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Abstract. Open biomass burning has major impacts globally and regionally on atmospheric composition. Fire emissions 

include particulate matter, tropospheric ozone precursors, greenhouse gases, as well as persistent organic pollutants, mercury 55 

and other metals. Fire frequency, intensity, duration, and location are changing as the climate warms, and modelling these 

fires and their impacts is becoming more and more critical to inform climate adaptation and mitigation, as well as land 

management. Indeed, the air pollution from fires can reverse the progress made by emission controls on industry and 

transportation. At the same time, nearly all aspects of fire modelling – such as emissions, plume injection height, long-range 

transport, and plume chemistry – are highly uncertain. This paper outlines a multi-model, multi-pollutant, multi-regional 60 

study to improve the understanding of the uncertainties and variability in fire atmospheric science, models, and fires’ 

impacts, in addition to providing quantitative estimates of the air pollution and radiative impacts of biomass burning. 

Coordinated under the auspices of the Task Force on Hemispheric Transport of Air Pollution, the international atmospheric 

modelling and fire science communities are working towards the common goal of improving global fire modelling and using 

this multi-model experiment to provide estimates of fire pollution for impact studies. This paper outlines the research needs, 65 

opportunities, and options for the fire-focused multi-model experiments and provides guidance for these modelling 

experiments, outputs, and analysis that are to be pursued over the next 3 to 5 years. It proposes a plan for delivering specific 

products at key points over this period to meet important milestones relevant to science and policy audiences.  

1 Introduction 

Open biomass burning (BB), which includes wildland fires and agricultural burning (often called “fires” hereafter), has 70 

major impacts on global and regional atmospheric chemistry, climate, air quality and the health of ecosystems, via emissions 

of air pollutants and greenhouse gases, their long-range transport, and their deposition. Fire emissions include particulate 

matter;, tropospheric ozone precursors, such as nitrogen oxides (NOx), volatile organic compounds (VOCs) and carbon 

monoxide (CO); long-lived greenhouse gases such as methane, nitrous oxide, and carbon dioxide; persistent organic 

pollutants; mercury and other metals. While contributions to poor air quality from industrial and transportation sources are 75 

decreasing in many parts of the world due to emission controls, fires are a growing contributor to elevated air pollution 

episodes. Fire frequency, intensity, duration, and location are changing as the climate warms (UN, 2022; Cunningham et al, 
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2024), and understanding and modelling these changes to fire regimes and their impacts is becoming more and more critical 

for climate adaptation and mitigation. At the same time, nearly all aspects of fire modelling – such as emissions, plume 

injection height, long-range transport, and plume chemistry – are highly uncertain. We propose a multi-model, multi-80 

pollutant, multi-regional study to improve the understanding of the uncertainties and variability in fire atmospheric science 

and its impacts, in addition to providing quantitative estimates of the air pollution and radiative impacts of biomass burning. 

 

The proposed study (herein referred to as HTAP3-Fires) is being planned under the auspices of the Task Force on 

Hemispheric Transport of Air Pollution (TF HTAP, http://htap.org), an expert group organized under the Convention on 85 

Long-Range Transboundary Air Pollution (UN, 1979), to improve understanding of the intercontinental flows of air 

pollutants, including aerosols and their components, ozone and its precursors, mercury and other heavy metals, and persistent 

organic pollutants. TF HTAP has an interest in understanding the relative contribution of fires as compared to other sources, 

to air pollution impacts on health, ecosystems, and climate at the regional to global scale. TF HTAP is also well-positioned 

to bring together the multi-disciplinary, international modelling and fire science communities to work towards the common 90 

goal of improving global modelling of air pollutants released from fires. Although initiated under TF HTAP, this paper and 

the plan presented herein is intended to reflect the interests of this broader community and to facilitate communication and 

coordination between a variety of related ongoing activities and new activities that may be initiated as part of this 

community plan.   

 95 

This paper outlines the research needs (Section 2), opportunities (Section 3), and options (Section 4) for improving 

understanding of the climate, air quality, and toxicological impacts of fires and identifies specific research activities and 

modelling products (Section 5) that could be pursued over the next 3-5 years. Section 5 proposes a plan for delivering 

specific products at key points over this period to meet important milestones relevant for science or policy audiences.  

2. Motivation: Science Policy Questions 100 

Several open online meetings were organized by TF HTAP in 2022 and 2023 to identify policy-relevant science questions 

that could be explored in a study of the transboundary air pollution impacts of fires. The questions identified through those 

meetings have been subsequently refined into the subsections below. The stated questions are not an exhaustive compilation, 

but the questions do provide important motivation and direction for the HTAP3-Fires multi-model experiments. 

2.1 Transboundary transport of fire-emitted compounds 105 

• What are the impacts of fire emissions on air quality, human health, ecosystems, and climate at different scales, 

from near- to far-fields? 
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• What is the role of transboundary movements of fire plumes in impacting atmospheric composition in different 

regions? And how will the absolute and relative magnitudes of these contributions change over time? 

• How does the location or seasonality of large fire events within regions affect the long-range transport potential?  110 

And how might these locations change over time with land use and climate change? 

• How do plume dynamics and near-fire chemical transformations (e.g. sequestration of NOx in peroxyacetyl nitrate 

(PAN), formation of secondary organic aerosols) affect the long-range transport potential and downwind impacts?  

• Do different fire types (e.g. agricultural waste burning and wildland fires) have different extents of long-range 

transport? What are their relative contributions to regional air pollution? 115 

2.2 Fire variability and uncertainty 

• What is the range of variability and uncertainty of the results from multiple models’ simulations? 

• How do model differences in physical and chemical processes manifest in the varied impacts of climate forcing and 

health that are due to fire emissions?  

• Are there certain fire-related parameterizations that perform particularly well against observations? 120 

• What are key model parameters that require improved observational constraints to reduce uncertainty?  

• What is the impact of different fire emissions inputs on atmospheric concentrations? 

• How sensitive are model results to prescribed fire emissions versus prognostic (interactive fire modules that are 

coupled to climate) emissions? 

2.3 Similarities and differences between different pollutants 125 

• What is the contribution of fires to atmospheric concentrations of different air pollutants? 

• How do the footprints of different pollutants differ and what are the principal drivers of those differences? 

• How much do model source-receptor relationships differ based on initial pollutant focus? (e.g. comparison of 

different model types) 

• How do fire emissions interact chemically with other anthropogenic emissions in the atmosphere?  130 

2.4 Questions identified by the research community, but that are beyond the scope of this study 

• What are the implications of potential regional changes in prescribed burning, fire suppression policies, and other 

fire management strategies? 

• What is the impact on transboundary smoke from local fire management policies? 

• What impact does pyrocumulonimbus have on long-range transport of fire emissions? How often and where does 135 

pyrocumulonimbus occur and will they become more frequent with climate change? 
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• What emissions result when wildfires consume buildings and other infrastructure in the wildland-urban interface? 

What are the health impacts of built-environment burning?  

• How much do fires with small burned areas that are not detected by satellite observations influence the fire 

emissions amount and composition?  140 

3 Scope and background information 

The scope and further motivation for this undertaking are defined in this section, partially informing the multi-model 

experiment design that will appear in Section 5, including the model output table (Section 5.4). 

3.1 Pollutants of interest 

Fires emit all the pollutants that the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is concerned with. 145 

This study is an opportunity to address all pollutants with the common emission source of open burning. Below is additional 

information on these pollutants in the context of fires and this modelling study.  

3.1.1 Tropospheric ozone and its precursors 

Tropospheric ozone (O3) is both an air pollutant detrimental to human health and vegetation, and a short-lived climate forcer 

(SLCF) (Monks et al., 2015). O3 is not emitted directly, but rather formed through photochemical processes involving 150 

nitrogen oxides (NOx = NO + NO2), hydrocarbons, such as volatile organic compounds (VOCs), methane (CH4), and carbon 

monoxide (CO). This chemistry evolves in fire plumes: freshly emitted plumes, typically containing a lot of particulate 

matter, may suppress O3 formation due to low-light conditions or heterogeneous chemistry, whereas aged fire plumes may 

produce O3 more efficiently (e.g., Real et al., 2007). Due to a large quantity of VOC emissions from biomass burning, O3 

formation in wildfire plumes is generally NOx-limited. However, when VOC-rich smoke plumes are transported into NOx-155 

rich urban pollution, O3 formation may be enhanced. 

The overall impact of fires on O3 concentrations remains highly uncertain. While NOx is short-lived, it can be transported 

long distances in the form of PAN (a reservoir for sequestering NOx and HOx radicals), leading to additional O3 production 

in downwind regions for moderate smoke plumes, and production increases with plume age (Jacob, 1999; Lin et al., 2010; 

Jaffe and Wigder, 2012; Fiore et al, 2018). At high smoke levels, O3 production can be suppressed, due either to 160 

heterogeneous chemistry on smoke particles (e.g., Konovalov et al. 2012) or to diminished photolysis rates (Alvarado et al. 

2015). Recent field measurements show that emissions of NOx and HONO in wildfire plumes are rapidly converted into 

more oxidized forms such that O3 production in wildfire plumes becomes rapidly NOx-limited (Juncosa Calahorrano et al., 

2021; Xu et al., 2021). After a few daylight hours, 86% of the total reactive oxidized nitrogen species (NOy) is in the forms 

of PAN (37%), particulate nitrate (27%), and gas-phase nitrates (23%) (Juncosa Calahorrano et al., 2021). When a VOC-rich 165 

smoke plume mixes into a NOx-rich urban area, it can also create an environment for enhanced O3 production (Liu et al., 
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2016; Gao and Jaffe, 2020). The net impact of fires on regional and extra-regional O3 therefore depends on the emission of a 

range of precursor species and their chemical transformation in fresh and aged wildfire smoke plumes. Previous HTAP 

assessments (HTAP1 and HTAP2) have shown that ground-level O3 is significantly influenced by long-range transport at the 

hemispheric scale and have demonstrated the utility of a large ensemble of models for quantifying these effects and their 170 

uncertainty (Fiore et al., 2009). While fires contribute only a small amount to annual average ground-level O3 in the major 

northern hemisphere receptor regions, they can be important episodically, and may become more important with global 

warming and reduction of traditional anthropogenic emissions.  

The 1999 CLRTAP Gothenburg Protocol (GP, EMEP, 1999) as amended in 2012 regulates the emissions of O3 precursors in 

member states. In a recent review, it was concluded that current air quality legislation in the United Nations Economic 175 

Commission for Europe (UNECE) region is not sufficient to meet the long-term clean air objectives of CLRTAP. In support 

of the CLRTAP response to the recent GP review, TF HTAP is currently organising a new set of multi-model experiments 

(HTAP3) aimed at quantifying the contribution of long-range transport to ground-level O3 in all world regions from remotely 

emitted O3 precursors, including from fire emissions (the “Ozone, Particles, and the deposition of Nitrogen and Sulfur”, or 

HTAP3-OPNS project). To avoid duplication of effort, the model runs contributing to both exercises will be harmonised as 180 

much as possible (e.g., using common emission datasets and simulation years). 

3.1.2 Methane 

CH4 is the second most important greenhouse gas after CO2 and modulates the chemistry of many other air pollutants via its 

impact on atmospheric concentrations of the hydroxy radical (OH). It is also involved in tropospheric O3 photochemistry 

(Sec 3.1.1). In addition to CH4 being directly emitted from biomass burning, NOx, CO, and NMVOCs emitted by fires have 185 

the potential to alter regional and global OH concentrations, thus influencing the atmospheric lifetime of CH4 (e.g., Naus et 

al., 2022). Modelling studies suggest significant suppression of global OH concentration following enhanced CO emissions 

from extensive wildfires in Southeast Asia during El Niño events (Duncan et al., 2003; Manning et al., 2005; Rowlinson et 

al., 2019). Butler et al. (2005), and Bousquet et al. (2006) both found that this change in global OH significantly contributed 

to the observed increase in global CH4 concentration during the 1997 El Niño fires. The influence of fires on global OH 190 

appears to depend on the location of the fires. Leung et al. (2007) showed that the CO emissions from extensive boreal fires 

in 1998 did not significantly lower global OH, and thus did not significantly contribute to enhanced CH4 growth. Rowlinson 

et al. (2019) showed that the increase in CH4 lifetime induced by El Niño-related fires in the tropics offsets an El Niño-

driven reduction in CH4 lifetime caused by changes in humidity and in atmospheric transport.  

