells at lower latitudes due to the roughly spherical shape of the Earth. Therefore, we generalise the code to

allow for latitude-dependent variable cell sizes (Callaghan, 2023). This modification is crucial for our ability to conserve water

volume as water moves from cell to cell.

4.1.2 Groundwater storage200

Here, we modify the depression hierarchy to record the volume available for water storage below the land surface in a given

depression (i.e., the groundwater space below cells that may receive an influx of surface water). This allows the algorithm to

more accurately assess the total capacity for water storage in each depression. This change was necessary for use in the WTM,

because we consider both surface and groundwater. When the water table is below the land surface, we assume that the ground

will become saturated before surface water begins to fill the depression.205

4.2 Fill–Spill–Merge

The WTM computes lake levels using the Fill–Spill–Merge (FSM) algorithm (Barnes and Callaghan, 2020; Barnes et al.,

2021). FSM rapidly routes surface water downslope into depressions using a depression hierarchy (Section 4.1), Barnes et al.

(2020). If a depression has been filled by precipitation or run-off to the point where it can’t contain any more water, that

depression will spill, sending any additional water to its neighbouring depression. If two neighbouring depressions are both210

filled, they will merge to form a larger metadepression, which will then continue to fill with water. This process continues

until all surface water flows either to a depression or to the ocean. This combination of a depression hierarchy and FSM solves

the above flow-routing and water-distribution problem thousands of times faster than previous models (Barnes and Callaghan,

2019; Barnes et al., 2021).

FSM is time-independent, always moving surface water to its final destinations in depressions, the ocean, or out of the215

model domain within a single time interval. We apply this in the WTM under the assumption that surface water movement

is fast in comparison to that of groundwater, and that only equilibrated surface-water results are needed over the time-scales

we address using the WTM. Overland flow, including streamflow, is implied through the calculation of flow directions and the

final locations of standing water, but is not explicitly modelled. The output of FSM is an array showing the updated zwr, after

infiltration has (optionally) occurred and surface water has either flowed into depressions to form lakes or exited the domain.220

In this work, we add optional infiltration, discussed in section 4.2.1, to the original FSM algorithm from Barnes et al. (2021).

We also implement seepage from lake cells (Section 4.2.2) and allow cell size to vary with latitude (Section 4.2.3).

9
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4.2.1 Infiltration

Here, we add an optional infiltration component to FSM. When the infiltration option is enabled, the FSM algorithm first

moves surface water downslope cell-by-cell, using the flow directions generated by the depression hierarchy. As the water225

moves downslope, some may infiltrate; the remainder continues along the flowpath until it flows into the ocean, out of the

domain, or into a pit cell (that is, the cell within a depression that has the lowest elevation).

When the infiltration option is disabled, the land surface will be treated as impermeable in order to simulate rapid evacuation

of surface water from each cell via river networks. To speed calculations, the algorithm will skip cell-to-cell water flow and

instead will use the depression hierarchy data to move water directly from each surface water-containing cell to the relevant230

depression in the hierarchy.

Our method for managing infiltration considers the vertical hydraulic conductivity within the cell, the travel time of water

across the cell, and the amount of unsaturated below-ground space in the cell that can potentially accommodate infiltrating

water. For full details on the method used, see Appendix C. Here, we summarise the amount of infiltration (I) that occurs in a

cell with the equation:235

I = min(−ϕzwr , Ipot) , (9)

where infiltration is the minimum value of the amount of unsaturated below-ground space, or subsurface porosity (ϕ) multiplied

by negative relative water table elevation (−zwr), and the maximum potential infiltration (Ipot) that could occur in that cell.

Ipot is defined as:

Ipot =





h0 if h
5/3
0 ≤ 5

3
n

S1/2 ksat∆L

ksattI otherwise,
(10)240

where h0 is the initial height of water entering the cell; n is the Gauckler–Manning coefficient, here set to a default value of

0.05 m−1/3s; S is the slope; ksat is the infiltration rate; and tI is the transit time of water across the cell.

Use of the infiltration module is only recommended for cases in which the input data have a high enough resolution to

resolve hillslopes and river channels that wholly occupy distinct individual cells. When using coarser resolution input data, a

single pixel will contain sections of both river network and hillslope, and the model will not have sufficient information about245

the transit routes and times of water across these different zones, themselves determined by drainage density and hillslope

geometry, to realistically simulate infiltration. When input data resolution becomes high enough to differentiate these hillslope

and channel components of the landscape, the infiltration component adds an additional element of realism to the model.

4.2.2 Seepage

When a lake is present in a depression, we allow the water column to instantaneously seep into the subsurface until either250

(a) the full subsurface is saturated or (b) no surface water remains. The WTM does not simulate any perched water tables; a

lake surface represents the water table with complete saturation up to that elevation.
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4.2.3 Variable cell areas

As mentioned in Section 4.1.1, cell areas for unprojected geospatial data can vary dramatically based on latitude. The same

volume of water at two different latitudes would translate to a different thickness of ground- or surface water in a cell. As with255

the depression hierarchy, we account for this variable cell area when calculating zwr, allowing us to conserve water volume

within the model.

5 Computational performance

In a scaling test, we found an approximately O(n2) scaling between runtime and the number of cells in the domain. Our

test used several square-sized datasets from the GEBCO2020 dataset GEBCO Bathymetric Compilation Group (2020) with260

the smallest dataset spanning 54 to 55 ◦N and 102 to 103 ◦W and the largest dataset spanning 43 to 73 ◦N and 74 to 104
◦W (northeastern North America). We used uniform values for other input data (precipitation, evapotranspiration, porosity,

hydraulic conductivity, winter temperature). Scaling tests were run on a desktop computer with an Intel(R) Core(TM) i9-10900

CPU @ 2.80GHz processor with 2 threads per core, 10 cores per socket, and 134 GB RAM. For larger datasets, such as those

shown in Section 6 below, high-performance computing (HPC) is recommended.265

In this scaling test, the SNES convergence tolerance (stol) was set to 10−6f and the Anderson (1965) solver was used (this

solver is recommended for all WTM runs). The majority of the computation time is spent in solving for groundwater flow;

performance metrics for FSM alone are given by Barnes et al. (2021).

The balance between performance and cell count makes it possible to perform simulations at a continental scale with a

30-arcsecond cellsize, as described below in Section 6. Smaller topographic areas could reasonably be simulated with corre-270

spondingly finer spatial resolutions.

