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Abstract.

Data assimilation (DA) of time-variable satellite gravity observations, e.g.,such as those from the Gravity Recovery and

Climate Experiment (GRACE), GRACE Follow-On (GRACE-FO), and future gravity missions, can be used to constrain sim-

ulations of the vertical sum of water storage in Global Hydrological Models (GHMs). However, the state-of-the-art DA of these

measuredcurrent DA implementations of these Terrestrial Water Storage (TWS) changes into models isare often performed region-5

allyat regional scales or, if applied globally, at low spatial resolutions. This choice is made to handle the considerably high computational

demands of DA, and to avoid numerical problems, e.g.,This limitation is primarily due to the high computational demands of DA and

numerical challenges, such as instabilities in covariance matrix inversion. To fully exploit the potential of satellite gravity ob-

servations and the high spatial resolution of GHMs, we developed PyGLDA, an open-source Python-based system that allows

performing DA globally at a fine scale with high numerical efficiencyenables fine-scale and computationally efficient global DA. The main10

noveltieskey innovations of PyGLDA include (1) a global patch-wise DA approach using domain localization and neighboring-

weighted global aggregation and (2) its greatseamless compatibility between basin-scale and grid-scale DA implementations.

The PyGLDA represents a considerablesignificant functional advancementimprovement over previous DA systemswith wide and flex-

ible options offered to allow for various user-specific studies., offering wide-ranging and flexible options for user-specific applications.

The modular structure of the system provides users with various possibilities to interact with (and add/remove) individual water storage compart-15

ments, change the representation of observations, and, therefore, the ability to choose different GHMsallows users to customize water storage

compartments, modify observation representations, and potentially select different GHMs. This paper provides a comprehen-

sive description of PyGLDA and its application in a case study of the Danube River Basin, along with a demonstration of

global DA, where experiments involve integrating monthly GRACE TWS fields (2002-2010) and the W3RA water balance model at a

0.1-degree/daily spatiotemporal resolutionwith the daily W3RA water balance model at 0.1◦ spatial resolution.20

1 Introduction

Accurately monitoring the water cycle worldwideAccurate monitoring of the global water cycle is essential to understand natural climate

change, the reservoir systems, climate change, water related socioeconomic impacts and human management of water resourcesas well as human
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water resource management (Rodell et al., 2018). However, measuring global changes in Terrestrial Water Storage (TWS) —

which represents the total vertical sum of water stored on land, including ice, snow, wetlands, lakes, rivers, soil moisture and25

groundwater — has long been a challenge (Rodell and Reager, 2023). This difficulty arises from the vast spatial coverage

required (approximately 150 million km2 of the global land area) and the lack of comprehensive observational data for differ-

ent hydrological components. In situ measurements of key variables, such as groundwater, are often spatially and temporally

limited, subject to political constraints, and prone to data gaps and systematic errors. These factors reduce their suitability for

large-scale hydrological studies [Reformulated as suggested] (Li et al., 2019).30

ThereforeTo address these challenges, Global Hydrological Models (GHMs) of various structures have been developed to simulate

the spatially distributed hydrological response to weather and climate variations, as well as human water use. Most GHMs are

conceptually or physically based, and one can see [the text here and the remainder of this paragraph is reformulated as suggested by reviewer]

Sutanudjaja et al. (2018) for an extensive list of existing GHMs. These models operate at various spatial resolutions, ranging

from coarser scales (e.g., 0.5◦×0.5◦ for WaterGap, Müller Schmied et al., 2021) to finer resolutions (e.g., 0.01◦×0.01◦ for the35

hyper-resolution PCR-GLOBWB, Hoch et al., 2023). Despite their advancements, these models often struggle to realistically

simulate certain water storage and flux processes due to oversimplified representations of natural processes or a lack of con-

straints on the temporal variability of some components [reformulated as suggested], such as groundwater and human interventions.

This issue persists in most GHMs (Scanlon et al., 2018; Mehrnegar et al., 2020), although some models may perform better

than others in specific river basins. Recent efforts have aimed to improve the representation of certain components, such as40

groundwater processes, to more accurately simulate groundwater levels and surface–groundwater interactions. However, signif-

icant modeling challenges persist [reformulated] (see Niu et al., 2007; de Graaf et al., 2017; Decharme et al., 2019). Furthermore,

calibrating model parameters to better capture local water variability remains a major challenge, which requires innovative

observational and calibration techniques (Schumacher et al., 2018a).

Direct remote sensing observationsSince 2002, satellite observations of time-variable gravity changes have been available through45

the US-German Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004). By analyzing these

fieldsdata, oneresearchers can estimate global TWS changes with reasonable precision (Landerer and Swenson, 2012). Over

lastDuring the past two decades, GRACE and its Follow-On mission (GRACE-FO; Landerer et al., 2020) have helped hydrologists

and meteorologistscontributed significantly to hydrological and meteorological studies. These satellite-based TWS observations

have been used to close the global water budget (e.g., Sheffield et al., 2009; Castle et al., 2016), estimate groundwater depletion50

(e.g., Scanlon et al., 2012; Voss et al., 2013; Castellazzi et al., 2016), analyze droughts and flood potential (e.g., Gouweleeuw

et al., 2018; Forootan et al., 2019), validate and constrain hydrological models [revised as suggested] (e.g., Ngo-Duc et al., 2007;

Eicker et al., 2016; Mehrnegar et al., 2020, 2023). However, despite its advantages, the GRACE-derived TWS anomalies (ab-

breviated as TWS hereinafter) [revised as suggested] are limited by coarse spatial and temporal resolution (∼500330 km or 3◦×3◦

on a monthly basis) due to the presence of its considerable correlated noise (Kusche et al., 2009; Chen et al., 2022; Yang et al.,55

2024b).

To introduce realistic variability from observations into model simulations, the Data Assimilation (DA) technique has found a great inter-

estData Assimilation (DA) techniques have gained significant attention. EspeciallyIn particular, DA of satellite basedGRACE-based
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TWS observations can enhance the temporal, horizontal, and vertical disaggregation of the estimated TWS signal (Zaitchik

et al., 2008; Schumacher, 2016). TWSGRACE data provide unique constraints on model-based water storage estimates that60

cannot be obtained through other observational techniques. A majority of DA studies in previous have confirmed its unique advantage of

improving TWS, as well as its compartments on regional/basin scaleNumerous studies have demonstrated the effectiveness of DA with

GRACE in improving TWS simulations and its individual components, particularly at regional and basin scales (Eicker et al.,

2014; van Dijk et al., 2014; Schumacher et al., 2016; Girotto et al., 2016; Khaki et al., 2017; Tian et al., 2017). In recent years, there

is an emerging trend to implement the DA on global scale to better revealMore recently, there has been a growing interest in implementing65

GRACE-TWS DA on a global scale to better capture the global water cycle (Li et al., 2019; Felsberg et al., 2021; Gerdener

et al., 2023; Forootan et al., 2024).

[a new paragraph is started as suggested]However, few studies have achieved high-resolution global DA of GRACE-TWS and hy-

drological models. Li et al. (2019) reported a 0.25◦ global DA resolution, which, to the best of our knowledge represents the

highest resolution achieved so far. Although the value of high-resolution hydrological modeling (for example the resolution of70

0.1◦) has been widely acknowledged (Benedict et al., 2017; Sutanudjaja et al., 2018; Springer et al., 2019), the implementation

of high-resolution global DA remains highly challenging due to numerical instabilities and computational constraints. The lat-

ter, in particular, poses a critical challenge, often rendering traditional DA frameworks impractical for large-scale applications.

Additionally, none of the existing global DA implementations for GRACE-TWS have made their software publicly available,

limiting transparency and reproducibility within the scientific community.75

In this studyarticle, we introduce PyGLDA, the first open-source and Python-based Global Land Data Assimilation (GLDA)

system designed to address the challenges of high-resolution global DA. PyGLDA enables the integration of satellite-based

TWS observations from GRACE, GRACE-FO, and likely future gravity missions (Daras et al., 2023) with GHMs. In this

version, W3RA model (van Dijk, 2010) is selected as the GHM. The software is a key outcome of the DANSk-LSMDANSK-LSM

project (https://aaugeodesy.com/dansk-lsm/) and will be expanded in the future for multi-sensor hydrological DA applications.80

Unlike previous studies, PyGLDA introduces a fully restructured DA framework to efficiently and stably implement high-

resolution global DA at 0.1-degree spatial resolution and a daily time step. The system includes several key innovations: [The

following text has been reformulated as suggested, to avoid overselling.]

