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Abstract. With the ongoing decline in Arctic sea ice extent, the accurate simulation of Arctic sea ice in coupled models 

remains an important problem in climate modelling. In this study, the substantial CMIP6 model spread in Arctic sea ice 

extent and volume is investigated using a novel, process-based approach. An observational dataset derived from the Arctic 

Ice Mass Balance buoy (IMB) network is used to evaluate fluxes of melt, growth and conduction produced by a subset of 

CMIP6 models, to better understand the model processes that underlie the large-scale sea ice states. Due to the sparse nature 10 

of the IMB observations, the evaluation is performed by comparing distributions of modelled and observed fluxes in the 

densely sampled regions of the North Pole and Beaufort Sea.  

We find that all fluxes are routinely biased high in magnitude with respect to the IMB measurements by nearly all models, 

with too much melt in summer, and too much conduction and growth in winter, even as a function of ice thickness. We also 

show that fluxes vary in ways which are physically consistent with the thermodynamic parameterisations used, and that these 15 

effects likely modulate the large-scale relationship between ice thickness and ice growth and melt in the CMIP6 models.  

1 Introduction 

Arctic sea ice has declined substantially over the satellite record (since 1979) both in terms of extent (Stroeve et al., 2012; 

Stroeve and Notz, 2018; Cai et al., 2021) and thickness (Kwok, 2018). Model projections from CMIP6 suggest that an ice-

free Arctic in summer is a likely occurrence within the next 10-30 years: however, models tend to underestimate the 20 

sensitivity of summer sea ice to global temperature increase (for example, Figure 1d of SIMIP Community, 2020). In 

addition, there is substantial variation in the present-day sea ice area and volume simulated by models from the CMIP6 

ensemble. The causes are not yet well-understood, although Long et al. (2021) found sea ice extent simulation to compare 

better to reference datasets in models with higher spatial resolution and greater physical complexity, particularly from 

December to June. Chen et al. (2023) found a similar, but very weak, association between model resolution and ice volume 25 

simulation accuracy relative to the PIOMAS forced ice-ocean model. The difficulty of finding clear associations between 

model complexity, and either ice volume or summer ice extent simulation accuracy, underlines the complexity of the 

processes driving sea ice evolution within the Arctic Ocean. 
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The mean state and future trend of Arctic sea ice are closely related, as annual mean ice thickness decreases more for thick 

ice than for thin ice for the same increase in atmospheric forcing (Holland et al., 2006; Chen et al., 2023). This is due to the 30 

thickness-growth feedback, by which thinner sea ice grows more quickly in winter (Massonnet et al., 2018). This negative 

feedback is nonlinear, and operates more strongly as ice thickness approaches zero, opposing the direct effects of climate 

warming. Reducing, but not fully negating, its effects, is the surface albedo feedback, a positive feedback operating over 

larger scales, by which areas of lower average sea ice thickness melt more quickly during summer, due to albedo falling to 

lower values sooner.  35 

In fact, the sea ice volume is closely coupled to the seasonal ice growth and melt through these processes (West et al., 2022). 

Seasonal ice growth and melt drive the sea ice volume evolution in an obvious way, but sea ice volume in turn modulates 

how the ice growth and melt respond to thermodynamic forcing from above (atmospheric radiative fluxes, and near-surface 

temperature and humidity), and from below (oceanic heat flux). A schematic view of this relationship is presented in Figure 

1 of West et al. (2020). To understand the drivers of sea ice melt in response to long-term climate warming, it is necessary to 40 

understand the evolution of this coupled system. Understanding the causes of variation in present-day Arctic sea ice area and 

volume is therefore an important step towards reducing uncertainty in future projections. 

Ideally, then, a full evaluation of Arctic climate in CMIP6 would include not just ice area and volume, but also ice growth 

and melt; the forcing variables of surface radiation, temperature and humidity, as well as oceanic heat flux; and internal ice 

thermodynamic quantities such as conduction. However, partly due to observational limitations, evaluation of Arctic climate 45 

variables apart from sea ice in CMIP6 has been sparse. For example, Henke et al. (2023) evaluated surface temperature in a 

subset of CMIP6 models relative to ERA5, and found a general cold bias. However, they noted that this could be caused by 

observational inaccuracy, as reanalysed temperatures are known to be too warm over Arctic sea ice due to lack of surface 

snow (Batrak & Müller, 2019).  

Evaluation of the internal processes of the sea ice is in principle even more problematic, due to the extreme difficulties in 50 

measuring these quantities. However, in West et al. (2020), a dataset of conduction and mass balance fluxes was constructed 

from elevation and temperature data from the Arctic Ice Mass Balance buoy (IMB) network (maintained by the Cold 

Regions Research and Engineering Lab, CRREL), and this dataset was used to evaluate the CMIP5 model HadGEM2-ES. 

The evaluation produced results consistent with a previous surface radiation and sea ice study of the same model (West et al, 

2019), confirming that ice growth, melt and conduction were all too strong in this model, causing the sea ice thickness 55 

seasonal cycle to be too amplified. It also elucidated the sea ice simulation further by showing that the model’s lack of 

thermal inertia was likely causing winter ice growth to be too strong, a conclusion that would not have been possible without 

the IMB evaluation. 

The purpose of this study is to apply the same method to the CMIP6 ensemble; to perform a detailed evaluation of CMIP6 

internal sea ice thermodynamics – the energy fluxes associated with melt, growth and conduction – relative to fluxes derived 60 

from the IMB network using the methods described in West et al. (2020) and West (2021). This evaluation is restricted to a 

subset of 17 CMIP6 models that provide all the relevant diagnostics, and is combined with a full evaluation of sea ice extent 



3 
 

& thickness, global & Arctic temperature, and surface radiative fluxes. Throughout this study the mass fluxes associated 

with ice melt and growth are treated as synonymous with the energy fluxes driving these, related by the specific latent heat 

of fusion of ice 3.35 x 105Jkg-1. Due to variations in ice salinity and density, the relationship between ice volume fluxes and 65 

energy fluxes is more complex for the IMBs (as discussed in West et al., 2020) and for one particular group of models, 

discussed in Section 4.2 of this study. 

The study is set out in the following way. In Section 2 the models, IMB data, and other reference data, are introduced. In 

Section 3 the climate states of the models are described by evaluating sea ice extent and other climate variables. In Section 4 

fluxes of melt, growth & conduction are evaluated with respect to the IMBs. In Section 5 this evaluation is extended further 70 

to show how these fluxes vary with ice thickness & snow depth, and here we attempt to account for the sampling biases 

inherent in the IMB data. In Section 6 conclusions are presented. 

2 Models and data 

2.1 CMIP6 models 

The CMIP6 data request gave scope for a much larger set of sea ice diagnostics than for previous projects (Notz et al., 2016). 75 

In particular, diagnostics of the sea ice heat and mass budgets were requested, including full components of the sea ice mass 

balance and of the energy balance at the top and basal surfaces of the snow-ice column. However, not all models provided all 

or any of these diagnostics. In some cases but by no means all, this was because sea ice components were sufficiently simple 

that they would not have been meaningful. In order to be included in this study, a model would provide the following 

diagnostics: sea ice area, thickness or volume, top and basal melting flux, and top and basal conduction flux. 17 models were 80 

identified that provided all of these diagnostics (Table 1), representing contributions from 9 separate modelling centres. 

Hereafter this subset of CMIP6 models is referred to as the ‘CMIP6subset’.  

The sea ice components of models in the CMIP6subset share many common features. All use a sub-grid ice thickness 

distribution (ITD), in which ice in each grid cell is divided into distinct thickness categories. For each category, temperatures 

and energy fluxes are computed separately. The ITD is important because it allows for rapid ice growth at low thicknesses to 85 

be properly captured (Holland et al., 2005; Massonnet et al., 2019). All models in the CMIP6 subset allow sea ice to display 

thermal inertia, with multiple vertical layers of ice and at least one separate layer of snow simulated for each model. Thermal 

inertia is likely also important in achieving realistic basal conduction and hence winter ice growth (West et al., 2020). All 

models parameterise ocean-to-ice heat flux in similar ways, using schemes derived from McPhee et al. (1992). 

