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Abstract. Phytoplankton is a diverse group of photosyn-
thetic organisms and accounts for almost half of global pri-
mary production. However, most existing marine ecosystem
models incorporate limited phytoplankton diversity, overlook
phytoplankton evolution, and treat phytoplankton as concen-5

trations instead of particles. Here we present an individual-
based phytoplankton model that captures three dimensions
of phytoplankton traits (size, temperature, and light affini-
ties) and allows phytoplankton cells to mutate in a one-
dimensional (1D) water column. Other ecosystem compo-10

nents include dissolved inorganic nitrogen, 20 zooplankton
size classes, and detritus, all modeled as Eulerian fields. This
hybrid plankton model can not only reproduce the general
seasonal patterns of nutrients, chlorophyll, and primary pro-
duction in the subtropical ocean, but also simulate variations15

in phytoplankton traits and functional diversity. We expect
that this model will be a useful tool for studying phytoplank-
ton physiology, diversity, and evolution in the ocean.

1 Introduction

The ocean carbon cycle plays a pivotal role in shaping the20

Earth System’s response to climate change (Sigman and
Boyle, 2000), with phytoplankton as one of its most critical
players. Phytoplankton are essential in transporting carbon
from the surface to the deep ocean, a process known as the
biological carbon pump (Ducklow et al., 2000; Sigman and25

Boyle, 2000). Additionally, phytoplankton form the founda-
tion of the marine food web and contribute to nearly half
of global primary production (Field et al., 1998). Therefore,
accurate predictions of the Earth System’s response to an-

thropogenic carbon emissions rely on numerical models that 30

effectively capture the physiology and biodiversity of phyto-
plankton.

Biodiversity is known to have an important effect on
ecosystem functioning such as primary production (Hooper
et al., 2012; Tilman et al., 2014). Investigating what fac- 35

tors regulate biodiversity and the role of diversity in ecosys-
tem functioning are two central topics in ecological research
(Huston, 1994; Hooper et al., 2005). To address these ques-
tions, phytoplankton diversity models are indispensable. To
this end, different types of phytoplankton diversity models 40

have been developed (Acevedo-Trejos et al., 2022). However,
few of these models consider the four processes (selection,
drift, speciation, and dispersal) that govern biodiversity, as
synthesized in Vellend and Agrawal (2010). In most, if not
all, phytoplankton diversity models, only selection and dis- 45

persal are considered. One challenge in considering specia-
tion (mutation) in Eulerian phytoplankton diversity models is
that the resolution of the trait axes must be high enough to ro-
bustly simulate trait diffusion (Beckmann et al., 2019). While
this may not be a problem for a single-trait model, the com- 50

putational demand becomes substantial when multiple traits
are considered. For example, if we consider three traits as in
the Darwin model (Follows et al., 2007; Barton et al., 2010;
Dutkiewicz et al., 2020) and set up 20 classes along each trait
axis, at least 203

= 8000 phytoplankton tracers are needed. 55

To explore these processes more explicitly, Lagrangian
models – also known as individual-based models (IBMs) –
offer a compelling alternative to Eulerian approaches in eco-
logical modeling. First, IBMs allow the straightforward in-
clusion of mutation and drift (demographic stochasticity) in 60

phytoplankton models. Second, their computational cost is

1



2 I. Sala and B. Chen: Individual-based phytoplankton diversity model

largely determined by the number of particles instead of the
number of traits. A key advantage of IBMs is that traits as-
sociated with each phytoplankton particle can evolve freely.
If a certain trait set of a particle is maladapted to the envi-
ronment, this phytoplankton particle can be removed from5

the system, thus saving computation costs. By contrast, once
trait grids are set up in Eulerian fields, they cannot be altered
during the simulation.

While the first IBMs emerged in the late 1970s and
early 1980s (Ledbetter, 1979; Platt and Gallegos, 1981;10

Falkowski and Wirick, 1981; Woods and Onken, 1982), their
widespread use was limited due to high computational costs.
Advances in computing power, however, have since made
IBMs increasingly popular in plankton and marine research
(Cianelli et al., 2004; Woods, 2005; Nogueira et al., 2006;15

Cianelli et al., 2009; Jokulsdottir and Archer, 2016; Kida and
Ito, 2017; Beckmann et al., 2019; Noh et al., 2021; Ranjbar
et al., 2021).

However, despite these advances, many existing La-
grangian phytoplankton models still fail to consider multi-20

ple phytoplankton traits (e.g., cell size, temperature and light
affinities) which are known to be important for determin-
ing phytoplankton physiology and diversity (Edwards et al.,
2012, 2015; Chen, 2022). Considering phytoplankton traits
in IBMs is also critical in addressing the potential bias in es-25

timating primary production by Eulerian models and fixed-
depth bottle incubations.

Unlike IBMs which follow the trajectories of individual
particles, Eulerian models track phytoplankton as concentra-
tions at fixed locations in the model grid. While these con-30

centrations are subject to physical transport processes such
as advection and diffusion similar to phytoplankton particles,
they may introduce discrepancies due to Jensen’s inequality,
where the average of the mean does not necessarily equal the
mean of the average (Baudry et al., 2018; Christensen et al.,35

2022). Uncertainty remains about whether Eulerian models
or fixed-depth in situ incubations overestimate or underesti-
mate primary production compared to the realistic situation
in which phytoplankton cells can move in the water column.
For example, Barkmann and Woods (1996) suggested that40

primary production estimates based on fixed-depth incuba-
tion bottles could overestimate the true primary production
by as much as 40 % while Ross and Geider (2009) reported
only a minor difference.

The problem intensifies when phytoplankton acclimation45

is considered, as it can operate at a different time scale than
mixing (Tomkins et al., 2020). For instance, when phyto-
plankton adjust their intracellular carbon-to-chlorophyll (C :
Chl) ratios in response to changing light conditions, the rela-
tive rates of acclimation and mixing become crucial. If mix-50

ing occurs faster than acclimation, cells effectively experi-
ence an averaged light environment over their life cycle, po-
tentially amplifying the effect of Jensen’s inequality. Con-
versely, when acclimation is faster than mixing, cells con-
tinuously adjust their intracellular C : Chl ratios, mirroring55

an Eulerian scenario where phytoplankton remain at a fixed
depth. In addition to light acclimation, phytoplankton can
also adjust their intracellular nutrient quota to acclimate to
the external nutrient environment (Morel, 1987).

While a number of studies have used IBMs to address the 60

above issue of acclimation timescale (Baudry et al., 2018;
Tomkins et al., 2020), few have considered the diversity of
phytoplankton traits which photosynthesis and nutrient up-
take rates depend on (Litchman et al., 2009; Edwards et al.,
2012). For instance, acclimation may occur much faster in 65

small cells than in large cells.
Here, we introduce a novel phytoplankton IBM (PIBM)

in a one-dimensional framework. PIBM is actually a hybrid
model, integrating a Lagrangian module that simulates the
phytoplankton community and a Eulerian module that tracks 70

other tracers, including dissolved inorganic nitrogen, zoo-
plankton, and detritus. The Lagrangian phytoplankton mod-
ule includes three traits, cell size, optimal temperature, and
light affinity, while also incorporating phytoplankton accli-
mation capability and evolutionary dynamicsCE1 . This type 75

of hybrid Eulerian and Lagrangian modeling approach has
been used beyond plankton modeling, such as in the field of
aerosol–cloud interaction (Grabowski et al., 2019; Dziekan
and Zmijewski, 2022).

In the following sections, we first describe our ecolog- 80

ical model and the differential equations that govern the
growth and selection of phytoplankton. Next, we present
the main results of the model and discuss its merits and
limitations. To evaluate the model outputs, we compare
them with in situ observations at the Bermuda Atlantic 85

Time-series Study (BATS) station. Moreover, we compare
PIBM outputs with those of two versions, Eulerian and La-
grangian, of a simple nitrogen-phytoplankton-zooplankton-
detritus (NPZD) model. This allows us to examine how in-
creased model complexity and the inclusion of multiple phy- 90

toplankton traits influence biomass, production, and the dif-
ferences between Eulerian and Lagrangian approaches. It is
important to note that the objective of developing PIBM and
performing model comparison is not to improve simulations
of bulk properties (e.g., nutrient and chlorophyll concentra- 95

tions) against simpler models, but to provide a tool to bet-
ter study phytoplankton diversity and productivity in a more
realistic turbulent ocean, where individual cells experience
distinct environmental histories that can be explicitly recon-
structed and analyzed. 100

2 Model description

2.1 Overview

PIBM is a 1D Eulerian–Lagrangian hybrid system, written
in FORTRAN 90, that extends the classic NPZD framework.
In PIBM, phytoplankton cells are represented by super- 105

individuals (see below) within the Lagrangian module, which
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Figure 1. Conceptual diagram of the 1D PIBM model. N: nitrogen.
C: carbon. Chl: chlorophyll. The black arrows represent nitrogen
flows.

is coupled to an Eulerian module. The Eulerian module cal-
culates the dynamics of dissolved inorganic nitrogen, mul-
tiple size classes of zooplankton, and detritus as continuous
concentrations across the vertical domain. While nitrogen is
the model’s primary currency, the model also estimates the5

carbon and chlorophyll content of phytoplankton cells. The
model structure is illustrated in Fig. 1, with all model pa-
rameters listed in Tables 1 and 2. The following subsections
provide detailed descriptions of both modules.

2.2 Lagrangian module10

2.2.1 Super-individuals

The Lagrangian module simulates the phytoplankton com-
munity using super-individuals, which represent clusters of
identical phytoplankton cells. This approach allows us to
model a realistic number of cells while keeping computa-15

tional costs manageable (Scheffer et al., 1995). To avoid
memory limitations, the number of super-individuals remains
constant throughout the simulation.

2.2.2 Phytoplankton model

Phytoplankton physiological rates, such as growth and nutri-20

ent uptake, are determined by three master traits: cell size,
optimal temperature, and light affinity. These rates vary over
time and depth, responding not only to changes in the exter-
nal environment (nutrient availability, temperature, and light)
but also to changes in community composition (traits) (Gei-25

der et al., 1998; Ross and Geider, 2009).

Cell size influences the ability of phytoplankton to take
up inorganic nutrients and its vulnerability to zooplankton
grazing. It is expressed as the maximal carbon content per
cell (Cdiv, pmol C cell−1), which reflects the phytoplankton 30

size in terms of its maximum carbon content during the
division phase. While actual cellular carbon content (PC,
pmol C cell−1) fluctuates due to photosynthesis and respi-
ration, nutrient uptake and grazing rates depend solely on
Cdiv. This simplification ensures that these rates are not con- 35

stantly recalculated due to changes in PC and only change
when Cdiv varies due to mutation. Optimal temperature
(Topt, °C) and light affinity, expressed as the initial slope
of the photosynthesis-irradiance curve (αChl, (W2 m−1 g Chl
(mol C)−1)−1 d−1)TS1 , describe phytoplankton response to 40

environmental temperature and light conditions.
We assign the three master traits to each phytoplankton

super-individual at the beginning of the simulation, with val-
ues randomly drawn from a uniform distribution within pre-
defined minimum and maximum limits. Once assigned, trait 45

values remain constant throughout the simulation unless a
mutation occurs (Sect. 2.2.3), which helps to sustain diver-
sity.