– A unified framework for both basin-scale and grid-scale DA, where the are to be computedarea to be covered is defined as a

‘basin’ and each grid cell acts as a ‘sub-basin,’ allowing for flexible spatial configurations via standard shapefiles;85

– A novel approach for transitioning from regional DA to global DA, achieved through domain localization and neighboring-

weighted aggregation algorithms;

– The ability to compute spatial covariance of GRACE-based TWS observations, enabling full covariance matrices for

sub-basins and grids, which improves DA reliability by considering spatial correlations;

– Flexible options can be selected for the grid resolution of GHMs, where here a choice of 0.1◦ and 0.5◦ is available for the employed global W3RA90

model
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– Flexible choiceschoice of the grid/sub-basin TWSGRACE-TWS observations to be assimilated into GHMs, e.g., from 1◦

to 5◦ with an increment of 0.5◦;

– A range of perturbation strategies for generating ensemble members, allowing users to select which forcing data and

which model parameters are to be perturbed following which noise distribution (Gaussian or Triangle distribution, as95

well as additive or multiplicative noise);

– The Ensemble Kalman filter (EnKF similar to Schumacher, 2016), and an Ensemble Kalman Smoother (EnKS) that

optimally desegregates monthly increments to daily ones (similar to Tian et al., 2017), are implemented as mergers.

The architecture of the code includes the following features:

– A flexible modular structure to decouple PyGLDA into three individual modules: (1) GHM, (2) gravity data post-process-100

ingGRACE processing, and (3) mathematical DA integration. This choice is made to make it possible to easily develop/mod-

ify/replace any individual module;

– PyGLDA is implemented in object-oriented Python, making it accessible and easy to use, while maintaining computa-

tional efficiency comparable to C++, Fortran, and MATLAB. The Python translation of the W3RA mode [reformulated]l

(van Dijk, 2010) is distributed as well;105

– Cross-platform compatibility, allowing installation on Windows, Linux, and High Performance Computing (HPC) clus-

ters; Configurable settings via JSON files, enabling users to adjust parameters and options without modifying the source

code; Efficient data management, using the modern HDF5 format for handling large spatial-temporal datasets [reformu-

lated].

The paper is structured as follows. In Section 2, we describe the data used inrequired for PyGLDA. In Section 3, a detailed110

description of employed GHM and the development of PyGLDA is presented. Section 4 introduces some application examples

to demonstrate the effectiveness and flexibility of PyGLDA. The current limitations of PyGLDA are summarized in [a new section

to address the limitations is added as suggested] Section 5. Finally, conclusions and outlooks are demonstrated in Section 6.

2 Data

2.1 Masks115

Various data masks have been defined by PyGLDA to help manage the DA processes. A flexible combination of these masks could allow for various user-spe-

cific studies as long as the masks are specified, whether the desired DA is basin-scale or grid-scale and whether the DA is run globally or locally.PyGLDA

defines various data masks to facilitate the management of DA processes. A flexible combination of these masks allows users

to conduct a wide range of studies, whether at the basin scale or grid scale, and whether DA is performed globally or locally.

The system supports five primary mask types [their definitions are slightly revised for better clarity], which must be properly configured:120

(1) land mask that identifies grid points at land; (2) data mask that indicates areas where forcing fields and model parameter
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fields are available; (3) region mask that specifies where one wishes to run GHM; (4) basin mask that defines where one wishes

to perform DA; (5) observation mask that represents sub-basins or grid cells where observational data are assimilated within

the DA process. PyGLDA includes default options for the land mask and data mask, but users must define the region mask,

basin mask, and observation mask using a standard shapefile format (.shp). This approach ensures flexibility and adaptability,125

allowing users to tailor PyGLDA to their specific research needs.

2.2 Meteorological forcing field

So far, only ERA5-land reanalysis (Hersbach et al., 2020) data has been integrated into PyGLDA. However, this does not mean

that the implementation is restricted to this forcing field. Instead, one can easily modify the interface module to load other

meteorological forcing data. In the current PyGLDA, the ERA5-land at a native (also its highest) resolution of 0.1◦ is required130

to run W3RA (as an example), which includes the daily precipitation, the maximal/minimal temperature and the surface solar

radiation. In particular, PyGLDA provides a function to download these forcing data from the ECMWF (European Centre for

Medium Range Weather Forecast) website automatically, which one can use to keep the forcing field up-to-date. In addition,

an up(or down)-scaling of forcing fields can be done with the official ’metview’ package [added as suggested by reviewer] (from

ECMWF, https://metview.readthedocs.io/en/latest/) integrated in PyGLDA, if one wishes to run PyGLDA at a different spatial135

resolution.

2.3 Parameters and Climatologies

The parameters and climate input data are originally distributed along with the employed GHM, i.e., W3RA, which has an

original resolution of 0.5◦. PyGLDA provides a finer resolution of 0.1◦ as a default option. For a detailed review of the

definition of these parameters and climatological resources, one can refer to the W3RA technical document (van Dijk, 2010).140

2.4 GRACE Level-2 product and its variance-covariance information

In PyGLDA, the monthly GRACE-based TWS is computed from standard level-2 gravity field products, which are expressed

in terms of spherical harmonic coefficients up to degree/order 60 or 96 (Yang et al., 2017). These L2 products are provided

by three official data centers, i.e., CSR (Center for Space Research from the University of Texas at Austin, Texas, USA), GFZ

(GeoForschungsZentrum, Potsdam, Germany) and JPL (Jet Propulsion Laboratory, USA). Additionally, to generate realistic145

perturbations for GRACE-based TWS, PyGLDA requires the full error covariance matrix of the L2 products. However, this

information is not included in the official L2 products. To overcome this limitation, PyGLDA uses ITSG-2018 temporal gravity

field solutions (Kvas et al., 2019; Mayer-Gürr et al., 2018), which offer key advantages: (i) access to the full error variance-

covariance matrix; and (ii) better quality than official products due to the additional background model uncertainty consid-

ered [more details on the reason why ITSG is selected are given] (Kvas and Mayer-Gürr, 2019; Meyer et al., 2019).150
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3 Model description

3.1 Structure

PyGLDA consists of three core scientific modules: (1) GRACE processing, (2) W3RA model, and (3) DA, each of which is

described in detail below. Additionally, PyGLDA includes three supporting modules [slightly reformulated]: (4) a postprocessing

module for data analysis and visualization, (5) a flow control module that integrates the necessary sub-modules into a stream-155

lined processing chain for specific studies, and (6) an auxiliary module for processes outside DA, e.g., downloading forcing

fields and formatting output. Figure 1 provides an overview of the structure of PyGLDA, illustrating the interaction between

these modules.

GRACE processing. This module is responsible for conversion, correction and propagation of GRACE level-2 data and

its associated uncertainty. By default, GRACE level-2 products are distributed as geopotential spherical harmonic coefficients160

(SHCs), which must be transformed into physically meaningful variables, such as gridded TWS anomalies, for use in DA.

This transformation, known as conversion, is performed using the harmonic synthesis approach (Wahr et al., 1998). Fur-

thermore, GRACE data contain considerable noise due to imperfect background models [more clarifications are added as suggested]

(Yang et al., 2021; Zhou et al., 2023) and instrument noise (Yang et al., 2018; Patel, 2020; Yang et al., 2022a). Therefore, a

series of corrections is applied to ensure the extraction of a desired signal, including low-degree coefficient replacement (e.g.,165

Loomis et al., 2020), de-correlation and filtering (e.g., Swenson and Wahr, 2006; Kusche, 2007; Klees et al., 2008; Horvath

et al., 2018), spatial leakage correction (e.g., Chen et al., 2015; Vishwakarma et al., 2018), Glacial Isostatic Adjustment (GIA)

removal (e.g., Richard Peltier et al., 2018). PyGLDA selects and implements the most widely used correction strategies, see

Table 1. However, be aware that Table 1 is not exhaustive; many more corrections such as the ellipsoidal correction (e.g.,

Yang et al., 2022b) are also implemented. Furthermore, to ensure an optimal balance between observational and model-derived170

water storage estimates, the GRACE-TWS uncertainty must be properly quantified. PyGLDA achieves this through Monte

Carlo propagation of the full error covariance matrix from the SHC domain to the gridded (or basin-averaged) TWS domain

(Wahr et al., 2006; Boergens et al., 2022; Yang et al., 2024a). Be aware that, due to the fact that filtering introduces signal

covariance, the ultimate covariance of GRACE reflects both noise and signal’s behaviors [clarification is added as suggested]. Given

its independent functionality, all GRACE processing related tasks have been integrated into a standalone toolkit called SaGEA,175

which is also Python-based and open source [added to indicate where to see a detailed description and explanation of GRACE-related terminology

as suggested by reviewer] (Liu et al., 2025). SaGEA can be seamlessly coupled to PyGLDA.

