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Abstract. Models are simplified descriptions of reality and are intrinsically limited by the assumptions that have been intro-

duced in their formulation. With the development of automatic calibration toolboxes, finding optimal parameters that suit the

environmental system has become more convenient. Here, we explore how optimization toolboxes can be applied innovatively

to uncover flaws in the physical formulations of models. We illustrate this approach by evaluating the effect of simplifications

embedded in the formulation of a widely used hydro-thermodynamic model. We calibrate a Delft3D model based on tem-5

perature profiles for a case study, Lake Morat (Switzerland), through the optimization tool DYNO-PODS. Results show that

neglecting the fraction β of shortwave radiation absorbed at the water surface can be compensated by higher values of the

light extinction coefficient. This leads to unrealistic values of the latter parameter, as the optimization pushes the coefficient

towards the limit of no transparency, consistent with the need to reproduce a significant absorption at the surface. While it is

well-known that β is significantly larger than zero, its absence in the model was never noticed as critical. The extensive use of10

automatic calibration tools may offer similar outcomes in other applications.

1 Introduction

Numerical models serve as powerful tools capable of embracing the complexity of intricate environmental dynamics. In

many branches of environmental science, such as meteorology, climatology, hydrology, oceanography and limnology, thermo-

hydrodynamic models have become standard tools to simulate and understand specific physical processes. These models are15

rooted on the numerical solution of physical first principles, e.g. the mass, momentum, and heat equations. Although first

principles are well established, modelling the physics of fluid systems remains complicated for two reasons. First, the grid

size limits the range of applicability of models based on first principles (e.g., Direct Numerical Simulations, DNS) and poses

the challenge to properly parameterize associated sub-grid scale processes. This implies that models that were developed for
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a specific environment, where the parameterization was adequate, may not be optimized for other contexts characterized by20

different spatial scales. Second, imposing the boundary conditions is a complicated task as the forcing acting at the boundaries

of the computational domain is often only partially known. For instance, the estimation of the surface heat fluxes is based on

parameterizations that have to cope with both the complex physics and the uncertainties associated to the forcing. Contrary

to the first principles solved by the model, such boundary conditions often lack universality. In the specific case of models

widely adopted to simulate three-dimensional lake dynamics, many were originally developed for marine, riverine or estuarine25

environments. This is the case of, e.g., Delft3D (Lesser et al., 2004), MITgcm (Marshall et al., 1997), ROMS (Shchepetkin and

McWilliams, 2005), FVCOM (Chen et al., 2003), NEMO (Madec et al., 2023), POM (Blumberg and Mellor, 1987), among

a few others. Therefore, some processes that are crucial in lakes, but not for the original environment, may not be correctly

reproduced. Scientists thus must critically evaluate model performances, as even some of the most used models may have

unexpected flaws.30

The first step of any model setup and performance evaluation is its calibration. Tools for the automatic calibration of the

model’s parameters have been recently introduced, allowing for extending the search of the optimal values in a broader way.

The use of surrogate models accelerates global optimization. Analyses of how these tools can provide support and foster

a better comprehension of the numerical results are becoming increasingly frequent. For instance, examples are numerous

for the Delft3D model (in particular the FLOW module), one of the most popular models for simulating hydrodynamics of35

natural environments. Xia et al. (2021, 2022) developed the PODS tool (Parallel Optimization with Dynamic coordinate search

using Surrogates); Schwindt et al. (2022) assessed the uncertainty of mixing-related model parameters thorough a Bayesian

calibrator; Garcia et al. (2015) and Baracchini et al. (2020b) adopted derivative-free algorithm for nonlinear least squares (DUD

from Ralston and Jennrich (1978)) within OpenDA (El Serafy et al., 2007) to optimize calibration and data assimilation in their

lake models. Many opportunities are offered by automated calibrators, saving time and finding global optimal solutions, and40

many other optimization algorithms have been applied for the calibration of hydrodynamic models. We refer to Xia et al. (2021)

for a review of all these aspects. However, much care must be taken when model parameters are calibrated, either manually

or automatically. Many examples in literature indeed report optimal values laying in regions of the parameters space that hold

no physical relevance. Such unrealistic parameters are often justified as those giving the best model performance, but it is well

known that (i) different combination of parameters might give the same result and (ii) the performance of the model heavily45

depend on what metric is adopted. This is particularly true for hydro-thermodynamic models calibrated on a single variable,

e.g. temperature profiles only (Amadori et al., 2021; Xia et al., 2022).

The objective of this work is to show how the use of automatic calibration can help identify flaws in the structure of

even state-of-the-art models. Analyses of how these tools can foster a better comprehension of the numerical results have

started to appear in the literature, e.g., the recent example of Bayesian calibration of a Delft3D model (Schwindt et al., 2022).50

Here we adopt a similar approach to evaluate the parameterization of the heat distribution along the water column as coded

in Delft3D. In particular, we focus on the Secchi depth (Ds) parameter. The importance of properly accounting for water

transparency in hydro-thermodynamic models has been long recognized. Such a quantity enables to improve the prediction of

water temperature, eventually accounting for biologically-related mechanisms even if those are not explicitly parameterized
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(e.g. reduction of transparency in occurrence with algal blooms, Rahaghi et al. (2024)). This aspect becomes even more relevant55

in data-scarcity contexts, where satellite-derived estimates of extinction coefficients can greatly improve the performance of

even simplified models (e.g. Zolfaghari et al., 2017).