Despite these common features, the models also differ considerably, and can be grouped, in terms of thermodynamic 90 

characteristics. Here we describe these characteristic groups, which are referred to frequently during the paper. The first two 

groups contain models from multiple institutions; the remaining groups correspond to single institutions. 

1. GSI8.1 group. This group comprises the five CSIRO-ARCCSS, MOHC and NIMS-KMA models, which all use the 

GSI8.1 sea ice configuration (Ridley et al., 2018). This configuration uses version 5.1.2 of the Los Alamos sea ice 
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model CICE, and features multilayer thermodynamics with a fixed salinity profile (Bitz and Lipscomb, 1999). It is 95 

notable for its lack of solar radiation penetrating into ice; all incident shortwave radiation is either reflected or 

absorbed at the surface. Melt ponds are modelled using the topographic scheme of Flocco et al. (2012). 

2. Mushy-layer group. This group comprises the four NCAR and NCC models, which use a different configuration of 

CICE5.1.2. In this configuration, penetrating solar radiation is modelled, and in addition salinity is fully prognostic, 

with a ‘mushy’ liquid-ice layer at the base of the ice (Turner and Hunke, 2015); as with the GSI8.1 models, melt 100 

ponds are explicitly modelled, using a level-ice rather than topographic scheme (Hunke et al., 2013).  

3. CMCC group. The two CMCC models use a different configuration of CICE again, this time with CICE version 4; 

penetrating solar radiation is modelled, but salinity is prescribed. Melt ponds are simulated using the level-ice 

scheme of Holland et al. (2012), a simpler version of that used by the mushy-layer model group. 

4. IPSL group. The two IPSL models use the LIM3 sea ice model; these models are distinguished by a salinity scheme 105 

of intermediate complexity, in which a linear profile is derived from a prognostic bulk salinity (Boucher et al., 

2020). They use only two vertical ice layers, but penetrating solar radiation is permitted. They do not simulate melt 

ponds explicitly, but model their effect on shortwave radiation through a parameterisation of albedo based on 

surface temperature. 

5. MRI ‘group’ (one model only). MRI-ESM2-0 uses a custom-built sea ice model with a single ice and snow layer, a 110 

fixed salinity profile and penetrating solar radiation permitted, based on Mellor & Kantha (1989). Melt ponds are 

parameterised using a similar framework to that of the IPSL group. 

6. CNRM-CERFACS group. The three CNRM-CERFACS models use GELATO6, a sea ice model with salinity, 

thermodynamics and melt pond treatment similar to LIM3, but with nine vertical ice layers instead of two (Voldoire 

et al., 2019).  115 

It is important to note that a model’s sea ice simulation is not entirely or even mostly controlled by the characteristics of its 

sea ice component. The forcing received from the ocean and especially the atmosphere component control the sea ice 

simulation to first order (e.g. Olonscheck et al., 2019). The atmosphere and ocean components of the CMIP6 subset are also 

shown in Table 1. More than half of the models feature the same ocean component (NEMO3.6). Models with identical sea 

ice components tend to use closely related atmosphere components: for example the GSI8.1 group all use UM version 10.6 120 

(GA7.1 configuration, Walters et al., 2017) while the mushy-layer group use atmospheric components derived from CAM6 

(Danabasoglu et al., 2020).  

 

2.2 The IMB data 

An ice mass balance buoy (IMB) is a collection of instruments frozen into a sea ice floe (Richter-Menge et al., 2006). An 125 

IMB typically consists of acoustic sounders to measure ice surface and base elevation, a thermistor string to measure ice and 
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snow temperatures at 10cm vertical resolution, and a datalogger to record and transmit data. Some also include air 

temperature and sea level pressure sensors, but these variables will not be examined in this study. Since 1993, 110 IMBs 

have been deployed in the Arctic Ocean by the Cold Regions Research and Engineering Laboratory (CRREL), mainly in the 

North Pole and Beaufort Sea subregions (Figure 1). Individual buoys have been analysed to provide useful process studies of 130 

e.g. ocean heat flux (Lei et al., 2014). We note that since 2015 many IMBs have also been deployed by other institutions, 

notably in the course of the MOSAiC experiment (e.g. Koo et al., 2020). However, due to the complexity of data processing, 

we do not attempt to enlarge the dataset used in this study relative to that used in West et al. (2020). 

In West et al. (2020), IMB data was systematically analysed to produce a dataset of monthly mean ice melt, growth and 

conduction fluxes for the North Pole and Beaufort Sea regions that was used to evaluate ice thermodynamics in a CMIP5 135 

model, HadGEM2-ES, identifying a number of model biases as described in the Introduction. The processing of the raw 

IMB data is described fully in West et al. (2020), but is briefly summarised again here. IMB raw timeseries of temperature or 

surface / interface / base elevation, measured at irregular times, are interpolated or binomially averaged in time to create 

regular timeseries which are then used to create timeseries of sea ice thickness and snow depth (West, 2020c). Fluxes of melt 

and growth are calculated from the elevation and temperature timeseries. Fluxes of conduction and heat storage are 140 

calculated from temperature gradients, using a reference layer 40-70cm above the ice base for the basal conduction as 

gradients are very weak at the ice base (West, 2020d). The IMB dataset contained around 500 data points for each analysed 

flux, and displayed seasonal and spatial variability consistent with observational and theoretical understanding of the Arctic 

Ocean climate. Due to the sparseness of the data, interannual variability could not be detected. Uncertainty in the derived 

fluxes due to ice salinity, conductivity and density was quantified, in addition to uncertainty due to choice of the reference 145 

layer used to calculate basal conductive fluxes. While uncertainty due to measurement error was not quantified, the values 

identified by Lei et al. (2014) of 0.01m and 0.1K for elevation and temperature measurement respectively imply 

uncertainties over an order of magnitude lower than those identified for the factors listed above.  

2.3 Other observational datasets used in this study 

Other Arctic climate variables besides ice energy fluxes are evaluated in Section 3 below, and the datasets used are described 150 

here. For ice area, we use HadISST.2 (Titchner and Rayner, 2014). For surface temperature, we use GISTemp v4 (GISTemp 

team, 2024; Lenssen et al., 2019), HadCRUT v5 (Morice et al., 2020), NOAAGlobalTemp v 6.0.0 (Huang et al., 2024) and 

Berkeley Earth (Rohde and Hausfather, 2020), with these four datasets used to characterise the plausible range of 

observational uncertainty.  

For ice thickness, we use the PIOMAS forced ice-ocean model reanalysis (Schweiger et al., 2011) and Cryosat-2 radar 155 

altimetry (Kurtz and Harbeck, 2017). To characterise observational uncertainty in ice thickness, we use a bootstrapping 

method trained on the brief period of overlap of CryoSat-2 with our assessment period, 2011-2014, to generate for each 

region and month a plausible distribution of the discrepancy between PIOMAS and CryoSat-2. These were used to derive 

ranges of ice thickness for each month of the year, as well as annual mean ice thickness and seasonal cycle amplitude. It is 
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hoped that the use of CryoSat-2 ameliorates any bias arising from the use of PIOMAS, which itself contains a sea ice model 160 

like many evaluated here, as a reference dataset. 

In addition, surface radiative fluxes are evaluated in Section 3, with respect to the ERA5 analysis (Hersbach et al., 2023) and 

CERES-EBAF (Loeb et al., 2009). We do not attempt to explicitly characterise observational uncertainty in these variables. 

 

3 Sea ice and Arctic climate state evaluation  165 

In this section, the sea ice state (area and thickness) simulated by the CMIP6 subset models is evaluated. Throughout we 

restrict evaluation to the Arctic Ocean region (Figure 1). The evaluation period chosen is the last 30 years of the CMIP6 

historical simulations, 1985-2014.  