Extreme fires and fire seasons may lead to increased CH4 emissions from wildland fires. For example, the 2020 extreme fire 195 

year in California accounted for approximately 14% of the state’s total CH4 budget, including all anthropogenic CH4 sources 

(Frausto-Vicencio et al., 2023). Fires in Arctic tundra will also lead to more CH4 emissions in the future, as recent 

observations in Alaska revealed that previously burned tundra (within 50 years) emit more CH4 than the surrounding 

landscapes (Yoseph et al., 2023).  
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3.1.3 Particulate Matter 200 

Particulate matter (PM) is emitted in great quantities from fires and is usually the main cause of air quality exceedances 

during fire episodes. In addition, it has consequences for cloud interactions and radiative forcing. It is comprised of a range 

of species including black carbon (BC, also known as elemental carbon or soot), primary organic carbon (OC, related to 

organic aerosol, OA), sulfate (SO4), nitrate (NO3), ammonium (NH4), and crustal material (CM, or dust). Particulate matter 

may be emitted directly or can be formed as secondary aerosols through gas-to-particle conversion. Secondary organic 205 

aerosol (SOA) is particularly important in the context of long-range transport (see Section 3.2.5). If smoke is transported 

through a cloudy boundary layer, aqueous-phase processing can also facilitate the transformation of SO2 gas into sulfate, 

with consequences for cloud interactions (e.g., Dobracki et al, 2024). The chemical and radiative properties, as well as cloud 

interactions are all dependent on the chemical composition, size, and vertical distributions of the particulate matter (e.g., 

Huang et al., 2012). BC accounts for about 10% of smoke plume mass and is the most critical contributor to aerosol radiative 210 

forcing (RF) (Veira et al., 2016). In contrast to other aerosol components, BC introduces a radiative warming into the Earth’s 

climate system (Section 3.2.2). Compared with BC from fossil fuel combustion, BC from biomass burning has generally 

larger particle sizes, more and thicker coated particles, and more absorption per unit mass (Schwarz et al., 2008).  

3.1.4 Mercury 

Mercury (Hg) is a potent neurotoxin that bioaccumulates in the environment, endangering human health, wildlife, and 215 

ecosystems. Wildfires release mercury from plants and soils into the atmosphere, where it may be carried and deposited over 

great distances, contaminating water bodies and terrestrial ecosystems (Obrist et al., 2018; Chen and Evers, 2023). The 

Minamata Convention on Mercury (UN, 2013), a worldwide convention enacted in 2013, seeks to safeguard human health 

and the environment against mercury's negative effects. It examines the complete life cycle of mercury, including extraction, 

trading, use, and emissions, emphasizing the need of reducing mercury pollution internationally. A third set of multi-model 220 

experiments being organized under HTAP3, known as the Multi-Compartmental Mercury Modelling and Analysis Project 

(HTAP3-MCHgMAP), is aimed at attributing trends in environmental mercury concentrations to changes in primary 

mercury emissions and releases or to changes in other drivers or processes (Dastoor et al, 2024). All three sets of HTAP3 

experiments (Fires, OPNS, and MCHgMAP) will aim to harmonise inputs and experimental designs as much as possible and 

avoid duplication of effort. 225 

3.1.5 Persistent organic pollutants  

Persistent organic pollutants (POPs), which are synthetic chemicals that are also bioaccumulative, toxic and subject to long-

range transport. POPs that have been trapped through wet and dry deposition by trees and shrubs (Su and Wania 2005, Daly 

et al. 2007) can be re-released during a wildland fire. The high temperature and vertical winds of wildland fires can 

remobilize POPs from fuels such as leaves and needles and the forest soil, which otherwise act as a sink for POPs. Eckhardt 230 

https://doi.org/10.5194/gmd-2024-126
Preprint. Discussion started: 28 August 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

et al. (2007) reported record high concentrations of polychlorinated biphenyls (PCBs) at the Arctic station of Zeppelin 

(Svalbard) in a forest fire plume after a transport time of 3-4 weeks. Many atmospheric models do not simulate POPs, 

however, several POPs models exist, with some listed in Table A.2. 

The UNEP Stockholm Convention on POPs provides the framework for global regulation and monitoring of POPs since 

2004. However, many POPs, e.g. polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its degradation products 235 

(DDTs), other organochlorine pesticides, polybrominated diphenyl ethers (PBDEs), and per- and polyfluoroalklyl substances 

(PFASs), have been in use for decades before they were regulated. While most legacy POPs in air are declining globally 

(Wong et al. 2021, Shunthirasingham et al. 2018, Kalina et al. 2019), increasing trends are observed for chemicals of 

emerging concern, e.g. PFASs (Wong et al. 2018, Saini et al. 2023).  

Dioxins are one class of POPs that are formed during incomplete combustion processes. Dioxins are emitted  from waste 240 

incineration, industrial and residential combustion of fossil fuels, and biomass burning. Global gridded emission inventories 

are now available for dioxins (EDGAR at http://edgar.jrc.ec.europa.eu; and Song et al., 2022). Compared to the early 2000s, 

global dioxin emission reduced by 26% in the late 2010s, attributable to emission mitigations in upper- and lower-middle 

income countries. However, the declining trend of dioxin emissions over the past decades terminated from the early 2010s 

due to increasing significance of wildfire induced emissions in the total emission. The highest levels of dioxin emissions ( 245 

expressed as polychlorinated dibenzodioxins/dibenzofurans (PCDD/Fs))  were identified in East and South Asia, Southeast 

Asia, and part of Sub-Saharan Africa. In East and South Asia, growing dioxin emissions are attributed to industrialization, 

whereas wildfire is a major contributor to high dioxin emissions in Southeast Asia and Sub-Saharan Africa.      

3.1.6 Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants primarily generated by incomplete combustion. PAHs are 250 

of concern because their concentrations have remained stable despite global emission reductions. PAHs exist in both gas and 

particulate phase in the atmosphere, allowing them to undergo long-range transport to remote locations (Muir and Galarneau, 

2021; Zhou et al., 2012). PAHs are regulated under the UNECE Aarhus Protocol on POPs in the CLRTAP (Yu et al, 2019), 

yet are still observed in pristine, remote areas, such as the Arctic and Antarctic regions. The long-range atmospheric 

transport of PAHs has been extensively investigated and partly attributed to sources in global emission inventories (e.g., 255 

PEK-FUEL at http://inventory.pku.edu.cn/ and EDGAR at http://edgar.jrc.ec.europa.eu). Further efforts to update global 

monthly PAH emissions from wildland fire sources from 2001 to 2020 use carbon stock data up to 2020 based on satellite 

remote sensing (Luo et al., 2020; Song et al. 2022). The new inventories improve modelling of wildfire-induced PAH levels 

and trends particularly in the Arctic, Sub-Saharan Africa, Southeast Asia, and South America. In the Arctic, source-tagging 

methods have identified local wildfire emissions as the largest sources of benzo[a]pyrene (BaP), a congener of PAHs with 260 

high carcinogenicity, accounting for 65.7% of its concentration in the Arctic, followed by wildfire emissions of Northern 

Asia. Wildland fires account for 94.2% and 50.8% of BaP levels in the Asian Artic during boreal summer and autumn, 

respectively, and 74.2% and 14.5% in the North American Arctic for the same seasons (Song et al., 2022). 
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3.1.7 Other metals and trace elements 

Biomass-burning aerosols also contains a large variety of metals and other trace elements (Perron et al. 2022). The source 265 

can be the vegetation consumed and/or surrounding soils entrained into plumes by strong pyroconvective updrafts (Wagner 

et al., 2018; Hamilton et al., 2022), or mixing of BB aerosol emissions into advecting dust plumes, as happens in sub-

Saharan Africa (Quinn et al., 2022). Entrained soil dust is estimated to be the major (two-thirds) source component for the 

iron contained in smoke plumes (Hamilton et al., 2022), with other elements needing further investigation. Many of these 

elements are important components for biogeochemical cycles, human health impacts, and/or aerosol RF.  270 

The mass of iron emitted by fires is particularly important to quantify because iron is a limiting nutrient in many open ocean 

regions, playing an important role in CO2 sequestration, particularly in the southern oceans through increasing phytoplankton 

primary productivity (Tang et al., 2021; Hamilton et al., 2020). 

Other nutrients (e.g., phosphorus) are also emitted from fires in sufficient quantities to warrant deeper understanding of their 

fluxes and related impact assessment on terrestrial and marine biogeochemical cycles. For example, African fires have been 275 

identified as an equal source to African dust in terms of the intercontinental transport of phosphorus to the Amazon 

Rainforest (Barkley et al. 2019). There is also growing evidence that increasing United States (US) fire activity is impacting 

downwind freshwater ecosystems through depositing phosphorous (Olsen et al., 2023).     

One practical issue in determining the impact of changes in fire activity on metal aerosol emission and deposition fluxes is 

quantifying the contribution of fire to the atmospheric loading of a given metal. There are many other sources of metals to 280 

the atmosphere, including mineral and anthropogenic dust, fossil fuels and vehicular transport, metal smelting and mining, 

and volcanoes to name a few (Mahowald et al., 2018; Hamilton et al., 2022). Once sources become well-mixed in the 

atmosphere it becomes much more difficult to trace their individual source contributions. One potential avenue in 

“fingerprinting” the fire source contribution is the use of metal isotopes. In general, different metal sources have different 

isotopic fractionations (Fitzsimmons and Conway, 2023) and this difference in aerosol characteristic has been used 285 

successfully to differentiate iron aerosol between dust and anthropogenic sources (Conway et al., 2019). However, there is 

currently no data on the iron isotopic signature of fire, so that aspect is beyond the scope of this study.   

3.2 Impacts from fires 

3.2.1 Human health 

Densely populated areas like Southeast Asia, North America, and the Mediterranean experience episodes of intense air 290 

pollution from wildfires exceeding the ambient air quality standards that last multiple days or weeks on a regular basis (Liu 

et al., 2015; Jaffe et al., 2020; Dupuy et al., 2020; and see Supplement, Sections S1 for further regional discussions and S2 

for acute exposure health impacts). An estimated 339,000 premature deaths per year (interquartile range: 260,000 - 600,000) 

can be attributed to exposure to wildfire smoke worldwide (Johnston et al., 2012). Xu et al (2023) estimated 9.9 days of 

smoke exposure from 2010-2019, a 2.1% increase compared to the previous decade. The impacts are projected to increase 295 
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under future climate change (Xie et al., 2022). In many regions of the world, farmers commonly burn crop residues to clear 

land for crop cultivation. However, these agricultural fires have health implications as air pollution increases (Jones and 

Berrens, 2021). During peak fire periods, these agricultural fires can contribute more than half of the particulate matter (PM) 

pollution, even in urban settings (Cusworth et al, 2018; Liu et al., 2018). 

Health risk assessment models and air quality health indices are often based on surface level concentrations of PM2.5, CO, 300 

O3, and NOx. Emissions of PM2.5 from fires are of particular health concern, with no known safe PM2.5 concentration in air, 

as noted by the World Health Organization (WHO 2006). Fine particles impact lung functions, encouraging respiratory and 

cardiovascular mortality and morbidity including asthma and emphysema (Davidson et al., 2005; Lampe et al., 2008; Jain et 

al., 2014; Reid et al., 2016; Cascio, 2018; Ghosh et al., 2019; Chen et al, 2021; Aguilera et al., 2021; Sonwani et al. 2022; 

Gao et al., 2023; Bauer et al., 2024). There is also evidence that wildfire smoke affects mental health (Eisenman et al., 2022; 305 

To et al., 2021), such as due to displacement and smoke exposure following wildfires which can lead to increased cases of 

anxiety and post-traumatic stress disorder (e.g., Humphreys et al., 2022). 