Ds is used to model the distribution of the incoming solar shortwave radiation from the surface to deeper layers depending

on how deep it can penetrate the water column. Despite being often considered a calibration parameter of the model (e.g.

Wahl and Peeters, 2014; Soulignac et al., 2017; Piccioni et al., 2021; Xia et al., 2021), Ds is actually a measurable quantity60

and can significantly vary in time. Experience from previous applications of Delft3D in different lakes shows however that

the calibrated value of Ds generally resides in the lower range of measured values (Wahl and Peeters, 2014; Soulignac et al.,

2018), or it is even smaller than observed values (e.g. Amadori et al. (2020) and Piccolroaz et al. (2019) rescaled the observed

Secchi depth by a factor of 0.5). Through the automatic calibrator DYNO-PODS (Xia et al., 2022), we extend the search of

the optimal Ds in a broader parameter space and explore regions uncharted to manual calibration. Similarly to Schwindt et al.65

(2022), we demonstrate that this allows to identify a flaw in the heat flux parameterization of Delft3D. In addition to Schwindt

et al. (2022), we show how this let us improve the physics behind such a widely used model with a small, yet significant,

modification to its source code.

In the following sections, we first formulate the problem (Section 2). Here we summarize how Secchi depth is used in

Delft3D (2.1), how surface warming is generally simulated in models (2.2), what are the physical implications of the current70

Delft3D parameterization (2.3) and of the modified version we implemented (2.4). In section 3, we introduce the calibration

strategy and tests. In Section 4, we first show the results of the original formulation of Delft3D heat fluxes scheme (4.1). We

then present the results of the calibration tests pointing out the model’s unexpected behavior (4.2). Finally, we show the gain

in physical reliability achieved after our modification of the Delft3D source code (4.3).

2 Formulation of the problem75

2.1 Use of Secchi depth in models

The three-dimensional model Delft3D-FLOW (Lesser et al., 2004) numerically solves the Reynolds Averaged Navier Stokes

equations (RANS) under the Boussinesq and shallow-water assumptions. The horizontal velocity components and the water

surface are solved by integrating continuity and horizontal momentum equations, while vertical velocities are computed from

the continuity equation. The transport of heat is modelled by an advection-diffusion equation, assuming no heat exchange at80

the lake bed.

In the heat equation module of the model, all the heat flux terms are estimated with empirical formulas. Here, we focus

on the penetration of solar shortwave radiation, which is modelled with a reduction of the energy flux per unit area (W.m−2)

along the water column, as in the commonly used Beer law:

Hsw(z) = Hsw0 exp(−γ z) , (1)85
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Figure 1. a) Radiative transfer at water surface. Non-penetrative terms Hnp are lost at the air-water interface (blue line, representative of the

skin layer), while a sub-layer at the surface retains a fraction β of incoming solar radiation Hsw0, and only the fraction (1−β)Hsw0 of the

solar shortwave radiation penetrates along the water column. The two grey lines represent the exponential decay of incoming heat flux in

the surface sub-layer (above the horizontal dashed line) and beneath it. b) Conceptual illustration of how the process in a) evolves along the

water column, with orange representing heat penetrating from the surface to the deeper layers; c) schematic of how a) is then parameterized

in a vertically layered computational grid.

where Hsw0 is the downward shortwave radiation at the water surface (already considering the effect of albedo), Hsw(z) is

the energy flux that reaches the depth z, and γ is the extinction coefficient (m−1). Such a simplified model refers to the light

attenuation coefficient, which can be easily measured in-situ, and is appropriate for the the visible spectrum region (380-750

nm). Accordingly, the extinction coefficient γ is defined based on the depth Ds (m) at which the Secchi disk remains visible,

through the simple relation:90

γ =
cγ

Ds
, (2)

where the value cγ = 1.7 is used as standard in Delft3D (Deltares, 2023).

However, the actual penetration of the shortwave radiation depends on the different wavelengths composing its spectrum.

In principle, each wavelength has a different extinction coefficient (Zaneveld and Spinrad, 1980). Much of the shortwave

radiation energy, in particular longer wavelengths in the near to shortwave-infrared region (750-2500 nm), is absorbed at the95

water surface regardless of its optical properties. The latter are indeed related to the concentration of constituents and mostly

affect the extinction coefficient in the visible region (400-700 nm).
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Among many formulations available to properly describe the penetration of downward solar radiation in the water col-

umn (Morel and Antoine, 1994), the simplified version reported in Henderson-Sellers (1986) is commonly applied in many

numerical models:100

Hsw(z) = (1−β)Hsw0 exp(−γ z) . (3)

In such a formulation, β is the fraction of the shortwave radiation absorbed a region close to the surface.