W3RA GHM. W3RA is an open-source and global realization of the AWRA-L hydrological model (Australian Water

Resources Assessment System, version 0.5) (van Dijk, 2010). It is a grid-based one-dimensional water balance model that rep-

resents water storage and flows from soil, groundwater, and surface water. The model employs well-established equations to de-180

scribe radiation, energy, and water balance processes [reformulated as suggested], requiring minimal meteorological input, including

daily gridded precipitation, incoming shortwave radiation, and daytime temperature (typically estimated from minimum and

maximum temperature). Although its publicly available version is implemented at 0.5◦ resolution, we have adapted W3RA to

0.1◦ resolution to align with the available high resolution meteorological data sets (Mehrnegar et al., 2021). However, a limi-
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Figure 1. [The figure has been updated to improve the visualization as suggested by reviewer]An overview of PyGLDA structure that mainly consists

of three modules: (a) GRACE processing, (b) W3RA GHM (van Dijk, 2010) and (c) Data Assimilation (DA).

tation of the current model version is its simplified assumption of lateral water redistribution [revised to avoid confusion as suggested],185

which reduces reliability in areas influenced by irrigation, inundation, or groundwater inflows (van Dijk, 2010). This limitation

highlights the importance of incorporating GRACE-TWS observations via data assimilation. The original W3RA model was

released as an open-source MATLAB script, but it has been fully translated into Python and integrated into PyGLDA. Original

W3RA was released in an open-source Matlab script, but it has been translated to Python and integrated into PyGLDA, where intensive code validations across

various combinations of areas/resolution/forcing have been made to verify the same precision and comparable numerical efficiency between before/after trans-190

lation (based on 0.5 degree solution). The TWS simulations of W3RA is compared against GRACE TWS and with other commonly used GHMs, which were

forced by the same climate data within the eartH2Observe project. Their comparison indicated that the skills of W3RA in resembling the global water storage
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Table 1. An overview of the available correction options in PyGLDA’s GRACE processing toolkit, see Liu et al. (2025) for more details [add

reference].

Correction Options Remark Reference

Low degrees

replacement

Degree-1 [C1,0, C1,1,S1,1] by model Swenson et al. (2008)

C2,0 by TN-111 file as of December 2019. Loomis et al. (2020)

C3,0 by TN-14 Loomis et al. (2020)

De-correlation
Sliding window fitting Empirical selection of window length Swenson and Wahr (2006)

PnMm A polynomial fitting for degree n and order m Chen et al. (2006)

Averaging filter

DDK2 DDK1 - DDK8 Kusche (2007)

Gaussian with a radius r, 200< r < 1000 (km) Jekeli (1981)

Non-isotropic Gaussian r1-radius of degree, r2-radius of order, m0-truncated order Han et al. (2005)

Fan r1-radius of degree, r2-radius of order Zhang et al. (2009)

Leakage

correction

Forward modeling Iteration times n, acceleration factor s Chen et al. (2015)

Classical3 f̂c = fc − lc Wahr et al. (1998)

Additive4 f̂c = fc − lmc + bmc Klees et al. (2007)

Multiplicative5 f̂c = k(fc − lmc ) Longuevergne et al. (2010)

Scaling f̂c = kmfc, basinal or gridded Landerer and Swenson (2012)

Data-driven6 f̂c = fc − δF c − lc Vishwakarma et al. (2018)

GIA correction

ICE6G-D (ICE series)
Removal in spectral domain or

in spatial domain

Richard Peltier et al. (2018)

Geruo2013 A et al. (2013)

Caron2018 Caron et al. (2018)

1 The Technical Note (TN-XX) files are provided along with the official GRACE products.
2 DDK is actually a de-correlation and averaging filter (Kusche et al., 2009).
3 where f̂c, fc denote the signal after and before correction; and lc indicates the spatial ’leakage’.
4 where bc indicates the ’bias’; and the superscript m indicates that a hydrological model is required.
5 where k is the derived scaling factor.
6 where δF c indicates the deviation integral.

variability are similar to the existing models.Extensive validation tests across different study areas and forcing datasets confirm that

the Python implementation maintains numerical precision and computational efficiency comparable to the original MATLAB
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version. Furthermore, previous studies have demonstrated the capability of W3RA to capture global water storage variability,195

making it a suitable choice for integration into PyGLDA (Schellekens et al., 2017; Mehrnegar et al., 2020).

Data Assimilation (DA). This module consists of four main steps, which are perturbation, initialization, forecast, and anal-

ysis. Since Ensemble Kalman Filter (EnKF) and Ensemble Kalman Smoother (EnKS) are selected as our merger in PyGLDA,

proper perturbation of both model and observations has to be performedis required. In PyGLDA, model perturbations — specif-

ically for parameters and forcing fields — can be generated using additive or multiplicative noise, following a Gaussian or200

triangular distribution (Schumacher, 2016). In contrast, perturbations for GRACE-TWS observations are generated from its

full error [added as suggested] covariance matrix of the GRACE data. Be aware that the perturbation of the initial field (state vec-

tor) is currently not considered in PyGLDA due to its limited impact on the DA of land water (Reichle and Koster, 2003). n the

next step, an initialization, i.e., a spin-up of the error-free W3RA GHM (given, for example, two years at least) to acquire a reliable initial field. Subsequently,

in the forecast step, the state of the model is continuously evolving on a daily basis until being informed to have an observation available.The initialization205

step involves a spin-up phase, where the W3RA model is run for at least two years without perturbations, ensuring a stable and

physically meaningful initial state. In the forecast step, the model evolves forward on a daily timescale until the next observa-

tion becomes available. Finally, in the analysis step, observational data and model forecasts are combined to update the state

variables for the past month, following the standard EnKF or EnKS framework; see Appendix A for details.

3.2 DA workflow and parallel computation210

[this paragraph has been reformulated with the emphasis on the conceptual distinction of ensemble and ensemble members]State-of-the-art sequential

DA methods are widely used in hydrological applications, with Kalman filter-based approaches gaining significant attention

due to their relatively straight forwardstraightforward matrix implementation (Schumacher, 2016). The classical Kalman filter

assumes that all probability distributions involved in the system are Gaussian and provides algebraic formulations for updating

the mean and covariance matrices under the assumption of a linear system. However, maintaining a full covariance matrix is215

computationally impractical for high-dimensional systems. To address this problem, the EnKF was developed, representing the

probability distribution of the system using an ensemble of state vectors rather than an explicitly stored covariance matrix. This

approach enables a Monte Carlo approximation of the Bayesian update, where the accuracy of the covariance estimate depends

on the number of ensemble members. Since there is no universally optimal ensemble size, PyGLDA allows users to customize

the number of ensemble members through a JSON-based configuration file; see Appendix B for details. We recommend an220

ensemble of 30 members to balance computational efficiency and accuracy [added as suggested](Schumacher et al., 2016, 2018a).

In PyGLDA, the processing steps (including perturbation, model forecast, state analysis, and data management) for each en-

semble member are completely independent of the others [reformulated to avoid confusion, as suggested]. This independence makes

PyGLDA highly suitable for parallel computing, allowing full utilization of CPU resources. In PyGLDA, each ensemble

member is assigned to a separate computational thread, significantly improving efficiency. Parallelization is implemented225

using Message Passing Interface (MPI), a widely adopted standard for parallel computing. Specifically, PyGLDA leverages

the MPI4PY package (https://mpi4py.readthedocs.io/en/stable/), which provides MPI bindings for Python, enabling multi-core

and multi-node execution on High-Performance Computing (HPC) clusters.