Because ice expansion in the Arctic Ocean region is largely limited by the Eurasian and North American continents, most 

inter-model variation in ice area occurs in the summer (Figure 2a). Six models achieve minimum ice area in August (the 170 

GSI8.1 models, plus NorESM2-MM); all others, like HadISST.2, achieve minimum area in September. In September, the 

highest area occurs in MOHC UKESM1.0-LL and NIMS-KMA UKESM1.0-LL (5.9 x 106 km2). The lowest ice areas occur 

in the two CMCC models (0.0 x 106 km2), but these are outliers: the next lowest ice area, of 2.6 x 106 km2, occurs in NCAR 

CESM2. Most models simulate year-round ice area that is either like, or much lower than, that suggested by HadISST.2. 

There is considerable spread in annual mean ice thickness (Figure 2b), with the thickest ice in MOHC UKESM1.0-LL 175 

(annual mean 3.3m) and the thinnest ice in the CMCC models (annual mean 0.5m). The PIOMAS and CryoSat-2 

observational references sit roughly in the middle of the model range with PIOMAS displaying an annual mean thickness of 

1.7m. All models achieve maximum ice thickness in either April (CMCC & CNRM-CERFACS models) or May; PIOMAS 

also achieves maximum ice thickness in May but CryoSat-2 is much earlier, in March, although given problems in retrieving 

sea ice thickness measurements during the summer months (e.g. as described in Tilling et al., 2018) it is not clear whether or 180 

not this indicates a general model inaccuracy. Minimum ice thickness is achieved in September in both PIOMAS and 

CryoSat-2, and for all models except CMCC-ESM2 and MRI-ESM2-0, which achieve minimum in October. 

We define annual ice growth and melt as the difference in mean Arctic Ocean sea ice thickness between the seasonal 

maximum in April-May and the seasonal minimum in September-October. This quantity is highest in IPSL-CM6A-LR at 

1.46m and lowest in NorESM2-MM at 1.00m (Figure 2c), whilst the value for PIOMAS is 1.15m. While annual ice growth 185 

and melt is in theory strongly influenced by the annual mean ice thickness via the surface albedo and thickness-growth 

feedbacks, these quantities are only weakly negatively correlated across the ensemble, with a correlation coefficient of -0.27. 

The CMCC and CNRM-CERFACS models are instrumental in this lack of correlation, displaying both low annual mean sea 

ice thickness and low annual ice growth/melt; without these models, the correlation is -0.79. For the CMCC models, the lack 

of growth/melt is likely related to the complete loss of sea ice in many parts of the Arctic during July/August; a possible 190 

reason for the CNRM-CERFACS models is discussed in Section 4 below. Among the other models, the GSI8.1 and the IPSL 
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models tend to lie on a higher curve than the mushy-layer and MRI models (ice growth/melt is higher for a given annual 

mean ice thickness); the two smaller model groups display correlation of -0.93 and -0.90 respectively. Compared to the 

models, ice growth/melt from PIOMAS is relatively low: it estimates ice growth/melt similar to that of the CMCC/CNRM-

CERFACS models, but annual mean ice thickness is most similar to that of NCAR CESM2-WACCM.  195 

There is strong correlation (0.81) between annual mean ice thickness and September ice area amongst the CMIP6 subset 

(Figure 2c). This correlation remains strong when the outlier CMCC models are removed (0.79). 

We compare the annual mean ice thickness to the anomaly in global 2m air temperature relative to the 1850-1899 average 

(Figure 3a), as well as to 2m air temperature anomaly averaged over the Arctic Ocean region (Figure 3b). There is strong 

correlation between 2m air temperature over the Arctic Ocean and ice thickness (-0.85). Correlation between global 200 

temperature and ice thickness is also quite high at -0.79. We evaluate these using for global temperature the four datasets 

described in Section 2 to represent observational uncertainty, and for Arctic Ocean ice thickness PIOMAS and Cryosat-2. 

Models tend to simulate greater ice thickness for a given Arctic Ocean and global temperature anomaly than is suggested by 

observations, which may be related to model tendency to underestimate sea ice response to a given rise in global temperature 

(Notz et al., 2020).  205 

We finally evaluate surface radiative fluxes relative to the ERA5 reanalysis and to CERES-EBAF satellite dataset (Figure 4). 

Surface radiative fluxes are important for the Arctic sea ice seasonal cycle as they are the principal driver of the surface flux 

variation over sea ice (and hence ice melt and growth). The CMCC models are notably distinct from all other models, 

displaying higher summer net SW fluxes (due to upwelling SW differences, Figure 4a) and higher absolute LW fluxes in 

both directions during autumn (Figure 4b); both are close corollaries of these models’ very low summer sea ice cover. The 210 

mushy-layer models tend to display lower downwelling SW fluxes in summer and higher downwelling LW fluxes in spring 

and early summer, suggesting more extensive cloud cover in these models. The GSI8.1 models, and to a lesser extent the 

IPSL models, model lower absolute LW fluxes in both directions during the cold season; for the MOHC models this bias 

was noted in West (2021) and is likely related to low liquid water fraction in clouds.  

Annual mean net SW and net LW are anticorrelated across the CMIP6 subset (Figure 4d) such that total net radiative flux 215 

varies little between models, with all but the CMCC models averaging between -0.5 and 6.4 W m-2; the average for ERA5 

and CERES-EBAF is 0.5 and 1.5 W m-2 respectively. The CMCC models show far more net SW, and hence net radiation, 

than is indicated by ERA5 and CERES-EBAF; the mushy-layer models show somewhat more net LW and less net SW. All 

other models lie quite close to ERA5 and CERES-EBAF. 

It is likely that the total net surface flux, unlike the net radiative flux, is net upwards, with turbulent fluxes over open water 220 

areas in winter providing much of the additional negative component. For example, Table 1 of Winkelbauer et al., 2024 

shows Arctic Ocean average net surface flux to be upwards in the vast majority of CMIP6 models. 
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4 Mass balance and thermodynamics evaluation  

In this section, modelled fluxes of ice growth and melt, and of vertical conduction at the ice surface and base, are evaluated 

with respect to the IMBs. All evaluated fluxes are available as direct model diagnostics; the only processing required is to 225 

divide melt and growth fluxes by ice area fraction. This is because these fluxes are produced as grid box means, averages 

over both sea ice- and open water-covered areas; for greater comparability with the IMB values, they must be converted to 

ice-only means by dividing out ice area fraction. The conduction fluxes are produced in their raw form as means over ice, 

and do not require this processing step. 

Throughout this section, modelled fluxes are compared and evaluated for the comparatively well-sampled North Pole and 230 

Beaufort Sea subregions shown in Figure 1 using the equivalent fluxes derived from IMBs. Fluxes from model points within 

these regions are collected into distributions, similar to the distributions derived from the IMBs but with many more data 

points. All model statistics are computed from these distributions using weighting by both grid cell area and by ice 

concentration. Similarity of distributions is assessed using a Welch t-test, and differences are judged significant at the 5% 

level. 235 

4.1 Melt and growth fluxes 

Top melting 

The IMB measurements show top melting fluxes to be near-zero outside the summer months, and to achieve their maximum 

in July, at 23 and 41 W m-2 in the North Pole and Beaufort Sea subregions respectively (Figure 5a,b). Most models 

reproduce this shape, except for the CNRM-CERFACS models which have a greatly delayed seasonal cycle, displaying their 240 

seasonal maximum in September. Of the remaining models, the CMCC models display the highest top melting fluxes in both 

regions, reaching around 100 W m-2 in July; CSIRO-ARCCSS ACCESS-CM2 is next highest, again in both regions. At the 

lower end of the distribution, NorESM2-MM displays the lowest maximum at 15.8 and 42.2 W m-2 in the North Pole and 

Beaufort Sea regions respectively; it is the only model whose maximum is below the IMB average, in the North Pole region 

only, although the difference is not significant. 245 

Model distributions significantly different to those of the IMBs are indicated in Figure 5 by boxplots with bold lines and 

black triangles for means; those not significantly different have boxplots with fainter lines and green triangles for means. All 

models save for NCC NorESM2-MM are either biased high relative to, or not significantly different to, the observations. 