As a consequence, the surface layer is warmed up by a localized total heat flux,

Hsurf = Hnp + βHsw0 , (4)

which is the sum of the absorbed shortwave radiation βHsw0 and of the other non-penetrative fluxes Hnp (see Figure 1). The105

non-penetrative heat flux,

Hnp = H↓
lw−H↑

lw±Hsens±Hlat , (5)

is the result of the net downward longwave radiative flux H↓
lw (from the sky to the lake), the upward longwave radiation H↑

lw

(emitted by the lake surface), and the sensible and latent heat fluxes, Hsens and Hlat respectively. All these terms are associated

to a generic surface Hsurf , but it is worth noting that non penetrative terms act just at the interface between water and air, while110

βHsw0 is absorbed in a layer of the order of tens of centimeters (Henderson-Sellers, 1986) (Fig. 1b). From the viewpoint of

numerical modelling (Fig. 1c), the fraction β of the incoming solar radiation represents a source of heat in a shallow layer of

water, while non-penetrative terms (usually negative) represent a sink of heat. All these fluxes are normally parameterized in

only one computational cell, i.e. the one immediately below the water surface, where the contributions of both equations 3 and

4 should be accounted for.115

Modified versions of the Beer law were introduced in some lake-dedicated models to account for the different absorption of

heat depending on the spectral bands of solar radiation. This is the case of the General Lake Model (Hipsey et al., 2019), where

the authors attribute 55% of the incident solar radiation to near infra-red (NIR) and ultraviolet radiation (UVA,UVB) heating

the surface directly. A default value of 45% for β is implemented in CE-QUAL-W2 (Cole and Wells, 2015) but different

values ranging from 24 to 69% are recommended depending on the type of environment, with larger values attributed to pure120

(63%) and coastal (69%) waters, and smaller values (24 to 58%) to lake waters. A similar approach with different proportions

(35% for NIR, 65% for PAR,UVA,UVB) was adopted by Thiery et al. (2014) to simulate Lake Kivu thermal structure with

an ensemble of different lake models. Amongst these, the models explicitly including β are SimStrat (Goudsmit et al., 2002),

LAKEoneD (Joehnk and Umlauf, 2001), LAKE (Stepanenko and Lykossov, 2005), MINLAKE96 (Fang and Stefan, 1996).

Accounting for this fraction of heat at the surface is important in lakes, nevertheless the absence of this term in models like125

Delft3D never raised any concern in its past applications. The reason is that the extinction coefficient γ estimated with equation

(2), or equivalently the Secchi disk depth Ds, is considered a calibration parameter, even if Ds is a measurable quantity.

5

https://doi.org/10.5194/gmd-2024-118
Preprint. Discussion started: 9 October 2024
c© Author(s) 2024. CC BY 4.0 License.



2.2 General formulation of surface layer warming

Hydro-thermodynamic models like Delft3D solve a thermal energy balance, where the heat source is usually dominated by

the heat exchanged at the air-water interface. The relevant terms in the equation for the transport of heat can be represented as130

follows:

∂T

∂t
+ advection+ diffusion =−∂ϕ

∂z
, (6)

where T is water temperature, and we assume that the vertical coordinate z is pointing downwards, so also the heat flux is

positive downwards (consistent with the direction of solar radiation). The source term on the right hand side of the equation

is responsible for heating the infinitesimal water volume locally. Incidentally, we note that the advection and diffusion terms135

conserve the total heat content in the lake if no flux is exchanged at the boundaries.

In equation (6), we have simplified the notation by introducing the flux (units K.s−1.m)

ϕ =
H

ρcp
, (7)

which scales the total heat flux H with water’s density ρ (units kg.m−3) and heat capacity at constant pressure cp (units

J.kg−1.K−1), assuming them to be constant, as a first approximation. Hereafter, the definition of ϕx based on equation (7) is140

adopted for all heat fluxes Hx, where the subscript x indicates the component.

The net heat flux at the air-water interface is

ϕnet =
Hnet

ρcp
= ϕsw0 + ϕnp = (1−β)ϕsw0 + ϕsurf . (8)

In a depth-averaged model, the net heat flux is responsible for the change of the whole-lake temperature. Neglecting the sub-

daily variability, the warming of the lake is related to the total heat exchanged during a day:145
∫

diel

ϕnet dt =
∫

diel

ϕnp dt +
∫

sunlight

ϕsw0 dt , (9)

where the integrals are defined on a 24-hour period (covering the periods of sunlight, with ϕsw0 > 0, and night, with ϕsw0 = 0).

The total exchanged heat,
∫
diel

ϕnet dt, is typically much smaller than the two individual components on the right hand side of

equation (9).

In conditions of approximate thermal equilibrium (e.g., Schmid et al., 2014), it is widely assumed that the lake temperature is150

determined by a balance between all the fluxes exchanged at the surface. In these conditions it can be set that
∫
diel

ϕnet dt≃ 0.

Therefore, the non-penetrative heat lost through the surface must approximately balance the solar heating, i.e.,
∫
diel

ϕnp dt≃
−

∫
sunlight

ϕsw0 dt, so that the non-penetrative components of the heat flux have a cooling effect in most cases. In terms of diel

averaged values (indicated using angle brackets), the condition can be written as

⟨ϕnp⟩ ≃ −
1

τday

∫

sunlight

ϕsw0 dt < 0 , (10)155
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where τday is 24 hours. Since the sub-daily variability of the non-penetrative fluxes is small compared to the solar radiation

flux, it follows that ϕnp ≃ ⟨ϕnp⟩ (see, e.g., the example in Figure 2), and equation (8) implies that lakes are typically subject to

(relative) cooling during night and to (relative) warming during sunlight.