At the heart of the Lagrangian module lie the equations
governing phytoplankton cellular carbon (PC), nitrogen (PN, 50

pmol N cell−1), and chlorophyll (PChl, pg Chl cell−1), formu-
lated following Geider et al. (1998). Geider et al. (1998)’s
equations describe the balance of photosynthesis, nutrient
uptake, respiration, and chlorophyll synthesis, capturing how
phytoplankton regulate their cellular contents in response 55

to environmental conditions. Equation (1) states that phyto-
plankton cellular carbon is fueled by photosynthesis, which
converts inorganic carbon into organic carbon, but is depleted
by the cost of nutrient uptake and respiration. Equation (2)
states that phytoplankton cellular nitrogen is fueled by nitro- 60

gen uptake but is depleted by respiration. Equation (3) states
that phytoplankton cellular chlorophyll content is fueled by
chlorophyll synthesis, which depends on both photosynthesis
and nitrogen uptake, but is consumed by respiration.

1
PC

dPC

dt
= PC

− ζ V C
N −RC f (T ) (1) 65

1
PN

dPN

dt
=
V C

N
QN −RN f (T ) (2)

1
PChl

dPChl

dt
=
ρChlV

C
N

θC −RChl f (T ) (3)

PC (d−1) is the carbon-specific photosynthesis rate,
ζ (mol C mol N−1) is the cost of biosynthesis, V C

N
(mol N mol C−1 d−1) is the nitrogen uptake rate, QN

70

(mol N mol C−1) is the cellular N : C ratio, ρChl (dimension-
less) is the fraction of phytoplankton carbon production that
is devoted to chlorophyll synthesis, θC (g Chl mol C−1) is the
ratio of Chl synthesis to carbon fixation (representing phyto-
plankton acclimation to light variability). The size-dependent 75

RC, RN, and RChl (d−1) are degradation rate constants rep-
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resenting the loss of phytoplankton carbon, nitrogen, and
chlorophyll, respectively (Eq. 14) (Wirtz, 2011).RC accounts
for maintenance respiration, while RN and RChl represent in-
tracellular remineralization and pigment degradation. f (T )
is the function describing the temperature (T , K) dependence5

of phytoplankton metabolism, which is detailed in the tem-
perature section below. It is important to note that we implic-
itly assume that PC, PN, and PChl are not affected by zoo-
plankton grazing which only reduces the number of cells per
super-individual.10

PC is a function of light availability as defined below:

PC
= PC

m

1− e

(
−αChl θC I A∞

PC
m

) , (4)

where PC
m (d−1) is the maximal carbon-specific photosynthe-

sis rate, I (W m−2) is the irradiance, andA∞ (dimensionless)
is the term that accounts for photosynthetic photoinhibition15

(see Eq. 6). Although photoinhibition was not originally in-
cluded in Geider et al. (1998), incorporating it is essential
for capturing the decline in photosynthetic efficiency under
overly strong irradiance for species that are adapted to low
light levels (Moore et al., 1998; Han, 2002; Ross et al., 2011).20

PC
m depends on intracellular nutrient status:

PC
m = µm

QN
−QN

min

QN
max−Q

N
min
, (5)

where µm (d−1) is the maximal specific growth rate, which
varies with temperature under nutrient- and light-replete
conditions (Eq. 10). QN

max (mol N mol C−1) is the maximal25

nitrogen-to-carbon ratio and QN
min is the minimal nitrogen

cell quota; both depend on cell size (Table 2). Here, we re-
placed the original PC

ref (maximal photosynthetic capacity at
a reference temperature) from Geider et al. (1998) with µm
which depends on both temperature and light traits as shown30

later.
To simulate the short-term responses of phytoplankton

cells to potential high light stress when they are dispersed
to the surface, we include photoinhibition into the phyto-
plankton model following previous studies (Han, 2002; Ross35

et al., 2011; Nikolaou et al., 2016). Photoinhibition decreases
the photosynthesis rate due to D1 protein damage under high
light, and is expressed as the fraction of open photosynthetic
units (PSU) (Han, 2002; Nikolaou et al., 2016):

A∞ =
1

1+ σPSII I τ +K σ
2
PSII I

2 τ
. (6)40

σPSII (m2 W−1) is the effective absorption cross-section of
photosystem II (PSII), parameterized as a power-law rela-
tionship with θC equal to σPSII = δ (θ

C)κ (Nikolaou et al.,
2016). Here, δ ((W m−2)−1 (g Chl g C−1)−1) and κ (dimen-
sionless) are the normalization and exponent constants, re-45

spectively, in the relationship between σPSII and θC (Table 1).

τ (s) is the turnover time of the electron transfer chain andK
(s−1) is the ratio of damage to repair constants (K = kd/kr).

The tension between photodamage (kd, dimensionless)
and repair (kr, s) of a PSU determines the fraction of open 50

reaction centers and the abundance of D1 proteins (essential
for repairing the PSII reaction center) at a given light level.
To set up a trade-off between high-light adapted and low-
light adapted ecotypes (Moore et al., 1998), we assume that
kr and αChl are negatively correlated. Thus, phytoplankton 55

cells adapted to low-light (i.e., with larger αChl), have a re-
duced capability of photo-repair (i.e., smaller K) (Key et al.,
2010). Conversely, phytoplankton cells adapted to high-light
(largerK) are better able to cope with photoinhibition but are
less efficient in absorbing photons under low light (smaller 60

αChl). In addition, we consider the effect of nutrient status on
their ability to perform photorepair, as nutrient limitation can
jeopardize photosynthetic energy transfer efficiency (Herrig
and Falkowski, 1989). Based on this, we propose the follow-
ing relationship for kr: 65

kr = a

(
αChl

b

)v
QN
−QN

min

QN
max−Q

N
min
, (7)

where a = 2× 10−5, b = 5× 10−7, and v =−6.64 are con-
stants. These parameters were obtained by fitting data from
Prochlorococcus in Moore et al. (1998).

Phytoplankton nitrogen uptake (V C
N ) depends on both ex- 70

ternal dissolved inorganic nitrogen (DIN, mmol N m−3) lev-
els and intracellular nitrogen status:

V C
N = V

C
m

DIN
DIN+KN

(
QN

max−Q
N

QN
max−Q

N
min

)n
, (8)

where V C
m = µm QN

max (mol N mol C−1 d−1) is the maximal
specific nitrogen uptake rate, and KN (mmol N m−3) is the 75

half-saturation constant for DIN uptake. The parameter n (di-
mensionless), which varies between 0 and 1, determines the
dependence of the maximum uptake rate (V C

m ) on cell quota
(QN) (Geider et al., 1998). All three parameters –KN,QN

max,
andQN

min – depend on cell size following allometric relation- 80

ships (Table 2).
ρChl (dimensionless) depends on light, photosynthetic

rate, the initial slope of the photosynthesis-irradiance curve
(αChl), and Chl : C ratio (θC):

ρChl = θ
N
max

PC

αChl θC I
, (9) 85

where θN
max is the maximum chlorophyll-to-nitrogen ratio

(g Chl mol N−1). During dark hours, when I = 0, ρChl is as-
sumed to retain the value calculated at the end of the preced-
ing light period.

The maximal growth rate, µm, depends on Topt (K) as 90

well as the environmental temperature (T , K), following
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Chen (2022), which extends the Metabolic Theory of Ecol-
ogy (Dell et al., 2011; Chen and Laws, 2017):

µm = µ0
Ea+Ed

Ed

eEa(x−θ)

1+ Ea
Ed
e(Ea+Ed)(x−θ)

, (10)

where θ and x are the transformed optimal and environmen-
tal temperatures for mathematical convenience:5

θ =
1
kb

(
1
T0
−

1
Topt

)
, x =

1
kb

(
1
T0
−

1
T

)
, (11)

with T0 (K) being the reference temperature set at 288 K.
µ0 (d−1) is the normalization constant for µm at θ = 0, Ea
(eV) is the intraspecific activation energy, and Ed (eV) is the
nominal activation energy regulating how fast the growth rate10

(µ, d−1) decreases with increasing T when x > θ . Finally, kb
(eV K−1) is the Boltzmann constant.

Based on the analysis of a dataset relating phytoplankton
growth to temperature, µ0 (d−1), Ea (eV), and Ed (eV) are
found to be allometric functions of θ (Chen, 2022):15

µ0 = µ
′ eEi θ , (12a)

Ea = Ea0 e
β θ , (12b)

Ed = Ed0 e
φ θ , (12c)

in which µ′ (d−1) is the normalization constant for µ0 when
θ = 0, Ei (eV) is the interspecific activation energy, Ea0 (eV)20

is the normalization constant forEa when θ = 0, β (eV) is the
scaling exponent against θ for Ea, Ed0 (eV) is the normaliza-
tion constant for Ed when θ = 0, and φ (eV) is the scaling
exponent for Ed.

Following the mechanistic model of Wirtz (2011), we let25

µ′ to decrease with cell equivalent spherical diameter (ESD,
µm) as a result of intra-cellular self-shading and excess den-
sity:

µ′ =
µ′0

1+ a0

(
ρs

ρ0

) 1
3 ESD

, (13)

where a0 is the length scale of photosynthesis depletion. µ′030

is maximal potential growth rate (= 5 d−1). ρs is the car-
bon density at a reference ESD (ESDs = 8.00 µm), and ρ0
(= 0.50 pg C m−3) is the specific carbon density for the rela-
tive chloroplast volume (VChl/V ).

We also consider that phytoplankton respiration (RC, RN,35

and RChl) follows the same temperature dependence as µm
(Barton et al., 2020). Following Wirtz (2011), these specific
respiration rates are assumed to scale inversely with phyto-
plankton ESD:

R∗ = R∗,s
ESDs
ESD

, (14)40

where R∗,s is the temperature-dependent respiration rate at
ESDs for carbon, nitrogen or chlorophyll. If T = Topt,R∗,s =

0.1 d−1 for the specific respiration rates of phytoplankton
carbon, nitrogen, and chlorophyll.

Equations (13) and (14) capture the unimodal relationship 45

between maximal growth rate and cell size (Chen and Liu,
2010, 2011; Marañón et al., 2013). If a phytoplankton cell
is too large, its self-shading and intracellular decline of CO2
reduces its maximal growth rate. On the other hand, if a cell
is too small, the high specific respiration cost leads to a rapid 50

decline in maximal growth rate. This tradeoff on the range of
cell size plays a critical role in constraining phytoplankton
size range in the model in which the phytoplankton cells are
allowed to evolve freely by mutation. Without this tradeoff,
phytoplankton will evolve towards infinitely small cells in 55

very oligotrophic environments.