An additional consideration is how smoke influences the structure of the boundary layer and thus the concentration of 

pollutants that people are exposed to. Fire aerosols, by cooling the surface and reducing boundary layer turbulence (Section 

3.2.2), can suppress mixing of air in the boundary layer, effectively increasing pollution exposure at the surface (Bernstein et 310 

al., 2021). This effect has been studied extensively in polluted urban environments, but its importance for fires, where the 

composition of aerosol may be substantially different, remains unclear. 

Finally, the chemical composition of the PM influences its health impacts. For example, benzo(a)pyrene, the most toxic 

congener of 16 parent PAHs, has been linked to high lifetime cancer risk from inhalation. Knowledge of PM size distribution 

(e.g. Sparks and Wagner, 2021), and chemical composition is essential for understanding health impacts, thus, motivating 315 

our multi-pollutant approach to these model simulations. 

3.2.2 Climate and radiative forcing (RF) 

While wildland fires have long been considered a natural and relatively carbon-neutral component in the Earth system (CO2 

emitted during burning is reabsorbed as the forest regrows), land use change and anthropogenic climate change have caused 

the frequency and intensity of fires to rapidly change, potentially altering the global carbon budget. The magnitude of 320 

preindustrial fires ’is highly uncertain, propagating into large uncertainties in aerosol RF estimates and thus understating 

how climate has evolved over the Industrial Era is highly uncertain by a factor of 4 (Hamilton et al, 2018; Wan et al, 2021; 

Mahowald et al. 2023). 

Fire emissions have diverse effects on the climate. In addition to the direct effects from released greenhouse gases and 

aerosols, additional indirect effects arise from the formation of tropospheric O3, reduction in lifetime of CH4 by enhancing 325 

tropospheric oxidation capacity, and changes in stratospheric water vapor caused by responses of the atmospheric chemistry. 

Co-emitted SO2 can also become converted to SO4
2-, an effective cloud nucleator, thereby affecting cloud lifetime (Dobracki 

et al., 2024). The aerosols have indirect (microphysical) and semi-direct (radiative) impacts on cloud fields and large-scale 
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circulation (Ding et al., 2022; Diamond et al., 2020; Adebiyi and Zuidema, 2018). Short-term radiative effects of smoke on 

surface wind, temperature, moisture, and precipitation can also substantially enhance fire emissions and weaken smoke 330 

dispersion (Grell et al, 2011; Huang et al., 2024). Snow and ice albedos also change dramatically when fire-emitted black 

and brown carbon are deposited. Additionally, indirect effects on biogeochemistry result from wildfire emissions (Sections 

3.1.6 and 3.2.3).  

The RF from fire plume components are summarized in Table 1. Though, most studies focus on specific components or 

regional RF of wildfire emissions only (e.g., Mao et al., 2012; Chang et al., 2021, Mubarak et al., 2023). However, Ward et 335 

al. (2012) conducted a comprehensive global analysis of wildfire emission's RF, encompassing all components.  

 

Table 1: Summary of present-day RF from specific fire plume components. 

Fire emission component RF (W/m2) Comments 

Tropospheric O3 0.03 to 0.05  Dahlman et al., 2011, Ward et al, 2012. Depends heavily on the emissions 

from other sources, emission location and plume height (e.g. Naik et al., 

2007; Paugam et al., 2016). 

Aerosol direct effect -0.20 to 0.25   Rap et al., 2015; Tian et al, 2022. Depends on uncertainties in BC 

absorption, and height of the smoke plume. 

Aerosol indirect effect -1.11 to -0.09 Tian et al, 2022; Rap et al., 2015. Depends on background conditions. 

 

The large range in aerosol indirect effect heavily depends on the background conditions. Aged smoke is an excellent cloud 340 

condensation nuclei (e.g., Kacarab et al, 2019), but increasing cloud condensation nuclei from other emission sources can 

reduce the RF from wildfire emissions (e.g. Ward et al., 2012; Hamilton et al., 2019), which is a general feature for natural 

emissions (Spracklen et al, 2013). A reduction of anthropogenic emissions in the future could increase the effects of natural 

emissions (see example for tropospheric ozone by Mertens et al., 2021). The estimate of the aerosol albedo effect also varies 

in sign, but the magnitude is in general rather small compared to the indirect aerosol effect (Tian et al., 2022). The height of 345 

the fire plume influences its RF, and recent studies suggest a large climate impact of fire emissions that rise into the 

stratosphere (Stockeret al., 2021, Damany-Pearce et al., 2022). Moreover, new measurement data indicate a larger warming 

potential of the aerosol emissions from fires, in part because of low single-scattering albedos resulting from a high fraction 

of black-carbon containing particles, and relatively low OA:rBC mass ratios (Dobracki et al., 2023) might help to reduce 

these discrepancies between the models (Zhong et al., 2023).   350 

3.2.3 Ecosystems 

Fires impact land cover, runoff/infiltration, soil erosion, and water quality, via reducing water use by plants and increasing 

soil hydrophobicity. The impact depends on the surface (topography, vegetation type, soil type) and fire properties as well as 

the quantity and intensity of precipitation following the fires. For example, high forest fire counts in India have been shown 
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to decrease the soil moisture content, evapotranspiration, and normalized difference vegetation index (Jain et al, 2021). 355 

Further regional discussions can be found in the Supplement, in Section S1. Note that for some regions, actions have been 

taken to reduce such impacts which may or may not be accounted for or represented well in models. 

Fires can also positively or negatively impact aquatic and land ecosystems nearby and afar via deposition. Specifically, fires 

can impact downwind marine ecosystems if nutrient deposition is sufficient to alleviate nutrient limitation in the surrounding 

waters (Hamilton et al. 2022). For example, Siberian fires were recently linked to anomalously high phytoplankton growth in 360 

the Arctic Ocean through the additional atmospheric supply of nitrogen (Ardyna et al. 2022). Ozone produced from fire and 

other emissions can reduce the productivity of O3 sensitive ecosystems, perturbing biogenic emissions.  

The estimated deposition fluxes depend highly on the models’ deposition schemes and vary by chemical species and surface 

types (e.g., Tan et al., 2018; Huang et al., 2022). Through radiative impacts which are only accounted for in some models, 

fires can perturb numerous variables relevant to the calculation of deposition velocity/coefficient and secondary pollutant 365 

formation (e.g., Huang et al. 2024, for a Canadian wildfire event in 2023 that enhanced O3 and nitrogen deposition in the 

eastern US). 

3.2.4 Socioeconomics and fire management decisions 

In cases of forest fires that encroach on the wildland-urban interface, people are forced to evacuate or permanently relocate 

their homes. High fatalities of residents (e.g., Molina-Terre´n et al. 2019), firefighters, and fauna; severe air pollution 370 

ranging over a few to thousands of kilometers; and huge economic losses from property damages, national park closures, 

tourism and recreational activity curbs, highway blocks, air travel diversions, and forest-based livelihood losses (e.g., 

Psaropoulos, 2021) result from large scale, recurrent forest fires (Bowman et al. 2011). 

Catastrophic wildfires around the world are increasingly more frequent and hazardous. For example, in the United States, 

fire-loss events increased from an average of 1.5 events per decade from 1980-1999 to 7 per decade from 2000-2019, costing 375 

the nation a cumulative USD $10 billion and USD $75 billion, respectively (Smith et al. 2020). Few studies have reported on 

the increasing socioeconomic impacts and diversity of people and communities being affected (Moritz et al. 2014; Bowman 

et al. 2017). Further studies denoting the dollar-cost of fire events include Masters (2021) for the 2019-2020 Australia fires 

and Wang et al. (2021) for the 2018 California fires. Additional regional discussions can be found in the Supplement, 

Section S1. 380 

The Wildland Urban Interface (WUI) is the area where human development meets or intermixes with wildlands (Stewart et 

al., 2007; Platt, 2010). The WUI area plays a critical role in wildfire management because increased human availability in 

the WUI leads to more human caused ignitions, wildfires in this area pose a greater risk to structures and lives, and WUI 

fires are harder to manage yet must be suppressed (Choi-Schagrin, 2021). The demographics of the WUI are regionally-

dependent (e.g., Wigtil et al., 2016; Davies et al., 2018; Tang et al., 2024), and are changing with time, as housing costs 385 

(Greenberg, 2021), and immigration (Shaw et al. 2020) evolve over time.  
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Moreover, some studies focused on environmental justice describe various impacts to, and the social vulnerability of, 

different communities. Wildfires preferentially impact US regions with lower populations of minorities and higher 

populations of elderly (Masri et al., 2021). Elderly populations are particularly vulnerable to the effects of fire (Masri et al. 

2021; Liu et al. 2015; Murphy and Allard, 2015). Indigenous communities also have high vulnerability, because they are 390 

disproportionately located in areas of high fire risk (Davies et al. 2018). 

Land management decisions have an important role in determining ecological and socio-economic pathways. Prescribed or 

controlled burning is an important tool within holistic land management plans for enhancing ecosystem resilience, 

biodiversity conservation, plant response, air quality, and carbon sequestration. Each of these benefits are expanded upon in 

the Supplement, Section S3, with the general conclusion that collaboration with local communities, incorporation of 395 

traditional ecological knowledge, and adaptive management techniques guarantee that land management decisions are 

consistent with sustainable practices. Further research beyond the scope of this study is needed to incorporate these kinds of 

land management decisions into fire emissions scenario inputs for atmospheric models.    

3.2.5 The role of atmospheric long-range transport 

Long-range transport of fire-related pollutants makes open biomass burning relevant for regions that are not typically 400 

impacted by widespread, frequent or intense fires. For example, recent Canadian 2018 and 2023 fires were reported to cause 

high PM and O3 pollution episodes in the US (e.g., Xie et al., 2020; Lin et al., 2024; Huang et al., 2024), and these plumes 

can reach Europe through long-range cross-Atlantic transport (Real et al., 2007; Alvarado et al., 2020; CAMS, 2023). In 

tropical regions, prevailing easterlies and the African Easterly Jet South (Adeyemi and Zuidema, 2016) can readily transport 

biomass-burning aerosol from Africa to South America (Holanda et al. 2020). The biomass-burning aerosol interactions with 405 

a large subtropical low cloud deck vary microphysically and radiatively with the vertical colocation of aerosol and cloud 

(Kacarab et al., 2020; Zhang and Zuidema, 2019; 2021). Smoke is also an annual occurrence in northern Thailand and upper 

Southeast Asia, transported regularly to southern China and Taiwan. At even larger scales, global teleconnections such as the 

El Niño-Southern Oscillation allowing variability in precipitation, and thus, Indonesian peat fires to impact emission 

loadings as far away as equatorial Africa (Doherty et al., 2006; Lin et al., 2014). Smoke also impacts the southeast Asian 410 

monsoon through increasing the low cloud coverage (Ding et al., 2021).  

Long-range transport depends on many factors including, but not limited to source proximity, plume height, synoptic 

weather conditions, atmospheric chemistry and deposition rates. Long-lived primary pollutants such as CO may be 

transported on a hemispheric scale, while short-lived species such as PM and NOx typically affect a much smaller region.  

However, the formation of secondary pollutants within the plume introduces substantial uncertainty into the broader 415 

atmospheric impacts of fires. In particular, the formation of longer-lived pollutants such as O3, PAN and secondary fine 

particles can substantially impact atmospheric composition over intercontinental distances, documented in both 

observational and modelling studies (Real et al., 2007; Lin et al., 2024). The timing and magnitude of secondary pollutant 

formation in transported plumes strongly influences the health and ecosystem impacts of distant downwind regions and 
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introduce much uncertainty in our assessment of these impacts. Sensitivity experiments with atmospheric chemistry transport 420 

models, constrained with estimates of formaldehyde, a by-product of secondary organic aerosol that can be detected from 

space (Zhong et al., 2023; Alvarado et al., 2020) are important for understanding the long-range impact of fire-related 

primary and secondary pollutants on receptor regions.  