The numerical model solves the discretized form of the heat equation (6) in a layer ∆zi. Neglecting the advective and

diffusive fluxes for this simplified example, it reads160

∆T ∗i
∆t

=
ϕi−1/2−ϕi+1/2

∆zi
= σi , (11)

whereby we define the warming rate σi (units K.s−1). Note that T ∗ here refers to the theoretical temperature for a lake where

advective and diffusive terms are neglected. In fact, the temperature of the computational cell i (the vertical index, assuming

that the horizontal dimensions of the grid do not change vertically) increases if the heat flux entering from the upper face

(i− 1/2, for a staggered Arakawa C-grid) is larger than the flux leaving the cell from the lower face (i + 1/2).165

Indicating with i = 1 the computational cell at the top of the water column (see also Figure 1c), the flux at the upper

boundary condition of the model is ϕ1/2 = ϕnet, while the flux at the bottom of the first computational cell is ϕ3/2 = (1−
β)ϕsw0 exp(−γ ∆z1). Hence, the warming rate in the uppermost computational layer in equation (12) can be obtained by

combining equations (3),(4), (7),(8) into equation (11):

σ1 ∆z1 = (ϕsw0 + ϕnp)− (1−β)ϕsw0 exp(−γ ∆z1)170

= βϕsw0 + ϕnp + (1−β)ϕsw0 [1− exp(−γ ∆z1)] . (12)

Extending the same approach to the layers below the one at the surface, we can express the warming in layer i = 2 as

σ2 ∆z2 = (1−β)ϕsw0 exp(−γ ∆z1)− (1−β)ϕsw0 exp[−γ (∆z1 + ∆z2)]

= (1−β)ϕsw0 exp(−γ ∆z1) [1− exp(−γ ∆z2)] . (13)

During sunlight (ϕsw0 > 0), the second term on the right hand side of equation (13) is smaller than the first one, (∆z1 +∆z2 >175

∆z1). Hence, the layer i = 2 is always warmed. Similar considerations apply to all the other layers with i > 1. On the contrary,

σ1 may be negative (producing local cooling of the surface layer) even during warming periods, depending on the value of β

and ϕnp.

The difference in warming rates of layers 1 and 2 as predicted by equation (12) and (13) may produce a vertical temperature

gradient, which tends to be balanced by the vertical diffusive flux in equation (6). The effectiveness of such a flux in balancing180

the differential warming highly depends on the intensity of turbulence. In particular, increasing the eddy diffusivity could make

the entire profile more homogeneous. As we will discuss in the following sections, turbulence might compensate the effect of

different schemes for the penetration of solar radiation, for instance if β = 0, as in the original version of Delft3D heat equation

module.

2.3 Case with β = 0185

The original version of Delft3D, which adopts the Beer law as in equation (1), can be described as a particular case of the

scheme described above in which β = 0. In this case the warming rate of the top layer (i = 1) expressed by equation (14) can
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be simplified as

σ1 ∆z1 = ϕnp + ϕsw0 [1− exp(−γ ∆z1)] . (14)

When γ is small (Ds very large, i.e., very transparent water), the last term within square brackets tends to vanish, so that the190

warming of the surface layer is σ1 ≃ ϕnp/∆z1, which is typically negative because ϕnp ≃ ⟨ϕnp⟩< 0, as discussed in section

2.2. Therefore, the layer i = 1 may cool down also when sunlight is present (ϕsw0 > 0), while the lower layers are always

warmed up by the penetrative shortwave radiation, as implied by equation (15, obtained by setting β = 0 in equation 13).

σ2 ∆z2 = ϕsw0 exp(−γ ∆z1) [1− exp(−γ ∆z2)] . (15)

2.4 Case with β > 0195

We modified the Delft3D code by substituting the Beer law (1) with the complete version (3), as reported in A. Hence, the

scheme reported in equations (12) and (13) with β > 0 applies. Focusing on the warming of the top layer and repeating the

same argument as for equation (14), in case of small γ the last term of equation (12) vanishes and σ1 ≃ (βϕsw0 + ϕnp)/∆z1.

Now the sum of the two terms is not necessarily negative, as βϕsw0 can balance the negative contribution of ϕnp, and the

surface layer is not forced to cool down (or not so much) during sunlight. A proper choice of the coefficient β guarantees a200

physically sound calibration of the numerical model.

3 Material and methods

Lake Morat, Switzerland is chosen as a test site for our study. This is one of the alpine lakes included in the AlpLakes network1

for which a calibrated setup of the Delft3D model is available. The details of the case study and the base Delft3D setup have

been explained in B.205

3.1 Calibration strategy

For the calibration of the Delft3D model we adapted to our needs the procedure DYNO-PODS based on a parallel surrogate

global optimization method (Xia et al., 2021, 2022), which allows for calibrating multiple parameters simultaneously. DYNO-

PODS runs parallel simulations and finds the best result at each iteration based on a cost function ϵk to be minimised. We refer

to the DYNO-PODS documentation and in particular to Xia et al. (2022) for an exhaustive description of the surrogate model210

implemented in DYNO-PODS.