6 Example: North America

To demonstrate the capabilities of the WTM and benchmark it against both models and data, we have computed the steady-

state water table across North America in the climate-driven present day (∼1958-2018). We do not simulate direct human

interventions (e.g. groundwater pumping or irrigation), but the results inherently incorporate human impacts on climate and275

topography through the input data. We include comparisons between these model results and similar calculations – albeit

without dynamic lakes – performed by Fan et al. (2013) and Reinecke et al. (2019b) as well as against groundwater-level (Fan

et al., 2013), wetland (Zhang et al., 2023a), and lake-level (Kourzeneva et al., 2012) observational data. We also include a

simulation of the steady-state water table at the LGM, which is run on a paleotopography that accounts for glacial isostatic

adjustment (GIA) and is forced by past ice sheets (Peltier et al., 2015) and paleoclimate GCM outputs (He, 2011). The resulting280

water-table pattern differs significantly from the present-day simulation, including proglacial lakes, pluvial lakes, and changes

in groundwater levels. Finally, we include a simulation of transient water-table change from 21,000 to 16,000 calendar years

before present. This simulation used the equilibrated LGM simulation as an initial condition. Simulated water-table variability
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amounted to 4.5 cm sea-level equivalent, demonstrating the dynamic potential of the terrestrial hydrological system on the

global water budget.285

6.1 Equilibrium run: present day

We used the WTM to simulate the present-day climate-driven water table for the North American continent (Fig. 3) at a spatial

resolution of 30 arcseconds. Details on the input data used are given in Appendix E. The groundwater table was computed in

steps of 1/10 years, with FSM executed once per year.

Figure 3. Simulated climate-driven water table for present day North America. Positive values indicate lake depths and negative values

indicate the depth of groundwater tables beneath the land surface. The basemap includes ocean (pale cyan) and land (grey). Continental ice

thickness from ICE-6G (Peltier et al., 2015) varies from blue-grey (thin) to white (thick), with most modern ice being thin.

To reach steady-state, we ran this simulation for over 20,000 years. This is significantly longer than the global median290

groundwater response time of 5727 years noted by Cuthbert et al. (2019a); furthermore, Cuthbert et al. (2019a) provide a

groundwater response time of 1238 years when excluding hyper-arid regions and note that approximately 25% of Earth’s land

surface responds in under 100 years. To confirm whether our simulation had reached a reasonable degree of equilibration, we
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computed e-folding response times for the equilibration of our simulated water table for every cell in the domain. We found

that the median e-folding response time for our present day WTM simulation was 2792 years.295

This simulation captures broad climate-driven patterns in zwr at a continental scale. The drier climate in the west results in

deeper water tables while wetter climates in the north and east result in shallower water tables. Variable geology and topography

add detail to this overall pattern driven by the climatic gradient.

6.1.1 Comparison to observations

Here, we compare our simulation result to observed groundwater-table depths, lake depths, and wetland extents. Together,300

these observations cover 11.3% of the cells within our North American domain. This coverage comprises 11% groundwater

wells, 50% lake cells, and 39% wetlands.

Groundwater-table data come from an extensive archive of water table observations gathered by Fan et al. (2013). We cleaned

these data to remove readings where ‘nodata’ values were provided for either water table or topography, and removed those

with negative water-table depths or with depths greater than the maximum well depth for the dataset. After this cleaning, more305

than 900,000 data points remained. In cases with multiple data points per 30 arcsecond grid cell, we averaged the values,

leaving over 500,000 cells containing groundwater observations.

We obtained lake extents and depths from the Kourzeneva et al. (2012) lake-bathymetry dataset. This contains spatially

distributed bathymetric data for large lakes and mean depths for thousands of smaller lakes. When depth was unknown, this

dataset uses a default value of 10 m.310

Wetlands are from the Zhang et al. (2023a) wetland map. We included all wetland classes with the exception of ‘permanent

water’ (i.e. lakes). We assumed that wetlands had a relative water table elevation equal to 0 m, i.e. that the water table was at

the land surface.

We compare the WTM results to the observed groundwater, lake, and wetland data in Fig. 4. Because lake and wetland

data cover a much larger spatial area than the groundwater data, they appear as higher proportions in these histograms. The315

histograms also emphasise several issues with the observed dataset: (1) the Kourzeneva et al. (2012) lake dataset provides

only mean depths for a majority of the lakes included, resulting in peaks at certain values that are not matched in simulation.

Notably, the peak at 10 m depth corresponds to the default depth chosen by Kourzeneva et al. (2012) when lake depth was

unknown. (2) Although we assume wetland water tables to represent water tables exactly at the land surface, they may in reality

lie above or below it. Our assumption that wetlands have water table equal to the land surface results in a peak in the data at320

0 m, while near-zero values remain undersampled. (3) Groundwater wells might not be sampling over the full range of actual

groundwater depths, especially in locations with very shallow or very deep water tables (Fan et al., 2013). (4) Groundwater

pumping may occur at or near some wells, depressing the observed water table. These issues may account for a substantial

amount of the discrepancy seen between simulation and observations. Improvements in observed data in the future will enable

us to better test simulated results. Improvements in model inputs as input gridded data products, including observations and325

simulations of topography and climate, improve should also increase the accuracy of WTM results in the future.
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Scatter plots show some variation between simulated and observed water table on a cell-by-cell basis (Fig. 5), though it is

notable that many simulated cells match the observations. The many potential reasons for any discrepancies include seasonal

variations in observed data; water table not being at steady-state in the real world; and differences in water table and topography

within the 30 arcsecond cell size. On the other hand, there is a very close agreement between modelled and observed hydraulic330

head, indicating that hydraulic head is likely dominated by the topographic signal.

Figure 4. Simulated versus observed present day climate-driven water table in North America. (a) Relative water-table elevation; (b)

hydraulic head. Observations include lake, wetland, and groundwater-well data from Kourzeneva et al. (2012), Zhang et al. (2023a), and Fan

et al. (2013), respectively. A small proportion of both observations and simulated relative water-table elevations and heads lie outside the

x-axis limits.
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Figure 5. Observations vs. WTM simulation results. (a) Relative water table elevation; (b) Hydraulic head. These comparisons include

only those model cells that contain observations.
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6.1.2 Comparison to other simulations

Here, we compare results from the WTM’s present day simulation to results from two steady-state simulations of present-day

climate-driven groundwater table for North America: Fan et al. (2013) and Reinecke et al. (2019b) (G3M).

Fan et al. (2013) completed their simulation at a spatial resolution of 30 arcseconds. They did not include lakewater, instead335

assuming that all water above the land surface would either evaporate or run off. Comparison to the WTM is shown in Fig.

6(a) and (b). G3M (Reinecke et al., 2019b) had a coarser spatial resolution of 5 arcminutes, meaning that 100 cells from our

WTM run fit within each G3M cell. Like WTM, G3M focuses on simplicity and drives groundwater flow with hydraulic head.