9
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Figure 2. [This figure is updated by changing the ’ensemble’ to ’ensemble member’ in response to reviewer’s comment]A schematic diagram to manage

the threading pool of the DA workflow in PyGLDA, where an ensemble of two members for 2002-2020 is shown as an example.

Figure 2 provides a schematic overview of how parallel DA worksis managed in PyGLDA, where an ensemble of two members has

been shown as an example. In practice, one use more ensemble members, for example 30. The general DA workflow, as defined in PyGLDA,230

is divided into three primary stages [the description of each stage is slightly changed]: (1) a single-run, i.e., model spin-up, (2) an open

loop run, that is, ensemble-based forecasts with perturbed input, and (3) the data assimilation run, that is, merging ensemble

forecasts with GRACE observations. In the single-run stage, the hydrological model is initialized and spun up for at least two

years to ensure the equilibrium of the system, with only one single thread required. In the open loop stage, all members of

the ensemble are run simultaneously, each initialized from the spin-up state and driven by perturbed forcing fields and model235

parameters. Subsequently, for each ensemble member, the long-term mean of the state vector is calculated and subtracted from the GRACE observa-

tion.The aim of this stage is to obtain a long-term mean of the states and subtract it from the GRACE observations. Finally, in

the assimilation stage, multiple treads are launched again, whereas only one of them is meant to deal with the Kalman update

when new observation becomes available. In summary, a complete DA job will go through these three stages to arrive at the

final assimilated results, where PyGLDA automatically manages the threading pool to distribute the appropriate threadsresources240

for each stage.
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3.3 GLDA configuration

3.3.1 Patch-wise domain localization

[slightly reformulated]Running a high-resolution GHM with an ensemble-based DA system presents significant computational

challenges, particularly when the ensemble size exceeds a few dozen members. Computational constraints and numerical245

stability issues become critical concerns, especially in large-scale Global Land Data Assimilation (GLDA) applications (Re-

ichle and Koster, 2003). Given a limited ensemble size, spurious long-range correlations are easily introduced (Forman and

Reichle, 2013; Khaki et al., 2017). These artificial correlations often degrade the DA performance by causing numerical in-

stabilities during the Kalman update step, potentially leading to filter divergence. Consequently, compared to regional DA,

traditional GLDA implementations face additional challenges related to computational feasibility and numerical robustness,250

making GLDA significantly more complex and less frequently attempted in previous studies.

180° 120°W 60°W 0° 60°E 120°E 180°

90°S

30°S

30°N

90°N

Figure 3. Configuration of the patch-wise domain localization, where each tile (denoted as the rectangle filled by the light blue) represents

the ’domain’ to perform DA, individually. The unit box in black, contained in each tile, represents the smallest area to average GRACE

observations to be assimilated.

[slightly reformulated]To address these challenges, it is beneficial to restrict the spatial extent to which covariance matrices are

computed. For global DA, it would be effective to divide the global domain into smaller localized patches. This technique,

known as domain localization, helps stabilize the covariance matrix by assuming that significant correlations do not extend

beyond a certain region. By enforcing this assumption, PyGLDA reduces the impact of spurious long-range correlations,255

improving numerical stability. Additionally, if both the hydrological model and GRACE-TWS observations exhibit only weak

cross-domain correlations, DA computations within each patch can be treated as independent processes, making the GLDA

11



problem computationally tractable. Therefore, in PyGLDA, the global domain is partitioned into patches (tiles), each operating

as an independent DA unit. The patch size is flexible, but a recommended configuration for GRACE-based global DA is

18◦ × 24◦, as illustrated in Figure 3. Each tile contains a set of grid cells, 3◦ × 3◦, which represent the smallest units used to260

aggregate GRACE observations. For future gravity missions with improved spatial resolution, such as MAGIC and NGGM

(Daras et al., 2023), smaller grid sizes can be used accordingly.

Additionally, in PyGLDA, the domain size and configuration can be fully customized, allowing users to define different

patch sizes depending on their specific application. The default setup excludes regions with no land coverage (such as oceans

and ice sheets), leaving a total of 74 valid computational domains for DA [reformulated as suggested], see Figure 3. This flexible265

approach ensures that PyGLDA can be efficiently adapted to various spatial resolutions and study objectives. For example,

users can modify the unit size (for example, using grid cells of 4◦ or 5◦) or redefine domain boundaries based on a specific

land mask. By employing this patch-wise DA strategy, PyGLDA effectively mitigates numerical instability issues and reduces

computational costs, enabling high-resolution GLDA to be executed efficiently, even on standard computational platforms.

Furthermore, this approach facilitates parallel computing, allowing multiple domain patches to be processed simultaneously,270

significantly accelerating GLDA execution [reformulated].

3.3.2 Weighted global aggregation

In practice, the hypothesis of independence between adjacent domain/tiles is a strong assumptionthe assumption of complete independence be-

tween adjacent domains (patches) is a simplification. Although it is reasonable to assume that correlations between the center

of a patch and locations outside the patch are negligible—provided that the patch is sufficiently large—the same assumption275

does not hold for areas near the boundary of the patch (Reichle and Koster, 2003). Since PyGLDA performs DA independently

within each patch, ignoring cross-boundary correlations can result in artificial discontinuities at the edges of neighboring

patches. This issue, commonly referred to as the edge effect, manifests itself as visible artifacts in the global DA results, where

abrupt transitions appear between adjacent patches. Therefore, to ensure smooth transitions across patch boundaries, PyGLDA

introduces a weighted global aggregation strategy that effectively blends the DA results of neighboring patches [reformulated].280

[Intensive revisions have been made to this paragraph to address reviewers’ comments: (1) language (2) mathematical formulation, and (3) more justifica-

tion]To mitigate the edge effect, PyGLDA extends the computational domain of each patch by introducing overlapping regions

with adjacent patches. These overlapping transition zones allow the DA results from neighboring patches to be smoothly

blended, reducing artificial discontinuities. Specifically, each patch is extended by a predefined margin (for example 6◦ beyond

its original boundaries, as shown in Figure 4a), ensuring that DA calculations consider interactions between patch borders.285

After DA is performed within each extended patch, the overlapping regions are merged using a weighted averaging approach,

see Figure 4b-c. In this approach, each overlapping grid cell receives contributions from multiple patches, with weights as-

signed based on the distance from its outermost border. For example, fa(x) =
∑2

i=1w
i(|x− bi|)f i(x), where fa denotes the

averaged results of two patches (f1 and f2), x denotes a certain point within the overlap area, bi denotes the boundary of the

patch ith, and w indicates the weighted function related to the distance |x− bi|. The inverse distance weighting method used290

is based on the principle that correlations generally decay with increasing spatial separation (Reichle and Koster, 2003). The
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Figure 4. [The figure has been updated to change the layout as suggested]An illustration of the proposed global aggregation strategy. In Figure 4(a),

the box in grey replicates the tile/patch of Figure 3. Four adjacent tiles (in blue/green/yellow/purple) are selected as examples to show the

extension of the zone (in dashed line, e.g., 6◦). A zoom-in is demonstrated in Figure 4(b-c), where the shaded area indicates the overlap of

two extended tiles, and the red number indicates the weight assigned to each tile for the averaging over the overlapping areas.

extension of 6◦ is considered based on our previous study on the length of GRACE’s correlation [justification of our choice in response

to reviewer’s comment] (Yang et al., 2024a). This ensures a gradual transition between neighboring DA solutions, preserving spatial

continuity.

4 Application295

4.1 Basin-scale DA for Danube

The Danube River Basin (DRB) is Europe’s second largest river basin, with a total area of 801,463 km2. It is the world’s most international river basin, flow-

ing through the territory of 19 countries.The Danube River Basin (DRB) is the second largest river basin in Europe, covering an area

of approximately 801,463 km2 and spanning 19 countries. Given its extensive transboundary nature, accurately monitoring

terrestrial water storage changes within the DRB is crucial for water resource management, climate studies, and hydrological300
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forecasting. To demonstrate the capability of PyGLDA in a regional DA context, we selected DRB as a case study. In this

experiment, we performed basin-scale DA, a widely adopted approach in previous studies. However, in the next section, we

extend this experiment to a grid-scale DA setup over the DRB to evaluate the added value of higher spatial resolution.

5°E 10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

55°N

−3000 −1500 0 1500

m

Upper Basin

Middle Basin

Lower Basin

Figure 5. The Danube River Basin (DRB) and its three major subbasins. The basin’s topography is shown as background picture.