As nations implement more stringent air quality targets, long-range transport will start to play an increasingly important role 

in determining if these targets are met. The multi-model study proposed here will include regional emissions perturbation 425 

experiments (Sections 4.5 and 5.3) to quantify the long-range impacts on local atmospheric composition. 

3.3 Leveraging recent and ongoing efforts 

Several distinct scientific communities are addressing fire research and applications in line with their specific objectives. 

Table A.1 of the Appendix lists the recent and ongoing efforts in the community that are complementary, but not duplicating 

the research outlined in this paper. For example, the IGAC BBURNED activity hosted a workshop in November 2023 to 430 

assess current global biomass burning emissions datasets and recommend one as the baseline fire emissions dataset for this 

work (Sections 5.2 and 5.3). The Arctic Monitoring and Assessment Programme (AMAP) SLCF expert group may utilise the 

model output from this work for a future Arctic-focused biomass burning report. A further example is the Climate Model 

Intercomparison Projects, CMIP6 and CMIP7 activities: CMIP6 and FireMIP included simulations from dynamic vegetation 

models with interactive fire modules provided future fire emissions for different climate scenarios as input for this work 435 

(Section 4.2.3 and 5.2), and AerChemMIP2 being planned for CMIP7 will include fire-focused simulations for their aerosols 

and gas chemistry climate impacts. 

4. Discussion of modelling options 

In this section, we establish the range of model types expected to participate, and then discuss different options for model 

inputs, such as emissions and driving meteorology. We also discuss what kinds of simulations could be carried out to answer 440 

the science policy questions of Section 2. Final guiding decisions on all of these topics are provided in Section 5. 

4.1 Model types and scope 

Models suitable for exploring the local, regional and global impacts of fires have a wide range of different geographic and 

temporal scales and resolutions. Models of atmospheric processes have widely differing treatments of chemical complexity 

and differ in their vertical and horizontal extent. Some models incorporate physical processes to simulate their own 445 

meteorology, which may be nudged to match meteorological reanalyses, while others are driven directly with reanalysis 

data. More complex models may incorporate other Earth system components including the land surface and vegetation 

(which may or may not be interactive), ocean exchange (and sometimes biogeochemistry), and the cryosphere. In some  

models, fire ignition, spread and pollutant emission are explicitly represented, governed by vegetative fuel loading and 
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meteorology, while in others they are a specified input. This diversity in model types and scope presents a technical 450 

challenge in comparing the simulated impacts of fires between models (e.g., Shinozuka et al., 2020; Doherty et al., 2022), 

but the different approaches and levels of complexity present a valuable opportunity to provide fresh insight into our 

understanding of fire processes and how they are best represented for specific goals. The models participating may fall into 

these categories: 

• Earth System Models (ESM) or Coupled Chemistry-Climate Models (CCM) 455 

• Regional or global Chemical Transport Models (CTM) 

• multi-media POPs models  

• Lagrangian Transport Models  

• Reduced-form, surrogate models (e.g., emulators) 

• Inverse models (see Section S4 for more information) 460 

The modelling centres in Table A.2 have indicated interest in participating in this study. The characteristics of the models in 

Table A.2 are taken into consideration for the experimental design.  

4.2 Available emissions inputs for historical and future simulations 

Almost all atmospheric models will require some information about anthropogenic and natural emissions as inputs.  In this 

section, we discuss available data sets for both historical and future anthropogenic and natural emissions relevant for a global 465 

multi-model study. Extricating truly natural from anthropogenic biomass burning is a tricky endeavour that is beyond the 

scope of this study. For example, while residential wood combustion is considered uncontroversially as anthropogenic, 

would accidental human ignition of a wildfire be considered natural or anthropogenic biomass burning? Similarly, would 

wildland fires that are more frequent and intense due to anthropogenic climate change be considered natural or 

anthropogenic? For the model design and interpretation of results, we simplify the total fire emissions into those with and 470 

without agricultural burning, and classify traditional fossil-fuel emissions as anthropogenic. Agricultural burning appears in 

both kinds of emissions datasets, so guidance is provided in Section 5.2 on which to use to not double-count those emissions.  

4.2.1 Historical and future anthropogenic emissions 

The HTAP v3 global anthropogenic emissions mosaic (Crippa et al., 2023) covers the time period 2000-2018 at 0.1 x 0.1 

degree resolution and monthly temporal resolution. This mosaic inventory is based on the EDGAR 6.1 global inventory and 475 

incorporates detailed emissions (for 16 sectors) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, OC, and four POPs 

species from several national and regional inventories using the original spatial distributions wherever possible. The REAS 

v3.2.1 regional inventory is used for Asia (South Asia, East Asia, and South East Asia), the CAMS-REG v5.1 regional 

inventory is used for Europe, the CAPS S-KU national inventory is used for South Korea, and the official national 

inventories of Japan, Canada, and the United States of America are used for the respective geographical zones. Wherever the 480 
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respective regional or national inventories did not include specific emission sectors, or wherever these sectors did not include 

the full set of species provided by EDGAR 6.1, these emissions were gap-filled using EDGAR 6.1. In cases where regional 

or national inventories included minor sources not present in EDGAR 6.1 (eg., CO, NOx, and SO2 from the solvents sector), 

these emissions were included in the HTAPv3 mosaic. This inventory is thus a complete and model-ready dataset 

representing the best available emissions for global and regional model simulations aimed at informing air quality policy. By 485 

September 2024, HTAP v3.1 global anthropogenic emissions is expected to be released, which are as above, except covering 

the years 2000-2020, based on EDGAR v8, and including updated emissions from the regional inventories. 

Future scenarios of anthropogenic air pollutant and CH4 emissions are available from the IIASA GAINS integrated 

assessment model for the period 2015-2050. The scenarios are based on those originally produced in 2021 by IIASA to 

support the review of the amended Gothenburg Protocol carried out under the Convention on Long-Range Transboundary 490 

Air Pollution. The next version of these scenarios, called GAINS LRTAP, will be available from July 2024 and will be used 

to support HTAP activities aimed at modelling future air quality to inform the CLRTAP policy response to the Gothenburg 

Protocol review. Three scenarios are provided: CLE (Current Legislation) is based on realistic implementation of existing air 

quality plans; MTFR (Maximum Technically Feasible Reduction) is based on the same underlying activity data as CLE, but 

with full implementation of all proven technical measures to abate CH4 and air pollutant emissions regardless of cost 495 

effectiveness; and LOW, which builds on MTFR, adding additional structural measures representing climate policies 

consistent with Paris Agreement goals and dietary changes aimed at reducing emissions from the agriculture sector. 

The HTAPv3 historical emissions and LRTAP future scenarios will be used in other concurrent HTAP3 projects 

(MCHgMAP and OPNS). Use of these emissions datasets would provide consistency across the HTAP3 experiments and 

would maximize policy relevance of the experiment results. While the historical emissions from HTAPv3.1 and the future 500 

scenarios from LRTAP do overlap in time (2015-2020), they have not been harmonised with each other, so do not provide a 

seamless timeseries of emissions from 2000 to 2050. At present, historical simulations and future simulations should be 

planned separately. This discontinuity around the present day is consistent with fire emissions themselves (satellite products 

for the historical period and land model products for the future) and likely also the choice of models (CTMs and specified 

dynamics for the historical period and free running atmospheric models for the future). 505 

Each modelling centre will need to pre-process the selected emissions datasets to account for vertical profiles and diurnal 

variations of these emissions. As these processes may differ across models and it may not be possible to harmonize these 

characteristics, these processes will introduce a source of variability in emissions inputs across models. However, if models 

use their own default assumptions for vertical and temporal allocation, their methods and assumptions may be reported with 

their output and taken into consideration in the analysis of outputs.   510 

4.2.2 Historical biomass burning emissions 

The latest available major global fire emissions datasets are: GFEDv4s, GFASv1.2, FINNv2.5, FLAMBE, QFEDv2.5, 

GBBEXPv4, and IS4FIRES. Developers of each of these datasets attended and presented their methods at the Fire Emissions 
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Workshop (FEW2023 at https://www2.acom.ucar.edu/bburned/fire-emission-workshop-virtual-2023; co-hosted by 

BBURNED and TF HTAP) in November 2023. Intercomparison studies such as Griffin et al (2023), Pan et al (2020), 515 

Wiedinmyer et al (2023), and Liu et al (2020) were also presented there, and the workshop attendees discussed options for 

which dataset to recommend for consistent baseline fire emissions. An intercomparison tool called FIRECAM 

(https://globalfires.earthengine.app/view/firecam) was useful for intercomparison. The different methodologies used to 

estimate fire emissions (e.g. Table 2) account for how and why the emissions results are so different from one another 

(Figure 1). The intercomparison studies demonstrated that no one fire emissions dataset performed best for all locations and 520 

all pollutants.  

 

Table 2: Summary of characteristics of major global fire emissions, adapted from Liu et al (2020). Dash indicates missing 

value. 

 Bottom-up Top-down 

Fire Emissions 

dataset: 

GFEDv4s FINNv1.5, v2.5 GFASv1.2 QFEDv2.5r1 FEERv1.0-G1.2 

Horizontal 

resolution 

0.25o 1km 0.1o 0.1o 0.1o 

Near-real time 

availability 

- ✓ ✓ ✓ ✓ 

Input satellite fire 

product 

BA + active fire 

geolocations 

Active fire 

geolocations 

FRP FRP FRP 

Peatlands ✓ - ✓ - - 

Cloud-gap 

adjustment 

- - ✓ ✓ ✓ 

References Van der Werf et al. 

(2017) 

Wiedinmyer et al. 

(2011, 2023) 

Kaiser et al. (2012) Darmenov and da 

Silva (2013) 

Ichoku and Ellison 

(2014) 

 525 
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Figure 1: Multi-species, multi-regional intercomparison of fire emissions datasets, from Wiedinmyer et al (2023), where 

regional acronyms and colours are defined in Figure 3c. 

 530 

Fire emissions from peat 

Satellite data assimilation studies have shown that emission inventory underestimations may often be due to lack of peat 

fires. For example, Nechita-Banda et al. (2018) found that incorporating satellite measurements of CO increased CO 

emissions (compared to GFAS and GFED) from peat fire in Indonesia during the 2015 El Niño event. The ability to account 

for emissions from peat fires is a key issue in several regions. Recent work to improve peat fires for Indonesia was done in 535 

Kiely et al. (2019). Out of several global fire emissions datasets, only GFASv1.2 and GFEDv4 have tropical peat fires, and 

only GFASv1.2 contains high-latitude Siberian peatland fires. GFEDv5 emissions will have high-latitude peat fires, but as of 

this writing, it has not yet been released, nor evaluated. Similarly, a newer version of GFAS (v1.4) is not published or 

documented yet, though it could have improvements to long-term trends in fire emissions.  

Regardless of their inclusion, peat fire emissions are highly uncertain (McCarty et al., 2021). There are different EFs for 540 

high-latitude and low-latitude peat fires, given the different vegetation that grows on top, and global maps of peatland are out 

of date (McCarty et al., 2021). It is also very difficult to detect smouldering (low intensity) peat fires from satellite 

measurements. That said, the consensus recommendation from FEW 2023 was to use GFASv1.2 based on its inclusion of 

high-latitude peat fires, ease of adjusting EFs, possibly somewhat better sensitivity in FRP than burnt area, and availability 

of information on the diurnal cycle: tropical and mid-latitude peat fires generally have a flat diurnal cycle, apparent in the 545 
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FRP observations during daytime and night-time. (e.g. Figure 10 in Kaiser et al. 2012). Diurnal information is directly 

available in the separately assimilated daytime and night-time FRP in GFASv1.4, but this database has not yet been used to 

adapt the emission factors. 