However, G3M treats surface water as a static boundary condition with prescribed proportions of lake and wetland extent in

each model cell. Positive water-table elevation values in the G3M outputs do not represent actual lake depths, and surface water340

may be exported to the static lake and wetland classes (not included within their results). Comparison to the WTM simulation

is shown in Fig. 6(c) and (d).

The inclusion of dynamic lakes in the WTM simulation accounts for a large proportion of the difference in relative water-

table elevation distribution between this and the other two simulations. We note that because of the inclusion of lake surfaces in

our work, we also expect water tables in areas surrounding lakes to be higher than those simulated by Fan et al. (2013) or G3M345

(Reinecke et al., 2019b). The WTM has, as expected, positive relative water-table elevations (indicative of lake depths) and a

larger proportion of cells in the -0.5 m to 0.5 m range (incorporating shallow groundwater) than both of the other simulations.

The Fan et al. (2013) and G3M (Reinecke et al., 2019b) simulations make up these proportions in slightly deeper groundwater

categories. The significantly lower proportion of cells in the -0.5 m to 0.5 m range in the G3M simulation may be a result of

export of this water to their wetland and lake classes, which were not provided in their results. Head values, which are largely350

dominated by topography, match well across simulations. The WTM output contains fewer low-head values than either of the

other simulations. This may result from the inclusion of lake surfaces in the WTM, which increases average head.

6.2 Equilibrium run: North America at the Last Glacial Maximum

21,000 calendar years before present (21 ka), at the LGM, the world was on the brink of experiencing thousands of years of

dramatic sea level rise, ice retreat, and changing climate. Lower sea level, greater ice extent, and different climate at the LGM355

all mean that water table at this time also differed from today’s. We used the WTM to simulate steady-state water table for the

North American continent at 21 ka (Fig. 7; input data: Appendix E), both as a test of a different climate and geography and as

an initial condition for transient simulations demonstrated in Section 6.3.

From 30 to 20 ka, sea level and ice extent changed relatively little compared to the deglaciation that followed (Lambeck

et al., 2014). Therefore, although it is still unlikely that the water table was fully at a steady-state, it is a more reasonable360

assumption at the LGM than in any subsequent time until the Late Holocene. To reach steady-state, we ran this simulation

for over 20,000 years, again noting that this is significantly longer than the present-day global median groundwater response

time of 5727 years (Cuthbert et al., 2019a). As before, we evaluated the e-folding response time within our LGM simulation

of North America, and found it to be 4559 years.
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Figure 6. Comparing the WTM-computed present-day results against (a,b) the Fan et al. (2013) simulation results and (c,d) G3M

simulation results. These histograms compare probability density functions of relative water-table elevation (left column) and hydraulic

head values (right column), with the WTM simulations in shaded grey and the other simulations as a black line. Note the y-axis break in (a)

and (c) to accommodate the peak of near-0 values.
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Figure 7. Simulated water table for North America at the LGM (21 ka). Positive values indicate lake depths and negative values indicate

the depth of groundwater tables beneath the land surface. The basemap includes ocean (pale cyan) and land (grey). Continental ice thickness

from ICE-6G (Peltier et al., 2015) varies from blue-grey (thin) to white (thick).

In the same way as the present day simulation, we computed the groundwater table using 0.1-year time steps and updated365

surface water using FSM once per year. The spatial resolution used was 30 arcseconds. Results of this simulation are shown in

Fig. 7.

In comparison with the present-day climate-driven water table shown in Fig. 3, the LGM water table is noticeably higher in

the eastern portions of the continent, and there is significantly more lake-water visible in the west and south (Fig. 8(a)). Note

also the larger ice extent and lower sea level at LGM. Broadly speaking, the changes in water table depth matches changes in370

P −ET (precipitation minus evapotranspiration) (Fig. 8(b)). Most regions with increased P −ET experienced rising water

tables, and vice versa. The ice sheets and associated glacial isostatic adjustment also played a role: Ice thickness provided a

pressure head that drove both surface-water and groundwater flow, and its melt both added water and altered the “topography”,

which here also includes ice-sheet contributions to driving flow (see LGM ice extent on Fig. 7 and Fig. 8). GIA primarily

caused land uplift in the simulated time period, thereby increasing elevation head. The higher head values in northern North375
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America at LGM (from overlying ice) may have played a role in moving groundwater further south – consistent with the

model-based findings of Lemieux et al. (2008) – resulting in higher water tables to the south of the ice sheet margin at that

time.

In total, water tables at the LGM are higher than those in the present day (Fig. 3), with the difference between the two

simulations amounting to 6.0 cm SLE (approximately 21.8 million billion litres of water). Over this time period, lake storage380

increased by 5.8 cm SLE – predominantly as a result of the Great Lakes becoming deglaciated. Despite this change in lake

volume, we can observe in Fig. 7 that many now-vanished lakes existed, especially along the ice margin and in now-arid

regions. Meanwhile, groundwater storage decreased by 11.8 cm SLE from the LGM to the present day. This change appears to

be largely driven by changes in climate. Note that both simulations assumed a steady-state water table and this result may be

different when simulating a transient change in water table.385

6.3 Transient run: Changes in the North American water table over 5,000 years

We demonstrate the transient-simulation mode of the WTM by evolving the North American water table for 5,000 years,

starting from its 21 ka steady state (see Fig. 9). During this early portion of the deglaciation (21 ka to 16 ka), warming

climate (He, 2011) led to modest ice-sheet retreat (Peltier et al., 2015). Sea level slowly began to rise (Austermann et al.,

2013; Gorbarenko et al., 2022). The initialisation of ice-sheet retreat and associated glacial isostatic adjustment permitted390

significant growth of proglacial lakes (Austermann et al., 2022). Changing climate and ice volume would also naturally impact

groundwater storage.

In our simulation, water-table elevation generally decreases, especially at the southern tip of the continent, closely matching

the changes in P −ET . Mean water table for the continent dropped by 0.8 metres from −2.73 m to −3.53 m. Total ground-

water and lake-water storage in North America decreased by 4.3 cm SLE (see Fig. 10). This decrease was predominantly in395

groundwater (4.5 cm SLE), while lake storage saw a slight increase (0.2 cm SLE). Lake migration is visible – Fig. 9 shows a

small area of increased water table just to the north of a small oval of decreased water table as a lake shifts with the melting ice

sheet. The most rapid change in groundwater storage occurred from 17 to 16.5 ka, following 500–1000 years after a rapid drop

in P −ET in the inputs from the TraCE-21K climate simulation (He, 2011) associated with Heinrich Event 1. In these sim-

ulated inputs, the meltwater-forced reduction in Atlantic Meridional Overturning Circulation (AMOC) strength corresponded400

to a continentally averaged ∼15% reduction in precipitation relative to the Last Glacial Maximum (see Fig. 10).