Apart from the CNRM-CERFACS models, which are phase-shifted, and the CMCC models, which are the highest, there is a 

partition between the GSI8.1 models and the mushy-layer models, with the former tending to display much higher top 250 

melting fluxes than the latter. Among the remaining models, the IPSL models tend to lie closer to the GSI8.1 groupand MRI-

ESM2-0 closer to the mushy-layer group. With a handful of exceptions, in most regions and months the GSI8.1 and IPSL 

models are biased significantly high with respect to the IMBs, while the mushy-layer models and MRI-ESM2-0 are not. 
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Basal melting 255 

Basal melting is small in the IMB measurements outside the months June-September (Figure 5c,d), although unlike for top 

melting a small number of nonzero winter basal melting fluxes occur in the North Pole region which includes warmer waters 

at the Atlantic sea ice edge. They display maximum basal melt in August, contrasting to the July maximum for top melt. 

From June-September, average IMB basal melting fluxes are 7.8, 12.8, 18.6 and 6.5 W m-2 in the North Pole region, and 

10.9, 27.3, 32.3 and 20.6 W m-2 in the Beaufort Sea region. Most models reproduce the shape of this seasonal cycle; the 260 

CNRM-CERFACS models are phase-shifted earlier in the season in the North Pole region particularly, but the phase-shift is 

not as severe as for the top melt. The CMCC models display much greater basal melt than the other models, with CMCC-

CM2-SR5 reaching 374 W m-2 in the Beaufort Sea region in August. In most cases the CMCC models do not report data for 

September as there is essentially no ice left in this month.  

Among the other models, IPSL-CM6A-LR-INCA displays the highest maximum basal melting in the North Pole region 265 

(51.6 W m-2) while NCAR CESM2 is highest in the Beaufort Sea region (70.8 W m-2). NIMS-KMA UKESM1-0-LL and 

MOHC UKESM1.0 display the lowest maxima for the respective regions (12.5 and 17.2 W m-2). In contrast to the top melt, 

the GSI8.1 models tend to display among the lowest basal melting fluxes, with ACCESS-CM2 a notable exception. This is 

consistent with the finding of Keen et al. (2021) that the portion of melt attributable to top melt is much higher in models that 

do not allow penetrating shortwave radiation. 270 

In the North Pole region, basal melting in the two UKESM1-0 models is biased moderately low relative to the IMBs, while 

the remaining MOHC models and the NCC models are not significantly different to the IMBs. All other models are biased 

high relative to the IMBs in this region. In the Beaufort Sea region the two UKESM1-0 representatives remain biased low, 

but many of the models which are biased high tend to overlap more with the IMBs than is the case in the North Pole region. 

For example, the quartiles of ACCESS-CM2 are nearly identical to those of the IMB distribution, but a smaller number of 275 

very high fluxes cause the mean to be much higher and the distribution to be significantly different.  

 

Basal growth 

Basal growth fluxes are near-zero during the summer in the IMBs but increase in magnitude during the mid-late autumn and 

early winter to reach their greatest magnitude of -25.5 and -14.1 W m-2 in February, or the North Pole and Beaufort Sea 280 

regions respectively (Figure 5e,f). The North Pole timeseries is somewhat noisy in winter, with much lower values in 

February than the other cold season months. The CMCC and CNRM-CERFACS models display greatly enhanced basal 

growth fluxes relative to the IMBs, with their highest magnitude exceeding -40 W m-2, and in some cases approaching -100 

W m-2; the CNRM-CERFACS models in addition display a severe phase lead (5 months) with minima occurring in 

September. The remaining models produce minima in a similar range to the IMBs in the North Pole region, but this is largely 285 

due to the lower IMB values in February; in December and January most models are biased low, with only UKESM1-0-LL, 

MRI-ESM2-0 and the two NCC models similar to the IMB distribution. In the Beaufort Sea region all models are biased low 
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relative to the IMBs (MRI-ESM2-0 barely). Aside from the CMCC and CNRM-CERFACS models, the CSIRO-ARCCSS, 

IPSL and NCAR models tend to be biased most severely, with minima in the region of -30 W m-2.  

There is a consistent phase lead of 2-3 months among the non-CNRM-CERFACS models, with all of these attaining their 290 

minimum in November or December rather than February. Associated with this is a severe model bias in the autumn: the 

CMCC and CNRM-CERFACS models aside, the mean and standard deviation of the modelled autumn basal growth flux is -

15.8 ± 3.8 W m-2 in the North Pole region; this compares to -3.0 W m-2 in the IMBs. This is likely to be caused at least 

partially by a sampling bias in collecting the IMB measurements: in the autumn, the strongest ice growth tends to occur in 

thin, newly forming ice. For two reasons, this ice is undersampled by the IMBs. Firstly, IMBs are preferentially placed in 295 

thicker ice floes, as these are easier to access and enhance the expected survival period of the IMB. Secondly, while models 

report fluxes from an Eulerian perspective that automatically includes contributions from all sea ice within a grid cell, IMBs 

report from a Lagrangian perspective that inherently biases the sampled ice thickness distribution towards ice floes 

undergoing slower thickness changes. Ice floes that grow rapidly do not tend to do so for long, as the thickening ice weakens 

the vertical temperature gradient and hence heat loss. An IMB that happens to measure fast ice growth remains trapped in the 300 

same ice floe, and will not subsequently measure growth in new areas. This sampling bias was investigated in West et al. 

(2020) and West (2021), and found to contribute partially to, but not completely explain, the model biases identified in these 

studies. In Section 5 below it is assessed again in the context of the biases identified for the CMIP6 models. 

4.2 Conduction and heat storage 

Top conductive flux 305 

Top conductive flux represents the downwards flux of energy from the surface of the snow-ice column into the snow/ice 

interior; the sign convention used throughout is that downwards fluxes are positive. The IMBs measure top conductive flux 

to be strongly upwards in winter, representing heat lost to the atmosphere, and weakly downwards in summer (Figure 6a,b). 

From October-March, the average flux is between -18 and -21 W m-2 in the North Pole region (with minimum in December) 

and between -12 and -19 W m-2 in the Beaufort Sea region (with minimum in November). The summer maximum, achieved 310 

in July, is 4.4 and 2.9 W m-2 in the two regions respectively. 

All models simulate somewhat stronger top conduction in winter than measured by the IMBs, showing more negative values, 

representing greater heat loss to the atmosphere. This is more marked in the Beaufort Sea than North Pole region. For 

example, January average top conductive flux in the North Pole region ranges from -21 W m-2 (MOHC UKESM1-0 LL) to -

39 W m-2 (CMCC-CM2-0); in the Beaufort Sea region the average ranges from -26 to -50 W m-2 (the same models at the 315 

extremes). Models with smaller annual mean ice thickness tend to display greater conduction in winter, and vice versa. The 

relationship between thickness and conduction is evaluated explicitly in Section 5 below. 

Another notable feature is the five distinct clusters of models formed by the differing seasonal cycle shapes and amplitudes. 

The CMCC models display a very amplified seasonal cycle with maxima in excess of -100 W m-2 for both models and 

regions, consistent with their very low annual mean ice thickness. The CNRM-CERFACS models are not particularly 320 
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amplified, but again display a phase-shift, with minima occurring around April. The remaining models display seasonal 

cycles more similar to the IMBs, but with smaller differences between them. The GSI8.1 models form a distinct cluster with 

the highest summer conduction fluxes (biased high relative to the IMBs), possibly due to the lack of solar penetration: full 

SW absorption at surface causes a warmer surface and more conduction into the interior. These models also display amongst 

the weakest winter conduction (most similar to the IMBs). The mushy-layer models of NCAR and NCC are similar to the 325 

GSI8.1 models in winter but display negative conduction in summer (heat is conducted upwards from the interior to the top 

surface), indicating that these models warm the ice interior more rapidly than to the GSI8.1 models, possibly partly because 

they allow solar radiation to penetrate the ice. The remaining models, MRI-ESM2-0 and the two IPSL models, are most 

similar to the IMBs in summer, with a mixture of weakly positive and weakly negative fluxes, but display somewhat 

stronger conduction in winter than the IMBs and the GSI8.1 & mushy-layer models. 330 

 

Basal conductive flux 

Basal conductive flux represents the downwards flux from the ice interior into the ice base, driven by heat loss from the ice 

surface but modulated by the ice heat capacity, it is the principal driver of winter ice growth. As for top conduction, the basal 

conductive flux is shown as positive downwards throughout this section; during the winter, when conduction tends to occur 335 

upwards from the warm ocean to the cold atmosphere, conductive fluxes are usually negative. During the summer, basal 

conduction fluxes are usually small; inter-model variation in basal melting tends to be driven by oceanic heat flux rather than 

by the basal conductive flux; summer variations in oceanic heat flux are in turn mainly driven by variations in direct solar 

heating of the ocean (Maykut & McPhee, 1995; Steele et al., 2010; Keen and Blockley, 2018). 