Magnitude of Emissions 

Substantial uncertainty arises from estimates of the magnitude and location of emissions. This can be explored through short 550 

case study simulations investigating the use of alternative emission datasets, along with comparison of these with 

observations and baseline model studies. Such sensitivity studies implicitly include differences in resolution and species 

fractionation (and possibly injection height and timing), as well as fire magnitude and location but nevertheless can provide a 

useful estimate of uncertainty to fire emissions across the models (Shinozuka et al., 2020; Doherty et al., 2022). 

Timing of Emissions 555 

Most long-term model studies, such as those performed for CMIP intercomparisons, apply monthly-mean fire emissions 

rather than considering more temporally resolved emissions that capture the largely episodic nature of fires. The implications 

of this, either for comparison with surface observations or for regional and global budgets, remain unclear. In addition, there 

are substantial diurnal cycles in fire intensity, local meteorology and boundary layer dynamics that suggest that the impacts 

of fires are likely sensitive to the timing of emissions through the day. Observational evidence indicates emerging overnight 560 

fires due to increasing drought conditions that challenge the traditional diurnal cycle characterized by ‘active day, quiet 

night’ (Luo et al., 2024). These uncertainties can be explored through short studies (one year/several years) that consider (1) 

monthly mean fire emissions, based on the same set of emissions used at higher temporal resolution in the baseline run, and 

(2) emissions provided without a diurnal variation in magnitude or injection height. 

Fire emissions of other species: Hg, POPs, PAHs 565 

Mercury fire emissions are not included by default in most global fire emissions datasets, like GFASv1.2. For the HTAP3 

MCHgMAP project, Hg fire emissions are based on FINNv2.5 global fire emissions, using emission factors from Andreae et 

al (ACP, 2019), but replacing EFs for certain biomes with mean EFs from Friedli et al, (2003a;b) and McLagan et al, (2021). 

They also apply those EFs to GFED4 fire emissions for sensitivity simulations. Those biome-specific EFs could be applied 

to the chosen fire emissions dataset (GFASv1.2) for this project to generate consistent Hg fire emissions.  570 

Similarly, EFs used for POPs and PAHs could be added and applied to the base fire (and anthropogenic) emissions for this 

study. For PAHs, there is a recently updated Peking University (PKU-FUEL) “global PAH emission inventory” spanning 

from 1961 to 2020 at http://inventory.pku.edu.cn/, which takes wildfire emission into account, and used measured PAH 

emission factors. That group also developed global OPFR, SCCP, and PCDD/Fs emissions, often using experimentally 

derived emission factors from the USEPA and UNEP as well as the literature (He et al, 2004; Jiang et al, 2017; Song et al, 575 

2022;2023; Li et al., 2023).  

Post-fire dust emissions 

The removal of vegetation creates a more exposed soil surface from which dust can be emitted (Dukes et al., 2018; Jeanneau 

et al., 2019, Whicker et al., 2006). The emission of dust from a post-burn landscape will continue until the vegetation 
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sufficiently recovers, spanning a period of days to potentially years. Approximately 1-in-2 large fires are estimated to be 580 

followed by increased dust emissions, with savanna ecosystems the most susceptible (Yu and Ginoux., 2022). Emission 

estimates are highly uncertain with the only global estimate to date of 100 Tg/year of additional soil dust emissions with an 

order of magnitude uncertainty (Hamilton et al., 2022). As there are no existing emissions datasets for this process, further 

research beyond the scope of this study would be needed to address this impact of fires. 

Wildland urban interface fires 585 

Wildland Urban Interface (WUI) fires account for ~4% of total fires globally. WUI fires can involve built-structure burning, 

and hence their emissions may be more harmful. They are also closer to humans and properties causing expensive damages. 

Studies have been conducted for specific WUI fires and regions (Holder et al., 2023) and future version of FINN will include 

WUI fire emissions. However, currently there is no global BB emissions dataset that explicitly addresses WUI fire emissions 

and future research beyond the scope of this study would be needed to address this aspect of fire emissions. 590 

Summary of recommended historical fire emissions dataset 

The discussions at FEW 2023 suggested that several characteristics are important in selecting a fire emissions dataset for the 

multi-model experiments: 1) high temporal resolution, given the high variability of fires; 2) the inclusion of boreal peatland 

fires, particularly for those interested in boreal and Arctic locations; and 3) the inclusion of fire plume height for atmospheric 

modelling. For these reasons, GFASv1.2 became the recommended fire emissions dataset for the historical period (starting in 595 

2003), with updated fire type map, and emission factors (thus, GFASv1.2+).  

4.2.3 Future biomass burning emissions 

Land models, such as those that participated in FireMIP (Li et al, 2019) can provide fire emission projections that are 

reflective, not only of future land use changes, but also of the changing climate under different future climate scenarios. 

However, as of this writing, the FireMIP future simulations have yet to be conducted.  600 

Current CMIP6 SSP future fire datasets only account for human impacts on future fire activity, whereby fire activity is 

assumed to decrease and includes no impact from the changing climate conditions on those future fire emissions (Figure 2, 

left bars). An alternative set of future fire emission projections does however exist in six fire-climate-coupled models from 

CMIP6 (Xie et al., 2022). The models have future fire results that take into account the changing climate under different SSP 

scenarios: “a climate-consistent future fire emissions estimate” (Figure 2, right bars). Emissions for three SSP scenarios 605 

(SSP1-2.6, SSP3.70, SSP5-.8.5) have been produced by Hamilton and Kasoar et al. (submitted), and other SSP scenarios 

using the same methodology can be generated (e.g., SSP2-4.5 for this study) for 2015-2100. In each emission projection 

“natural” fire emissions are defined as boreal and temperate forest and all grassland fires and calculated as a product of the 

CMIP6 multi-model mean, accounting for similarities in land models. “Human” controlled agricultural and deforestation 

fires are then added to natural fires from the SSP dataset. However, those same agricultural fires are included in the GAINS 610 

anthropogenic emissions (Section 4.4.1) and shouldn’t be double-counted (see Section 5.2 for this recommendation). 

Tropical forest fires are assumed to be primarily due to deforestation practises and were also added from the SSP dataset in 
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place of CMIP6 model estimates in that biome. Peat fires are held at present day levels throughout the century, very likely 

underestimating their contribution to future emission fluxes, but this is because the interactive ESM fire modules did not 

contain these uncertain types of fires. Finally, each emission dataset is bias corrected regionally to emissions in the present 615 

day, currently this is GFED4s but could be corrected to GFASv1.2. 

 

Figure 2: Decadal average timeseries of future fire aerosol emissions from Hamilton et al (submitted). Right-hand bars are 

fire emissions from interactive ESMs and left-land bars are fire emissions from CMIP6, based on land use change only. 

 620 

Note that in Tang et al (2023) the Community Earth System Model 2 (CESM2) was used to project future burned area and 

total fire carbon emissions under different climate scenarios, however, it is only based on the one ESM, so it is not 

recommended for this project. As mentioned in Sections 2.4 and 3.2.4, applying fire management policies to future scenarios 

is beyond the scope of this study, however, further information on that topic is included in the Supplement, Section S.3.3.  

4.2.4 Other emissions 625 

Aside from the emissions mentioned above, models typically include biogenic and geological emissions from natural 

sources. These can include isoprene and other VOC emissions from vegetation, NOx emissions from soil microbes and 

lightning, sulfur emissions from volcanos, etc. Most models rely on the same interactive biogenic emission database, namely 

MEGAN (available at https://bai.ess.uci.edu/megan; Guenther et al., 2012) (Table A.2), or a derivative thereof. 

4.3 Available meteorological inputs  630 

The height reached by a smoke plume, its horizontal transport, vertical mixing, and subsequent impact on a region are 

greatly determined by the prevailing weather conditions. These effects occur across a wide range of scales, from turbulent 

mixing of pollutants in the boundary layer, lifting into the free troposphere, and subsequent transport by the prevailing 

winds. For models not generating their own meteorology, observation-based reanalysis datasets provide an important source 

of meteorological information needed to drive the models (included in Table A.2), although differences between available 635 

products provides an additional source of uncertainty (e.g., Adebiyi et al., 2024). 
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4.3.1 Historical meteorological datasets 

Currently, several meteorological reanalysis data sets are available and could be utilized, such as MERRA2 (Modern-Era 

Retrospective Analysis for Research and Applications, version 2), ERA5, NCEP-NCAR (National Centers for 

Environmental Prediction - National Center for Atmospheric Research), or JRA-55 (Japanese 55-year Reanalysis), among 640 

others. They are summarized in Table S2 in the Supplement. 

4.3.2 Future meteorological input 

To assess the alterations in meteorological conditions across the 21st century and their potential implications on fires 

(frequency, intensity, transport), the meteorological datasets provided by the Shared Socioeconomic Pathways (SSPs) 

climate projections can be utilized. The IPCC (Intergovernmental Panel on Climate Change) defined the SSPs scenarios 645 

which illustrate different potential pathways for societal development throughout the 21st century and analyse their potential 

impacts on greenhouse gas emissions. 

The SSPs are classified into five trajectories: SSP1 represents a sustainable world, SSP2 outlines a moderate pathway, SSP3 

depicts a fragmented world with considerable challenges, SSP4 illustrates a world emphasizing equality and sustainability, 

and SSP5 envisions a world driven by rapid economic growth and dependence on fossil fuels. 650 

These five categories define different SSP emissions and concentration pathways, providing unprecedented detail of input 

data for climate model simulations: SSP1 (1.9 and 2.6), SSP2-4.5, SSP3-7.0, SSP4 (3.4 and 6.0), and SSP5 (3.4-OS and 8.5). 

The SSPX-Y scenarios refer to the estimated RF levels at the end of the 21st century; for instance, the '1.9' in the SSP1-1.9 

scenario signifies an estimated RF level of 1.9 W m–2 in 2100. They provide a more in-depth analysis of climate drivers and 

responses than the previous RCPs (Representative Concentration Pathways) employed in AR5 (Chuwah et al., 2013). 655 

The SSPs are derived from model simulations conducted under the Coupled Model Intercomparison Project Phase 6 

(CMIP6) (Eyring et al., 2016). Access to the meteorological fields generated by the global climate models (GCM) under 

each of the specified SSP scenarios, is facilitated through platforms such as those provided by CMIP6 

(https://pcmdi.llnl.gov/CMIP6/), the IPCC Data Distribution Centre (DDC) (https://www.ipcc-data.org/), and the Climate 

Data Store (CDS) by Copernicus (https://cds.climate.copernicus.eu/), among others. 660 

4.4 Observational data available for model evaluation 

The comparison of model results to observations is valuable for assessing how well models represent the real world and is 

critical for identifying gaps in our current understanding or weaknesses in how key processes are represented in models.  

Given the known uncertainties in fire and other model processes, observational comparisons provide a valuable opportunity 

to critically assess current parameterizations and identify which are most appropriate under particular conditions.  665 

Comparisons with satellite observations of atmospheric composition will enable large-scale simulations to be evaluated 

consistently over the historical period under consideration. Observations of CO and aerosol optical thickness will be used to 
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evaluate long-range transport simulation (transport pathways, plume dilution). LIDAR observations will be used to assess 

the transport altitude and vertical extent of plumes. All surface monitoring measurements of the pollutants of Section 3.1 

could be used for model evaluation, but we focus the rest of this section on highly-relevant fire-specific observational 670 

datasets and field campaigns (see also Table S1 in the Supplement for the list of suggestion observational datasets).  