7 Conclusions

Long-term change in the water table impacts the whole hydrologic cycle, including sea level and climate. Despite this, little is

known about the changing water table over time scales longer than decades. The WTM provides the new capability to compute

long-term, continental-scale changing water tables and terrestrial water storage. The WTM’s simple input requirements mean405

that it can simulate water tables in the distant past or in the future as climate continues to change. Initial model runs indicate
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Figure 8. Present day climate-driven water table minus LGM water table (a). The Great Lakes filled with water following their deglacia-

tion. Warmer and drier climate (b) reduces terrestrial water storage more broadly, and especially in the west. The solid dark grey line on panel

(b) represents the ice extent at LGM.
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Figure 9. Water table depth at 16 ka, and change since the LGM. (a) shows simulated water table for North America at 16 ka. Positive

values indicate lake depths and negative values indicate the depth of groundwater tables beneath the land surface. The basemap includes

ocean (pale cyan) and land (grey). Continental ice thickness from ICE-6G (Peltier et al., 2015) varies from blue-grey (thin) to white (thick).

In (b), the change in water table since the LGM is visualised (16 ka water table minus 21 ka water table). (c) shows the change in P-ET from

21 ka to 16 ka. The 21 ka ice margin is shown in dark grey, and the 16 ka ice margin, which sometimes lies atop the 21 ka ice margin, is

shown in medium grey.
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Figure 10. Changes in stored water as a sea level equivalent and mean annual P-ET throughout the transient simulation. The total

change in stored water is the sum of the groundwater and surface-water changes. P-ET is scaled to the secondary y-axis.

that water storage across a continent can change by several centimeters SLE under natural climate change, and that changes in

water-table depth broadly follow the patterns of changing P −ET .

Code availability. Complete, well-commented source code for the WTM is available on GitHub (https://github.com/KCallaghan/WTM/,

v2.0.1) and Zenodo (https://doi.org/10.5281/zenodo.10611076, v2.0.1).410

Appendix A: Model inputs, logical flow, and outputs

A1 Data input requirements

The WTM requires the following 2D, horizontally distributed input arrays for all steady-state or transient model runs:

– Topography: Land elevation above sea level [metres]. At the user’s discretion, this may be modified to include overlying

ice.415

– Slope: Topographic slope, which should be based on the input topography data [unitless].

– Ocean mask: A binary mask with 1 values indicating land cells and 0 values indicating ocean cells.

22

https://doi.org/10.5194/gmd-2024-131
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



– Climatic water input: Precipitation and, if appropriate, ice melt or any other water entering the system [metres per

year].

– Evapotranspiration: Evapotranspiration occurring over land (actual ET) [metres per year].420

– Open-water evaporation: The evaporation that will occur when there is open surface water (i.e. a lake: Appendix D)

(potential ET) [metres per year].

– Winter temperature: Temperature during the months of December, January, and February (Northern hemisphere) or

June, July, and August (Southern hemisphere) [◦C].

– Shallow sub-surface hydraulic conductivity – horizontal: Horizontal hydraulic conductivity (K1.5 in Equation 5),425

representative of near-surface conditions [metres per second].

– Porosity: Shallow sub-surface porosity (ϕ in Equation 9) [unitless].

For transient model runs, separate input arrays are required for the start and end times for topography, slope, climatic water

input, evapotranspiration, open-water evaporation, winter temperature, and runoff ratio (optional). The values of these arrays

will change linearly through time from the start to the end values. In addition, transient model runs require a starting relative430

water-table elevation.

In some cases, the following optional input data may be used:

– Starting relative water-table elevation: This input, required for transient model runs, is also provided as an option

for steady-state runs. This allows users to reach steady-state more rapidly if there is some initial knowledge about the

water table; or it allows users to break the model run up into several shorter runs by using previous outputs as an input435

for this array. The relative water-table elevation (zwr) is defined as the water-table elevation minus the elevation of the

land surface [metres]. Positive values indicate the presence of a lake, while negative values indicate groundwater table.

If this input is not supplied, zwr will be initialised at 0 (equal to the land surface) and the model should first be run to

steady-state before any transient model runs can be performed.

– Runoff ratio: (optional, at user’s discretion). If provided, precipitation minus evapotranspiration (P-ET) will be split into440

groundwater recharge and overland runoff using this array of runoff ratios. If not provided, all P-ET is used as recharge

and is added directly to the groundwater table in the cell in which it falls.

– Shallow sub-surface hydraulic conductivity – vertical: (optional: only required if the infiltration option is enabled,

Section 4.2.1) Vertical hydraulic conductivity, representative of near-surface conditions [metres per second]. If this input

is not provided, the infiltration option must be disabled.445
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Figure A1. Steps taken by the WTM. The two red boxes indicate the components used to couple groundwater and surface water.
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A2 Logical flow

The logical flow of the WTM is shown in Fig. A1. Model inputs, as described in Appendix A1, are provided and the depression

hierarchy for the given topography is calculated. In transient runs, the input files are updated through time as conditions

change; the depression hierarchy is recalculated as topography changes. The model then adds the appropriate recharge to

the water table and moves groundwater, moves surface water, and then calculates the climatic water balance (precipitation450

minus evapotranspiration, plus icemelt or any other water inputs/outputs) for the next time step. The evapotranspiration field

is updated to use the Penman-equation result (Appendix D) (‘open water evaporation’ input file) wherever the the water table

lies above the surface, and the evapotranspiration input file elsewhere. The model concludes after it reaches the prescribed total

number of time steps. At this point, it writes outputs to file. Outputs are also saved at regular intervals throughout the model

run.455

A3 Outputs

The WTM generates two outputs:

– Relative water-table elevation (gridded raster), saved at the end of the model run and at regular intervals throughout.

– A text file recording the number of cycles completed and the amount of water table change occurring during each step

of the simulation.460

Appendix B: Solving the non-linear groundwater equation

We solve for the change in groundwater head through time using the 2D horizontal groundwater equation for saturated ground-

water flow in an unconfined aquifer, in a heterogeneous medium, which is assumed to be horizontally isotropic due to a lack

of directional data for hydraulic conductivity (Freeze and Cherry, 1979). We invoke the Dupuit-Forchheimer theory of free-

surface flow, which works on two assumptions: (1) flow is horizontal, and (2) the hydraulic gradient is equal to the gradient of465

the water table surface and does not vary with depth. The equation is:

Sy
∂h

∂t
=

∂

∂x

(
T

∂h

∂x

)
+

∂

∂y

(
T

∂h

∂y

)
+ R, (B1)

where h is the groundwater head, T is the transmissivity, t is the length of a single time interval, x and y are the two

dimensions of groundwater movement, R is recharge, and Sy is the specific yield of the aquifer, here approximated as being

equal to porosity. Note that our assumptions that the aquifer is unconfined and that groundwater flows in two dimensions470

allows us to use T in this formula, where T = Kh and K is the hydraulic conductivity. More information about our treatment

of Transmissivity is given in Section 3.2.