The IMBs’ basal conductive fluxes are similar to top conduction but tend to be smaller in magnitude and with the seasonal 340 

cycle shifted slightly later in the year (Figure 6c,d). In both regions the maximum upwards flux occurs in January, at -14 to -

15 W m-2. Fluxes rise sharply towards zero between April-June, becoming very weakly positive in July and August. Mean 

fluxes fall sharply to negative values again in November (North Pole) and October (Beaufort Sea). 

For the basal conductive flux, as for the top conductive flux, the CMIP6 subset form five qualitatively distinct model 

clusters. The CMCC models display the characteristic exceptionally high amplitude, with values in excess of -100 W m-2 345 

occurring in October for all region and model combinations; they also display high positive fluxes in summer, reaching 20 to 

40 W m-2 in July. The CNRM-CERFACS models also have elevated amplitude in winter, reaching -40 to -60 W m-2 in the 

North Pole region but again approaching or exceeding -100 W m-2 in the Beaufort Sea region; they also display a small phase 

lead, with the highest negative mean values occurring in September. However fluxes do not turn positive in summer. 

The ‘mushy-layer’ models (from NCC and NCAR) display much smaller basal conduction fluxes in winter than all other 350 

models and the IMBs, in most cases not exceeding -5 W m-2. This is due to other terms in the basal heat balance not reported 

in CMIP6 diagnostics (Hunke, E., personal communication). Notably, because in the mushy-layer scheme ice is formed at 

much lower density, a given energy flux is able to produce a much greater increase in ice thickness, with associated 

increased shallowing of the temperature gradient, and reduced conduction. While this may in part represent a real-world 
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effect, the counterpart to this ‘missing’ energy is the energy released during internal freezing of brine pockets within sea ice, 355 

which is not obviously reported in the CMIP6 diagnostics. Plante et al. (2024) discuss additional problems with the standard 

mushy-layer formulation, in particular noting that the congelation growth flux does not include contributions from the full 

energy loss at the base of the ice, resulting in the imbalance being transferred to frazil formation instead. These issues, and 

the IMB evaluation, suggest that these models’ basal conductive fluxes may be biased low in magnitude during the freezing 

season. 360 

The mushy-layer models also display higher positive fluxes in summer than all but the CMCC models (denoting strong 

conduction to the ice base from the ice interior), in many cases exceeding 10 W m-2. Among the remaining models, the 

GSI8.1 models display behaviour distinct from that of the other non-GSI8.1 models (the MRI and IPSL models). Firstly, the 

GSI8.1 models have smaller (i.e. less negative) winter fluxes, closer to the IMBs. Secondly, the GSI8.1 models, like the 

CNRM-CERFACS models, continue to simulate weakly negative fluxes in summer, whereas the MRI and IPSL models 365 

simulate positive values similar to the IMBs. 

 

Heat storage flux 

The heat storage flux is calculated as the top conductive flux minus the basal conductive flux, and represents the rate of 

change of heat content of the snow-ice column; negative represents ice cooling, positive ice warming. The IMBs show 370 

maximum ice warming rates in May and June (5-7 W m-2). In the North Pole region, maximum ice cooling occurs in October 

at -19 W m-2, but in the Beaufort Sea region, the heat storage term has few points and high standard deviation at this time of 

year. This may be related to the dataset being dominated by thinner ice for which the calculation of basal conductive flux 40-

70cm above the ice base is less valid. 

As with the conductive fluxes the IMB models form five clusters with their own distinctive behaviour. The GSI8.1 and 375 

MRI/IPSL clusters are the most qualitatively similar to the IMBs, with cooling from September – March and warming from 

April – August; all but MRI-ESM2-0 show more cooling than in the IMBs during winter, while the GSI8.1 models show 

much stronger sensible heating in summer than MRI/IPSL and the IMBs. The mushy-layer models show a similar seasonal 

cycle shape, but translated downwards: stronger cooling in winter, and no warming in summer. This is likely related to the 

additional terms in the basal energy balance mentioned in the basal conduction evaluation above. 380 

The CMCC models show similar cooling to the IMBs in winter but are very different in summer, showing stronger cooling 

than in winter (basal conduction higher than top conduction). The CNRM-CERFACS models show an even more curious 

seasonal cycle, with strongest ice cooling in April and May but with exceptionally strong ice warming in September and 

October driven by the strongly negative basal conduction flux. 

4.3 Aggregate metrics 385 

We compute the seasonal total top and basal melt for each model by multiplying, for each model, month and region, the top 

plus basal melting by the ice area in that region, and then summing over months of the year. We compute a similar metric for 
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the IMBs by multiplying the average top melt flux, plus the average basal melt flux, estimated for each month and region by 

the total ice area for that month and region, obtained from HadISST.2. For the rest of this subsection, the top plus basal melt 

is shortened to ‘total melt’, despite the fact that in both models and reality there is another process causing melt not evaluated 390 

here (lateral melting). The total melt flux thus obtained is scattered against annual mean ice thickness (squares in Figure 

7a,c) and against seasonal cycle amplitude (squares in Figure 7b,d), with observed values derived from PIOMAS and 

CryoSat-2 as described in Section 2.3. The top melt flux is scattered separately in both figures (stars). In a similar way we 

compute the seasonal total congelation growth flux, shortened to ‘total growth flux’ despite not including the frazil growth 

term, and scatter these against the same variables (triangles).  395 

When plotted against annual mean ice thickness (Figure 7a,b) a rough inverse relationship is seen: models with higher 

thickness tend to see less growth/melt, and vice versa. This is expected due to the ice thickness-growth, and albedo 

feedbacks, discussed in more detail below. The IMBs lie on the lower boundary of the scatter (in terms of magnitude) for 

both total melt and growth, although not for the top melting alone.  

The relationship between ice thickness and top melt alone is weaker, partly because of the effect of the GSI8.1 models which 400 

have among the highest ice thicknesses but also have proportionately greater top melting. Correlation between ice thickness 

and top melt is stronger within model groups; for example, in the North Pole region, within the GSI8.1 and mushy-layer 

clusters correlation is -0.69 and -0.99 respectively, compared to -0.51 across the ensemble as a whole. The picture in the 

Beaufort Sea region is similar. 

One effect of weighting monthly fluxes by ice area is that the ‘high flux’ models of CMCC and CNRM-CERFACS become 405 

less extreme relative to the other models and to the IMBs. This is because the highest fluxes in these models occur in months 

when ice area is relatively low, hence do not represent an exceptionally large amount of ice volume loss or gain (as a high 

flux is spread over a relatively small area). Nevertheless these models still report the highest total melt and growth fluxes. 

When plotted against the amplitude of the ice thickness seasonal cycle a positive correlation is seen. The correlation is not 

perfect for several reasons: missing processes not evaluated here cause additional ice growth or melt (such as lateral melting 410 

and frazil ice growth); spatial correlation between ice concentration and melt & growth fluxes causes discrepancies when 

averaging; and any ice growth and melt terms which occur in the same month are effectively invisible to the ice thickness 

seasonal cycle. This last effect is extreme for the CNRM-CERFACS models, as discussed further in Section 4.4 below. In 

the Beaufort Sea region the observed relationship between ice growth and melt from the IMBs, and ice thickness amplitude 

from PIOMAS/Cryosat-2, is notably inconsistent with the models. This is likely another symptom of the ice thickness 415 

sampling bias. 