2.2.3 Phytoplankton division, mutation, and death

Phytoplankton cell division occurs when the cellular carbon
content reaches Cdiv (Cianelli et al., 2009; Ross and Geider,
2009). Upon division, the parent cell is split into two equal 60

daughter cells, each inheriting half of the carbon, nitrogen,
and chlorophyll content. As a consequence, the number of
cells per super-individual doubles. By default, the daughter
cells inherit the same trait values for Cdiv, Topt, and αChl as
the parent cell; however, they have a small probability of 65

mutation, with the trait values altered according to a Gaus-
sian distribution with mean equal to the parent’s value and
a specified standard deviation. The probability of mutation
for a super-individual (νj,phy) is proportional to its number
of cells (nj,phy), such that νj,phy = ν0 nj,phy, where ν0 repre- 70

sents the mutation rate per cell.
Although this mutation framework may not accurately re-

flect reality, for simplicity and ease of modeling, we assume
that all ecotypes share the same mutation rate. However, in
reality, mutation rates can vary among different phytoplank- 75

ton ecotypes (Beardmore et al., 2011), and even within the
same species when subjected to stress (Bjedov et al., 2003).
Additionally, while we assume that the mutation of one trait
is independent of others, the user can modify the mutation
covariance matrix to change how the mutation of one trait 80

depends on those of other traits.
Phytoplankton cells die when their cellular carbon con-

tent falls below a minimal threshold (Cmin, pmol C cell−1),
defined as a quarter of Cdiv (Ross and Geider, 2009), or
when the total nitrogen content of a super-individual drops 85

below 0.10 % of the average nitrogen content of all super-
individuals. It is important to note that in addition to res-
piratory cost, phytoplankton cells are subject to zooplank-
ton grazing. We assume that zooplankton grazing can only
reduce the number of cells per super-individual without af- 90

fecting cellular carbon or nitrogen. When a cell dies, its ni-
trogen content is converted into detritus. Simultaneously, to
maintain a constant number of super-individuals, the super-
individual with the maximum nitrogen content is divided into
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two new super-individuals, each containing half of the cells
of the parent

2.3 Eulerian module

Dynamics of dissolved inorganic nitrogen, zooplankton, and
detritus are modeled as Eulerian fields.5

2.3.1 Dissolved inorganic nitrogen

The temporal and spatial variability of dissolved inorganic
nitrogen (DIN, mmol N m−3) is governed by several pro-
cesses: the total nutrient uptake by phytoplankton (Puptake,
mmol N m−3; see Eq. 16), zooplankton excretion (Zexc; see10

Eq. 17), detritus regeneration (Dreg; see Eq. 18), and vertical
diffusion (the last term in Eq. 15):

∂DIN
∂t
=−Puptake+Zexc+Dreg+

∂

∂z

[
Kv(z)

∂DIN
∂z

]
, (15)

where Kv(z) (m2 s−1) denotes the vertical eddy diffusivity
at each depth layer. Puptake in grid s over the time step 1t15

is defined as the sum of the nutrients taken up by all super-
individuals within that grid:

Puptake =
1

H(s)

k∑
i=1[(

PN,i(t +1t)−PN,i(t)

)
ni(t +1t)

]
, (16)

in whichH(s) (m) is the height of the vertical grid s, PN,i(t+

1t) and PN,i(t) (mmol N per cellCE2 ) represent the cellular20

nitrogen content of super-individual i at time t +1t and t ,
respectively, and ni(t +1t) represents the number of cells
associated with the super-individual i at time t +1t .

We assume that Zexc is a constant fraction of the total
amount of food ingested by all zooplankton:25

Zexc = (1− ξ − η)
Nz∑
j=1

Ij ZOOj , (17)

where ξ (dimensionless) represents the gross growth effi-
ciency of zooplankton and is assumed to be the same for
each size class. Nz is the number of zooplankton size classes
(= 20). η (dimensionless) denotes the fraction of unassimi-30

lated food by zooplankton, also assumed the same for each
size class. Ij (d−1) is the per capita total ingestion rate of
zooplankton in size class j , as detailed in the following sec-
tion.
Dreg is a linear function of both detritus concentration35

(DET, mmol N m−3) and temperature (T , °C):

Dreg = Rdn DETfh(T ), (18)

where Rdn (d−1) is the conversion rate of detritus into dis-
solved inorganic nitrogen, and fh(T ) describes the tempera-

ture dependence of heterotrophic activities, including zoo- 40

plankton grazing and detritus regeneration, formulated ac-
cording to the Arrhenius equation:

fh(T )= e
Ez
kb

(
1
T0
−

1
T

)
= eEzx, (19)

where Ez (eV) is the activation energy for heterotrophic pro-
cesses (see Table 1). 45

2.3.2 Zooplankton

The code for modeling zooplankton biomass was devel-
oped drawing inspiration from the equations described by
Ward et al. (2012). The model resolves 20 zooplankton size
classes, spaced logarithmically from 0.80 to 3600 µm ESD. 50

The smallest size class is set at 0.80 µm to represent the
smallest heterotrophic eukaryotes in the ocean, which pre-
dominantly feed on bacteria. The upper limit of 3600 µm is
chosen as a tradeoff between ensuring appropriate grazers
for large phytoplankton and managing computational cost, 55

as we fix the number of zooplankton size classes as 20. Be-
cause phytoplankton cells are free to evolve in size during
the simulation, some may become so large (or small) that no
zooplankton can feed on them. However, expanding the zoo-
plankton size range too much would reduce the resolution 60

size classes within the realistic zooplankton size range.
The nitrogen biomass of each zooplankton size class

(ZOOj , mmol N m−3) increases as they consume prey, in-
cluding phytoplankton super-individuals and smaller zoo-
plankton, but decreases due to predation by larger zooplank- 65

ton and natural mortality.

∂ZOOj
∂t

= ZOOj ξj
J∑

jprey=1
Ij,jprey

−

Nz∑
jpred=1+j

ZOOjpredIjpred,j −ZOOj mz fh(T )

+
∂

∂z

(
Kv(z)

∂ZOOj
∂z

)
, (20)

where mz (d−1) is the linear zooplankton mortality rate, and
J is the total number of prey items, including phytoplankton
super-individuals and smaller zooplankton within the grid. 70

Zooplankton per capita ingestion rate (Ijpred,jprey , d−1) is
calculated using a sigmoidal functional response that de-
pends on total prey biomass (Bjprey , mmol N m−3) (Ward
et al., 2012):

Ijpred,jprey = fh(T ) I
max
jpred

φjpred,jpreyBjprey

Fjpred +KP,jpred

(1− e3Fjpred ), (21) 75

where Imax
jpred

(d−1) is the size-dependent maximum inges-
tion rate (Table 2) (Hansen et al., 1997; Ward et al., 2012).
φjpred,jprey (dimensionless) represents the palatability of prey
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jprey for predator jpred. Fjpred (mmol N m−3) is the total prey
availability for predator jpred, and KP,jpred (mmol N m−3)
is the grazing half-saturation constant of predator jpred.
The term (1− e3F ) accounts for the effect of prey refuge,
which reduces grazing effort when available prey becomes5

scarce (Mayzaud and Poulet, 1978). The total ingestion
rate of zooplankton size class j is therefore given by Ij =∑J
jprey=1Ij,jprey .
The food availability for zooplankton size class jzoo (Fjzoo )

includes both phyto- and zooplankton prey and is computed10

as

Fjzoo =

k∑
iphy=1

φjzoo,iphy Biphy +

jzoo−1∑
izoo=1

φjzoo,izoo Bizoo , (22)

where k is the number of super-individuals within the vertical
grid. Biphy = niPhy PN,iPhy/H and Bizoo (mmol N m−3) repre-
sent the nitrogen biomass of the ithPhy phytoplankton super-15

individual and the ithzoo zooplankton size class, respectively.
Since there is no zooplankton prey for the smallest zoo-

plankton size class (jzoo = 1), we assume that zooplankton
do not feed on other zooplankton larger than themselves but
can feed on any phytoplankton prey. However, feeding on20

phytoplankton larger than their optimal prey size is penalized
due to low prey palatability, φjpred,jprey (dimensionless):

φjpred,jprey = exp

[
−

(
ln
(
ϑjpred,jprey

ϑopt

))2(
2σ 2
jpred

)−1
]
, (23)

where ϑjpred,jprey (dimensionless) is the predator : prey vol-
ume ratio, ϑopt (dimensionless) is the optimal predator : prey25

volume ratio (Kiørboe, 2009), and σjpred (dimensionless) is
the standard deviation of the feeding kernel.
ϑopt is estimated based on the optimal prey size, which is

defined by the relationship between ESD of the optimal prey
(ESDpred

preyopt ) and the predator ESD (ESDpred) (Hansen et al.,30

1994; Banas, 2011):

ESDpred
preyopt = 0.65ESD0.56

pred. (24)

As we assume that zooplankton grazing only affects the
number of cells per super-individual (niphy ) rather than cel-
lular carbon or nitrogen, estimating changes in niphy while35

conserving total nitrogen is not trivial. We assume that phy-
toplankton mortality due to zooplankton grazing (gphy, d−1),
i.e., the proportional loss of nitrogen content during the time
step 1t , is equal for all phytoplankton cells within the same
super-individual and for all phytoplankton cells within the40

same vertical layer. While phytoplankton cell deaths can be
modeled as a binomial process, the law of large numbers
allows us to assume that the loss of cell numbers within
a super-individual is proportional to the grazing rate gphy
(Beckmann et al., 2019). Therefore, we have45

niphy(t +1t)= niphy(t) (1− gphy1t). (25)

The total phytoplankton biomass loss due to zooplankton
grazing within each vertical layer (PG, mmol N m−3) is com-
puted as follows (note that we drop the subscript of z for con-
venience): 50

PG =−
1
H

k∑
iphy=1

PN,iphy (t)

(
niphy (t)− niphy (t +1t)

)

=−
1
H

k∑
iphy=1

PN,iphy (t)

(
niphy (t)− niphy (t)(1− gphy1t)

)

=−
1
H

k∑
iphy=1

PN,iphy (t)niphy (t)gphy1t

= gphy1t

∑k
iphy=1PN,iphy (t)niphy (t)

H

=

NZ∑
jzoo=1

Ijzoo,iphy 1t, (26)

where k is the number of phytoplankton super-individuals
within the vertical layer.

Since
∑k
iphy=1PN,iphy (t) niphy (t)

H
represents the total phyto-

plankton nitrogen concentration within each vertical layer 55

(PN), we can derive:

gphy =

∑NZ
jzoo=1Ijzoo,iphy

PN
. (27)

Hence, the number of cells within a super-individual at the
next time step (t +1t) is given by

niphy(t +1t)= niphy(t)

(
1−

∑NZ
jzoo=1Ijzoo,iphy

PN
1t

)
. (28) 60

It is therefore important that the grazing effect (niphy(t +

1t)) has to be computed before phytoplankton nutrient up-
take (Puptake, Eq. 16).

2.3.3 Detritus

Changes in the concentration of detritus (DET, mmol N m−3) 65

are computed as

∂DET
∂t
=

Nz∑
j=1

(
η Ij +mz fh(T )

)
ZOOj

−Rdn DETfh(T )−Wd
∂DET
∂z

+
∂

∂z

(
Kv(z)

∂DET
∂z

)
, (29)

where Wd (m d−1) is the detritus sinking rate.