When using the Dupuit-Forchheimer approximation, discharge, Q, is defined as:

Q =−T
∆h

∆d
(B2)

25

https://doi.org/10.5194/gmd-2024-131
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



(Freeze and Cherry, 1979, Equation 5.28), where ∆d refers to the distance in either the x (S–N) or y (W–E) direction, as475

appropriate.

Combining equations B2 and B1 gives:

Sy
∂h

∂t
=−∂Qx

∂x
− ∂Qy

∂y
+ R. (B3)

Defining Q for each of the cardinal directions gives:

QE =−Ti+1/2

(
ht(i+1,j)−ht(i,j)

∆x

)
(B4)480

QW =−Ti−1/2

(
ht(i,j)−ht(i−1,j)

∆x

)
(B5)

QN =−Tj+1/2

(
ht(i,j+1)−ht(i,j)

∆y

)
(B6)

QS =−Tj−1/2

(
ht(i,j)−ht(i,j−1)

∆y

)
(B7)

Here, i is the cell index along the x (S–N) axis and j is the cell index along the y (W–E) axis. Note that we assess T at cell

boundaries rather than at the cell centres. We do this because mass transfer occurs across these cell boundaries, so calculating485

the gradients here provides more accurate directional water discharges. We indicate this cell-boundary-based calculation with

the +/− 1/2 subscripts.

Substituting these definitions of Q into Equation B3 and expanding the left-hand side gives:

Sy

ht+1(i,j)−ht(i,j)

∆t
=T(i+1/2)

(
ht(i+1,j)−ht(i,j)

∆x2

)
−T(i−1/2)

(
ht(i,j)−ht(i−1,j)

∆x2

)
+

T(j+1/2)

(
ht(i,j+1)−ht(i,j)

∆y2

)
−T(j−1/2)

(
ht(i,j)−ht(i,j−1)

∆y2

)
+ R. (B8)490

Solving for head at the next time step, ht+1, gives:

ht+1(i,j) =
[
T(i+1/2)

(
ht(i+1,j)−ht(i,j)

∆x2

)
−T(i−1/2)

(
ht(i,j)−ht(i−1,j)

∆x2

)
+

T(j+1/2)

(
ht(i,j+1)−ht(i,j)

∆y2

)
−T(j−1/2)

(
ht(i,j)−ht(i,j−1)

∆y2

)
+ R

]
∆t

Sy
+ ht(i,j). (B9)

This equation is now broken down into the thing that we want (ht+1), and things that we know. We solve the equation using

the PETSc SNES solver (Balay et al., 1997, 2022a, b).495

Appendix C: Infiltration of surface water

C1 Transit time across a cell

To calculate the amount of infiltration that happens while water is in transit across a cell, we must consider the total time the

water takes to cross the cell. The more time that the water spends in a cell, the longer it will have to infiltrate. Water will take
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longer to flow across cells that are larger or have shallower slopes, or when the water depth, and hence its flow velocity, is500

smaller.

We use Manning’s equation to estimate the time taken for flow to cross a cell.

u =
1
n

R
2/3
h S1/2, (C1)

where u is the mean (i.e. vertically averaged) velocity of the surface water moving across the cell, n is the Gauckler–Manning

coefficient, Rh is the hydraulic radius, and S is the slope. By default, we set Manning’s n to a value of 0.05 m−1/3s. We505

make the assumption that the height of water in the cell, h, is much smaller than the cell width. This allows us to simplify the

hydraulic radius to equal h:

u =
1
n

h2/3S1/2. (C2)

Because S and n are both constants, for convenience we will combine them in constant k0, where

k0 =
S1/2

n
, (C3)510

so that

u = k0h
2/3. (C4)

The next step is to consider the infiltration rate,

dh

dtI
=−ksat. (C5)

By separating variables, integrating, and defining h = h0 at tI = 0, we obtain:515

h = h0− ksattI . (C6)

We substitute Eq. C6 into Eq. C4 and use the definition of velocity as the time derivative of position to set up the final

equation to integrate:

dL

dt
= k0 (h0− ksattI)

2/3
. (C7)

where L is the displacement in an arbitrary orientation. By separating variables and solving via u substitution, we obtain:520

L = k0

ti∫

0

(h0− ksattI)2/3dt

=−3
5

k0

ksat
(h0− ksattI)5/3 + c, (C8)

where c is the constant of integration. Defining L = 0 when tI = 0 (i.e. that the clock starts when the water first touches the

cell margin), we obtain:

c =
3
5

k0

ksat
h

5/3
0 (C9)
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This gives the distance crossed by the water as:525

L =
3
5

k0

ksat

(
h

5/3
0 − (h0− ksattI)5/3

)
. (C10)

We rearrange this expression to find the amount of time that this transit takes, because this is the amount of time that the

water has to infiltrate within the cell. Solving for the transit time and substituting S and n back in gives

tI =

[
h0−

(
h

5/3
0 − 5

3
n

S1/2
ksat∆L

)3/5
]/

ksat. (C11)

In the WTM, we limit the topographic slope, S, to a minimum value of 10−6 to allow movement over flat cells in the DEM.530

We calculate L based on the directions of travel between the two cells (north–south, east–west, or diagonal), and the latitude

of the cells.

C2 Infiltration

We now know the time tI that it takes the water to cross a cell as a function of the distance travelled by the water from cell

to cell (L), slope (S), and flow depth (h). When water flows across a cell that is not already groundwater-saturated, the flow535

depth will decrease as it crosses the cell due to infiltration. This occurs at a rate governed by the saturated vertical hydraulic

conductivity (ksat); for simplicity, we do not consider transient wetting and drying effects in the unsaturated zone. Some water

will infiltrate and some will continue to flow downslope as infiltration-excess overland flow (Horton and Htrata, 1955). When

water crosses a cell that is already fully saturated, i.e. the groundwater table is at the land surface, no infiltration is possible and

saturation-excess overland flow (Dunne and Black, 1970) will occur.540

There are two possible solutions for the potential total amount of water infiltrated, Ipot:

Ipot =





h0 if h
5/3
0 ≤ 5

3
n

S1/2 ksat∆L

ksattI otherwise.
(C12)

In the first case, the entire column of water that enters the cell can infiltrate before it crosses. For the ‘=’ sub-case, the travel

time is precisely the infiltration time; for the ‘<‘ sub-case, the solution to Equation C11 becomes undefined because the water

all infiltrates before completing its crossing. In the second case, the potential infiltration simply equals the saturated hydraulic545

conductivity multiplied by the amount of time that this water can infiltrate before it crosses the cell; remaining water continues

to flow into the next cell.