[reformulated]To implement the basin-scale DA, the boundaries of the Danube River Basin (DRB) and its sub-basins must

be properly defined. Conventionally, the DRB is divided into three main subregions based on elevation and hydrological305

characteristics (Stagl and Hattermann, 2015): (1) the Upper Basin (UB), extending from the source of the Danube in Germany

to Bratislava, Slovakia; (2) the Middle Basin (MB), the largest of the three subregions, stretching from Bratislava to the Iron

Gate Gorge, a dammed section on the Serbia-Romania border; and (3) the Lower Basin (LB), covering the lowlands, plateaus

and mountains of Romania and Bulgaria. Figure 5 illustrates the DRB and its sub-basin divisions, where the sub-basins serve

as the smallest spatial units to average GRACE observations before assimilating into the model.310

Table 2. GRACE processing choice for the case study of DRB, see Table 1 for more details.

Step Option

Low-degree replacement degree-1 terms and C2,0,C3,0

Filtering DDK3

GIA correction ICE6G-D

Mean removal temporal mean of 2002-2010

[slightly modified]The GRACE processing module is first executed to generate the observations required for assimilation. The

specific GRACE processing configurations used in this study are summarized in Table 2. Then, the full propagation of variance-

covariance from the harmonic domain to the gridded domain (that is, the basin-average TWS) is performed following the

method of Yang et al. (2024a). Unlike many previous studies, which assume zero correlation between sub-basins, our analysis
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indicates that significant correlations exist, which cannot be ignored. For example, the correlation coefficient between UB315

and LB reaches 0.50 in January 2009, highlighting the importance of accounting for spatial correlations in DA. Furthermore,

the temporal variability of the variance-covariance structure is considered, since changes in the orbital height of the GRACE

mission affect the error characteristics [reformulated to avoid potential confusion] (Boergens et al., 2022).

Figure 6. An overview of the mean (in blue) of the ensemble (shaded) estimates after Basin-scale DA experiment over DRB is illustrated.

Plots include the TWS estimate and its major vertical compartments: surface water (Sr), topsoil water (S0), shallow soil water (Ss), deep soil

water (Sd), and groundwater (Sg) [added as suggested].

Previous studies suggest that an ensemble size of 30 provides a reasonable balance between computational efficiency and

required data storage capacity on the one hand and representative error statistics on the other hand [reformulated as suggested]320

(Schumacher et al., 2018b). It is also adopted for this case study. It is important to note that the number of MPI threads

initialized must match the defined ensemble size; otherwise, an error will occur due to insufficient computational threads

to handle all ensemble members. In this study, the ensemble members are generated by perturbing both the meteorological

forcing fields and the model parameters. Specifically, random Monte Carlo sampling is applied using a triangular probability

density function, introducing a multiplicative perturbation 30% to these fields. The current version of PyGLDA assumes that325

perturbations are spatially correlated (homogeneous) but temporally uncorrelated (independently), though future versions will

allow users to define arbitrary spatial-temporal correlation structures for generating perturbations.

Following the strategy described before, we perform the DA over DRB from years 2002 to 2010 and collect the ensemble. Therefore, by convention, the

average of ensembles can be assumed to be the assimilated result, and moreover, the spread of the ensemble should represent the uncertainty, while it is

suspicious how reliable and to what extent the realistic uncertainty can be representedFollowing the outlined strategy, we perform DA in the330

DRB for the period 2002–2010. Conventionally, the ensemble mean is considered the assimilated TWS estimate, while the
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ensemble spread serves as an approximation of uncertainty. However, the extent to which this spread of the ensemble accu-

rately represents the true uncertainty remains an open question and requires further validation (Gerdener et al., 2023). Figure 6

illustrates the temporal variability of TWS and its major vertical components, providing insights into how DA redistributes the

GRACE-based TWS increments across different water storage compartments. Among the five modeled components—surface335

water (Sr), topsoil water (S0), shallow soil water (Ss), deep soil water (Sd), and groundwater (Sg)—the largest DA-induced

changes occur in groundwater and deep soil water, while surface and topsoil water capture mainly high frequency variations

from GRACE. This finding is consistent with previous studies that indicate that GRACE-based TWS anomalies primarily con-

strain slow-varying subsurface water storage components rather than short-term surface fluxes [reformulated as suggested to avoid

confusion].340
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Figure 7. An overview of the basin averaged TWS of DRB and its three sub-basins (LB, MB, and UB) for OL, DA and GRACE observations.

Furthermore, Figure 7 presents the basin-averaged TWS time series for the entire DRB and its three sub-basins (UB, MB, and

LB), comparing the results from the open-loop (OL) simulation, the DA run, and GRACE observations. A comparison between

GRACE (black dots) and OL (shaded line) reveals that while the model preserves more short-term dynamics, GRACE exhibits

larger magnitude variations, highlighting the need for DA to optimally merge both sources of information. As expected, the DA

result (green line) adjusts the magnitude of the TWS closer to GRACE while retaining the temporal variability of the model.345

In particular, in Figure 7b, an evident phase shift exists between OL and GRACE, probably due to a delay in the streamflow

response. For example, across the entire DRB, the annual signal phase for OL, GRACE, and DA is found to be -41◦, 29◦, and

11◦. Therefore, the DA process successfully reduces this phase mismatch [statistic added as suggested], although further validation

is required using in situ observations to confirm the accuracy of this correction.

16



(a) OL

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

(b) Basin DA

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

(c) GRACE

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

(d) OL smoothed

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

−10 −5 0 5
trend [mm/yr]

(e) Basin DA, smoothed

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

(f) GRACE, smoothed

10°E 15°E 20°E 25°E 30°E
40°N

45°N

50°N

Figure 8. [the figure is updated by reversing the colorbar as suggested]The secular trend of TWS over 2002-2010 for DRB, where the OL, DA and

GRACE results are listed at (a-c), and a smoothed version is respectively shown at (d-f) for a better visualization.

To further analyze the spatial characteristics of the assimilation results, we extract the long-term trend and seasonal ampli-350

tude [modified as suggested] of the TWS estimates based on OL, DA and GRACE and present them as 2D spatial maps in Figures 8

and 9. The original spatial resolution of the OL and DA outputs is 0.1◦, but for comparison with GRACE, an up-scaling

procedure is applied, aggregating the data to the resolution 0.5◦. Furthermore, a 2D spline smoothing technique is applied to

improve visualization clarity, as shown in Figures 8d–f and 9d–f. The trend analysis in Figure 8 reveals that while DA largely

preserves the spatial pattern of the OL model, it brings the upper Danube Basin (UB) trends closer to the GRACE observations.355

Quantitative comparisons indicate a spatial correlation of 0.74, 0.98, and 0.89 between DA and OL in the UB, MB, and LB

sub-basins, respectively. However, the correlation between DA and GRACE is lower (0.79, 0.35, and 0.75), particularly in the

MB region, suggesting that DA is more dependent on the model when the discrepancies between GRACE and the model are

large. Likewise, by looking at the annual amplitude in Figure 9, one can see that DA perfectly replicates the spatial pattern

of OL, with a spatial correlation coefficient up to 0.92; but meanwhile, its spatial magnitude has been tuned much (almost360

twice larger than OL) toward GRACE observations. In this sense, PyGLDA has fulfilled its goal of balancing the model and

observations to reach the statistically optimal combination.

4.2 Grid-scale DA within DRB

In recent years, there has been a growing interest in DA on a grid scale using GRACE gridded data products, such as the

3◦ × 3◦ mascon solutions from JPL. Thus, we have added this possibility to PyGLDA to accept Mascon solutions directly, for365
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Figure 9. An overview of the annual amplitude of TWS within DRB over 2002-2010, where the OL, DA and GRACE results are shown in

(a-c), and a smoothed version is respectively shown at (d-f) for a better visualization.

example, the CSR mascon solutions (Save et al., 2016) are integrated in this study. Compared to basin-scale DA, grid-scale

DA allows for a finer spatial representation of GRACE-TWS signals, potentially improving the assimilation of satellite gravity

data into high-resolution hydrological models (Girotto et al., 2016; Khaki et al., 2017; Li et al., 2019; Gerdener et al., 2023).

In this section, we extend our previous basin-scale DA experiment over the DRB by implementing a grid-scale DA approach.