2.3.4 Phytoplankton biomass and primary production

The Eulerian module also calculates the concentration of to- 70

tal phytoplankton nitrogen, carbon, and chlorophyll biomass,
as well as the net primary productivity at each grid layer.
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The concentration of total phytoplankton nitrogen, car-
bon, and chlorophyll biomass (B∗; BPN , mmol N m−3; BPC ,
mmol C m−3; and BPChl , mg Chl m−3) is computed at each
grid layer as follows (note that we drop the subscript of z for
convenience):5

B∗ =

∑k
i=1P

∗

iphy
· niphy

H
, (30)

where P ∗iphy
represents the three different units of mass (i.e.,

PN, PC and PChl).
Net primary productivity (NPP, mg C m−3 d−1) of a verti-

cal layer is integrated over a daily cycle:10

NPP=
1
H

24∑
t=0

k(t)∑
i=1

[
1PC,i(t)ni(t)

]
, (31)

where k(t) is the number of phytoplankton super-individuals
at time t in that layer.

2.4 Physical forcing

As a case study, our 1D model simulates the upper 250 m of15

the Bermuda Atlantic Time-series Study (BATS) station. To
maintain generality and simplicity, some region-specific de-
tails, such as phosphorus limitation instead of nitrogen lim-
itation, are not included. The vertical grid consists of 100
levels, with resolution increasing toward the sea surface, fol-20

lowing a sigma grid approach similar to that used in the Re-
gional Ocean Modeling System (ROMS; Shchepetkin and
McWilliams, 2005).

The model is externally forced by three environmental
variables: temperature, vertical eddy diffusivity, and pho-25

tosynthetically active radiation (PAR). Temperature profiles
(T , °C) are prescribed from monthly climatological data in
the World Ocean Atlas 2013 (Locarnini et al., 2024). Vertical
eddy diffusivity (Kv, m2 s−1) is interpolated from daily out-
puts of a previous model simulation using a 1D general ocean30

turbulence model (GOTM) which uses the k ∼ ε turbulence
model to computeKv (Burchard et al., 1999; Bruggeman and
Bolding, 2014; Le Gland et al., 2021). Finally, surface PAR
(I0, W m−2) is estimated dynamically at each time step as a
function of mid-day light, time of day, and day length, fol-35

lowing Anderson et al. (2015). Light attenuation within the
water column (Iz, W m−2) is computed at each time step us-
ing the Beer–Lambert law, incorporating the effects of sea-
water and chlorophyll absorption:

Iz = I0 e
−z

(
Kw+KChl

∫ 0
z Chl(z) dz

)
, (32)40

where Kw (m−1) and KChl (m2 (mg Chl)−1) are the light
attenuation coefficients for seawater and chlorophyll-a, re-
spectively.

Figure 2 shows the seasonal evolution of the physical
forcing variables, illustrating the typical temporal and spa-45

tial variability at the BATS station. During winter and early

spring, temperatures remain low, while Kv is high. The
mixed layer depth (MLD, m), defined as the depth where
Kv < 10−4 m2 s−1, reaches its maximum depth (∼ 250 m)
from February to late March. From April onward, MLD de- 50

creases abruptly, coinciding with a reduction in Kv and a
warming of the surface water. Throughout late spring and
summer, the water column becomes strongly stratified, with
the surface mixed layer warming and deepening to 50 m by
September. At the onset of fall, cooling temperatures and in- 55

creasing Kv deepen the surface mixed layer once again.

2.5 Vertical transport of particles

In addition to the super-individuals, the Lagrangian module
also simulates the movement of passive inert particles as a
validation tool. Both passive particles and super-individuals 60

move due to vertical diffusion, following a random walk
model based on Visser (1997). The change in position (zt )
of an individual particle, from depth at time t to time t + 1
(zt+1), is computed over a finite time step δt as

zt+1 = zt +K
′
v(zt ) δt

+R

√
2 r−1Kv(zt +

1
2
K ′v(zt ) δt) δt, (33) 65

where K ′v(zt ) represents the vertical diffusion gradient (=
δKv/δz) at depth zt and R is a random variable drawn from
a uniform distribution with zero mean and variance r (r =
1
3 for a uniform distribution between −1 and 1) (Ross and
Sharples, 2004). 70

In addition to diffusion, phytoplankton vertical movement
is also influenced by sinking, which is size-dependent and
follows the allometric relationship described in Durante et al.
(2019) (Table 2). However, we assume no vertical current
velocity in the system. 75

2.6 Initial conditions

In our standard model run, we initialize 20 000 phytoplank-
ton super-individuals and 1000 passive particles with these
numbers maintaining constant during the simulation. The
vertical positions of both passive particles and phytoplank- 80

ton super-individuals were randomly assigned between the
surface (0 m) and bottom (250 m) at the start of the simula-
tion, following a uniform distribution.

As previously explained, the three master traits were as-
signed to each phytoplankton super-individual at the begin- 85

ning of the simulation. The initial ESD of each phytoplank-
ton super-individual was randomly drawn from a uniform
distribution in log space between 0.80 and 60.00 µm. These
ESD values were then converted to phytoplankton cellular
carbon content following Menden-Deuer and Lessard (2000) 90

(Table 2). Subsequently, the initial cellular nitrogen content
was estimated based on the Redfield ratio (C : N = 106 :
16mol :mol), while the initial cellular chlorophyll content
was calculated assuming a Chl : C ratio of 1 : 50 (g : g). Cdiv,
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Figure 2. Temporal and vertical variability of the model forcing variables. (a) Temperature (°C), (b) vertical diffusivity (Kv, m2 s−1), and
(c) photosynthetically active radiation (PAR; W m−2). In (b), the white line identifies the mixed layer depth (m).

the maximum carbon content at which a division event oc-
curs, was set to twice the initial cellular carbon content. The
initial number of phytoplankton cells per super-individual
was calculated assuming a constant phytoplankton nitrogen
concentration of 0.10 mmol m−3 throughout the water col-5

umn.
Topt values were randomly drawn from a uniform distribu-

tion between 2 and 30 °C. Similarly, αChl values were ran-
domly drawn from a uniform distribution in log space be-
tween 0.01 and 0.50 (W2 m−1 g Chl (mol C)−1)−1 d−1.10

In the Eulerian module, the initial concentrations of DIN
were interpolated from the January profile at BATS, ob-
tained from the World Ocean Atlas (Garcia et al., 2024). The
total initial zooplankton nitrogen concentration was set to
0.10 mmol N m−3 throughout the water column and evenly15

distributed among the 20 size classes. Detritus concentration
was also initialized as 0.10 mmol N m−3.

2.7 Boundary conditions

To preserve total nitrogen, zero fluxes are applied at both
surface and bottom boundaries for all Eulerian fields. Addi-20

tionally, a reflective boundary condition is used for particles
encountering both surface and bottom boundaries during the
random walk. We leave the option to use the Dirichlet bound-
ary condition if one wishes to.

2.8 Model simulations25

To achieve (quasi) steady-state seasonal cycles, PIBM was
run for 6 years, with only the last year analyzed in this study.
The model solves the differential equations governing bio-
logical processes using the forward Euler method with a con-
stant 10 min time step. However, because the vertical random30

walk requires a shorter time step (Ross and Sharples, 2004),
particles undergo 200 substeps per biological time step, re-
sulting in a random walk time step of 3 s.

Due to the computational intensity of the particle random
walk, we implemented parallel computing using the MPI35

standard, which can be compiled with different implementa-
tions such as Open MPI (Message Passing Interface Forum,
2023).

2.9 Observational data

For model validation, we obtained observational data for 40

DIN (nitrate and nitrite), Chl, and NPP from the BATS web-
site (https://bats.bios.asu.edu/, last access: 19 May 2024). To
interpolate the data for each vertical grid at each time point,
we applied the k-nearest neighbors (KNN) algorithm, with
each data point calculated as the mean of the three nearest 45

neighbors.

2.10 Mean trait and trait (co)variance

We characterize phytoplankton community composition in
terms of mean trait values and trait (co)variance. Trait
(co)variance serves as a measure of functional diversity, cap- 50

turing trait variations in the community (Norberg et al., 2001;
Chen et al., 2019; Le Gland et al., 2021). The commu-
nity mean phytoplankton trait is calculated as the carbon-
weighted mean of all phytoplankton cells in the community:

l =

∑k
i=1li ni PC,i∑k
i=1ni PC,i

, (34) 55

where li and ni represent the trait value and number of cells
of super-individual i, respectively, and PC,i represents the
cellular carbon content of this super-individual.

The trait covariance is calculated as

COV(lj , lm)=
∑k
i=1(lj,i − lj ) (lm,i − lm)ni PC,i∑k

i=1ni PC,i
, (35) 60

where lj and lm represent the mean values of trait j and m,
respectively. lj,i and lm,i represent the trait j andm of super-
individual i, respectively. It is important to note that we treat
log(Cdiv), Topt, and log(αChl) as traits as they are more likely
to follow normal distribution than the raw units. 65

https://bats.bios.asu.edu/
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Table 1. Fixed parameters of the 1D PIBM model.

Parameter Symbol Value Units

Phytoplankton maximal chlorophyll to nitrogen ratio1 θN
max 3.00 g Chl mol N−1

Phytoplankton cost of biosynthesis1 ζ 3.00 mol C mol N−1

Shape-factor describing the dependence of V C
max on QN1

n 1.00 dimensionless
Interspecific activation energy2 Ei 0.22 eV
Normalization constant for Ed

2 Ed0 2.30 eV
Normalization constant for Ea

2 Ea0 0.98 eV
Activation energy for heterotrophic processes3 Ez 0.65 eV
Boltzmann constant kb 8.62× 10−5 eV K−1

Scaling exponent against θ for Ea
2 β −0.20 eV

Scaling exponent against θ for Ed
2 φ 0.27 eV

Normalization constant of the σPSII and θC relationship4 δ 0.492 m2 W−1 g C g Chl−1

Exponent of the σPSII and θC relationship4 κ 0.469 dimensionless
Turnover time of the electron transfer chain4 τ 5.50× 10−3 s
Damage constants of a PSU4 kd 5.00× 10−6 dimensionless
Length scale of photosynthesis depletion5 a0 0.34 m−1

Carbon density at a cell size of 8.00 µm5 ρs 0.25 pg C m−3

Mutation probability of a phytoplankton cell ν0 10−12 cell−1

Standard deviation of mutation of the three traits σ 0.10 dimensionless
Zooplankton grazing half-saturation constant KP,jpred 0.15 mmol N m−3

Coefficient of the prey refuge6 3 −6.60 (mmol N)−1 m3

Zooplankton gross growth efficiency7 ξ 0.30 dimensionless
Fraction of unassimilated food by zooplankton7 η 0.24 dimensionless
Zooplankton mortality rate at 15 °C mz 0.005 d−1

Standard deviation of zooplankton grazing kernel6 σjpred 0.50 dimensionless
Conversion rate from detritus to DIN at 15 °C Rdn 0.10 d−1

Detritus sinking rate Wd 0.50 m d−1

Light attenuation coefficient for seawater8 Kw 0.04 m−1

Light attenuation coefficient for chlorophyll8 KChl 0.025 (mg Chl m−2)−1

1 Geider et al. (1998). 2 Chen (2022). 3 Brown et al. (2004). 4 Nikolaou et al. (2016). 5 Wirtz (2011). 6 Ward et al. (2012). 7 Buitenhuis et al.
(2010). 8 Gan et al. (2010).