As shown in Section 3.1, there is no single tracer which is emitted by wildfires only, and domestic wood burning has the 

same signature as wildfires. Enhanced Hg and POP concentrations are also often observed in atmospheric concentrations of 

biomass burning emission and come from the burned matter itself, as well as reemitted from soil. If those substances have 

co-located enhancement with other primary pollutants like CO, BC, and SOA, it is a strong indication that wildfire emissions 675 

are observed (e.g. Eckhardt et al., 2006).  

For detecting wildfire plumes in observations, statistical methods use a combination of different trace species. For example, 

SO4, BC, CO, NO2 have been combined with a positive matrix factorization to identify biomass burning plumes (Karl et al., 

2019). Yttri et al., (2023) used aerosol absorption coefficients recorded at different wavelengths by an aetholometer to 

distinguish BC emitted by fossil fuel or by biomass burning. Those observations are available for several stations in Europe. 680 

Evaluation of modelled fluxes (e.g. deposition) are more challenging. These, as well as Nr impacts, may also be dynamically 

modelled in some systems. Cross-disciplinary satellite (atmospheric, land cover, water quality, etc) and in-situ data can be 

used to evaluate modelled deposition results, helping identify weakness in individual models and reduce uncertainty in 

impact assessments (e.g., Fu et al., 2022). 

For the remote Arctic, the highly variable, non-changing long-term time trends of PAHs are inconsistent with the global 685 

PAH emission reduction and have significantly increased during summers with more frequent wildland fire events in Nordic 

countries (Yu et al., 2019). Retene (a PAH) was often used as tracer for wildland fire activities. However, volcanic eruption 

(Overmeiren et al., 2024) and volatilization from soil and ocean due to warming can also elevate PAHs’ air concentrations in 

remote locations. Models together with observations can better link BB and long-range transport of fire-related substances to 

remote sites. 690 

4.5 Experiment design and sensitivity analyses 

This section outlines different model experiments to help answer the science policy questions of Section 2. These fall into 

several distinct sets, targeting different aspects of our understanding, and some include a range of sub-experiments to explore 

specific aspects in greater depth. Model groups may contribute to any number of experiments but are not required to 

complete them all. Where applicable, we indicate in Section 5.4 which experiments are higher priority for HTAP, and which 695 

experiments may be dependent upon completion of other experiments.     

4.5.1 How well do models perform? Baseline and case study simulations 

Models should conduct baseline simulations of recent historical conditions, with a common set of anthropogenic and fire 

emissions, as both a basis of comparison for perturbation and sensitivity experiments and for general model 
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intercomparisons and evaluation with observations. The results can then be used to quantify the uncertainties and variability 700 

in atmospheric modelling. As the type of models participating is highly variable, with a range of computational costs, both 

short and long time periods are suggested for the baseline simulations. These time periods will be selected based on the 

availability of reliable emission assessments and periods with abundant observations. Very computationally expensive 

models (e.g. very high resolution, inclusion of complex atmosphere chemistry) may only be able to simulate one year or less. 

Given how highly regional and interannually variable fires are, we can identify short-term fire case studies for evaluation of 705 

those models and explore particular fire events in detail. Fire event case studies may include the particularly large Australian 

fires of 2019-2020 (Filkov et al. 2020; Johnston et al., 2021; Collins et al., 2021; van der Velde et al., 2021, Anema et al., 

2024); the fires in the U.S that coincided with the 2018 WE-CAN and 2019 FIREX-AQ measurement campaigns (Juncosa 

Calahorrano 2021; Warneke et al., 2023); and the significant fire season in Indonesia in 2015 due to a strong El Niño (Chen 

et al, 2016; Nechita-Banda et al., 2018). 710 

4.5.2 What is the magnitude of pollution that comes from fires? Source-receptor/emissions perturbation experiments 

To determine the magnitude of pollution from fires, species concentrations from baseline simulations can be compared to 

simulations with fire emissions removed. For additional detail, fire emissions from different geographical regions and from 

different types of burning can be perturbed for separate species, locations, and seasons to quantify source/receptor 

relationships and their uncertainties. However, the number of perturbation experiments can increase rapidly, so care is 715 

needed to prioritize and not define regions and sectors too finely.  

Geographical Regions 

Coarsely-defined regions help reduce the number of perturbation simulations. Figure 3 shows several options for the 

geographical source regions, including those used within the HTAP2 multi-model experiments (Fig 3a). These distinguished 

boreal fires in higher latitudes from the low-latitude fires associated with agricultural, temperate and grasslands. These 720 

source regions should be further refined, particularly in the eastern hemisphere, where we could separate Europe from Asia 

in the NE box, and separate Africa and the Middle East from SE Asia in the SE box. Regions used for anthropogenic 

emissions perturbation experiments in the HTAP3 OPNS project are shown in Fig 3b. We note that the southern hemisphere 

Africa, has been a focus of recent field campaigns (Zuidema et al., 2016) as the region emanates a third of the world's carbon 

from biomass burning aerosol (van der Werf et al., 2010). South America also emits significant fraction of the world’s total 725 

BB aerosols. Therefore, for global modelling completeness, the scientific modelling community would benefit from 

including those southern hemispheric regions in the perturbation experiments as well. Figure 3c shows the GFED BB 

emissions regions used in many analyses that balance political regions and fire-relevant biomes. However, there are 14 

GFED regions, and we merge these into 8 regions to make perturbation experiments (exp 5 in Table 5) more feasible in 

Figure 3d. These merged regions are broadly consistent with the HTAP2 regions, but with improved coverage, and are 730 

loosely aligned with the regions used for anthropogenic emissions in HTAP3. Regional models may have geographical 

domains that differ from these, and where possible, these should simulate a subset of the regional perturbation experiments.  
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Figure 3: Possible regions for perturbation experiments. (a) BB source regions used in HTAP2 experiments. (b) regions 

used for anthropogenic emissions in HTAP3 O3PNS project, (c) GFED regions often used for fire emissions datasets, and 735 

(d) GFED regions (grey lines) and proposed merged regions (coloured areas). 

 

Fire Sectors 

Management decisions and policies are best informed by perturbing biomass burning sectors separately. The two main 

categories are agricultural burning and wildland fires. Agricultural biomass burning is the deliberate burning of agricultural 740 

waste products, such as crop waste products, stubble, and other organic matter left in fields after harvest, as a method of 

waste disposal or as a practise in land management. The burning of grasslands towards coaxing new growth is also included. 

Deliberate burning is frequently applied in agricultural areas, especially where traditional practises are still widely practised. 

The United National Economic Commission for Europe (UNECE) adopted a guidance document on how to define and build 

policies around reducing open agricultural burning (UNECE, 2022). 745 

Perturbing emissions from these two sectors separately over the 9 regions (8 regions + all) implies that global models 

participating in perturbation experiments would have 18 simulations to run. Figure 4 shows the distribution of the dominant 

fire types in GFED3 (adapted with peat and soil organic matter from Kaiser et al. 2012). An extrapolation that covers all land 

is used in GFASv1.2 (and v1.4) to derive and apply fire type-specific fire radiative power (FRP)-to-dry matter burnt 

conversion factors and to apply fire type-specific emission factors for the different smoke constituents.  750 
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Figure 4: Fire types adapted from Kaiser et al. (2012): SA=savannah fires; SAOM=SA with potential soil OM burning; 

AG=agricultural fires; AGOM=AG with potential soil OM burning; DF=tropical fires; PEAT=peat burning; EF=extra-755 

tropical fires; EFOM=EF with potential soil OM burning.  

4.5.3 What is the impact of different fire processes? Process perturbation experiments 

Much of the uncertainty in the wider impact of fires arises from weakness in our understanding of fire processes, in their 

representation in models, and in the sensitivity of the impacts are to these treatments. These uncertainties can be explored 

with simple sensitivity studies perturbing key processes one at a time. Key uncertainties include the magnitude and timing of 760 

emissions, the plume rise associated with the heat of the fire, the meteorological conditions, and the chemical and deposition 

processes occurring during plume transport. 

Fire plume height  

Most of the pollutants emitted from wildfires are released directly into the atmospheric boundary layer.  However, depending 

on the meteorological conditions and the strength of the fire, material can be lifted well into the free troposphere or in 765 

extreme cases, the stratosphere. This can have a substantial influence on the downwind impacts of the fire, as horizontal 

transport is typically faster in the free troposphere, the chemical processing of oxidants such as O3 is typically more efficient, 

and the removal of pollutants by wet and dry deposition processes is less efficient than in the boundary layer.  Previous 

model studies have quantified the importance of injection height for key pollutants (e.g., Leung et al., 2007; Feng et al, 2023) 

but this has not been explored in a rigorous manner across a range of models. On longer timescales, the presence of high 770 

levels of BC in plumes can lead to local heating which causes further lofting of the plume (e.g., Ohneiser et al., 2023). The 

altitude of tropospheric O3 also influences the magnitude of its warming potential. Therefore, fire plume height introduces 

substantial uncertainty into assessment of impacts.  

Some fire emission datasets (such as GFAS and GBBEPx) are based on FRP, whereas, others, like GFED and FINN 

emissions, are based on burned area (BA). Both FRP and BA are (mainly) based on MODIS satellite observations. Daily 775 

information on wildfire injection heights, and/or FRP (Fire Radiative Power), in combination with meteorological 

parameters, can be used in the calculation of injection heights. Daily fire emissions based on FRP and BA differ substantially 
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on a daily basis. Some fire emissions datasets, such as GFAS provide injection height parameters based on satellite-observed 

FRP and available meteorological parameters (Remy et al., 2017). 

Some models represent plume rise in their simulations while other models do not. Among these models that address plume 780 

rise, some include online parameterization of fire plume rise. E.g., the Freitas scheme (Freitas et al., 2007; 2010) which 

calculates plume rise by solving a set of 1-D differential equations vertically.; the Sofiev scheme which considers the 

conservation of the heat energy (Sofiev et al., 2012; 2013); and the Canadian Forest Fire Emission Prediction System 

(CFFEPS), which contains a thermodynamically-based fire plume height parameterization based on fire energy and neutral 

buoyancy (Chen et al., 2019). Other models use a simpler approach of a constant plume injection height climatology (e.g., 785 

Dentener et al, 2006; Val Martin et al., 2010; 2012), which usually depends on region, season, and vegetation type and does 

not consider FRP or fire size for specific fires. It is important to understand the impacts of different plume rise treatments on 

the model results, exploring the impacts of fuel type, moisture and heat flux assumptions across the plume rise schemes used. 

Data from CALIPSO, MISR, TROP-OMI (Griffin et al., 2020), and airborne instruments (Shinozuka et al., 2020; Doherty et 

al., 2022) would be useful for model evaluation of the effects of plume rise.  790 

Impacts of fire plume height were found to be different when looking at regional simulations versus at global climatological 

scales; in Field et al (2024), using GFAS injection heights in the model was important for improving model performance at 

regional scales, whereas it was long-range transport patterns, influenced by the winds in the driving meteorology, that 

mattered more than individual fire events at climatological time scales. 

Fire plume chemistry 795 

Biomass burning emits particles along with NOx, nitrous acid (HONO), ammonia (NH3), CO and CH4, and hundreds of 

VOCs, including a large number of oxygenated VOCs (OVOCs) (Jaffe et al., 2020). Representing this chemical complexity 

is a key challenge for modelling fire impacts on air quality, especially for secondary pollutants such as O3 (Section 3.1.1) and 

SOA.  