It is important to note that PyGLDA does not require structural modifications or particular operations to perform grid-scale370

DA; users simply need to define the target region using a shapefile, regardless of whether the intended DA is at the basin or

grid scale. For a grid-scale DA, the shapefile defines each grid cell as the sub-basin. This feature highlights the flexibility of

PyGLDA, which allows seamless transitions between different spatial scales. [reformulated for a better readability]
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Figure 10. An overview of the 3◦ × 3◦ cell definition for DRB, where the identification number (ID) of each cell is highlighted in red.
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[slightly modified]For this experiment, we adopt a widely used grid resolution of 3◦ × 3◦ for GRACE observations, ensuring

consistency with previous grid-scale DA studies. The grid cells are defined to fully cover the DRB, as illustrated in Figure 10,375

where each numbered cell represents an individual assimilation unit. However, be aware that a uniform grid structure cannot

be ensured, and one can see from Figure 10 that some cells are irregular in shape (for example, cell 7), with their boundaries

intersecting the edges of the basin. In total, the DRB is divided into 19 computational cells, each serving as an independent

observation region for GRACE-TWS averaging and assimilation. Although the irregularity of some cells does not significantly

affect the assimilation process, optimizing the grid generation approach for basins with complex geometries remains a potential380

area for future improvement.
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Figure 11. Spatial correlation coefficients of GRACE observations for cells within DRB. The label of X(Y) axis denotes the cell ID as

indicated by Figure 10.

[slightly modified]Following the grid definition in Figure 10, we calculate GRACE-TWS anomalies for each 3◦ × 3◦ cell

by averaging the original 0.5◦ gridded GRACE data within the limits of each cell. In addition, we investigated the spatial

correlation structure of GRACE observations in these grid cells, as shown in Figure 11. The results reveal that strong spatial

correlations exist between many grid cells, with some correlation coefficients exceeding 0.9. Additionally, evident negative385

correlations appear, likely due to residual correlated noise from imperfect GRACE decorrelation filtering. These findings

suggest that assuming uncorrelated observation errors, as done in some traditional DA implementations, may not be entirely

realistic. Instead, PyGLDA explicitly incorporates the full variance-covariance matrix of GRACE observations, ensuring that

spatial correlations are properly accounted for during the assimilation process.

[slightly modified]Keeping the GRACE processing and perturbation (including model) strategies unchanged from the basin-390

scale DA experiment, we now perform grid-scale DA over the DRB using PyGLDA. The ensemble-averaged results are pre-

sented in Figure 12, where, for brevity, only the basin-averaged TWS (rather than the individual compartment) is shown. A

comparison between grid-scale DA (Figure 12) and basin-scale DA (Figure 7a) indicates that at the basin-wide scale, the two
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Figure 12. An overview of the basin averaged TWS of DRB for OL, grid-scale DA and from GRACE observations

assimilation strategies produce generally similar results. The temporal correlation between the basin-averaged TWS estimates

from the two DA approaches is found to be 0.99, suggesting that, at large spatial scales, grid-scale DA does not significantly395

alter basin-wide statistics. However, this does not diminish the importance of grid-scale DA, as its primary advantage likely

lies in capturing finer spatial details, which are further explored in the subsequent 2D spatial analysis. Furthermore, the con-

sistency between basin-scale and grid-scale DA results confirms the correctness and robustness of PyGLDA’s grid-scale DA

implementation.
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Figure 13. As that of Figure 8 but this is for the Gridded DA. [the figure is updated by reversing the colorbar as suggested]

[slightly modified]To further examine the spatial characteristics of grid-scale DA, we compare the long-term trends and seasonal400

amplitudes of the OL, DA, and GRACE-TWS estimates at a resolution of 0.5◦, as shown in Figures 13 and 14. Comparing

the DA trend maps in Figure 13e (grid-scale DA) and Figure 8e (basin-scale DA), we observe that grid-scale DA more closely
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Figure 14. As that of Figure 9 but this is for the Gridded DA. [the figure is updated by reversing the colorbar as suggested]

follows GRACE-TWS trends, particularly in the Middle Basin (MB). For example, the positive trend signal (indicating a

water gain) found in the heart of MB (∼ 20◦E, ∼ 45◦N) appears more evident in Figure 13e than in Figure 8e, and such a

positive signal is quite consistent with that of GRACE-TWS. Similarly, in Figure 14, we see that DA on the grid scale better405

captures the magnitude of the annual amplitude variations observed in GRACE, reducing the Root Mean Squared of Differences

(RMSD) between GRACE and DA from 22.1 mm (basin scale) to 16.5 mm (grid scale). Furthermore, the spatial correlation

between DA and GRACE improves from 0.45 (basin scale) to 0.51 (grid scale), further demonstrating the added value of grid-

scale DA in preserving finer-scale spatial information. These findings suggest that incorporating higher-resolution GRACE-

TWS observations into the DA process allows a better spatial representation of water storage changes, particularly in regions410

where the hydrological model and observations exhibit significant differences. By integrating finer-scale satellite-derived TWS

anomalies, grid-scale DA provides a more detailed and accurate spatial distribution of water storage variability compared to

basin-scale DA. This is particularly relevant for future satellite gravity missions, such as MAGIC and NGGM (Daras et al.,

2023), which are expected to offer higher spatial and temporal resolution with improved error characteristics (Daras et al.,

2023). However, while these results highlight the advantages of grid-scale DA, it is important to note that neither approach415

can be universally considered superior. The optimal choice between basin-scale and grid-scale DA depends on factors such as

study objectives, model resolution, and observation uncertainties. Future research should include independent validation using

in situ measurements, such as groundwater well data and river discharge records, to further assess the accuracy of these DA

strategies.
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4.3 0.1◦ and daily GLDA420

Figure 15. A schematic diagram of the GLDA implementation, where extension of the zone (6◦ as indicated by Figure 4) has been applied

but not shown here for simplifying the visualization.

[slightly modified]In this case study, we performed the GLDA experiment covering 2002-2010 by merging monthly GRACE

TWS into daily W3RA globally at high spatial resolution, that is, 0.1◦ or equivalently 10-12 km, which is likely the highest

resolution among similar previous efforts. Here, we follow the patch-wise domain localization and weighted global aggregation

as described in Section 3.3 to ensure numerical stability and avoid artificial discontinuities in the DA results. The overall

implementation of GLDA is conceptually illustrated in Figure 15, where one can see the global distribution of the patches425

(red rectangles): the shape of the ’basin’ inside each patch (in blue) and the ’sub-basins’ inside each ’basin’ (black boxes).

The global domain is divided into 74 computational patches, each spanning 18◦ × 24◦, with overlapping regions (extended by

6◦) incorporated to ensure smooth transitions across patch boundaries, see Figure 15. Greenland and Antarctica are excluded

because GHMs often do not cover these regions. All the shapefiles related to the aforementioned definitions are shared in the

PyGLDA package. The DA is performed independently for each patch, followed by a weighted global aggregation step to430

merge neighboring DA solutions.

[slightly modified]Furthermore, the detailed roadmapexecution of global DA (GLDA) in our implementation is outlined in Ta-

ble 3, summarizing how each sub-module of PyGLDA is utilized and how efficient it is for specific tasks. The workflow is
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Table 3. An overview of the numerical efficiency tests for PyGLDA, where the computation is designed from years 2002-2010 with an

ensemble size of 30.