The purpose of optimization is to correclty reproduce measured water temperature in one single station. We therefore tested

two objective functions: (i) an error function ϵT based on the temperatures measured along the entire profile, as in equation

(16); (ii) an error function ϵT0 based on the temperatures measured at the lake surface only, as in equation (17).

1https://www.alplakes.eawag.ch
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The distributed error ϵT is estimated by the average root mean square deviation215

ϵT =

√√√√ 1
Nt

Nt∑

j=1

1
Nz

Nz∑

i=1

(
Ti,j − T̂i,j

)2

, (16)

where Nt is the number of temporal profiles, Nz is the number of measuring points along the vertical, Ti,j is the observed

temperature at the depth zi and time tj , and T̂i,j is the corresponding value simulated by the model. If ϵT is chosen as objective

function, the model is optimised towards the best representation of both surface and deep water temperatures.

The error at the surface ϵT0 is estimated via the root mean square deviation of the surface temperature T0:220

ϵT0 =

√√√√ 1
Nt

Nt∑

j=1

(
T0,j − T̂0,j

)2

. (17)

If ϵT0 is chosen instead as objective function, the calibrated model provides the best representation of surface temperature,

regardless of the performance on water temperature below.

3.2 Calibration tests

Starting from a base setup (O in Table 1, for more details see B), we tested how the performance of the model could be225

improved by calibrating the Secchi depth. To preserve the time-dependence of measured values of Secchi depth we introduced

a parameter δ defined as follows:

D̂s = δDs . (18)

We first calibrated δ with the original model (Ocal in Table 1). Two separate calibration tests were performed considering

the two objective functions defined in equations (16)-(17) (only the first value is reported in the Table 1, for more results see230

Table 2 in Section 4.2).

As a second step, we tested the effect of introducing the coefficient β in a modified version of the model, Mcal, where all

other parameters were maintained as in O, and δ and β were calibrated.

Finally, we run a new base calibration for the modified modelM, where the full set of parameters was optimized, including

β.235

All calibration tests were performed in those months when water transparency prominently influences the formation of a

stratified thermal structure in dimictic lakes, i.e. the spring and summer months subsequent to winter mixing. The simulated

period was from 20 March to 14 August 2019. Sensitivity tests on the model response to variations of Secchi depth during the

cooling season (from August onward) confirmed the assumption that it is possible to effectively determine the optimal value

of δ limiting the calibration to the period when stratification forms (not shown).240

The simulation time for 5 months was around 11 hours on a High Performance Computing Cluster. In order to gather a

satisfactory convergence of the automated calibration tests, we run 10 iterations of 12 parallel simulation, for a maximum

value of 120 evaluations for each calibration test. The number of evaluations is in line with what Xia et al. (2021) found in

terms of speed of convergence towards a solution similar (in performance) to that from manual calibration.
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Table 1. Calibration tests setups with values of the main parameters (wind drag corrective coefficient α, free convection coefficinet (CFrcon),

horizontal eddy diffusivity and viscosity coefficients (Dicouv, Vicouv) and Ozmidov length scale (Xlo), scaling of Secchi depth (δ) and

fraction of shortwave solar radiation absorbed in the first layer (β). O identifies the original Delft3D model, while M the modified version

including β. Numbers are reported only when calibrated in the test, and “n.c." stands for “not calibrated". For Mcal test, not calibrated

parameters are the same as in O. “n.a." stands for “not applicable" and only refers to the β parameter which does not exist in O model

version.

Model Test α Cfrcon Dicouv Vicouv Xlo δ β ϵT

- - m2s−1 m2s−1 mm - - ◦C

Original O 0.94 0.019 2.36 1.65 0.338 n.c. n.a. 0.57

Original Ocal n.c. n.c. n.c. n.c n.c. 0.84 n.a. 0.49

Modified Mcal n.c n.c n.c n.c n.c. 1.00 0.32 0.47

Modified M 0.98 0.004 1.84 1.28 0.118 n.c. 0.33 0.45

4 Results245

4.1 Base setup model

In this section, we present the results of the calibration of the original model O (without β, see Table 1) and without any

modification of the Secchi depth. This setup implicitly corresponds to β = 0 and δ = 1. Figure 2a shows the heat balance

terms computed at an hourly time scale at the lake-atmosphere interface in a summer day (17 July 2019), for which in-situ

measurements of water temperature are available. As expected from the theoretical considerations in Section 2.2, the net heat250

flux is heavily affected by the shortwave solar radiation Hsw0, which however vanishes at night, producing a strong sub-daily

variability that is extremely large compared to the other terms. Moreover, if the shortwave radiation is excluded from the

overall balance Hnet, the resulting net heat flux accounting only for the non penetrative terms (Hnp, dashed line) is negative

also during daylight hours.

By using the heat fluxes internally computed in the calibrated Delft3D model, we estimated the local warming rate of the255

surface layer according to equation (14), i.e. neglecting advection and diffusion. In this simplified scheme, the heat flux at the

surface resulted to be almost always negative indicating a predominantly heat loss term in the heat equation of the surface

layer. As shown in Figure 2b, where the warming rate σ is plotted everyday at noon, this happens even in the warming periods

(spring-summer), with a few exceptions during extremely calm (i.e. low wind) and sunny days. At layers beneath the surface, σ

(estimated locally with equation (15)) has instead positive sign. Shortwave radiation indeed penetrates the water column with260

decreasing warming rate as depth approaches the Secchi depth Ds. Hence, excluding advective and diffusive terms from the

simulation as in equation (11), would result in continuous cooling of the surface layer and slight warming of deeper layers.