Converting Ipot to the actual amount of infiltration that occurs, I , requires consideration of the space available to accommo-

date infiltration water. Combining Eq. C12 with the amount of groundwater space available in the cell, given by −ϕzwr where

ϕ is the subsurface porosity (assumed constant with depth) and zwr is the relative water table elevation, provides the general550

solution:

I = min(−ϕzwr , Ipot) . (C13)

This amount of infiltrated water is then subtracted from the flow depth, h. If h > 0 as the water exits the cell, then it continues

onwards to the next downslope cell.
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Appendix D: Open-water evaporation555

We calculate open-water evaporation by solving and applying the Penman Equation (Dingman, 1994) alongside the Charnock

(1955) expression for the roughness length over open water as a function of wind-induced waves. This evaporation rate over-

rides the input evapotranspiration rate wherever the water table crops out above the ground surface, forming an exposed water

body (Fig. A1). The effects of ice cover are not considered.

The Penman (1948) Equation combines radiative, sensible, and latent heat transfer to solve for evaporation. Though it is560

well-established (Finch and Calver, 2008; Valiantzas, 2006; Vörösmarty et al., 1998; Zotarelli and Dukes, 2010), we choose

to include a brief derivation of the Penman equation due to (1) the central role played by evaporation in our study; (2) the

fact that most derivations center on the Penman–Monteith equation (Monteith, 1965), which involves plant transpiration that

is not relevant to our application to lakes; and (3) our inclusion of a wind-speed-determined roughness length to modulate

wind-driven turbulent energy transfers, which seems reasonable to include but that we have not found in our review of the565

literature. Here we use variable nomenclature that is more common to thermodynamics than to hydrology.

D1 Penman Equation (general form)

The Penman Equation relates evaporation rate (E), which is a latent-heat flux, to net-radiation flux (Rn: incoming and outgoing

shortwave and longwave) and sensible heat flux due to turbulent atmospheric heat transfer (QH,s, where subscript H indicates

enthalpy and s indicates that it is sensible):570

E =
Rn−QH,s

ρw∆Hvap
. (D1)

Here, ρw is water density, and ∆Hvap is latent heat of vaporization of water. These terms in the denominator act to convert the

energy fluxes [W m−2] into evaporation [m s−1].

D2 Input data products

Inputs for our solution come from the TerraClimate and GEBCO_2020 datasets. TerraClimate (Abatzoglou et al., 2018) com-575

prises monthly 2.5-arcminute (∼5 km N–S) gridded data products for:

– Incoming solar (shortwave) radiation

– Monthly averaged minimum and maximum daily temperatures

– Wind speed

– Vapor pressure580

GEBCO_2020 (GEBCO Bathymetric Compilation Group, 2020) is a 15-arcsecond (∼0.5 km N–S) global gridded topographic

and bathymetric dataset. We resampled this to 2.5 arcminutes to match the resolution of TerraClimate.
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D3 Net radiation

In the field, acquiring net radiation requires paired upward- and downward-facing pyranometers and pyrgeometers to measure

incoming and outgoing shortwave and longwave radiation. Here we use a combination of calculations and remotely sensed data585

products to assemble a solar-radiation data product at an appropriate resolution for our contiental-scale modeling example.

TerraClimate (Abatzoglou et al., 2018) provides the incoming shortwave radiation flux, Rin,s. Outgoing shortwave radiation

equals the incoming radiation times the surface albedo α. Therefore, net shortwave radiation, Rn,s, is given by

Rn,s = (1−α)Rin,s. (D2)

We use α = 0.06 as characteristic of open water.590

We lack data on net longwave radiation, Rn,l, but know that (1) outgoing longwave flux is proportional to surface temperature

via the Stefan–Boltzmann Law and (2) that incoming longwave radiation is related to greenhouse gases in the atmosphere that

absorb and re-emit this outgoing radiation. We therefore follow and modify the approach taken by Zotarelli and Dukes (2010)

in approximating the surface temperature by the maximum and minimum air-temperature values, and using vapor pressure and

cloudiness to estimate the impact of greenhouse gases on longwave absorption and re-radiation:595

Rn,l = σ
T 4

max + T 4
min

2

(
0.34− 0.00014e1/2

a

)
C. (D3)

Here, σ is the Stefan–Boltzmann constant, T is temperature in Kelvin, ea is the near-surface atmospheric vapor pressure, and

C is what we choose to call the “cloud function”.

We can estimate the value of the cloud function by the difference between the clear-sky solar radiation, Rin,s,CS, and the solar

radiation received at the land surface, Rin,s. To compute the clear-sky solar radiation, we first compute the top-of-atmosphere600

(i.e., extraterrestrial) solar radiation (Rin,s,TOA): see sunpos.py from Wickert (2020). We then modify it based on elevation

(Zotarelli and Dukes, 2010), which determines the atmospheric thickness above a particular location:

Rin,s,CS =
(
0.75 +2 · 10−5z

)
Rin,s,TOA, (D4)

where z, as in the main text, is surface elevation in meters.

This method works only where sufficient incoming solar radiation exists to produce a meaningful difference between605

Rin,s,TOA and Rin,s. Based on our tests, a reasonable cutoff incoming value of solar radiation is 15 W m−2.

C =





1.35 Rin,s

Rin,s,TOA
− 0.35 if Rin,s,TOA ≥ 15

[
1.35 Rin,s

Rin,s,TOA
− 0.35

]
15–20

, otherwise
(D5)

where the lower term equals the average of the upper term where 15 < Rin,s,TOA < 20. This is an obvious kludge for the sake

of generating a proof-of-concept model outputs, and generates a reasonable but inaccurate cloud-function value for the polar

regions.610

The final step is straightforward. Net radiation flux is simply the sum of the net shortwave and longwave fluxes:

Rn = Rn,s + Rn,l. (D6)
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D4 Sensible heat flux

Deriving the Penman equation for sensible heat flux, QH,s, results in (Dingman, 1994):

QH,s =
KHu

∆P,T

[
E

KEu
− (esat− ea)

]
. (D7)615

Here, KH and KE are coefficients of turbulent conductance [kg m s−1 K−1] for sensible heat and water vapor (i.e., latent heat),

respectively. u is wind speed, which is conventionally measured two meters above the surface. ∆P,T is the slope of the water

liquid-to-vapor phase transition at the air temperature, Ta, which likewise is measured two meters above the surface. Similarly,

esat is the saturation water vapor pressure at Ta, whereas ea is the actual water vapor pressure.