Table 2. Size scaling coefficients for phytoplankton and zooplankton traits, following the general formula (y = aV b), where V represents
cell volume (µm3). For phytoplankton, V is derived from Cdiv using the allometric relationship from Marañón et al. (2013) (first entry in this
table). For the size scaling of maximal phytoplankton growth and respiration rates, see Eqs. (13) and (14).

Variable Symbol a b Units

Phytoplankton cellular carbon1 PC 0.017 0.88 pmol C cell−1

Phytoplankton half-saturation constant for nitrogen uptake2 KN 0.14 0.33 mmol N m−3

Phytoplankton cellular maximum N : C ratio3 QN
max 0.25 −0.07 mol :mol

Phytoplankton cellular minimal N : C ratio3 QN
min 0.07 −0.17 mol :mol

Sinking rate of phytoplankton4 Wphy 0.0019 0.43 d−1

Zooplankton maximum grazing rate3 Imax 21.90 −0.16 d−1

1 Marañón et al. (2013). 2 Edwards et al. (2012). 3 Ward et al. (2012). 4 Durante et al. (2019).
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2.11 Functional diversity: Rao index

We computed the functional diversity of a phytoplankton
community using the Rao index, a classic index to quantify
diversity in functional ecology (Rao, 1982; De Bello et al.,
2021):5

Rao=
N∑
i=1

N∑
j=1

pi pj dij , (36)

where pi and pj represent the relative proportion in carbon
biomass of super-individual i and j , respectively, in the com-
munity. dij represents the Euclidean distance between these
two super-individuals in the three-dimensional trait space:10

dij =

√√√√ 3∑
k=1
(l′i,k − l

′

j,k)
2, (37)

where l′i,k represents the kth trait of super-individual i nor-
malized between 0 and 1 because the three traits have differ-
ent units (l′i,k =

li,k−lmin
lmax−lmin

).
As shown above, the Rao index not only captures the rela-15

tive abundance (biomass in this case) of each individual, but
also takes into account trait similarities between individuals.

2.12 Size spectra

Size spectra have been widely used to provide insights into
the size structure and energy flow of aquatic communities20

(Platt and Denman, 1977). To illustrate how this model can
be used to simulate the plankton size distribution, we plotted
the size spectra for both phyto- and zooplankton at the first
10 m of the water column and compared them between win-
ter (20 February) and summer (20 August). We constructed25

the size-abundance spectra by calculating the total cell abun-
dances in each of the 20 size bins that cover the entire size
range of the simulated plankton community (from ∼ 0.80 to
3600 µm). The size bins were defined according to an octave
(log2) scale of cell volume.30

The size-abundance spectra for phytoplankton is com-
puted straightforwardly, with cellular volume derived using
the allometric relationship between volume and cellular car-
bon (Cdiv, see Table 2). Each super-individual is assigned to
the corresponding size bin based on its cellular volume, and35

the total abundance within each size bin is determined by
summing the number of phytoplankton cells within all super-
individuals of that volume range.

For zooplankton, the biovolume of each of the 20 size
classes is known, but their abundance must be estimated from40

biomass concentration. Specifically, the abundance of each
size class is estimated as the ratio of total zooplankton car-
bon biomass to the individual carbon content. To calculate
individual carbon content, zooplankton nitrogen content is
first converted to carbon for each size class using the canon-45

ical Redfield ratio (C : N = 106 : 16). The individual carbon

content (ZC, g C) is then derived from biovolume using the
allometric relationship proposed by Harris et al. (2000):

ZC = ρZ
π

6
ESD3pdpc, (38)

where ρZ (g cm−3) is the density of zooplankton, assumed 50

to be equal to seawater density (1.025 g cm−3), pd (dimen-
sionless) is the proportion of wet mass composed of dry
mass, and pc (dimensionless) is the proportion of dry mass
composed of carbon. For non-gelatinous zooplankton, we
adopted values of pd = 0.20 and pc = 0.45. 55

The size spectra of both phytoplankton and zooplankton
were calculated as ordinary least-squares regression lines
with log10-transformed total cell abundance (y-axis, indi-
viduals m−3) as the response variable and log10-transformed
cell volume for each size class (x-axis, µm3) as the predic- 60

tor. All zero-abundance data were removed. Additionally, the
abundance data of the two smallest size classes (0.80 µm,
1.20 µm) were removed for the zooplankton fraction because
such small size classes, which deviate from the normal linear
trend, were not often considered in the construction of size 65

spectra.

2.13 Sensitivity analysis

2.13.1 Number of phytoplankton super-individuals

The number of phytoplankton super-individuals is a crucial
parameter affecting the computation speed of PIBM. Ide- 70

ally, we aim to determine the minimum number of super-
individuals that can be used without compromising model
accuracy. To assess the impact of the number of phytoplank-
ton super-individuals on model outputs, we ran simulations
with 5000, 10 000, and 50 000 super-individuals while keep- 75

ing all other parameters constant and compared their results
against the standard run with 20 000 super-individuals.

2.13.2 Comparison with simple NPZD models

To examine the effects of increased model complexity pro-
posed in the PIBM, and assess how incorporating multiple 80

phytoplankton traits influences plankton biomass and pro-
duction, we implemented two simple NPZD models: one Eu-
lerian and one Lagrangian. These models contain only a sin-
gle, generic phytoplankton group, where carbon, nitrogen,
and chlorophyll dynamics follow Geider et al. (1998) (Eqs. 1, 85

2, 3).
However, important differences exist. First, the term of

photoinhibition is not included, meaning that PC is an in-
creasing function of light (I ) in both models:

PC
= PC

m

1− e

(
−αChl θC I

PC
m

) . (39) 90
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Second, µm is an exponential function of temperature fol-
lowing the Arrhenius equation:

µm = µ0 e
Ep x, (40)

where Ep is the activation energy of phytoplankton.
Last, there is only one zooplankton group that feeds exclu-5

sively on phytoplankton and experiences linear mortality:

∂ZOO
∂t
= fh(T )ξ ZOO Imax PN

PN+KP
(1− e3PN)

−ZOOmz fh(T )+
∂

∂z

(
Kv(z)

∂ZOOj
∂z

)
. (41)

We ran these two simple NPZD models under the same
forcing as PIBM with identical simulation settings (e.g., time
step, simulation duration). However, we have to stress that10

strict comparisons between PIBM and simpler NPZD mod-
els are impossible due to different parameter sets and model
architecture.

3 Results

Below, we first describe the behavior of the phytoplankton15

model, followed by a detailed analysis of PIBM outputs.
We then compare the modeled fields of DIN, Chl, and NPP
against observations to ensure that our model can qualita-
tively reproduce the main observed patterns. Afterwards, we
highlight patterns emerging from the model that may be in-20

teresting but hard to directly measure in situ. Finally, we
present the results of sensitivity analyses, including the ef-
fects of phytoplankton super-individuals and comparisons
against simple NPZD models.

3.1 Phytoplankton fitness landscapes25

Figure 3 illustrates how growth rate (µ, d−1) (top row), N : C
(mol :mol) (middle row), and the Chl : C ratio (g : g) (bot-
tom row) vary for different phytoplankton ecotypes which
have unique combinations of traits (i.e., Cdiv, Topt and αChl).
To facilitate interpretation, we present 2D contour plots that30

vary two traits at a time (i.e., ESD vs. Topt, ESD vs. αChl,
and Topt vs. αChl), while keeping the third trait constant. Fig-
ure 3 shows the results for the summer period, characterized
by a constant DIN concentration of 0.10 mmol m−3, a tem-
perature of 28 °C, and an irradiance of 250 W m−2.35

In the left column, we present the impact of cell size and
Topt, with a constant αChl of 0.08 W2 m−1 g Chl−1 mol C d−1.
This αChl value is designed to adapt to the current light con-
ditions without strong photoinhibition. As anticipated, the
maximum peak of µ is observed for small-size phytoplank-40

ton (< 3 µm), efficient at taking up nitrogen at low envi-
ronmental concentrations, and with a Topt around 28–30 °C,
close to the environmental temperature (Fig. 3a). Moreover,
we observe close to zero µ values for the whole size range

when Topt is far from the environmental temperature, high- 45

lighting maladapted ecotypes. N : C shows maximum val-
ues for small phytoplankton cells, almost regardless of Topt
(Fig. 3b), decreasing towards largest sizes, consistent with
the observations by Baer et al. (2017). In this particular sce-
nario, where both irradiance and αChl are constant, the Chl : 50

C ratio also peaks for small cells with high Topt (Fig. 3c),
similar to µ. The increase in the Chl : C ratio for large-size
ecotypes and Topt < 10 °C may be related to the minimum
growth in carbon content (Fig. 3a).

In the middle column, we present how growth, N : C and 55

Chl : C ratios change with cell size and αChl, with a constant
Topt of 30 °C. This Topt value is close to the environmental
temperature (28 °C), indicating adaptation to the ambient
temperature. µ peaks for small phytoplankton (< 3 µm) and
αChl around 0.10 W2 m−1 g Chl−1 mol C d−1 (Fig. 3d). The 60

light condition of 250 W m−2 favor organisms with low light
affinity values (αChl < 0.20 W−1 m2 g Chl−1 mol C d−1)
with high capability of photo-repair. N : C mainly depends
on cell size, progressively decreasing towards the largest
sizes (Fig. 3e). All else being equal, cells with more optimal 65

αChl values tend to exhibit lower N : C ratios (Fig. 3e).
Chl : C ratio shows the maximum values for the smallest
phytoplankton with the lowest αChl, and the minimum values
for the largest phytoplankton with the highest αChl (Fig. 3f).
As larger αChl increases the probability of photoinhibition 70

and reduces the carbon-specific photosynthesis rate, the
amount of cellular chlorophyll content also decreases
relative to carbon.

In the right column, we present the impact of Topt and
αChl, with a constant ESD of 1.36 µm. As anticipated, given 75

the defined environmental conditions, the highest growth rate
(µ) is achieved by phytoplankton cells with a Topt close
to the environmental temperature and αChl values around
0.10 W−1 m2 g Chl−1 mol C d−1, which are better adapted to
high irradiance (Fig. 3g). Moreover, N : C increases with 80

Topt, with a minimum corresponding to cells with high
growth (Fig. 3h). Similarly, the Chl : C ratio is maximized
for ecotypes with Topt closer to the environmental tempera-
ture and characterized by lower αChl values, resulting in re-
duced photoinhibition (Fig. 3i). 85

3.2 Comparisons with observations

We compared the observed DIN, Chl, and NPP at the BATS
station with the model output (Fig. 4). Our model is able to
reproduce the general qualitative patterns of these three vari-
ables, albeit with some quantitative differences. Both the ob- 90

servation and the model output show an increase in surface
DIN and Chl during the winter when mixing is the strongest
(Fig. 2). The model also successfully reproduces the deep
chlorophyll maximum between 50 and 100 m. Despite the
presence of the deep chlorophyll maximum, the model can 95

reproduce the surface maximum of NPP, which extends be-
low 50 m during the summer.
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Table 3. Parameters of the simple NPZD model that differ from PIBM.