Although this is not the case in the Delft3D model, which accounts for advective and diffusive fluxes, the tendency can be

noted also in the numerical results, as it will be shown below (Figure 4).
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Figure 2. a) Heat fluxes computed using the meteorological forcing and the simulated surface water temperature from the base setup model

(O in Table 1) for Lake Morat on a sample summer day, i.e. 17 July 2019. b) Warming rates simulated along the water column calculated

according to equations (14)-(15) using the flux calculated by model O. Profiles are displayed at 12:00 UTC. The black line represents the

measured Secchi depth (Ds) considered in the simulation, with black dots indicating the exact measurement day. Depths are limited to 10 m

to improve visibility of the surface layer.
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Table 2. Calibrated parameters δ and β and corresponding objective functions. “n.a." stands for “not applicable".

Test
parameter objective function

name value name value

Ocal

δ 0.12
ϵT0 0.83 ◦C

β n.a.

δ 0.84
ϵT 0.49 ◦C

β n.a.

Mcal

δ 0.57
ϵT0 0.8 ◦C

β 0.32

δ 1.00
ϵT 0.47 ◦C

β 0.32

4.2 Optimal scaling of Secchi depth265

The results of the calibration tests Ocal and Mcal for assessing the optimal scaling for Secchi depth are reported in Table 2.

The search for the optimal value of δ depends on the objective function used in the calibration tests.

In the original model Ocal (Figure 3a-b), if the target of the calibration is the surface water temperature (ϵT0 in equation

(17)), the optimal scaling for Secchi depth unrealistically converges to δ = 0.12. Smaller values of δ lead to warmer surface

temperature because γ becomes very large (low transparency; see equation (2)) and a large portion of the shortwave solar270

radiation is absorbed in the surface layer. If the target is water temperature over the entire water column (ϵTz
in equation (16)),

the optimal value is δ = 0.84.

The same plots fromMcal tests (Figure 3d-f), suggest that water temperature can be simulated without the need of drastically

minimizing δ. The optimal δ converges to 0.57 and 1 for the two objective functions ϵT0 and ϵTz
, respectively. The first value

(0.57) will be commented in the discussion section. Interestingly, Figure 3e-f show that the value of β converges in a physically275

meaningful range and the optimal value is 0.32 for both objective functions (Table 2), fully consistent with literature values.

4.3 Effect of β

To understand what actually changes when introducing the parameter β in the heat flux parameterization, Figure 4 shows the

comparison between the fully calibrated models O and M (Table 1). Panels a,b show the simulated temperature profiles on a

sample summer day in the two optimal simulations minimizing ϵTz
, with and without β. The two thermal profiles appear very280

similar and consistent with measurements. Both simulations correctly capture the thermocline depth and the temperature of

the surface well-mixed layer (about 7 m thick). However, in the model O (panel a) the temperature of the surface layer (23.27
◦C) is slightly colder than that at layers below (23.35◦C), while the surface in-situ temperature (24.15◦C) is the warmest.

Conversely, the model with calibrated β, i.e. M (panel b), returns 24.50◦C at the surface.
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Figure 3. Convergence of different calibration tests and objective functions (a, c, e: ϵT0 , error on surface temperature; b, d, f: ϵTz , error on

temperature along the water column). a-b): Calibration testOcal for optimal δ in the original modelO (β implicitly equals 0); c-f) calibration

of both δ (c,d) and β (e,f) inMcal tests with the modified model. The blue and orange arrows in panel a) show the main expected directions

of the optimization problem in the calibration of δ (a-d). The orange shaded rectangle in panels a-d highlights the range of realistic values of

δ, i.e. around 1. The pink shaded rectangle in panels e-f highlights the range of values reported for β in the literature, i.e. 0.2-0.6.
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Although the difference in temperature is relatively small between the two model versions, the physics behind such thermal285

profiles is actually different. In Figure 4c-e we compare the eddy diffusivity Dz as simulated by the k-ϵ model in O and M
in three selected days. In the original model version, stronger turbulent vertical diffusion is simulated in the epilimnion. The

largest difference is visible during daylight hours, when the O model (panel c) simulates homogeneous diffusivity of the order

of 10−4 m2s−1 in the upper 2 m, while surface mixing is strongly inhibited in theMmodel (panel d), with Dz generally lower

than 10−6 m2s−1. Thus, the enhanced mixing in the epilimnion simulated by modelO compensates the unrealistic distribution290

of the warming rate caused by the absence of β, which would produce cooling of the surface layer (as Figure 2a shows). This

effect is visible in the whole simulated period (panel e), with overestimation of Dz of the order of 10−4 m2s−1 during daylight

hours and higher differences during the stratified period.

5 Discussion

The comparison between the model outputs obtained with the original (O) and modified (M) versions of Delft3D clearly high-295

lights that accounting for shortwave absorption in a shallow layer close to the water surface improves the performance of the

model and, more importantly, provides a more realistic description of the physical processes driving surface warming in lakes.