State-of-the-art atmospheric chemistry models typically overpredict O3 close to fires but have difficulty simulating the 800 

influence of aged wildfire smoke plumes on downwind O3 (e.g., Pfister et al., 2008; Singh et al., 2012; Zhang et al., 2014; 

Fiore et al., 2014; Lin et al., 2017; Baker et al., 2016; Zhang et al, 2020; Jaffe et al., 2020). This may reflect: (1) inaccurate 

fire emissions, especially underestimates of oxygenated VOC emissions from wildland fires (Arnold et al., 2015; Jin et al., 

2023; Permar et al., 2023; Lin et al., 2024b); (2) lack of sufficient resolution or parameterization of smoke plume rise 

dynamics (Paugam et al., 2016; Ye et al., 2023); (3) shortcomings in model representation of rapid photochemical processes 805 

in a concentrated smoke plume (Singh et al., 2012). Several modelling studies have shown strong sensitivity of O3 

production to differences in VOC chemistry, fire plume vertical transport, and NOy partitioning (Zhang et al., 2014; Arnold 

et al., 2015; Lin et al., 2024b). Rapid conversion of NOx to more oxidized forms typically reduces excessive ozone 

production simulated in near-fire smoke plumes. A recent study by Lin et al. (2024b) shows that sequestration of wildfire 

NOx emissions in Canada as PAN enhances ozone production during smoke transport and thereby increases the impacts of 810 

Canadian wildfires on ozone air quality in US cities.  
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Additionally, large uncertainties in carbonaceous aerosol emissions from biomass burning (Pan et al., 2020; Carter et al., 

2020; Xie et al., 2020) can also influence simulations through the impacts of aerosols on heterogeneous chemistry and 

photolysis rates. Further suggestions for model experiments to assess O3 chemistry uncertainties appear in Section 5.3.1. 

An additional challenge is the rate of SOA formation (Section 3.1.3). While SOA formation increases near-source, 815 

measurements taken after long-range transport suggest SOA loss (Sedlacek et al., 2022; Dobracki et al., 2024), hypothesized 

to occur through heterogeneous oxidation primarily. Estimates of the reaction rates with OH vary, and measurements 

focused on constraining these rates would improve model depictions. OA loss is not included in many models (e.g., Lou et 

al. 2022 only considers photolysis, although their modelling construction could be using photolysis as a proxy for 

heterogeneous oxidation OA loss as well) but could be encouraged in the model output for this project. 820 

Dry and Wet deposition 

Modelled dry and wet deposition fluxes are highly variable, uncertain, and a possibly significant cause for inter-model 

differences in pollutant concentrations. Models can test out different wet and dry depositions schemes, and/or to turn 

deposition on and off to quantify its impact. Deposition is also important for evaluating ecosystem impacts. Wet and dry 

deposition fluxes should be diagnosed from all model simulations.  825 

4.5.4 How will fires and their impacts change in the future? Future scenario experiments. 

The frequency and severity of wildland fires are likely to increase within a warming climate, particularly in the northern 

hemisphere (van Wees et al., 2021). Quantifying the influence of these changes, given different future emission scenarios, is 

an important application of models (e.g., Xie et al., 2022). Future modelling experiments can be formed with chemical 

transport models provided future emissions and meteorology are provided. Experimentation can also be performed by ESMs 830 

with and without interactive fire modules. ESMs can typically simulate future climate/meteorological conditions in a free 

running state out to 2100. Experiments for future fires with both interactive ESMs and other atmospheric models driven 

offline will help determine the range of uncertainty on future fire projections and their impacts. While fire emissions are 

likely to change under the effects of changes in human management practices and policies, those aspects that aren’t already 

included in the CMIP SSP scenarios (Xie et al., 2022) are beyond the scope of this study due to a lack of scenario emissions 835 

datasets. 

5. Recommended Plan 

5.1 Simulated time periods 

Given the combination of emissions dataset availability (Section 4.4) and existing observational datasets to compare against 

(Section 4.4), we suggest the following time frames for simulation years (Table 3). The short historical option for the 840 

HTAP3 OPNS and Hg projects was selected to be 2015. However, 2015 had a strong El Niño and was an extreme fire year 

in Indonesia as a result. Fires are so greatly variable on interannual scales, that it would be unwise to base policy decisions 
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on analysis of a single year. We therefore encourage use of the medium historical option. which includes field campaigns of 

2016-2018 that were offshore from African fires (Redemann et al., 2021; Haywood et al., 2020; Zuidema et al., 2018), and 

2019 which had a field campaign in the US. The medium option stops by the end of 2019 to avoid incorporating the 845 

complexity in anthropogenic emissions that arose with the COVID-19 pandemic in 2020. The medium future option includes 

5 years on either side of the 2015 start and 2050 end dates of the GAINS future emissions to enable 10-year averages to be 

created around these start and end dates, thus accounting for interannual variability, (consistent with the HTAP3 OPNS 

project). The 2015 emissions may be used for 2010-2014, and the 2050 emissions for 2051-2055). Finally, while the climate 

community routinely does simulations out to 2100, given that the GAINS anthropogenic emissions end in 2050, and the 850 

AerChemMIP2/CMIP7 community (see Table A.1 and Section 3.3) will focus on future simulations, including climate 

impacts from fires, we have elected not to include a long future option within this study.  

 

Table 3: Simulation time periods, with options for different types of models. 

 Short option Medium option Long option 

Historical See Case studies (Sec 4.5.1) 2015-2019 2003-2020 

Future 2050 2015-2050 N/A (see Section 3.3) 

 855 

5.2 Inputs: Emissions and Meteorology 

Based on discussions in Section 4.4, the following emissions datasets are recommended, and summarized in Table 4 below. 

Historical Fire emissions: 

The historical fire emissions datasets were carefully considered during and following a 4-day online workshop hosted by 

IGAC BBURNED in November 2023. The methodology, advantages, and disadvantages of each major global fire emissions 860 

dataset were discussed. It was agreed to recommend use of the GFASv1.2 fire emissions because (a) they provide daily 

emissions (providing improved temporal variability over monthly emissions), (b) they include peatland fires, including in the 

boreal region, the latter particularly important for the AMAP scientific community, and (c) they provide fire plume heights 

as well as speciated emissions. We note, however, that peat fire emissions remain highly uncertain, and that these fire 

emissions do not include special treatment of WUI fires. 865 

Future fire emissions: 

The future fire emissions dataset that is derived from a multi-model ensemble that includes the influence of the changing 

climate on fires is that from Hamilton and Kasoar (personal communication; Hamilton, Kasoar, et al, submitted). We 

recommend use of this future fire emissions dataset, but note that it does not include scenarios for future changes to fire 

management policy and practice, as these quantitative emissions adjustments are not available yet. 870 

Historical anthropogenic emissions: 
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These are chosen to be consistent with the other concurrent HTAP3 projects. They are the HTAP v3.1 anthropogenic 

emissions (expected to be delivered in September 2024), and include all relevant species (Section 3.1), over 2000 to 2020, 

inclusive. 

Future anthropogenic emissions: 875 

For consistency with other HTAP3 projects, the CLE (current legislation) future emissions from IIASA GAINS (LRTAP) 

will be used in future simulations. Climate modellers may wish to simulate out to 2100, and while the SSP2-4.5 

anthropogenic emissions for 2015 to 2100 are available and are roughly equivalent to the GAINS CLE emissions scenario 

for CO2 and energy, they are not necessarily similar for other pollutant emissions. We therefore recommend for this project 

ending the future simulation in 2050 and participating in CMIP7/AerChemMIP2 for longer future simulations. 880 

Biogenic and other natural emissions: 

While it is useful to have consistent emissions across models, this can be difficult to achieve due to the dependence of 

natural emissions on structural aspects of models including vegetation, soils and land use. Therefore, we suggest that each 

modelling centre use their preferred emissions from biogenic and other natural sources. These should be documented and 

taken into consideration in the analysis. 885 

 

Table 4: Emissions Inputs for model experiments 

Emission type Recommendation Notes/references Download location (if 

currently available) 

Historical Fire 

 

GFASv1.2+ for BB, 

including agricultural 

burning (2003-2024) 

Daily gridded global 0.1-degree resolution. 

Including its agricultural burning emissions. 

 

Note: these will be updated in the near future to 

include newer emission factors 

https://ads.atmosphere.c

opernicus.eu/cdsapp#!/d

ataset/cams-global-fire-

emissions-

gfas?tab=overview 

Future Fire Hamilton, Kasoar et 

al (2015-2100) 

SSP2-4.5-scenario-based climate-influenced 

future fire emissions, calibrated to GFASv1.2 

historical fire emissions. Minus agricultural 

burning. 

TBD 

Historical 

anthropogenic 

HTAPv3.1 (2000-

2020) 

Minus agricultural burning 

 

Note: These will also be updated by the end of 

September 2024 to include 2019 and 2020 (v3.1) 

as well as updated emissions for 2000-2018. 

 

v3 for 2000-2018 

https://edgar.jrc.ec.europ

a.eu/dataset_htap_v3, 

v3.1 TBD 

Future 

anthropogenic 

IIASA GAINS CLE 

(1990-2050) 

Including agricultural burning https://zenodo.org/record

s/10366132 

Biogenic and 

other natural 

emissions 

MEGAN, or each 

modelling centre use 

their default 

MEGAN or models’ own N/A 
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Driving meteorology 

As discussed in Section 4.3, there are several data reanalysis collections that could potentially be employed. Although the 890 

ERA5 collection offers greater spatial, temporal, and vertical resolution overall, any of the mentioned datasets would be 

suitable for use. It is recommended that modellers use ERA5 if possible, but otherwise use their preferred meteorology for 

historical simulations and ensure that they document this clearly. For future simulations, we suggest using interannually 

varying, monthly mean sea surface temperatures and sea ice distributions from SSP2-4.5. 

5.3 Model experiments 895 

The following model experiments in Table 5 are proposed based on the discussions in Section 4.5, and further details for 

selected experiments is described below. 

 

Table 5: Model experiment (exp) types 

Exp name Description Purpose Priority 

1.  Baseline 

simulation 

Historical time period(s) given in 

Table 3. Common set of emissions 

given in Table 4. 

Model evaluation; baseline for 

subsequent sensitivity exps 

High 

2. Case 

study(ies) 

More detailed, specific fire events at 

higher spatial and temporal resolution 
Model evaluation 

High for regional models. 

Low for global models. 

3. Fire 

emissions 

sensitivity 

Same as exp 1, but driven by different 

sets of fire emissions (GFED, FINN, 

etc) 

Model/emissions evaluation; to 

gauge differences between fire 

emission datasets across 

models 

Low 

4. Prescribed 

future fires 

Future time period(s) given in Table 

3. Future emissions given in Table 4. 

To determine how wildland 

fires and their impacts will 

change in the future 

High 

5. Regional and 

sectoral 

emissions 

perturbations 

Turn off all BB emissions for all 

species everywhere. 

 

Turn BB emissions off in each region 

of Figure 3d, and each of the 2 

sectors: agricultural burning and 

wildland fires, over the historical time 

periods in Table 3. 

To quantify regional 

source/receptor relationships 

and uncertainties 

 

High  

 

Priority: Both fire sectors 

together; separate sectors 

if resources permit. 

 

  

6. Fire process Parameter/process perturbations, for To determine importance of Medium 
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perturbations fire plume height, chemistry, 

emissions, and meteorology (see 

Section 5.3.1). Short-to-middle time 

periods of Table 3. 

different processes and impacts 

of different model fire 

parameterizations 

7. Interactive 

fire modules 

Historical and future simulations 

(Table 3) with coupled land-

atmosphere models. 

To determine how wildland 

fires will change in the future 

with an interactive climate and 

compare to exp 4 results. 

Medium 

8. Data 

assimilation 

Inverse modelling to combine CTMs 

with observed atmospheric VMRs 

Infer surface-atmosphere 

emissions/fluxes 

Low 

 900 

5.3.1 Details for fire process perturbation experiments (exp6) 

While a short time range for perturbation experiments can help keep model simulations manageable, they may not provide 

generalizable results, given the high interannual variability of fires. Therefore, the time ranges of Table 3 should be followed 

for perturbation experiments as well.  