Parameter Symbol Value Units

Phytoplankton maximal growth rate at 15 °C µ0 2 d−1

Activation energy of phytoplankton growth Ep 0.32∗ eV
Initial slope of the P-I curve αChl 1.2 m2 W−1 g C (g Chl)−1

Zooplankton maximal ingestion rate at 15 °C Imax 1.6 d−1

Zooplankton grazing half-saturation constant KP 0.15 mmol N m−3

Zooplankton mortality rate at 15 °C mz 0.1 d−1

∗ Chen et al. (2012).

Figure 3. Contour plots for phytoplankton growth rate (µ, d−1), N : C ratio (QN , mol :mol), and Chl : C ratio (g : g) as functions of the three
master traits (size, ESD (µm); optimal temperature, Topt (°C); and light affinity, αChl (W2 m−1 g Chl mol C−1 d−1)) at equilibrium under a
typical summer condition (dissolved inorganic nitrogen = 0.10 mmol N m−3, temperature = 28 °C, and PAR = 250 W m−2).

Admittedly, there are some differences between the model
output and the observations. The model appears to underes-
timate DIN in deep waters and overestimate Chl in the eu-
photic zone.

3.3 Modeled patterns of passive particles5

Figure 5 compares the vertical distribution of passive parti-
cles and phytoplankton super-individuals, allowing us to ver-

ify whether the Lagrangian module accurately represents the
random walk of particles. While the distribution of phyto-
plankton super-individuals can be additionally affected by 10

cell division and death, the distribution of passive particles
is driven purely by diffusion.

As passive particles (Fig. 5a) are homogeneously dis-
tributed throughout the water column, we can affirm that the
particle random walks are working correctly. During periods 15

of high vertical mixing, the distribution of super-individuals
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Figure 4. Daily comparison between observed data (a, c, e) and modeled data (b, d, f) for (a, b) dissolved inorganic nitrogen (DIN,
mmol m−3), (c, d) chlorophyll concentration (Chl, mg m−3), and (e, f) net primary productivity (NPP, mg C m−3 d−1).

shows a homogeneous pattern (Fig. 5b). However, as ex-
pected, during the period of strong stratification of the water
column (April–October), more pronounced differences were
observed. A greater number of super-individuals were found
in the euphotic layer, where conditions for survival are opti-5

mal, with their abundance decreasing in deeper layers.

3.4 Modeled patterns of phytoplankton carbon,
nitrogen, zooplankton and detritus

Phytoplankton carbon and nitrogen concentrations, for which
no observational data are available, show similar patterns.10

Both of them peak at spring after the shoaling of the mixed
layer depth (Fig. 6a, b). Before the spring bloom, surface
phytoplankton carbon and nitrogen can penetrate deeper than
150 m due to strong winter mixing. Similar to the patterns of
chlorophyll, phytoplankton carbon also shows elevated con-15

centrations at the deep chlorophyll maximum during sum-
mer, although this maximal layer is not as pronounced as that
of chlorophyll (Fig. 4d).

By contrast, zooplankton biomass peaks in the summer
and autumn after the phytoplankton spring bloom (Fig. 6c), 20

suggesting that the demise of the phytoplankton spring
bloom is at least attributed to intensified zooplankton graz-
ing. Detritus also peaks after the phytoplankton spring
bloom, but unlike zooplankton, its concentration gradually
declines with time, as a result of both accelerated decompo- 25

sition due to high temperature and shifts in zooplankton size
structure.

3.5 Modeled Chl : C and N : C ratios

The phytoplankton cellular N : C and Chl : C ratios are key
indicators of how phytoplankton acclimate to light and nu- 30

trient availability. These ratios are also crucial for linking
phytoplankton carbon to satellite-derived chlorophyll obser-
vations and to the limiting nutrient, nitrogen (Fig. 7).

The model predicts higher Chl : C ratios in the surface
mixed layer during winter due to enhanced nutrient supply 35

from strong mixing. In contrast, Chl : C ratios are lower in



I. Sala and B. Chen: Individual-based phytoplankton diversity model 15

Figure 5. Mean temporal and vertical frequencies of (a) passive particles and (b) phytoplankton super-individuals every 5 m depth and every
5 d along the last year’s simulation. The white lines represent the mixed layer depth (MLD, m).

Figure 6. Temporal and vertical variability of modeled (a) phytoplankton carbon (mmol C m−3), (b) phytoplankton nitrogen (mmol N m−3),
(c) total zooplankton nitrogen (mmol N m−3), and (d) detritus (mmol N m−3).

both the summer surface layer and in deep waters below the
mixed layer. These patterns can be understood as an outcome
of the balance between photosynthesis and chlorophyll syn-
thesis. Under high light and low nutrient conditions, phyto-
plankton cells reduce the rate of chlorophyll synthesis rel-5

ative to carbon synthesis and vice versa. However, when
the light is too low, the synthesis rate of chlorophyll is too
low to sustain the maintenance of chlorophyll, leading to
a phenomenon known as “bleaching” (Pahlow et al., 2013;
Behrenfeld et al., 2016).10

While the patterns of Chl : C ratios can be easily under-
stood from the perspective of environmental control, N : C
ratios are more related to changes in phytoplankton size than

to the environment DIN or light. While one might expect that
phytoplankton cells should have lower N : C at the surface 15

during the summer due to low DIN, the model actually pre-
dicts the opposite pattern. This is because the summer surface
waters are dominated by small cells which tend to have larger
N : C ratios (Marañón et al., 2013; Baer et al., 2017).

3.6 Modeled phytoplankton trait distribution and 20

functional diversity

Our model reproduces the typical pattern of increasing phy-
toplankton mean size with nutrient availability (Fig. 8a).
Phytoplankton mean size is the smallest at the surface dur-
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Figure 7. Temporal and vertical variability of modeled phytoplankton (a) Chl : C ratio (g Chl mol C−1) and (b) N : C ratio (mol N mol C−1).

ing the summer and autumn, where DIN is low, but increases
with depth as nutrients become more abundant. Phytoplank-
ton mean size is also larger at the surface during the winter
(but not as large as in deeper waters during summer) when
nutrient concentrations are higher due to stronger mixing.5

Phytoplankton size variance (Var(Cdiv)) is an index for
size diversity and is the greatest in the area of the deep
chlorophyll maximum during summer and autumn and the
lowest beneath the euphotic zone (150 m) (Fig. 8b). The high
size variance at the deep chlorophyll maximum results from10

the movements of small cells from above and large cells from
below. Size variance is also slightly greater at the surface dur-
ing the winter than the summer due to more abundant nutri-
ents, but not as high as those in the deep chlorophyll max-
imum. This suggests that dispersal probably plays the most15

important role in affecting size diversity.
As expected, phytoplankton community mean Topt largely

follows seawater temperature, with higher values at the sur-
face during summer and lower values at depth (Fig. 8c).
However, phytoplankton mean Topt shows the lowest values20

at the area of deep chlorophyll maximum during summer
and autumn, corresponding to the maximal variance of Topt
(Fig. 8d). Otherwise, the variance of Topt generally shows
larger values in the surface mixed layer than at depth.

Phytoplankton mean light affinity (αChl) also follows the25

opposite pattern of light availability, being the lowest at
the summer surface and the highest in the deepest waters
(Fig. 8e). The variance of αChl shows a qualitatively sim-
ilar pattern with those of variance of Cdiv and Topt, being
higher during the winter and at the deep chlorophyll max-30

imum (Fig. 8f), again suggesting mixing can enhance trait
variance and diversity.

The covariances between traits suggest selection forces
against different traits. The covariance between Topt and Cdiv
is largely negative during the winter, suggesting larger cells35

tend to be cold-adapted at local scales. Conversely, Cov(Topt,
Cdiv) is often positive at the surface and the deep chlorophyll
maximum during summer at local scales. It is important to
note that these covariances are calculated at local scales. We

can still observe negative Cov(Topt, Cdiv) for the whole water 40

column in which the small and warm-adapted cells are at the
surface and large and cold-adapted cells are at depth.

The covariance between Topt and αChl is largely negative,
suggesting that due to the negative environmental correla-
tion between temperature and light, cold-adapted cells tend 45

to adapt to the low light. The covariance between size and
αChl is mostly positive during winter and at the deep chloro-
phyll maximum, indicating larger cells tend to adapt to low
light.

The modeled patterns of functional diversity quantified as 50

the Rao index largely follow the trait variances and the co-
variance between cell size and other two traits (Fig. 9). The
Rao index is greater during the winter season with strong
mixing and at the layer of the deep chlorophyll maximum.

3.7 Plankton size spectra 55

During both seasons, log abundances form linear relation-
ships with log size (biovolume) for both phytoplankton and
zooplankton (Fig. 10). The slopes of phytoplankton size
spectra were between−0.99 and−1.36, consistent with what
would be expected for phytoplankton communities in olig- 60

otrophic oceans (Marañón, 2019). The slopes of the phy-
toplankton size spectra were more negative in the summer
than in the winter, also consistent with previous observations
that the phytoplankton size spectra became steeper and small
phytoplankton became more dominant when nutrient supply 65

diminished (Huete-Ortega et al., 2014).
In contrast, the slopes of zooplankton were similar be-

tween summer (−0.85) and winter (−0.80) and were less
steep than those of phytoplankton. This relates to three fac-
tors. First, large zooplankton have a wider feeding kernel 70

than small ones, thus having access to a wide range of prey.
Second, the predator-prey size ratio increases with predator
size, which makes the slope of size spectra less steep (Tre-
bilco et al., 2013). Third, large zooplankton can also feed
on small zooplankton. These patterns are consistent with 75

the observations in marine plankton communities that more
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Figure 8. Temporal and vertical variability of modeled phytoplankton traits weighted by phytoplankton carbon content (Eq. 34). (a) Mean
phytoplankton size (ESD) back-transformed from the carbon threshold of cell division (Cdiv). (b) Variance of phytoplankton Cdiv. (c) Mean
phytoplankton optimal temperature (Topt). (d) Variance of phytoplankton Topt. (e) Mean phytoplankton light affinity represented by ln-
transformed slope of the photosynthesis–irradiance curve (αChl). (f) Variance of phytoplankton Ln αChl. (g) Covariance between phyto-
plankton Topt and Ln Cdiv. (h) Covariance between phytoplankton Topt and Ln αChl. (i) Covariance between phytoplankton Ln Cdiv and Ln
αChl.

biomass can exist in larger size classes, which leads to an in-
verted biomass pyramid (Gasol et al., 1997; Trebilco et al.,
2013).

3.8 Diel variability of phytoplankton cell

Our model allows us to track the properties of a phytoplank-5

ton cell throughout a diel cycle to gain insights from the life

history of the cell. Figure 11 shows the trajectory of a ran-
domly selected super-individual at hourly resolution during
the first week of winter and the first week of summer.