These turbulent conductance coefficients, KH and KE , are defined based on ratios of heat (KH ) and water vapor (KE)620

transfer to momentum transfer (Dingman, 1994):

KH =
DH

DM
cpρa

(u∗
u

)2

; (D8)

KE =
DWV

DM

∆ρa

Pρw

Ra

Rv

(u∗
u

)2

. (D9)

Here, DH is thermal diffusivity in air, DM is diffusivity of momentum, and DWV is diffusivity of water vapor. For a stable625

atmosphere, which we assume, the same turbulent eddies result in the transfer of heat, momentum, and water vapor. Therefore,

DH/DM = DWV /DM = 1. This simplifies Equations D8 and D9 to:

KH = cpρa

(u∗
u

)2

; (D10)

KE =
ρa

Pρw

Ra

Rv

(u∗
u

)2

. (D11)630

To restate the variable definitions from the main text for convenience: cp is the specific heat capacity of air at constant pressure,

ρa is air density; u∗ is wind shear velocity, u is measured wind velocity (typically at 2 meters elevation above the surface), ρw

is water density, P is atmospheric pressure, and Ra/Rv = 0.622 is the ratio of the gas constants of air and water vapor.

D5 Full Penman Equation

Combining Equations D1 and D7 and solving for evaporation results in the common full form of the Penman Equation (cf.635

Dingman, 1994):

E =
[
Rn +

(
KHu

∆P,T

)
(esat− ea)

]/[
ρw∆Hvap +

(
KH

KE

1
∆P,T

)]
. (D12)

Substituting in the definitions of coefficients KH and KE , we obtain Equation E1.
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D6 Variable water-surface roughness

The u∗ term in the diffusivity of momentum, DM , may be evaluated by solving for the boundary-layer velocity profile given640

by the logarithmic Law of the Wall, in which

u(z) =
u∗
κ

ln
(

zα

z0

)
. (D13)

Here, κ = 0.407 is von Kármán’s constant, zα is the height of the air about the land surface, and z0 is a surface roughness

length. It is then possible to solve for u∗ by knowing the wind velocity – u at a known elevation, zα = z1, which is typically 2

m above the surface – and the surface roughness length scale.645

When wind flows over open water, it generates waves, thereby making this roughness length itself a function of wind speed.

This makes Eq. D13 nonlinear, thereby adding a complexity not included in models of evaporation over land.

To address this problem, we first turn to Charnock (1955), who found a quadratic relationship between wave-generated z0

and u∗. Hersbach (2011) expanded this work and defined z0 over a broader range of conditions by showing that it depends on

kinematic viscosity, ν, in light winds and on a shear-velocity-squared (Charnock, 1955) relationship for strong winds:650

z0 = Kν
ν

u∗
+ Kwave

u2
∗
g

, (D14)

where the coefficients Kν = 0.11 and Kwave ≈ 0.018. We then substitute this expression for z0 into Eq. D13 and solve for u∗

using the known u at elevation z1:

u∗ = κu

/
ln

(
z1

Kνν/u∗+ Kwaveu2∗/g

)
. (D15)

With our single known wind speed at z1=2 meters elevation (Abatzoglou et al., 2018), we can solve this equation for u∗655

in one of two ways. First, we can use a numerical root finder. We implement this using the root_scalarmethod within Scipy

(Wickert, 2020; Virtanen et al., 2020) (see https://github.com/umn-earth-surface/TerraClimate-potential-open-water-evaporation).

The second option is to derive an analytical solution. This is possible for the original Charnock (1955) relationship using a Lam-

bert W function, but is not possible for the form given by Hersbach (2011). Roots to Equation D15 exist and are numerically

attainable for wind velocities less than approximately 55 m s−1.660

Appendix E: Model input data

We performed a steady-state WTM simulation for North America in the present day; a steady-state WTM simulation for North

America at the LGM; and transient model runs for the 5000-year period from 21 ka to 16 ka. The required input data arrays

are listed in Appendix A1. We provided input data for the transient simulations at 500-year intervals. Here, we chronicle the

data sources that were used for each of the required input arrays.665

E1 Topography

For the present day simulation, we obtained topographic data from the GEBCO 2020 grid (GEBCO Bathymetric Compilation

Group, 2020), which we coarsened from 15 arcsecond to 30 arcsecond resolution by averaging each set of four original grid-cell
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elevations within each of our 30-arcsecond grid cells. We added lake bathymetry to this DEM using data from the Global Lake

Database (Kourzeneva et al., 2012), using all included lakes except for the Great Lakes, whose bathymetry is already included670

in GEBCO 2020, and the Great Salt Lake. We updated the bathymetry of the Great Salt Lake using data from Tarboton (2017).

At locations where ice exists, we consider the topography under the ice and add the impact of the ice on water flow in the

form of an added pressure head. To do so, we use the difference between the ETOPO1 (Amante and Eakins, 2009; Center,

2009) ice-free and ice-included topographies to obtain ice thickness. We subtract this ice thickness from the GEBCO2020

topography, and then add back the ice thickness multiplied by the ratio of ice to water density (0.9167/0.9998). This gives the675

final topography with added ice pressure head.

We computed topographic change resulting from Glacial Isostatic Adjustment (GIA) based on the ICE-6G (Peltier et al.,

2015) ice history and a spherically symmetric viscosity structure with an elastic lithospheric thickness of 96km, an upper

mantle viscosity of 0.5×1021 Pa s and a lower mantle viscosity of 20×1021 Pa s. We used the GIA algorithm described in

Kendall et al. (2005) and Dalca et al. (2013) with a maximum spherical harmonic degree of 256 to compute relative sea level680

across the globe at the LGM and each of the time steps used in our WTM simulations. After interpolating these GIA anomalies

to 30-arcsecond resolution, we subtracted them from the modern-day topography described above to obtain a past topography

at the LGM and every 500 years after the LGM. Following this, we used the ICE-6G ice history for each time step to compute

and then add ice pressure head in order to produce the final set of ‘topographic’ (topography + ice-pressure head) inputs for

the WTM.685

E2 Slope

We computed the slope input files using the topography described above, modified by GIA if needed, but without ice included,

using GRASS GIS (Neteler et al., 2012). We used the ice-free slope becuase within WTM, the slope data input is only used to

determine the appropriate e-folding depth (described in Section 3.2) to use in association with hydraulic conductivity. Water

flow directions are computed directly from the topography described above.690

E3 Ocean mask

The ocean masks were created using the topography data described above. Any cells that were below sea level, and that could

also be grouped into a polygon of below-sea-level cells that touched the edges of the map, were classed as ‘ocean’ cells. This

allowed land cells that were below sea level to still be classed as ‘land’ (cf. Wickert et al., 2013).