Step Sub-step Target area Resources needed1 Time (hour per core)

Data pre-process

or preparation

GRACE signal process2 globe 1-core, up to 10 GB ∼ 0.8

GRACE covariance estimation globe 1-core, up to 15 GB ∼ 3.0

W3RA data pre-process3 1-patch4 1-core, up to 6 GB ∼ 0.5

Perturbation 1-patch 1-core, up to 4 GB ∼ 0.2

Data process

Spin-up (2-years) 1-patch 1-core, up to 3 GB ∼ 0.04

Open loop 1-patch 30 cores, up to 60 GB ∼ 0.3

DA 1-patch 30 cores, up to 70 GB ∼ 0.5

Data post-process

Statistical analysis 1-patch 30 cores, up to 10 GB ∼ 0.1

Global aggregation globe 1-core, up to 15 GB ∼ 1.0

Visualization 1-patch 1-core, up to 2 GB ∼ 0.01

1 CPU cores and running memory for serial/parallel computations.
2 This includes conversion from GRACE level-2 to TWS and necessary corrections as indicated by Table 2.
3 This includes the crop of ERA5-land forcing field (as well as the model parameters and climatology) at intended area, and its upscaling to

a desired resolution.
4 This indicates the performance is evaluated on one patch as defined in Figure 15.

divided into three main stages: (1) data pre-processing, (2) data processing, and (3) data post-processing, each comprising

multiple sub-steps. This structured approach facilitates performance evaluation and optimization of computational efficiency.435

We conducted the GLDA tests on an in-house computing cluster, using a single node equipped with 32 cores (Intel Xeon

Gold 613 @1.59 GHz) and 192 GB of RAM. While computational demands vary based on the user’s specific setup, our test

results provide a baseline reference for PyGLDA’s efficiency. From Table 3, our tests indicate that the data preparation is most

time-consuming, followed by the data processing and the post-processing. Fortunately, the data preparation only requires to be

run once and the results can be saved for repeat use in later stages. In addition, currently the running time is tested for data440

preparation based on a single thread, which means that a considerable reduction of computation time could be expected through

multi-thread parallelization in future update. In contrast, the data processing (responsible for DA) as the core of the GLDA, is

super fast and should be affordable even on a personal desktop. For example, the total time of running data processing for a

regional DA in DRB (as indicated by Section 4.2) is less than 15 minutes in our platform. For the GLDA in this section, the

total time for running the global DA experiment is approximately 5 days at the single node of the cluster. Then, one can actually445

expect a higher efficiency by making use of multiple nodes. Despite the satisfactory efficiency, PyGLDA has a high demand

of the data storage for GLDA. In this case study, the amount of temporary files and output overall has already been up to 15

23



TB, because of the high temporal (daily), horizontal (0.1◦, i.e., 2142930 grid points), and vertical (seven layers) resolution at

global scale [clarification added as suggested].

W3RA

GRACE

DA

−10 0 10

Trend [mm/yr]

W3RA

GRACE

DA

0 50 100 150 200 250 300

Annual amplitude [mm]

W3RA

GRACE

DA

0 1 2 3 4 5 6 7 8 9 10 11 12

Annual phase [months]

Figure 16. TWS results (2002-2010) in terms of secular trend (the 1st column), annual amplitude (the 2nd column) and annual phase (the

3rd column). Plots from the top to the bottom correspond to W3RA (open-loop ensemble-mean model output), GRACE (perturbation-free

observations), and the assimilated results. For appropriate visual comparison, the results of W3RA and DA are upscaled from 0.1◦ to 0.5◦

to be consistent with GRACE-TWS. The annual phase is defined as the month of year when TWS reaches its maximum.

[modified for a better clarity]Then, the TWS results (from the model, GRACE observation, and GLDA) are collected in Figure 16.450

By comparing the trend map between W3RA and GRACE, one can see a very evident underestimation of the trend in TWS on

a global scale in the model, which was also confirmed by previous studies that current models cannot well reproduce long-term

change, particularly in groundwater (Scanlon et al., 2018; Mehrnegar et al., 2020; Forootan et al., 2024), and other evidence that

shows groundwater is declining worldwide (Jasechko et al., 2024). GRACE TWS shows larger trends, but its spatial resolution

is too coarse for hydrological interpretation. In short, the model is poor at revealing the magnitude of trends, but can benefit455

from a high spatial resolution. Fortunately, GLDA can use these two features in a complementary way, where, for example,

in Figure 16, one can see that DA results adopt the resolution of W3RA and the trend magnitudes are successfully tuned to

GRACE. In statistics, as for the trend map, the spatial correlation between W3RA and DA is found to be 0.12, which is because

the original model does not represent trends well. The correlation between GRACE and DA is increased to 0.35. The global

mean (latitude weighted) RMS (Root Mean Squared) of the differences between W3RA and DA is found to be 50.0 mm / year,460
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while that of GRACE and DA is 45.1 mm / year. Regarding the annual amplitude, the spatial correlation between W3RA and

DA is found to be 0.86, while that between GRACE and DA is 0.92; the global mean RMS of differences between W3RA

and DA is 26.0 mm, whereas that between GRACE and DA is 29.0 mm. Based on these results, it seems that the DA is more

dependent on GRACE than on the W3RA model, in terms of trend and seasonality. Nevertheless, the current experiment might

not be optimal, since the weight of the model also depends on how the ensemble is generated, and proper tuning of the model465

covariance should be subject to more investigations. In addition, validations of the proposed GLDA against independent data

sets are desirable, which will be addressed in our future release of the GLDA product.

5 Limitations

[This Section is newly added, to address a few major concerns that reviewers have.]

PyGLDA consists of three main modules: (1) GHM, (2) GRACE observations, and (3) the DA system. Consequently, each470

of these modules introduces potential limitations that can affect the performance of PyGLDA, and they should be individually

addressed. However, the limitations listed below are not exhaustive but represent the most critical challenges that should be

prioritized in future updates.

GHM. (1) The W3RA model does not account for anthropogenic water use, such as irrigation, which significantly impacts

the global water cycle. For example, in regions such as the north China plain, excessive groundwater extraction for irrigation is475

a major contributor to water depletion, but it is not well represented in W3RA. Consequently, model estimates in these regions

may be less reliable. (2) Although W3RA includes a snow module, it does not adequately capture water storage changes in

glaciated regions. For example, GRACE detects a strong ice-melting signal over Alaska, which is poorly represented in W3RA,

leading to less accurate vertical disaggregation of water storage in glacier-covered areas.

GRACE. (1) Spatial leakage remains a significant limitation. Although PyGLDA excludes lake storage, the inherent spatial480

leakage of satellite gravity data can introduce artificial signals into adjacent areas, affecting the DA results in regions with

significant changes in lake water, such as areas near the Caspian Sea. (2) Uncertainty in the true spatial resolution of GRACE.

Larger grid cells improve the signal-to-noise ratio, but result in a loss of spatial detail. Although PyGLDA allows users to

flexibly define the grid size for GRACE observations, determining the optimal balance between spatial resolution and noise

remains an open question.485

DA. (1) The current perturbation module in PyGLDA is sub-optimal for both forcing fields and model parameters. The

current implementation assumes spatial homogeneity in perturbations to prevent spatially independent perturbations from can-

celing out at the basin scale. However, this simplification may lead to unrealistic model uncertainty representations, ultimately

degrading DA performance. Future improvements should explore spatially correlated perturbation strategies to enhance covari-

ance realism. (2) Covariance localization is currently absent. Although no clear signs of filter divergence have been observed in490

PyGLDA due to its patch-wise and coarse grid implementation (e.g., 3◦ grid cells), users may face potential risks of filter diver-

gence when using finer grid configurations, such as 1◦ resolution. Incorporating traditional covariance localization techniques,
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such as the Schur product method (Webber and Morzfeld, 2023), could improve the stability and robustness of PyGLDA in

future updates.

6 Conclusions495

[This section has been reformulated by (i) removing some of limitation statement, and (2) adding more possible extensions of current study.]

This study introduces PyGLDA, a community-level and open-source high-resolution global land data assimilation (DA)

system designed to integrate GRACE/GRACE-FO-derived TWS observations with global hydrological models (GHMs). Our

major contribution is that PyGLDA can be used globally and regionally at various resolutions over arbitrary regions of the land.

In addition, PyGLDA can allow users to flexibly switch between grid-scale and basin-scale DA. Unlike previous global DA im-500

plementations, PyGLDA features a patch-wise domain localization strategy and a weighted global aggregation scheme, which

enhance computational efficiency and ensure smooth spatial transitions across assimilation regions. Our results demonstrate

that PyGLDA effectively reduces discrepancies between model-based TWS estimates and GRACE observations, providing an

improved representation of long-term trends and seasonal water storage variations at global and regional scales.

Beyond its current capabilities, PyGLDA provides a flexible and scalable DA framework that can be extended for multi-505

sensor hydrological data assimilation. Future developments will focus on incorporating additional observational datasets, such

as satellite-based soil moisture retrievals, to further improve the reliability of water storage estimates. Additionally, advances in

satellite gravimetry, including upcoming missions like MAGIC and NGGM, may offer higher spatial and temporal resolution

with improved error characteristics, enabling even more precise DA applications. The modular nature of PyGLDA ensures that

it can seamlessly integrate with these future datasets, making it a valuable tool for hydrological modeling, climate studies, and510

water resource management.