The best value of the scaling parameter δ obtained with the modified model is 1 (see Table 1), which implies that the measured

value of the Secchi depth in Lake Morat is a reliable input parameter for the model and does not necessarily require calibration.

The fact that the measured Secchi depth can be assumed as a physically meaningful quantity is a significant advantage in the300

model setup with respect to the common expectation of several Delft3D users that Secchi depth must be calibrated (Wahl and

Peeters, 2014; Soulignac et al., 2017; Piccioni et al., 2021; Xia et al., 2021). Moreover, the value of β estimated through the

automatic calibration accurately falls within the range β ∈ (0.3,0.4) observed in different lake environments (e.g., 0.4 in Dake

and Harleman, 1969) and suggested in previous modeling applications (Thiery et al., 2014; Cole and Wells, 2015; Schmid and

Köster, 2016).305

To what extent such a modification of the heat fluxes parameterization is necessary to improve the model performances

can be discussed building on the model’s errors reported in Tables 1 and 2. Our results indicate that the base calibration

of the original model O (Table 1) can already give satisfactory results, with an error ϵT = 0.57◦C along the water column.

Such a result is possible thanks to the automated calibration, which allows to explore a wider range of testing parameters

combination compared to manual procedure. The relatively low error also confirms the general reliability of the model with310

its original formulation as demonstrated by the numerous successful lake applications in different lakes (e.g. Amadori et al.,

2021; Baracchini et al., 2020a; Soulignac et al., 2017, 2018; Wahl and Peeters, 2014; Chanudet et al., 2012; Dissanayake

et al., 2019, among many others). By rescaling Ds through the calibration of δ (Ocal test), the error reduced to 0.49◦C. Such

a result is in line with the observations by Amadori et al. (2020); Piccolroaz et al. (2019), i.e. that for the original scheme to

perform better, reducing the measured Secchi depth is advised. An improvement of 0.08◦C in the model error along the water315

column is considerable (14%), but it is achieved at the expense of the physical meaning of Secchi depth information. If β is
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Figure 4. a-b) Temperature profiles simulated (lines) and measured (black dots) on a summer day (17 July 2019) in Lake Morat implementing

the O and M model configurations with target ϵTz . Model results are displayed at the measurement time (10:00 am, black dashed line) and

in a time range of ± 2 hours around 10:00 am. c-d) Vertical eddy diffusivity simulated in the two model setups as in a-b) ± 2 days around

17 July 2019 (black straight line in panel e). d) Difference in simulated eddy diffusivity between the two models shown on an hourly basis.
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introduced and calibrated (Mcal test), we see that the final error ϵT = 0.47◦C is only slightly smaller than in the previous case,

but significant gain is obtained in the physical consistency of all inputs (δ = 1.0, β = 0.32).

The interesting element of our analysis is that the parameter calibration allows the original model to get close to reality

despite the faulty parameterization of the heat absorption at the surface. The price of such optimization is however the alteration320

of other physical processes that compensate the flaw in the model formulation. This is evident from the enhanced diffusivity at

the surface in the original model formulation (Figure 4) which derived from an unrealistic instability between the upper layer

and those below due to surface cooling. Such overestimation of surface mixing was also observed by Biemond et al. (2021),

who compared Delft3D model results in Lake Garda with in-situ turbulent kinetic energy dissipation (ε) profiles. In particular,

such overestimation was stronger in stratified conditions and was present also when temperature profiles were appropriately325

simulated.

Layer thickness also plays a role in the optimal scaling of δ. When surface water temperature is the calibration target (ϵT0

as objective function), the optimal value of δ is 0.57 (Figure 3c) even if β is included in the parameterization and is calibrated.

While 0.57 is definitely more acceptable than the value 0.12 obtained in the case without β (3a), it is still significantly smaller

than the expected realistic value, i.e. δ = 1. We speculate that this behavior can be interpreted by recalling that the layer in330

which the β fraction is absorbed is generally considered to be ∼ 60 cm thick (Henderson-Sellers, 1986). This thickness is used

by several models as the reference depth where the exponential decay starts (Zaneveld and Spinrad, 1980; Piccolroaz et al.,

2024). Since the surface layer thickness in our model is 0.26 m (Table B1), it is possible that the value of δ lower than expected

(i.e. 0.57) is again compensating for trapping the fraction β in a too thin layer. This suggests that including such reference

depth in the parameterization, and eventually calibrating it, might result in a more realistic value of δ also when optimizing the335

model to simulate surface water temperature only.

6 Conclusions

Automatic calibration tools are powerful for optimizing parameter selection in complex models, helping modelers in achieving

realistic simulations of the studied environment. Here, we demonstrated that such tools can also be utilized by developers to

assess whether their implementations of models align with the physics, and by users to identify potential improvements needed340

in the modeling framework. While issues with lake modelling often stem from inappropriate meteorological conditions, users

and developers can leverage these toolboxes to detect code-related issues.