4.4 Model group discussion: the influence of thermodynamic parameterisation and mean climate state 

We briefly discuss the simulations of each model group in turn, linking the vertical energy fluxes to the Arctic climate 

variables evaluated in Section 3. The CMCC models are distinguished by very high melt, growth and conduction fluxes, but 

in each case the seasonal cycles are of a similar shape and phase to the IMBs. The high fluxes arise naturally in response to 420 
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the unusually low annual mean ice thickness of the CMCC models. Thinner sea ice supports a steeper temperature gradient 

between the (relatively) warm ocean and cold atmosphere in winter, and hence also grows more quickly in winter. On a large 

scale, thinner ice also melts more quickly in summer due to the ice albedo feedback. Hence the large biases in the CMCC 

fluxes reflect the sea ice state bias, to which the sea ice thermodynamics are responding in a physically realistic way. 

The CNRM-CERFACS models also have amplified maxima and minima in melt, growth and conduction variables, but many 425 

also display large phase offsets. Of particular note are the top melt and basal growth fluxes which both attain roughly equal 

and opposite maxima in the autumn. The result is that while the CNRM-CERFACS models have a rather damped ice 

thickness seasonal cycle (Figure 2b) they display among the highest total ice growth and melt (Figure 7) because much of 

this happens at the same time of year, rather than being mostly compartmentalised into different seasons. Unlike for the 

CMCC models, the unusual behaviour of the CNRM-CERFACS fluxes is likely reflective either of a diagnostic error or of a 430 

problem with the underlying GELATO ice thermodynamics but is not yet fully understood (David Salas & Rym Msadek, 

personal communication). 

The mushy-layer models (NCC & NCAR) are distinguished most by exceptionally low basal conductive fluxes during the 

freezing season, partly because of additional unreported energy flux terms in the basal energy balance. These models are also 

characterised by relatively low melt & growth fluxes, more similar to the IMBs than some other models, particularly in the 435 

case of the top melting. The lower growth flux may be partly explained by more of the ice growth being contained in the 

frazil ice growth term (which cannot be evaluated by IMBs), as described in Sect. 4.2 above. However, the amplitude of the 

ice thickness seasonal cycle in Figure 2c is also lower than for other models at similar ice thicknesses, suggesting that at least 

part of this is a genuine model difference. As a model group, the damped seasonal cycles are not associated with unusually 

high annual mean ice thickness which would otherwise be an obvious cause (the converse of CMCC). In fact ice thickness 440 

varies greatly across these models, correlated with net radiative flux and global & Arctic temperature. 

The other distinguishing feature of these models noted in Section 3 is their relatively low annual mean net SW flux, and 

correspondingly high net LW flux. While these could be partly related to cloud properties, they are also consistent with the 

relatively damped seasonal cycle of ice growth & melt in these models. It is plausible that the mushy-layer scheme, through 

its action on the low basal conductive flux, may be playing a role in at least the reduced sea ice growth of these models. In 445 

Figure 4d it was seen that these models display a much higher net downward LW flux than others, indicating that these 

models simulate lower surface temperatures for a given downwelling LW flux. Lower conduction of heat through sea ice is a 

possible mechanism responsible for this. 

The GSI8.1 models (CSIRO-ARCCSS, MOHC & NIMS-KMA) have among the highest annual mean ice thicknesses, 

smallest LW fluxes and coldest global & Arctic temperatures. They display somewhat higher growth & top melt fluxes than 450 

the mushy-layer models. They are distinguished particularly by high summer top melt and top conduction fluxes, and 

correspondingly strong sensible heat gain, along with notably low ocean heat fluxes, likely associated with the lack of 

penetrating solar radiation. Similarly to the CMCC models, many of these may be responding in a largely physically realistic 

manner to a cold climate state, but the seasonal cycle of growth and melt may still be too amplified. 
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The remaining models (from IPSL and MRI) share no common model components or code but are strikingly similar in their 455 

simulation of basal melt & top conduction (as well as in annual mean ice thickness), both being amplified relative to the 

IMBs. MRI-ESM2-0 however is colder both globally and in the Arctic. It simulates less top melting in summer and basal 

conduction in winter, and has a less amplified seasonal cycle, all realistic effects of a colder climate. It also simulates less net 

SW in summer and more net LW in winter. 

In summary, the fluxes of various model groups largely respond in a physically realistic manner to the differences between 460 

the base model climates, and the differences between the model thermodynamic choices, with the exception of the autumn 

maxima of the CNRM-CERFACS models. As a group, however, fluxes tend to be higher as a function of ice thickness than 

is estimated by the IMBs. This discrepancy is now evaluated in more detail. 

5 Accounting for the IMB sampling bias 

As discussed in Section 4, thin ice is likely under-sampled by the IMBs and this may introduce a bias to evaluations of fluxes 465 

that systematically vary with ice thickness (notably basal growth and the conduction fluxes). To account for this, we evaluate 

fluxes at each model grid point as a function of ice thickness, applying the analysis first to the top conductive flux in the 

Beaufort Sea region, for the months of December, January, and February. For each model, we select 100 points at random 

and produce scatter plots of top conductive flux against ice thickness, comparing these to monthly mean top conductive flux 

and ice thickness from the IMBs (Figure 8a). The same comparison is shown as a set of histograms, sampling the full sets of 470 

points for each model (Figure 8b). The sampling bias of the IMBs is demonstrated, with ice thinner than 1m barely sampled 

– although ice thicker than 3m is also sampled very little. The thin (thick) ice tendencies of the CMCC (GSI8.1) model 

groups are also demonstrated. Modelled fluxes are shown to be biased towards higher magnitudes, even for the same range 

of ice thicknesses. For the 1-2 m and 2-3 m histogram categories, each of which contains large numbers of IMB points, all 

model distributions are significantly different to the IMBs. At first sight this suggests the model bias towards high 475 

conductive fluxes is real. However, two other effects must be considered. 

Firstly, ice thickness is not the only variable directly affecting conductive flux; snow depth also has a strong effect, as snow 

is a very powerful insulator. To account for snow depth and ice thickness simultaneously, we define the thermal insulance of 

the snow-ice column as 

𝑅௜௖௘ =
௛಺

௞಺
+

௛ೄ

௞ೄ
 (1) 480 

where ℎூ, 𝑘ூ, ℎௌ and 𝑘ௌ represent ice thickness, ice conductivity, snow depth and snow conductivity respectively. 

Secondly, the model points plotted in Figure 8 do not represent single floes (like the IMBs). Instead, they are averages over 

grid cells typically tens of km in width, all of which include ice of multiple thicknesses due to the models’ sub-gridscale ice 

thickness distributions. This also biases the comparison, as a model grid cell of average ice thickness 2m will tend to allow 

more conduction than a single ice column of thickness 2m. This is due to the nonlinear relationship between conduction and 485 

ice thickness, which is most sensitive for the thinnest ice. A grid cell of mean thickness 2m will likely contain, in its various 
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separate categories, both thinner ice which will allow much greater conduction, and thicker ice whose conduction, while 

lower than that of a 2m floe, is closer to this in magnitude than is that of the thinner ice. This issue is illustrated by the long 

negative tails on the right of Figure 8b; even grid cells of mean ice thickness 4-5m can produce substantial conductive 

fluxes, if they contain sufficient thin ice in their thickness distribution. 490 

It is impossible to exactly account for this effect without knowledge of conduction flux per ice category, which is not 

provided by any model in the CMIP6 subset. However, the effect can be roughly estimated using category ice concentration, 

snow depth and ice thickness data, which is provided by six models: MOHC UKESM1-0-LL, MRI-ESM2-0, IPSL-CM6A-

LR, IPSL-CM6A-LR-INCA, NorESM2-LM and NorESM2-MM. For each grid cell in the comparison, the conductance of 

the ice in each category is estimated from the ice thickness and snow depth. The individual category conductances are then 495 

summed together, weighted by category ice concentration, to obtain the total grid cell conductance. An ‘effective’ thermal 

insulance is then obtained from this, which represents the ability of the ice in the grid cell to conduct energy in a manner 

comparable to the IMB point measurements. 