Injection height: Repeat of exp1 with alternative fire plume height definitions. We suggest the following options, where 905 

modellers can opt into any number of these when possible:  

• model’s default fire plume height system, whatever it may be, 

• the plume heights provided by the baseline fire emissions dataset (GFASv1.2), that are FRP-based (Section 4.5) 

• climatological plume rise from AEROCOM (Dentener et al., 2006), assuming standard vertical profiles, and  

• no plume rise: assuming all pollutants are released into the lower part of the planetary boundary layer. 910 

Chemistry: To assess the impacts and uncertainties around fire plume chemistry, a few sensitivity runs are recommended:  

• Partition total NOy emissions from biomass burning into PAN (37%), HNO3 (27%), and NOx (36%), rather than 

emitting only NO in the baseline simulation (exp1), as recommended by Lin et al. (2024a, 2024b) based on recent 

aircraft measurements (WE-CAN 2018 and FIREX-2019).   

• Doubling BB emissions of all NMVOCs, including formaldehyde and acetaldehyde producing acetyl peroxy radical 915 

(CH3CO3) for PAN formation;  

• Increasing BB emissions of OC and BC aerosols by 50% to explore their impacts on oxidative chemistry through 

heterogeneous chemistry or photolysis.  

Emissions temporal resolution: Repeat of exp1 with hourly, daily, and monthly versions of the fire emissions to quantify the 

importance of temporal resolution. Many previous major studies, such as CMIP6, have used monthly fire emissions and this 

sensitivity study will allow these results to be placed in context. 
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Meteorology: Use repeating annual meteorology for 2018 with interannually changing emissions to determine how much of 

interannual variability in impacts seen in exp 1 is due to meteorology, and not emissions. 920 

5.3.2 Details for future experiments (exp4) 

The SSP2-4.5 future climate scenario will be the driver for the future time period, which includes those future fire emissions 

from Hamilton & Kasoar (submitted), and the GAINS CLE anthropogenic emissions. For future agricultural burning 

emissions, which appear in both the BB and the anthropogenic emissions datasets, we recommend that the GAINS future 

agricultural burning emissions be used, and those removed from the BB emissions so as not to double-count them. 925 

5.4 Model outputs 

To maximise accessibility of the results, the model output data request for this project is based on the AerChemMIP tables 

from CMIP6, as adopted by the HTAP OPNS project, with some additions for the extra species and impacts. The Table of 

model outputs is located online at https://nextcloud.gfz-potsdam.de/s/sp8XmMY2rQizjA4. We have added Hg, POPs, and 

PAHs, and place greater priority on hourly surface NO2, PM2.5, and O3, as well as hourly O3 deposition parameters needed 930 

for air quality, health, and ecosystem impacts analysis, in addition to monthly radiative forcing output for climate impacts. 

When measurements and impacts are only related to surface concentrations (e.g., POPs), we have suggested only surface-

level 2D model output be provided to save storage space. 

Data workspace 

The model output can be uploaded to METNO’s AeroCom database and infrastructure as part of the HTAP3 component of 935 

the AeroCom database. Instructions for obtaining access to the aerocom-user server, formatting, uploading, downloading are 

found here: https://aerocom.met.no/FAQ/data_access. The AeroCom database infrastructure is available to host HTAP 

model data on a read-only permanent database, which can be accessed by authorised users with an account on the aerocom-

user server. A scratch area on the AeroCom-user server can be used to upload data. Uploaded data can be transferred on 

demand by METNO to the read-only permanent database section for HTAP, under the directory HTAP-PHASE-III.  940 

 

5.5 Post processing and analysis 

This multi-pollutant, multi-model experiment will generate a large amount of data that will be analysed to answer the science 

policy questions of Section 2. 

5.5.1 Model evaluation: Comparison of experiments 1, 2, 3, and 6 to observations 945 

By comparing the results of experiments 1, 2, 3, and 6 to the observations discussed in Section 4.4 (and listed in Table S0), 

specific model inputs and processes can be evaluated. The aim of the evaluation would be to improve our understanding of 

fire processes, such as plume rise, plume chemistry and improve their parameterizations in models. We may also be able to 
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determine which inputs (emissions, meteorology) and parameterizations are best, as well as identify gaps that require further 

research. One example would be to analyse the impacts of injection heights on PAN concentrations in the free troposphere 950 

and downwind O3 formation as fire plumes subside into the boundary layer, by comparing the model simulations of PAN 

and related tracers to recent aircraft measurements. We suggest that, when possible, community tools like MELODIES 

(Model EvaLuation using Observations, DIagnostics and Experiments Software), and ESMValTool be used for inter-model 

comparisons and evaluation against observations. Regardless, the evaluation will require a large effort by the community.  

5.5.2 Assessing health impacts of fires  955 

The most cited and widely used approaches of risk analysis are: all cause of deaths; mortality and morbidity impacts; 

emergency hospitalization; reduced life expectancy; premature mortality; incremental life-time cancer risk; and health-

related cost of air pollution (Goel et al., 2021; Sonwani et al., 2022; Nagpure et al., 2014; Gidhagen et al., 2009; Guttikunda 

et al., 2014; Ghozikali et al., 2014; Farzaneh, 2019). Human health risk assessment is the mathematical estimation and 

modelling of several processes, including population estimates, population exposure to pollutants, and adverse health 960 

impacts assessment through specific concentration-response functions (WHO, 2021). Widely used quantitative health risk 

assessment tools of different agencies have been listed in Table S1. While Table S2 represents the comparison between the 

air pollution health risk assessment tools (methodologies, scopes, input parameters, and predicted health impacts). The 

surface-level model outputs of atmospheric composition at high spatial and temporal resolution will be invaluable for new 

health risk assessments. 965 

5.5.3 Assessing climate impacts of fires for historical and future time periods  

Climate impacts can be assessed through the RF from fire-emitted pollutants by comparing the RF with and without fire 

emissions. These should be included in the regional perturbation experiments in order to have the required data to assess the 

RF impacts of biomass burning. For estimation of future fire RF, it is key to quantify the effects caused by the non-linearities 

on the O3 RF and for the aerosol-cloud interactions. Source attribution techniques for O3 were used in Grewe et al. (2017) 970 

and Butler et al. (2018), and for aerosols in Righi et al. (2021).  

6  Conclusions 

In this paper we have described the need for a multi-model, multi-pollutant study focused on fires, and highlighted a range of 

important science-policy questions arising from discussions with the scientific and policy communities that this study is 

intended to answer. The study will address gaps in our current scientific understanding of fire processes and provide a more 975 

robust quantification of fire pollution and its impacts to inform decision-making. We have thoroughly discussed the scope of 

this study, based on extended consultation with the science, impacts and policy communities, and have outlined a number of 

alternative design options. We then provide recommended specifications for a modelling study to be carried out over the 
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next ~3 years that will provide maximal benefit for the scientific community and for key policy-adjacent communities 

including HTAP and AMAP. HTAP3 Fires is aimed at providing fresh understanding of the atmospheric and environmental 980 

impacts of fires and providing the foundation for sound policy decisions 
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Appendix 

Table A.1: Complementary fire-related research activities. 

Name Objective website notes 

Biomass Burning 

Uncertainty: Emissions, 

ReactioNs, and Dynamics 

(BBURNED) 

To coordinate fire research 

community towards better 

understanding fire variability and 

uncertainty, particularly as it 

relates to atmospheric chemistry 

https://www2.acom.uca

r.edu/bburned 

An International Global 

Atmospheric Chemistry (IGAC) 

activity 

Arctic Monitoring and 

Assessment Programme 

(AMAP) 

Inform the Arctic Council 

through science-based, policy 

relevant assessments regarding 

pollution and climate change 

issues 

https://www.amap.no/a

bout 

Expert groups on SLCFs, POPs, Hg, 

Local v Long Range.  

 

SLCF EG may use these HTAP  

experiments for a future AMAP 

report. 

Arctic Black Carbon 

impacting on Climate and 

Air Pollution (ABC-iCAP) 

Creation of fire management 

scenarios for Arctic Coucil 

countries/states 

https://abc-

icap.amap.no/ 

 

WMO Vegetation Fire 

Smoke Pollution Warning 

Advisory and Assessment 

System (VFSP-WAS) 

To enhance the ability of 

countries to deliver timely and 

quality vegetation fire and 

smoke pollution forecasts, 

observations, information and 

knowledge to users through 

an international partnership of 

research and operational 

communities 

https://community.wm

o.int/en/activity-

areas/gaw/science/mod

elling-

applications/vfsp-was  

 

International Association 

of Wildland Fire (IAWF) 

 Organizes large-scale 

conferences around wildfire 

https://www.iawfonline

.org/ 

 

integrated Land 

Ecosystem-Atmosphere 

processes Study (iLEAPS) 

Recently conducted a meeting on 

fires in south Asia, focusing on 

the prescribed fires and its 

modelling and planning next 

workshop in March. Carry out 

the conversion on the prescribed 

fires and its impact on air 

quality, health and modelling 

including fire emission estimate. 

https://ileaps.org/future

-earth and 

https://www.tropmet.re

s.in/204-event_details 
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Arctic Community 

Resilience to Boreal 

Environmental change: 

Assessing Risks from fire 

and disease (ACRoBEAR) 

To predict and understand health 

risks from wildfire air pollution 

and natural-focal disease at high 

latitudes, under rapid Arctic 

climate change, and resilience 

and adaptability of communities 

across the region to these risks. 

www.acrobear.net Integrating health data and 

knowledge, community knowledge 

and stakeholder dialogue, with 

satellite and in-situ observations, 

and numerical modelling. 

Air Pollution in the Arctic: 

Climate Environment and 

Societies (PACES) 

Review existing knowledge and 

foster new research on the 

sources and fate of Arctic air 

pollution, and its impacts on 

climate, health, and ecosystems 

https://igacproject.org/a

ctivities/PACES 
IGAC/IASC initiative. mproving 

knowledge of high latitude forcing 

from fire emissions. Key questions 

around ageing of fire plumes, 

mixing with anthropogenic pollution 

following export (e.g. POLARCAT 

cases). NOy speciation, BC ageing, 

how these vary between models... 

Need for improved observational 

constraint on these processes 

AeroCom  https://aerocom.met.no, 

and more specifically 

e.g. 

https://aerocom.met.no/

node/110  and 

https://aerocom.met.no/

node/115 

 

The Fire Model 

Intercomparisons Project 

(FireMIP) 

Systematic examination of global 

fire models, which have been 

linked to different vegetation 

models. Relevant for 

ESM/coupled fire simulations. 

https://gmd.copernicus.

org/articles/10/1175/20

17/ 

ISIMIP3 [the Intersectoral Impacts 

MIP phase 3] which FireMIP is now 

merging with - ISIMIP3b 

[simulations currently in progress] 

will produce multi-model projected 

future fire emissions for different 

SSP scenarios) 

Support for National Air 

Pollution Control 

Strategies (SNAPCS)  

Part of this project involves 

investigating the impact of local 

and long-range transport of fire-

related pollutants on the UK. 

There is particular interest in 

implications for health/air 

quality, and model development 

 Project involvement from the 

UKCEH, Imperial College London, 

EMRC and DEFRA 

European Network on 

Extreme fiRe behaviOr 

(NERO) 

bringing together wildfire 

researchers and practitioners 

to advance the current state of 

the science, thus making a 

crucial step in improving fire 

management, firefighter training 

and safety, and public safety 

planning Science-based wildfire 

management 

https://www.cost.eu/act

ions/CA22164/ 

European Cooperation in Science 

and technology (COST) Action 
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FLARE: Fire science 

Learning AcRoss the 

Earth system’ (workshop) 

The goal is to develop a roadmap 

for coordinated wildfire research 

for the next 5- 10 years. 

https://futureearth.org/i

nitiatives/funding-

initiatives/esa-

partnership/ 

Held 18-21 September 2023. 

Article: 

https://futureearth.org/2023/12/13/re

flections-from-the-fire-science-

learning-across-the-earth-system-

flare-workshop/ 

AerChemMIP2 in CMIP7 Historical and future climate 

change simulations focused on 

aerosols and trace gas chemistry 

for CMIP7. 

 Will include a focus on wildland 

fires and biomass burning. 

Simulation design in 2024. 
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