During the winter period, this phytoplankton particle was 10

dispersed widely between the surface and 50 m in the wa-
ter column due to strong mixing (Fig. 11a). Because the
water column was well mixed, it was exposed to rela-
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Figure 9. Temporal and vertical variability of phytoplankton func-
tional diversity (Rao index) weighted by cellular carbon.

tively stable conditions of temperature (∼ 19.50 °C) and DIN
(Fig. 11b, d). By contrast, this particle experienced variable
PAR conditions, oscillating between daily maximums ∼ 50
and 200 W m−2. By comparison, the variations of Chl : C ra-
tio (θC) are modest (Fig. 11h), suggesting its limited accli-5

mation capability.
During the summer period, the super-individual position

was more stable at around 35 m in the first 7 d due to weak
mixing (Fig. 11a). As a consequence, the environmental con-
ditions (temperature, DIN, and PAR) the particle experienced10

were relatively stable. However, the variabilities of phyto-
plankton N : C and Chl : C are of the same magnitude be-
tween summer and winter, mainly due to diel changes of
light. The phytoplankton N : C and Chl : C were higher dur-
ing the winter period (Fig. 11g, red line) than during the sum-15

mer (blue line), reflecting the higher nutrient and lower light
environment in the winter.

Despite the seasonal differences, both particles divided
twice during this period (Fig. 11e–f). The phytoplankton cel-
lular carbon content increased progressively with time be-20

fore the division event until reaching the division threshold
(Fig. 11f). When this threshold was reached, the number of
phytoplankton cells doubled and the cellular carbon, nitrogen
and Chl content halved (Fig. 11e–f).

Irrespective of the birth event, we can also observe clear25

diel changes in cellular carbon, nitrogen, and chlorophyll
contents induced by light-driven photosynthesis, nutrient up-
take, chlorophyll synthesis, and dark respiration. Cellular
carbon increased from sunrise to sunset but declined in the
dark due to respiration. Correspondingly, N : C and Chl : C30

ratios declined during the daytime and increased during the
nighttime.

3.9 Effect of the number of super-individuals

We investigated the effect of the number of phytoplankton
super-individuals on the key model outputs including DIN,35

phytoplankton biomass, NPP, and diversity by running four
simulations with 5000, 10 000, 20 000, and 50 000 super-
individuals. We computed the temporal trends of these vari-
ables integrated throughout the water column during the final
year of each simulation (Fig. 12). 40

The number of phytoplankton super-individuals has weak
effects on these variables. Increasing the number of super-
individuals tends to reduce DIN and increase phytoplankton
biomass and NPP, although the trends are very similar be-
tween 20 000 and 50 000 super-individuals. Contrary to what 45

one might expect, increasing the number of super-individuals
slightly reduces phytoplankton functional diversity, particu-
larly in the winter and summer, although the seasonal trends
are qualitatively similar. In summary, the number of phyto-
plankton super-individuals does not have an appreciable ef- 50

fect on modeled phytoplankton biomass and diversity.

3.10 Comparisons with simple NPZD models

We compared the model outputs of DIN, Chl, and NPP be-
tween two simple NPZD models, Eulerian and Lagrangian,
and PIBM (Fig. 13). Overall, the three models produce quali- 55

tatively similar seasonal and vertical patterns. All three mod-
els generate similar concentrations of DIN, although DIN is
depleted earlier during spring in PIBM than in the two NPZD
models.

The two NPZD models reproduce clear deep chlorophyll 60

maximum (DCM) layers during summer and autumn. In con-
trast, the DCM in PIBM is broader and less pronounced. One
notable difference is that the DCM layers are deeper in the
two NPZD models than PIBM. This difference arises from
how phytoplankton traits, acclimation, and vertical dynamics 65

are represented in each model. In the NPZD models, phyto-
plankton traits are fixed and chlorophyll accumulates near the
base of the euphotic zone where light and nutrient availability
provide an optimal combination for growth. In PIBM, phyto-
plankton follow individual vertical trajectories and undergo 70

local selection and physiological acclimation. For instance,
ecotypes adapted to low-light conditions, with high Chl : C
ratios, can persist in the lower layers of the euphotic zone.
During summer, when the water column is strongly strati-
fied and vertical movement is constrained, one might expect 75

similar chlorophyll distributions across model frameworks.
However, PIBM produces higher chlorophyll concentrations
in the upper euphotic zone, as trait selection favor types with
elevated growth rates at higher light levels. The shallower
DCM in PIBM also results from stronger light attenuation in 80

the upper euphotic zone, where chlorophyll concentrations
are elevated. This increases light attenuation and reduces ir-
radiance at depth, limiting the potential for phytoplankton
growth and chlorophyll accumulation in deeper layers, as ob-
served in the Eulerian models. While PIBM is the only model 85

that includes photoinhibition, this is offset by the selection
of high-light adapted ecotypes under high-light conditions
(Fig. 8e).
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Figure 10. Phytoplankton (Phy) and zooplankton (Zoo) size spectra at the surface during (a) winter (20 February) and (b) summer (20 Au-
gust). Open dots represent the abundance of each size class, while solid lines indicate the ordinary least squares regression fits. Shaded areas
denote the 95 % confidence intervals (α = 0.05). The slopes of each regression line are also displayed.

Figure 11. Tracking a randomly selected phytoplankton super-individual for 7 d (hourly resolution) during the winter (blue dashed lines) and
the summer (red solid lines) periods. (a) Depths (m) between which the super-individual oscillated in the water column. (b) Differences in the
temperature (°C) conditions experienced by the super-individual. (c) Differences in the photosynthetically active radiation conditions (PAR;
W m−2) experienced by the super-individual. (d) Differences in the nitrogen concentration conditions (NO3, pmol N m−3) experienced by
the super-individual. (e) Temporal evolution of phytoplankton cell abundance (number of cells) within the selected super-individual. (f) Tem-
poral evolution of cellular carbon content (PC, pmol C cell−1). (g) Temporal evolution of nitrogen cellular quota (QN, pmol N pmol C−1).
(h) Temporal evolution of chlorophyll to carbon cellular ratio (θC, mg Chl mmol C−1).

The two NPZD models also produce higher NPP levels
than PIBM, although the seasonal and vertical patterns are
qualitatively similar. Notably, the outputs produced by the
Lagrangian NPZD model are almost identical to those of the
Eulerian NPZD model, although with slightly greater spa-5

tiotemporal variation. In summary, the outputs generated by
PIBM are broadly consistent with those from the simpler
NPZD models, although differences in vertical chlorophyll
structure and productivity reflect the influences of traits and
acclimation.10

4 Discussion

We have presented a novel hybrid Eulerian-Lagrangian
plankton model (PIBM) that treats phytoplankton as particles
or super-individuals. Each phytoplankton super-individual is
associated with three master traits – cell size (Cdiv), temper- 15

ature affinity (Topt), and light affinity (αChl) – which gov-
ern various physiological traits related to nutrient uptake and
photosynthesis. PIBM also enables phytoplankton cells to
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Figure 12. Comparisons of simulations with different numbers of super-individuals on vertically integrated variables. (a) Dissolved inorganic
nitrogen (DIN, mmol m−2). (b) Phytoplankton carbon (PC, mmol C m−2). (c) Phytoplankton nitrogen (PN, mmol N m−2). (d) Chlorophyll
(Chl, mg m−2). (e) Net primary production (NPP, mg C m−2 d−1). (f) Phytoplankton functional diversity (Rao index).

Figure 13. Temporal and vertical variability comparison of the output results of the three models: the Eulerian NPZD model (left column),
the Lagrangian NPZD model (middle column), and the PIBM (right column). (a, b, c) Dissolved inorganic nitrogen (DIN, mmol N m−3). (d,
e, f) Chl a (Chl, mg m−3). (g, h, i) Net primary production (NPP, mg C m−3 d−1).
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acclimate and evolve, making it well-suited for addressing
many questions in phytoplankton ecology and evolution.

Before discussing the merits and limitations of PIBM, it is
important to reiterate that its development was not aimed at
improving the modeling of commonly measured bulk vari-5

ables such as nutrient and chlorophyll concentrations. On the
contrary, it is well known that more complex models often
provide less accurate predictions of these variables than sim-
pler models (Kwiatkowski et al., 2014), due to greater un-
certainties in model structure and parameterization. Indeed,10

our simple NPZD models can generate outputs as good as,
or even better than, PIBM without parameter tuning. How-
ever, this does not imply that developing complex models is
unnecessary or without value. The same applies to this work,
our model is designed as a tool to address research questions15

related to phytoplankton biodiversity, which simple NPZD
models cannot address.

4.1 Model limitations

In this section, we highlight several limitations of PIBM
which will be addressed in future work.20

A key limitation of PIBM is its high computational cost.
This arises from the need for a short time step to accurately
simulate the random walk of particles in the water column
(Ross and Sharples, 2004). To balance this requirement (<
6 s) with computational efficiency, we set the biological re-25

action time step to 200 times that of the random walk. Addi-
tionally, accurately representing the phytoplankton commu-
nity requires modeling a large number of super-individuals.
Since each particle is simulated individually, computational
cost scales proportionally with the number of particles. Our30

sensitivity analyses indicate that 5000 super-individuals ap-
pear sufficient to reproduce the main seasonal patterns of
phytoplankton diversity and other variables, although some
quantitative differences remain (Fig. 12).

We also implemented parallel computing using MPI to35

simulate the random walk of both passive and phytoplank-
ton particles, with Open MPI as one implementation option.
However, the computation is still not fast enough to allow
effective sensitivity analysis or parameter optimization. In
the future, we will make the computations of biological re-40

actions in parallel and will attempt OpenMP which may al-
low more efficient memory sharing among threads. Another
remedy would be to implement GPU computing to speed up
the computation. We are considering ways to integrate our
model into PlanktonIndividuals.jl (Wu and Forget, 2022), a45

Julia language-based phytoplankton individual-based model
that can take advantage of GPU computing capability of the
Julia language.

The second limitation relates to the inadequate parame-
terization of the phytoplankton model using laboratory data50

and the need for more extensive validation of the overall
model output. While the size scaling of nutrient uptake has
been studied extensively in the literature (e.g., Edwards et al.,

2012; Marañón et al., 2013) and the temperature depen-
dence of phytoplankton growth seems clear (Thomas et al., 55

2012; Chen, 2022), the influence of phytoplankton light
traits on growth remains relatively unknown, particularly in
the context of photoacclimation. Edwards et al. (2015) an-
alyzed the relationships between light traits (e.g., slope of
the photosynthesis-irradiance curve). However, their model 60

did not account for the dependence of photosynthetic rate
on the Chl : C ratio or photoinhibition. To account for both
the effects of the Chl : C ratio and photoinhibition on phy-
toplankton photosynthesis, we have to assume an empirical
relationship between αChl and the repair rate based on differ- 65

ences between high-light adapted and low-light adapted eco-
types of Prochlorococcus (Moore et al., 1998). However, it
remains unclear how this scaling relationship applies to phy-
toplankton in general. More data are needed to establish a
more reliable relationship between photosynthetic parame- 70

ters.
The model outputs of phytoplankton traits also need to

be validated against observations. While the measurements
of phytoplankton size structure can be obtained, other traits
such as Topt and αChl are difficult to measure in situ on a cel- 75

lular basis. Moreover, even bulk properties such as the N : C
and Chl : C ratios of the whole phytoplankton assemblage are
challenging to measure in situ due to the difficulties in quan-
tifying phytoplankton carbon and nitrogen. Only a few stud-
ies have managed to measure cellular carbon and/or nitro- 80

gen of small size phytoplankton using flow cytometric sort-
ing (Graff et al., 2012; Baer et al., 2017). For larger cells,
most studies relied on microscopic counting to estimate phy-
toplankton cell volume which can then be converted to car-
bon (Cloern, 2018) without any measurement of cellular ni- 85

trogen. This type of information is essential for studying bio-
geochemical cycling and validating ecosystem model out-
puts.