For the 6 models, top conductive flux is plotted both against approximate thermal insulance (derived from gridbox mean ice 

thickness and snow depth; Figure 9a), and against corrected thermal insulance, derived from ice thickness distribution 500 

information as described above (Figure 9b). Using the corrected thermal insulance has the effect of pushing the model points 

to the left, by reducing the insulance. Hence each insulance class is composed of points with thicker ice, and therefore 

weaker conduction, than is the case with the uncorrected insulance. This reduces the model bias further but does not 

eliminate it: for all ranges of thermal insulance for which substantial numbers of IMB points exist, all 6 models are still 

biased significantly negative relative to the IMBs. For the 1-1.5 K m2 W-1 insulance range, the IMBs measure an average top 505 

conductive flux of -18.8±4.3 W m-2, whereas the six models simulate an average conductive flux of -29.5 ± 5.4 W m-2. 

The analysis is repeated for the North Pole region (not shown). Although top conductive flux is biased less strongly with 

respect to the IMBs in this region, mapping the distributions to thermal insulance classes again has the effect of reducing but 

not eliminating the bias. In the 1.5-2 K m2 W-1 range for example, the IMBs measure an average top conductive flux of -

13.0±3.0 W m-2, whereas the six models simulate an average of -22.5±4.2 W m-2. All models are significantly biased low 510 

with respect to the IMBs in this class, with NorESM2-MM and the IPSL models also significantly biased low in the 1.0-1.5 

K m2 W-1 class. 

The top conductive flux expresses the thermal forcing of the atmosphere on the ice, but it is the basal conductive flux that 

modulates how this forcing drives ice growth. The basal conductive flux is biased negative less strongly than the top 

conductive flux, and for the mushy-layer models is biased positive. The IPSL and MOHC models display small negative 515 

biases as a function of GBM thermal insulance that are mostly removed when they are evaluated as a function of corrected 

insulance. MRI-ESM2-0 displays a larger bias that is not removed. The NCC models remain strongly biased positive (less 

conduction) for each insulance class. 

The above analysis is for December-February; we also compare conductive fluxes for October-November, when ice growth 

is typically strongest as ice is thinner and insulance lower. As for the winter months, conductive flux bias is stronger at the 520 
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top than at the base of the ice, and greater in the Beaufort Sea than in the North Pole region. However, a larger number of 

IMB measurements are available for the smallest insulance classes during the autumn. In the 0.5-1 K m2 W-1 insulance class, 

both top and basal conductive fluxes are significantly biased low in both regions for all models, with the exception of NCC 

basal conductive fluxes which remain biased high. 

We consider also the relationship between ice thickness and melting fluxes. It was seen in Figure 7 that the relationship 525 

between seasonal average top melting and ice thickness was rather weak. To illustrate this further, we compare July top 

melting fluxes against ice thickness by gridpoint for the Beaufort Sea region (not shown). This shows the cross-model 

relationship between ice thickness and top melt to be much weaker than the winter relationship between ice thickness and 

conductive fluxes, with wide distributions of top melting fluxes simulated at all thicknesses, albeit with more extremely high 

values at low thicknesses. Inter-model variability dominates variability due to ice thickness, with e.g. the CMCC and 530 

CNRM-CERFACS models displaying two nearly distinct clusters at similar ice thicknesses. This could be partly because the 

relationship between top melting and ice thickness operates on somewhat larger scales than individual grid cells, via ice area 

and the ice albedo feedback. 

The IMBs, too, do not display a clear relationship between ice thickness and top melt flux. In fact, there is a notable lack of 

high top melt fluxes for low ice thicknesses in the IMB measurements. This may point again to the sampling problem 535 

inherent in the Lagrangian nature of the IMBs; thin ice floes subject to high melting fluxes will not survive long enough to 

report a flux to the IMB dataset. To address this problem, we compute daily top melting fluxes for the IMB dataset and 

compare these to the monthly mean modelled fluxes (Figure 10). While model grid-box mean fluxes account for the fast 

melting rates of thin ice irrespective of meaning period, it is necessary to refine the IMB fluxes to a finer temporal resolution 

to detect these. 540 

The 0-1 m range is still very poorly sampled by the daily IMB fluxes; examination shows that this is because it is rare for 

IMBs to report data right up until the point of melting out. Moreover, on the occasions this actually happens the final 

destruction of the floe is due to basal rather than top melting, which provides additional evidence for the relationship 

between ice thickness and top melting being rather weak. However the 1-2 m category provides plenty of datapoints. With 

the exception of the CNRM-CERFACS models which do not report maximum top melt until September, all models have 545 

monthly grid-box mean fluxes much higher than the daily fluxes shown by the IMBs in this category.  

6 Conclusions 

We have evaluated ice energy fluxes for a range of CMIP6 models using a dataset of equivalent fluxes derived from IMBs. 

In most cases, the fluxes vary between the models in ways consistent with the diverse model climates, and underlying ice 

thermodynamics schemes. Collectively however, the models tend to simulate greater melt, growth and conduction fluxes 550 

than are measured by the IMBs for similar ice thicknesses. 
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In more detail, the model states in the evaluated period 1985-2014 vary from warm, with thin sea ice (the CMCC models) to 

cold, with thick sea ice (particularly some of the GSI8.1 models). Models with thicker sea ice tend to simulate smaller melt, 

growth & conduction fluxes, and vice versa, which is consistent with ice thermodynamics theory. Model clusters are also 

influenced by choices in ice thermodynamics parameterisation. For example, the GSI8.1 models tend to model higher top 555 

melting relative to ice thickness than many others, and the ice thickness seasonal cycles are relatively more amplified, and 

further from the IMB values. Conversely, the mushy-layer models tend to simulate lower basal conductive fluxes than 

others, and their seasonal cycles are relatively more damped, and closer to the IMB values. The flux simulation differences 

of these model clusters are likely to be linked to the lack of penetrating solar radiation, and to the inclusion of mushy-layer 

thermodynamics, respectively. Hence while the atmosphere exerts a first-order control on the sea ice state, the sea ice 560 

parameterisation choice has a second-order effect on how growth and melt respond to this. 

A large part of the discrepancy between IMBs and models is influenced by the ice thickness sampling bias, the tendency for 

IMBs to be placed in thicker, more robust ice floes, and by the Lagrangian-Eulerian sampling bias, the tendency for thin ice 

floes to measure faster growth and melt fluxes. Despite this, the ice thickness distribution analysis provides strong evidence 

that a portion of the conduction/growth bias is real. Additional circumstantial evidence has been provided that a portion of 565 

the melting bias is also real, by comparing modelled fluxes to IMB-measured daily fluxes. 

We note that as a purely thermodynamic analysis, this study does not attempt to give any account of the influence of 

differing ice dynamics on modelled ice volume, either via dynamic atmospheric forcing or ice dynamic scheme choices. 

While this factor is likely of secondary importance to the atmospheric thermal forcing, its influence on modelled ice volume 

may be similar to that of ice thermodynamic choices. For example, Keen et al. (2021) found that ice advection accounted for 570 

between 9% and 30% of the total annual sea ice loss in CMIP6 models. 

The evaluation underlines the value of the IMB observations in aiding detailed analysis of sea ice process modelling. Future 

deployments of these instruments would be very useful to study changes in ice thermodynamics as sea ice continues to 

become thinner and less extensive.  

The evaluation also suggests that there is value in continuing to improve the accuracy of sea ice thermodynamics simulation. 575 

Differences in ice thermodynamics choices are shown to have a clear, measurable effect on the ice melt, growth and 

conduction fluxes that are simulated for particular ice thicknesses that is almost certainly reflected in how the sea ice state 

responds to a given atmospheric forcing. This is particularly the case for the penetrating solar radiation inclusion and for the 

mushy-layer parameterisation, although the latter may suppress conduction too much owing to the issues identified by Plante 

et al. (2024). 580 

The study also proves the importance of providing detailed energy budget information to the CMIP6 archive. Although the 

CMIP6 subset contained reasonable model diversity, many additional models were of complexity sufficient to justify 

submitting the energy flux diagnostics to the CMIP6 archive, and it would be of great value if a wider variety of models 

provided these for future CMIP iterations. 