E4 Climatic water input695

For the present day, we obtained precipitation data from the Terraclimate dataset (Abatzoglou et al., 2018). We summed

averaged monthly data from Terraclimate over a total of 30 years, from 1981 to 2010 inclusive, to obtain annual averages.

We resampled the spatial resolution of the Terraclimate from 1/24 degrees (150 arcseconds) to 30 arcseconds using a bivariate

spline approximation.
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For the past, we used modelled precipitation data from the TRACE-21-K simulation (He, 2011). For each time step, we700

averaged data from 50 years before to 49 years after the given time, obtaining 100-year averages of precipitation. We then

did an anomaly correction using the present-day precipitation, described above, for each time step. We resampled data to the

30-arcsecond resolution used in these runs using a bivariate spline interpolation.

For icemelt, we used the ICE-6G ice model (Peltier et al., 2015). At each time step, we assessed icemelt over the preceding

500 years, and converted this to an average annual icemelt. We added this value to the annual precipitation to obtain the total705

climatic water input.

E5 Evapotranspiration

For the modern day, we obtained evapotranspiration data from the Terraclimate dataset (Abatzoglou et al., 2018) and processed

it in the same way as described for precipitation above.

For the past, we used modelled evapotranspiration from the TRACE-21-K simulation (He, 2011). As with precipitation,710

above, we obtained 100-year averages and then performed an anomaly correction of the data relative to the present day. We

resampled data to our 30-arcsecond resolution using a bivariate spline approximation.

E6 Open-water evaporation

We calculated evaporation of surface water using the classic Penman (1948) equation, modified following Hersbach (2011) to

account for variable water-surface roughness due to wind-driven waves:715

E =
Rn + (cpρau2

∗)/(∆P,T u)
ρw∆Hvap + Pcpρw(Rv/Ra)

(esat− ea) . (E1)

Here, E is the rate of open-water evaporation, Rn is net solar radiation, cp is the specific heat capacity of air at constant

pressure, ρa is air density, u∗ is wind shear velocity, ∆P,T is the gradient in temperature–pressure space of the liquid-to-vapor

phase transition for water, u is wind velocity (typically at 2 meters elevation above the surface), ρw is water density, ∆Hvap is

the latent heat of vaporization of water, P is atmospheric pressure, Rv/Ra = 1/0.622 is the ratio of the gas constants of water720

vapor and air, esat is water vapor pressure at saturation, and ea is water vapor pressure. Appendix D holds our derivation.

For the present day, the open-water evaporation calculations were based on data from TerraClimate (Abatzoglou et al., 2018)

and the GEBCO Bathymetric Compilation Group (2020) elevation data set. The open-water evaporation rates were calculated

from monthly climatic data from 1958 to 1970, inclusive.

For the past, the open-water evaporation calculations were based on climate data from the TraCE-21K simulation (He, 2011).725

We obtained 100-year averages of open-water evaporation, then performed an anomaly correction relative to the present day

and resampled the data to the 30-arcsecond resolution using a bivariate spline approximation.

E7 Winter temperature

For the present day, we used the ERA5 reanalysis monthly mean 0.25 degree latitude–longitude grid data for winter temperature

(European Centre for Medium-Range Weather Forecasts, 2019). The data are long-term annual averages, based on monthly730
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averages from 1979 to 2018 inclusive. To obtain winter temperature, we used monthly temperatures from December, January

and February for the Northern hemisphere. We assumed that temperatures from the ERA5 data matched the mean topography

within a 0.25 ◦cell and resampled these temperatures to 30-arcsecond resolution using the 30-arcsecond resolution topography

and a wet adiabatic lapse rate of 5 ◦C/km (Peirce et al., 1998) relative to these mean temperatures.

For the past, we used modelled temperature outputs from the TraCE-21K simulation (He, 2011). We took 100-year averages735

for each time step, and resampled these to the desired 30-arcsecond resolution using topography and an adiabatic lapse rate as

described above. We also performed an anomaly correction relative to the present day.

E8 Shallow-subsurface hydraulic conductivity: horizontal

Hydraulic conductivity values are based on the hybrid STATSGO/FAO soil-texture database available at https://ral.ucar.edu/

solutions/products/wrf-noah-noah-mp-modeling-system (last accessed: 10 November 2020), which gives 12 different soil tex-740

ture categories. We converted these to hydraulic conductivity values using the representative values suggested by Clapp and

Hornberger (1978). The value for silt was not provided by Clapp and Hornberger (1978), so we estimated it based on other

nearby values and the range of possible values given by Earle (2015). Similarly, we selected the value for bedrock from the

range given by Earle (2015). We took the value for ‘organic materials’ from the value listed as ‘peat’ by Fan et al. (2007).

Due to a lack of past hydraulic conductivity or soil-texture data, we assume that these values do not change significantly745

over the time intervals that we are interested in studying here. Therefore, we use the same hydraulic conductivity dataset for

all time steps.

E9 Porosity

Porosity values are based on the same STATSGO/FAO soil texture database as described above, also using representative values

suggested by Clapp and Hornberger (1978), Earle (2015), and Fan et al. (2007). We likewise assume that porosity does not750

change significantly over the time intervals that we are studying and use the same porosity dataset for all time steps.

E10 Runoff ratio

We computed potential runoff ratios (C) following the formula provided in Liu and Smedt (2004):

C = C0 + (1−C0)
S

S + S0
, (E2)

where C0 is a potential runoff ratio for a near-zero slope (Liu and Smedt, 2004, see), S is surface slope as a percentage, and755

S0 is a slope constant for a given land use and soil type (Liu and Smedt, 2004, see). The soil textures from the STATSGO/FAO

soil-texture database, available at https://ral.ucar.edu/solutions/products/wrf-noah-noah-mp-modeling-system, were used in

the selection of values for C0 and S0. Since land cover is not known by our model, we averaged the values for forest and for

grass to obtain a best estimate at all locations. We used the slopes described above for each time step. The values for C0 and

S0 are considered to be constants over the time period we are studying.760
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E11 Starting relative water-table elevation

Starting relative water-table elevation data is a requirement for the transient simulations. We used the output of the steady-state

simulation at 21 ka as the starting relative water-table elevation for the transient simulation. We saved the water table result at

500-year intervals, using the new result as the input for the next 500-year simulation each time.

E12 Vertical hydraulic conductivity765

We opted not to enable the infiltration option for this set of model runs, therefore no vertical hydraulic conductivity input was

needed. It is possible to obtain these from horizontal hydraulic conductivity values using anisotropy values, such as those listed

by Fan et al. (2007).

E13 e-folding constants

Calibration constants for the e-folding depth were set to a = 100, b = 150, and fmin = 2.5, following Fan et al. (2013).770
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