Another limitation is that the model may be overly com-
plicated if we want to understand the key factor controlling 90

some ecological phenomenon (see below). PIBM consid-
ers multiple traits and processes, forming an interconnected
feedback network that makes it difficult to isolate the di-
rect effect of a single factor. For example, if we aim to as-
sess whether primary production is limited by nutrient sup- 95

ply or light availability by performing a single-factor pertur-
bation experiment, the increase in nutrient supply will not
only affect the nutrient status but also the trait distribution
of the whole phytoplankton community. This change in the
mean phytoplankton trait depends on the existing trait diver- 100

sity within the community and the mutation rate of individ-
ual cells, both of which remain poorly understood (Acevedo-
Trejos et al., 2015; Chen et al., 2019). However, if a user al-
ready knows that the system can be simplified (e.g., there is
little variability in phytoplankton thermal or light traits), they 105

can modify the initial conditions and the mutation rate to re-
move the unnecessary trait variance. Thus, one can simplify
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this model to a single-trait (e.g., size) phytoplankton model
if desired.

Finally, needless to say that our model only considers one
limiting nutrient – nitrogen – without considering other im-
portant elements such as phosphorus or silicate. This omis-5

sion likely contributes to discrepancies between observations
and model outputs at BATS, where phosphorus is the limit-
ing nutrient. It is up to the user to decide whether to add
these nutrients to the model depending on the question being
asked.10

4.2 Model strengths

Our model has several strengths:
First, PIBM simulates the movements and acclimation sta-

tus of phytoplankton cells with different traits in the ocean
and helps address the uncertainty of modeling using Eule-15

rian models and measuring NPP using fixed-depth incuba-
tions. It has been widely acknowledged that for both Eule-
rian models and in situ incubations, the estimates of primary
production can be biased, although the extent of this bias
is uncertain (Barkmann and Woods, 1996; Ross and Gei-20

der, 2009; Baudry et al., 2018). Some differences in bias
estimates may stem from the traits of phytoplankton cells.
Although our preliminary comparison between the simple
Eulerian and Lagrangian models shows no significant dif-
ferences (Fig. 13), it remains to be tested whether incorpo-25

rating additional traits will influence the divergence between
the two approaches. Notably, most previous individual-based
phytoplankton models are similar to our simple Lagrangian
NPZD model which does not consider phytoplankton func-
tional diversity (i.e., trait differences among cells). Although30

developing an Eulerian version of PIBM is beyond the scope
of this paper, we can investigate how the estimates of pri-
mary production estimates differ between Eulerian and La-
grangian models across different environments (e.g., strati-
fied vs. well-mixed water columns) using a simplified ver-35

sion of PIBM.
Second, PIBM captures three dimensions of phytoplank-

ton traits. We followed the DARWIN model (Follows et al.,
2007; Barton et al., 2010; Dutkiewicz et al., 2020) to assign
three master traits to phytoplankton, with slight differences.40

The rationale of designing these three traits is that they are
largely orthogonal to each other. In other words, small and
large cells have an equal probability of being warm-adapted
or cold-adapted and they also have the same probability of
being high-light-adapted or low-light-adapted. The impact of45

trait changes on phytoplankton acclimation and differences
in primary production estimates between Eulerian and La-
grangian models remains to be investigated using PIBM.

Third, our phytoplankton model allows phytoplankton
evolution. We incorporated phytoplankton evolution into the50

Lagrangian module, allowing mutation of all three master
traits in phytoplankton super-individuals. Modeling phyto-
plankton evolution has been a hot topic recently (Ward et al.,

2019; Beckmann et al., 2019), and individual-based models
provide an ideal and straightforward approach to incorporate 55

mutation and evolution (Acevedo-Trejos et al., 2022). We
will use PIBM to further investigate the impact of evolution
on phytoplankton diversity and primary productivity.

4.3 Potential applications

Below we discuss several potential applications of our 60

model. Note that these are not exhaustive but highlight
promising directions for future research.

4.3.1 Validating in situ measurements of primary
production

As discussed above, a key application of our model is to as- 65

sess bias in in situ primary production measurements, where
incubation bottles are tethered at fixed depths, exposing phy-
toplankton to different light conditions than those experi-
enced in a dynamically mixed water column. While sev-
eral studies have attempted to address this problem using 70

Lagrangian phytoplankton models (Barkmann and Woods,
1996; Baudry et al., 2018; Tomkins et al., 2020), they of-
ten overlook phytoplankton traits. The most important phy-
toplankton trait for this problem are likely light-related traits
(e.g., αChl), which are rarely considered in Lagrangian phy- 75

toplankton models.
In addition, it is not only the trait itself but also the trait

distribution that can matter for primary production. In other
words, phytoplankton diversity and community composition
is essential for accurately assessing in situ primary produc- 80

tion measurements. Since phytoplankton trait distribution is
not static across time and space, the bias also depends on
the phytoplankton community being sampled, so there is no
guarantee that the bias can be easily extrapolated to other
cases. The caveat is that we need to know the phytoplank- 85

ton trait distributions (which are even harder to measure) to
assess the accuracy of primary production estimates.

4.3.2 Understanding what controls phytoplankton
diversity

The central theme of ecology revolves around understanding 90

the factors that regulate biodiversity. Vellend and Agrawal
(2010) presented a unified view of four processes controlling
biodiversity: selection, dispersal, drift, and evolution. While
many studies investigate what regulates phytoplankton diver-
sity in the ocean (Barton et al., 2010; Vallina et al., 2014; 95

Righetti et al., 2019; Dutkiewicz et al., 2020), few managed
to examine the holistic effects of all four processes on biodi-
versity.

PIBM already incorporates the processes of selection, dis-
persal, and evolution and can be easily adapted to include 100

drift. One challenge would be again about the computational
costs if one wishes to understand the large-scale patterns
of phytoplankton diversity by coupling the individual-based
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model with a global circulation model (Hellweger et al.,
2014). Nevertheless, this challenge can be addressed using
advanced computing techniques as described above.

4.3.3 Understanding how phytoplankton acclimation
and trait distribution affect phytoplankton5

distribution

Biological oceanographers have long been fascinated by dis-
tinctive patterns of phytoplankton distribution in the ocean
such as the deep chlorophyll maximum (Cullen, 2015) and
spring bloom (Behrenfeld, 2010; Lévy, 2015). Despite exten-10

sive study, debates persist on what mechanisms drive these
patterns.

The formation of deep chlorophyll maximum remains
enigmatic with ongoing debate as to whether it reflects an ac-
tual accumulation of phytoplankton biomass or is primarily15

driven by photoacclimation for which phytoplankton cells in-
crease their intracellular pigment content to acclimate to the
low light condition. There is evidence that some phytoplank-
ton species may be more abundant at the surface but show a
peak of total pigments at the layer of deep chlorophyll max-20

imum, while some other species may indeed show greater
biomass at this layer (Chen et al., 2011). Again, the location
of the phytoplankton biomass peak likely depends on phy-
toplankton traits. Our model is an ideal tool for elucidating
the contribution of real biomass versus the photoacclimation25

effect to the layer of deep chlorophyll maximum.
Similar arguments can be raised for the spring bloom.

Behrenfeld (2010) argued that contrary to the light effects
(i.e., the critical depth hypothesis), the coupling between
phytoplankton growth and zooplankton grazing plays a criti-30

cal role in inducing the spring bloom. Lévy (2015) also used
a 1D NPZD model to test different hypotheses and high-
lighted the importance of physics forcing on the validity of
each hypothesis. However, few studies have considered the
roles of the changes in phytoplankton traits and photoaccli-35

mation in determining the onset of spring bloom. Our model
presents an exciting opportunity to fill this knowledge gap.

4.3.4 Understanding diel variations in phytoplankton
cell properties

Another potential application of our model is to understand40

diel variations in cell size, abundance, and the cell cycle of
phytoplankton in the oligotrophic ocean (Vaulot et al., 1995;
Li et al., 2022). It is an interesting phenomenon that picophy-
toplankton cells such as Prochlorococcus and Synechococcus
tend to show synchronized growth over a diel light/dark cy-45

cle. Phytoplankton cells tend to increase the size from sunrise
to sunset but divide in late afternoon or evening, thus creat-
ing a mismatch between cell carbon production and abun-
dance (Li et al., 2022). However, these diel rhythms can be
different for different groups of phytoplankton (Vaulot and50

Marie, 1999). It is still unclear how these different patterns

can be entirely explained by environmental (light, nutrient)
variations or at least partly due to endogenous circadian clock
(Heath and Spencer, 1985; Hellweger et al., 2020).

As PIBM is driven by a diel light/dark cycle, it can be 55

used to understand what regulates the changes in cell proper-
ties linked to the cell cycle. Our model can be further mod-
ified to include cell cycles of phytoplankton to understand
what controls phytoplankton division (Pascual and Caswell,
1997). Another promising future direction is to include more 60

molecular processes such as gene expression and protein syn-
thesis into the phytoplankton cell cycle, thus allowing us to
link molecular studies with phytoplankton traits (Hellweger,
2020; Hellweger et al., 2020).

5 Conclusions 65

We introduce a novel 1D hybrid Eulerian–Lagrangian model,
uniquely tailored to explore how water column dynamics
shape phytoplankton dynamics. Phytoplankton are modeled
as super-individuals, a Lagrangian particle that represents a
cluster of clonal phytoplankton cells that are physiologically 70

identical and share a common history. Each phytoplankton
super-individual is characterized by its cell size, temper-
ature affinity and light affinity. Furthermore, these super-
individuals possess the capability to mutate, enhancing the
model’s capacity to simulate phytoplankton growth, produc- 75

tivity, and diversity within dynamic aquatic environments.
The seasonal variability of temperature, irradiance, and

vertical diffusivity at the BATS station enabled us to eval-
uate the response of our ecological model to environmen-
tal changes. By employing three master traits (size, temper- 80

ature affinity, and light affinity), the individual-based model
illustrates the evolution and acclimation of the phytoplankton
community to environmental conditions and the competition
between different phytoplankton ecotypes. Furthermore, the
model allows individual analysis, allowing us to scrutinize 85

how each phytoplankton super-individual responds to the en-
vironmental conditions it encounters throughout its life cy-
cle. While the current version has several weaknesses, such
as high computational costs and the need for extensive pa-
rameterization and validation, it has several potential appli- 90

cations that would help us address questions related to the
individual growth of phytoplankton, as well as the produc-
tivity and diversity of the phytoplankton community.

Code and data availability. The model code and input data are
publicly available at https://github.com/BingzhangChen/PIBM (last 95

access: 27 June 2025) under the MIT license and also available on
Zenodo https://doi.org/10.5281/zenodo.15296286 (Chen, 2025).
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