 585 
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from https://doi.org/10.5281/zenodo.3975692 (West, 2020a). The code used to produce datasets of monthly mean energy 

fluxes from this processed data, as well as that used to produce the daily data used in Figure 10, can be downloaded from 

https://doi.org/10.5281/zenodo.3971736 (West, 2020b).  

 595 

The code used to analyse model data, and calculate timeseries, multiannual means and ice-area weighted statistics, and the 
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Grouping Institute Model Atmosphe
re 

Ocean Sea ice Thickness 
category 
bounds (m) 

Vertical 
thermodynamic 
layers (ice+snow) 

Salinity 
treatment 

Melt pond 
parameterisation 

Penetrating solar 
radiation 

GSI8.1 CSIRO-
ARCCSS 

ACCESS-
CM2 

UM v10.6 
(GA7.1) 

GFDL 
MOM5 

CICE5.1.2 
(GSI8.1) 

0.6, 1.4, 2.4, 3.6 4I+1S Prescribed Topographic N 

 MOHC HadGEM3-
GC31-LL 

 NEMO3.6       

 MOHC HadGEM3-
GC31-MM 

 NEMO3.6       

 MOHC UKESM1-0-
LL 

 NEMO3.6       

 NIMS-KMA UKESM1-0-
LL 

 NEMO3.6       

Mushy-layer NCAR CESM2 CAM6 POP2 CICE5.1.2 0.645, 1.391, 
2.470, 4.563, 
9.338 

8I+3S Fully 
prognostic 
(mushy-layer) 

Level-ice (H13) Y 

 NCAR CESM2-
WACCM 

WACCM6 POP2  0.645, 1.391, 
2.470, 4.563, 
9.338 

    

 NCC NorESM2-
LM 

CAM6-Nor BLOM  0.6, 1.4, 2.4, 3.6     

 NCC NorESM2-
MM 

CAM6-Nor BLOM  0.6, 1.4, 2.4, 3.6     

CMCC As grouping CMCC-CM2 CAM5 NEMO3.6 CICE4 0.64, 1.39, 2.47, 
4.57 

4I+1S Prescribed Level-ice (H12) Y 

  CMCC-
ESM2 

      Level-ice (H12)  

IPSL As grouping IPSL-CM6A-
LR 

LMDZ6A-
LR 

NEMO3.6 LIM3.6 From formula 2I+1S Prognostic 
bulk salinity 

Parameterised via 
albedo 

Y 

  IPSL-CM6A-
LR-INCA 

        

MRI As grouping MRI-ESM2 MRI-
AGCM3.5 

MRI-
COMv4 

In-house 
(within ocean 
model) 

0.6, 1.4, 2.4, 3.6 1I+1S Prescribed Parameterised via 
albedo 

Y 

CNRM-
CERFACS 

As grouping CNRM-
CM6-1 

ARPEGE-
Climat 
v6.3 

NEMO3.6 GELATO6 0.3, 0.7, 1.2, 2 9I+1S Prognostic 
bulk salinity 

Parameterised via 
albedo 

Y 

  CNRM-
CM6-1-HR 

        

  CNRM-
ESM2-1 

        

Table 1. The CMIP6 subset of models, their components and characteristics of thermodynamic parameterisations. In the melt pond column, H12 and H13 745 
refer to Holland et al. (2012) and Hunke et al. (2013) respectively.
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Figure 1. A map of all IMB tracks in the Arctic between 1993-2015 used in this study. The Arctic Ocean region (blue 750 

shading), and the North Pole (dark blue box) and Beaufort Sea (dark red box) subregions used in the analysis are indicated. 
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Figure 2. (a) Total Arctic Ocean ice area, and (b) average Arctic Ocean ice thickness in the CMIP6 subset (1985-2014 

average with bars denoting twice the interannual standard deviation). HadISST1.2 for area, and PIOMAS and CryoSat-2 for 755 

ice thickness, are shown for comparison; for CryoSat-2, the period shown is 2011-2020 but for the other datasets 1985-2014 

is used. (c) Scatter plot of annual mean ice thickness against September ice area (top panel) and ice growth/melt diagnosed 

from October-September mean minus April-May mean ice thickness (bottom panel).  
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Figure 3. 1985-2014 Arctic Ocean region mean ice thickness compared to global (top) and 2m air temperature anomaly 760 

over the Arctic Ocean region relative to 1850-1899 (bottom). The black symbols and grey filled regions represent 

observational estimates and uncertainty intervals for ice thickness and temperature anomaly derived as described in Section 

2.3. 

  



29 
 

 765 

Figure 4. Evaluation of radiative fluxes in the CMIP6 subset relative to ERA5 reanalysis and CERES-EBAF satellite dataset. 

(a) from top to bottom, downwelling, upwelling and net down SW radiation; (b) from top to bottom, downwelling, net down 

and upwelling LW radiation; (c) total net radiative flux; (d) scatter plot of annual mean net SW versus annual mean net LW, 

with isolines of total net radiative flux overplotted. For (a), net down SW radiation is distinguished by triangle markers 

where model spread overlaps with downwelling SW.  770 



30 
 

 

 

Figure 5. Seasonal cycles of (a,b) top melting flux; (c,d) basal melting flux; (e,f) basal growth flux in North Pole (left 

column; a,c,e) and Beaufort Sea (right column; b,d,f) regions, with ice area-weighted mean and standard deviation shown. 

Means and standard deviations are taken across all grid cells in the respective regions and across all years in the study 775 

period (1985-2014). For each flux and region, inset plots show boxplots of ice area-weighted statistics across all grid cells 

for three key months of the year: June-August for melting fluxes; November, January & March for growth fluxes. IMB 

distribution mean & standard deviation, and boxplots (black box and filled area), are shown for each flux and region for 

comparison. Modelled distributions judged significantly different to the IMBs are distinguished by bold outlines and black 

mean triangles. 780 
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Figure 6. Seasonal cycles of (a,b) top conduction flux; (c,d) basal conduction flux; (e,f) heat storage flux for the North Pole 

(left column; a,c,e) and Beaufort Sea (right column; b,d,f) regions, with ice area weighted mean and standard deviation 

shown. Means and standard deviations are taken across all grid cells in the respective regions and across all years in the 785 

study period (1985-2014). For the conduction fluxes in each region, inset plots show boxplots of ice area-weighted statistics 

across all grid cells for January and November. IMB distribution mean & standard deviation, and boxplots (black box and 

filled area), are shown for each flux and region for comparison.  



32 
 

 

Figure 7. Seasonally averaged melt & growth fluxes (weighted by ice area for each month and region) plotted against 790 

annual mean ice thickness (a,b; top row) and ice thickness seasonal cycle amplitude (c,d; bottom row), for North Pole (a,c) 

and Beaufort Sea (b,d) regions. Showing total melt (squares), top melt (stars) and total growth (triangles), as defined in the 

text. Shaded regions represent observational uncertainty: for melt and growth fluxes, IMB-derived uncertainty as diagnosed 

in Section 3.3 of West et al. (2020); for ice thickness, uncertainty derived from the differences between PIOMAS and 

CryoSat-2 as described in Section 2.3. 795 



33 
 

 

Figure 8. (a) Scatter plot of top conductive flux against ice thickness for models and IMBs; for clarity, a random set of 100 

points is selected for each model. (b) The same comparison, shown as a series of box plots, but with all model points 

sampled. Note that the 0-1 m and 3-4 m classes contain only 2 and 3 IMB points respectively.  
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 800 

Figure 9. (a) Top conductive flux boxplots as a function of thermal insulance, calculated from model gridbox mean ice 

thickness and snow depth. (b) Top conductive flux boxplots as a function of thermal insulance calculated from sub-grid ice 

thickness distribution properties. For each model and insulance class, distributions significantly different to the IMBs are 

highlighted in bold. 
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 805 

Figure 10. (a) Scatter plot of monthly mean top melting fluxes compared to daily mean IMB fluxes, for a randomly selected 

subset of the Beaufort Sea region. (b) Bar plot for the same comparison, using the full model distributions. 