PyGLDA also faces challenges as addressed in Section 5. Although PyGLDA is designed for multi-GHM compatibility,

this study focuses primarily on W3RA [clarified as suggested]. In future updates, a more advanced GHM such as WaterGAP 2.2e

(Müller Schmied et al., 2024), could be considered an effective alternative to account for the use of anthropogenic water, reser-

voirs, lakes, and glaciers. In particular, this model is released in Python and can be compatible with our PyGLDA framework515

in principle. Other numerical issues should also be considered, for example, (i) using covariance localization to stabilize the

filter and exploit the spatial details, (ii) accounting for reasonable (e.g., local correlation) spatio-temporal perturbation to better

simulate the model covariance, and (iii) simulating lake signal and reducing spatial leakage from observations (Deggim et al.,

2021). All these extensions shall be the major focus of PyGLDA’s next updates.

Code and data availability. PyGLDA is programed in Python as an open-source project licensed under MIT, and its latest stable version520

is publicly available at Zenodo repository (Yang, 2024), which comes with the code, a guide to installation, and a few demos to showcase

various DA experiments. In that repository, we also offer the necessary sample data to ensure an instant running of all those demonstrations.

In addition, PyGLDA is being actively developed in a GitHub repository; see https://github.com/AAUGeodesyGroup/PyGLDA, where one

can obtain the newest version. The original Matlab implementation of the W3RA water balance model can be found in https://www.dropbox.
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com/scl/fo/b0hneugr9vao0rqm4oh86/AEPPU-QG6kgh9wTlIBgiwMQ?rlkey=q7ux08mitdghnoac3e4spwaev&e=1&dl=0. Figures in this pa-525

per were created through PyGMT using Generic Mapping Tools (GMT) version 6 licensed under the BSD 3-clause, available at https:

//www.genericmapping-tools.org/.

The shape files (.shp) of DRB and global patches used in this study, as well as other auxiliary data to run PyGLDA demos are available at

Yang (2024). GRACE level-2 monthly gravity fields are available at ICGEM (International Center for Global Gravity Field Models) via https:

//icgem.gfz-potsdam.de/home. The ITSG-2018 data (the normal equations in Sinex) used to estimate GRACE’s variance-covariance matrices530

are available at http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/monthly/normals_SINEX/monthly_n96/. The propagation of

covariance from the harmonic domain to the gridded domain (TWS) follows the methodology of Yang et al. (2024a). The meteorological forc-

ing fields, i.e., ERA5-land, are all downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview.

The 0.1◦ ERA5-land data have been used to force the W3RA model.

Appendix A: EnKF and EnKS535

The Ensemble Kalman Filter (EnKF) is a merger that applies observations to update the state and parameters of the model

based on their relative errors (Evensen et al., 2009). Model errors are generated by a Monte Carlo simulation that considers i

(i.e., i= 1, ...,n)n ensemble members of the model parameters (Θf
i ) expressed as:

Θi =Θ0 + ξi, i= 1, ...n, (A1)

where Θ0m1×1 (m1 being the number of parameters) is a vector representing the initial values of the model parameters.540

Random errors (ξi) are introduced to perturb the initial values of the parameters. The distribution of these errors can be

Gaussian and triangle as (Schumacher, 2016). In the example of PyGLDA as described in Section 4.1, nine model parameters

are selected to be perturbed, thus m1 = 9. Perturbations of the forcing fields follow

M i =M0 + ri, i= 1, ...n, (A2)

where M0p×q (p being the number of grid points, q being the number of forcing field) is a vector representing the initial values545

of the forcing inputs. Random errors (ri) are considered to perturb the initial values of these errors. we consider multiplicative errors

for precipitation, thus q = 1In PyGLDA, for example, we consider multiplicative errors for precipitation, temperature, and short-

wave solar radiation, thus q = 3. The model’s forecasting (denoted by f , which can represent the simulation of W3RA or any

other GHMs) ensembles are then generated as follows:

Xf
i = F (Θi,M i), i= 1, ...n. (A3)550

For example, we use n= 30 ensemble members to perform our experiments of Section 4.

In each step of GLDA (TWS data are introduced), each ensemble of model states (e.g., in forecasting mode) is represented

by Xf
p×n as:

Xf = (xf1 , · · · ,xf
n), (A4)
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where xf
i p×1(i= 1, · · · ,n) is the i’th ensemble. The ensemble mean is defined as:555

x̄f =
1

n

n∑
i=1

xfi , (A5)

and the error covariance matrix of the model forecast (Cf
m×m) is computed as follows:

Cf =
1

n− 1

n∑
i=1

(xfi − x̄f )(xf
i − x̄f )T . (A6)

The analysis step (shown by the upper-index a) corrects the states and their uncertainties using the GRACE-TWS observa-

tions as:560

Xa = (xa1 , · · · ,xan) = Xf +K(Y−HXf), (A7)

Ca = (I−KH)Cf , (A8)

where Yp×n is an ensemble of actual observations, which are perturbed by the estimated noise from the covariance matrix of

observations (Yang et al., 2024a). This means that, for the example of Section 4.2, the dimension is 19×30, and for the global

GLDA (Section 4.3) with grid resolution 3◦, the dimension is roughly 1700× 30. The analyzed unknowns (Xa
p×n) and their565

covariance matrix (Ca
p×p) depend on the estimation of the Kalman gain matrix (K) and the design matrix H, which are defined

as

K = CfHT
(

HCfHT +Cr
)−1

, (A9)

where Cr is the covariance matrix of the satellite-derived TWS estimates. However, the formulation of H is highly dependent

on the definition of the state vector X. For the W3RA model, in terms of each ensemble member, X includes seven vertical570

layers following

X = (s1, · · · ,sv), (A10)

where s represents one of the surface water, the topsoil water, the shallow soil water, the deep soil water and the groundwater,

the biomass water, and the open free water. However, since some of these vertical compartments might have more than one

column, the dimension (v) along the vertical profile is 10 in our study. Laterally, the state vector X adheres to the native spatial575

resolution of the W3RA model, for example, 0.1◦, and therefore for GLDA in Section 4.3 the dimension is more than 2 million

on a global scale. In this case, which is exactly the case for EnKF, H represents the vertical aggregation (into TWS) and the

lateral aggregation (from 0.1◦ to 3◦).

Our EnKS implementation is similar to that of Tian et al. (2017), where X no longer represents the monthly mean like

GRACE-TWS. Instead, X consists of daily state vectors of one month from the model, and in this case, the design matrix580

H of EnKS shall be responsible for the temporal aggregation other than the vertical and lateral aggregation of EnKF. The

benefit of EnKS is potentially better tuning of daily output by accounting for the temporal covariance, but the price is a heavier

computational burden as the dimension along time increases to 30 (or 28 or 31) from 1 of EnKF. More details on the derivation of the

design matrix and EnKS can refer toMore details on the derivation of the design matrix and EnKS can be found in Tian et al. (2017).
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Table B1. A summary of input-output of PyGLDA

Input Class Sub-class
GRACE L1b-L2 normal equations

L2 monthly gravity fields

GIA model

DDK filtering matrix

Low-degree coefficients

GHM Forcing field from ERA5-land

Climatologies

Parameter fields

Mask (.shp) GRACE global land mask

GHM global land mask

Forcing field global land mask

GHM running mask

Basin and subbasin mask

Setting (.json) Data preprocess

W3RA-GHM setting

Perturbation

Data assimilation
Output Class Sub-class

GRACE (.h5df) Grid/Basin-scale TWS

Perturbed TWS ensemble

Full variance-covariance

GHM (.h5df) Initial field (spin-up)

Cropped input fields

Perturbed input field ensemble

Daily state vector ensemble

Else output, e.g., evaporation

DA (.h5df) Ensemble mean of state vector

Ensemble spread of state vector

Monthly mean output

Statistics, e.g., basin TWS

Appendix B: A summary of input-output of PyGLDA585

Please refer to Table B1 for a record of the input and output of the software. Details on the inputs (GRACE, GHM, and Mask)

can also be found in Section 2. Information on the setting files (.json) can be found on our Github or in the data repository

(Yang, 2024). The output can also be obtained by running the demo offered in that repository.
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