We tested the response of a hydrodynamic model, Delft3D, which is widely used by the limnological community, to the

task of simulating the vertical distribution of heat in lakes. The process is regulated by the well-known Beer law describing

the absorption rate of shortwave radiation along the water column, but its incomplete implementation in the numerical model345

requires a compensation mechanism (via a non-physical adjustment of the Secchi depth instead of the including the absoprtion

of a fraction of solar shortwave radiation at the surface) to optimally simulate surface water temperature. By exploiting a

recently developed calibration tool (DYNO-PODS), based on surrogate models, we were able to unveil such a limitation of the

Delft3D parameterization that was never explicitly discussed, and to fix it with a small modification of the source code.
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In conclusion, we recommend caution in blindly applying automatic tools, emphasizing the importance of evaluating the350

physical significance of the obtained calibration parameters. We believe that the extensive use of such calibrators, and the

insightful analysis of the results of the optimization, may offer similar outcomes in other applications, even in the case of

computationally heavy simulations.

Appendix A: Source code

We report here the parts of the Delft3D code which were modified to include the effect of β according to equation (3). Such355

modification is made in the subroutine heatu.f90.

At surface layer, the original source code lists:

qink = corr * qsn * (1.0_fp - exp(extinc*zdown)) / extinc

We modified as:

qink = corr * (1.0_fp-beta_sw) *qsn * (1.0_fp - exp(extinc*zdown)) / extinc360

+ qsn * beta_sw

At deeper layers, the original source code lists:

qink = corr * qsn * (exp(extinc*ztop) - exp(extinc*zdown))

We modified as:

qink = corr * (1.0_fp-beta_sw) * qsn * (exp(extinc*ztop) - exp(extinc*zdown))365

Appendix B: Test site and base model calibration

Lake Morat (Lake Murten in German) (Fig. B1a,b) is a Swiss lake situated at 429 m above sea level with a surface area of

22.8 km2, an average depth of 24 m, and a maximum depth of 45 m. In-situ water temperature profiles are sampled at monthly

basis in the middle of the lake (Fig. B1b,c), together with measurements of water transparency (expressed as Secchi depth, Fig.

B1d).370

The details on the model grid size and time spacing of the Delft3D model for this lake are reported in Table B1. As at-

mospheric forcing at the surface boundary of the lake we used COSMO-1 space and time varying meteorological variables

(air temperature, relative humidity, wind speed, cloud cover, shortwave radiation and air pressure) provided by MeteoSwiss

at hourly time resolution and 1.1 km spatial resolution. The assimilated outputs, i.e., reanalysis data, based on observational

measurements (Voudouri et al., 2017) were used for this purpose.375

The base setup for this lake model was obtained from a year-long automated calibration implementing DYNO-PODS (Xia

et al., 2022). The full set of parameters are reported in Table 1 in the main text and include the background horizontal viscosity

and diffusivity coefficients (indicated as Vicouv, Dicouv in Delft3D, see Deltares 2023), the Ozmidov lenght scale (Xlo), the
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Figure B1. a) Location of Lake Morat in the alpine area; b) computational grid, bathymetry and location of in-situ monitoring station (red

dot); c) heatmap of the monthly in-situ water temperature profiles for the year 2019 measured in the monitoring point; d) Time series of

in-situ water transparency for 2019 (black dots) and mean year computed from the 2016-2021 time series (mean: orange thick line; standard

deviation: orange shaded area).

Table B1. Base setup for the Delft3D model of Lake Morat.

Nmax Mmax Kmax ∆x,y ∆z ∆t

- - - m m s

41 88 77 73-110 0.26-1 60
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free convection coefficient (Cfrcon), and a corrective coefficient on wind drag coefficient α. For the wind drag coefficient,

as in recent applications of the Delft3D model to peri-alpine lakes (e.g. Amadori et al., 2021), we took as a reference the380

parameterization proposed by Wüest and Lorke (2003) to set the coefficients of the piecewise function implemented in Delft3D:

C0
dA = 0.0044 for wind speed lower than UA = 0.5 m s−1, C0

dC = 0.002 for values higher than UC = 10 m s−1, and linear

interpolations between C0
dB = 0.001 and C0

dA and C0
dC , respectively for wind speed between UB = 4.5 m s−1 and UA and

UC . The wind effect is also taken into account in the parameterization of forced latent and sensitive heat fluxes. Instead of

calibrating parameters like the “Stanton” and “Dalton” numbers, respectively for the sensible and latent heat fluxes (Deltares,385

2023), we set the model to use Cd also in calculating these heat fluxes.

To account for the uncertainties related to the input wind speed and to calibrate the wind function for the forced heat fluxes,

the drag coefficient was adjusted by introducing the corrective parameter α as follows:

Cdi = αC0
di . (B1)

Background values of the vertical eddy viscosity and diffusivity (Vicoww, Dicoww) were set as equal to molecular values390

(i.e. 10−6 and 10−9 m2s−1, respectively), while all the other calibration parameters (e.g. bottom roughness) were set as default

values.

The Secchi disk depth Ds was provided as time series with approximately monthly frequency, as obtained from in-situ

measurements. These values were not modified. As objective function for this base calibration, we used the error along the

entire water column ϵT .395

Code availability. The current version of the model is available at https://github.com/eawag-surface-waters-research/Delft3D/tree/d3d4/

research/surface_heat_transfer under the GPLv3 licence. The exact version of the model used to produce the results used in this paper is

archived on Zenodo (Amadori et al., 2024) as are input data and scripts to run the model and produce the plots for all the simulations

presented in this paper.
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