
1 

 

Evaluation of Dust Emission and Land Surface Schemes in 

Predicting a Mega Asian Dust Storm over South Korea Using WRF-

Chem (v4.3.3) 

Ji Won Yoon1,2, Seungyeon Lee2,3, Ebony Lee2,3, Seon Ki Park1,2,3* 

1Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea. 5 
2Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. 
3Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea. 

Correspondence to: Seon Ki Park (spark@ewha.ac.kr) 

Abstract. This study evaluates the performance of the Weather Research and Forecasting Model coupled with Chemistry 

(WRF-Chem) in forecasting a mega Asian Dust Storm (ADS) event that occurred over South Korea on March 28–29, 2021. 10 

We specifically evaluated a combination of five dust emission schemes and four land surface schemes, which are crucial for 

predicting ADSs. Using in-situ and remote sensing data, we assessed surface meteorological and air quality variables, 

including 2 m temperature, 2 m relative humidity, 10 m wind speed, particulate matter 10 (PM10), and aerosol optical depth 

(AOD) over South Korea. Our results indicate that prediction of surface meteorological variables is more influenced by the 

land surface scheme than by the dust emission scheme—generally showing good performance when dust emission schemes 15 

are combined with the Noah land surface model with Multiple Parameterization options (Noah-MP). In contrast, prediction 

of air quality variables, including PM10 and AOD, is strongly affected by the dust emission schemes, which is directly 

related to the generation and amount of dust through interaction with surface properties. Among the total of 20 available 

scheme combinations, the University of Cologne 2004 combined with the Community Land Model version 4.0 (UoC04-

CLM4) showed the best performance, closely followed by the University of Cologne 2001 combined with CLM4 (UoC01-20 

CLM4). UoC04-CLM4 outperformed the other scheme combinations by reducing the root mean square errors of PM10 up to 

29.6 %. However, both UoC04-CLM4 and UoC01-CLM4 simulated values closest to the MODIS AOD but tended to 

overestimate the AOD in some regions during the originationdust emission and transportation processes. In contrast, other 

scheme combinations significantly underestimated the AOD throughout the entire simulation process of ADSs.  

1 Introduction 25 

The sand dust storms (SDSs), originating from arid or semi-arid regions, can be lifted to several kilometers and then 

transported over long distances, sometimes crossing continents (Zhang et al., 2018). They can contain fine particulates, 

pollutants, and biological materials such as bacteria, viruses, and mold spores (WMO, 2020)—exerting significant impacts 
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on human life and health (Zhang et al., 2016). Therefore, accurate prediction of SDSs is essential to mitigate their impact on 

public health risks, quality of life, and economic loss. 30 

The SDSs occur in many places around the world, including East Asia (He et al., 2022; Lee et al., 2015; Lee and Lee 2022), 

where they are also called Asian dust storms (ADSs), Southwest Asia, the Sahel, the Middle East, and the Mediterranean 

(Behrooz et al., 2022; Darvishi Boloorani et al., 2021; Su and Fung, 2015; Wu et al., 2016; Yu et al., 2018). In East Asia, the 

Taklimakan and Gobi Desert account for about 40 % of global dust emissions (Kok et al., 2021). The ADSs occur most often 

during the spring season (March to May), when surface conditions are dry and wind speeds are strong (Kurosaki and Mikami, 35 

2005; Sun et al., 2001).   

Located in East Asia, South Korea is geographically situated within the westerly wind belt; it is predominantly affected by 

ADSs originating from the Gobi Desert/Inner Mongolia region during the spring season (Lee et al., 2013). The SDSs are also 

named Hwangsa in Korean, literally meaning ‘yellow sands’which has the literal meaning of ‘yellow sands’ (Chun et al., 

2008; In and Park, 2002; Park and Lee, 2004). It is noted that, of the ADS events that affected South Korea from 2002 to 40 

2021, 82.4 % originated from the Gobi Desert/Inner Mongolia region and 64.7 % occurred in spring (Boo et al., 2022). 

The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem; Grell et al., 2005) has been 

extensively employed for simulating and forecasting the weather and air quality (i.e., trace gases, aerosols, etc.) variables 

(Chen et al., 2014; Kumar et al., 2014; Liu et al., 2016; Thomas et al., 2019; Wang et al., 2021). Since the WRF-Chem 

incorporates multiple parameterization schemes concerning the planetary boundary layer, land surface, dust emission, 45 

radiation, and other physical processes, its performance relies on the combination of parameterization schemes employed in 

the simulation (Najafpour et al., 2023; Parra, 2023; Rizza et al., 2018; Yuan et al., 2019: Zhao et al., 2020). Therefore, in 

order to understand the model responses to different parameterization schemes and to enhance the model performance, it is 

crucial to conduct the sensitivity experiments on the parameterization schemes for the targeted regions and variables. 

The SDSs occur when wind speed exceeds a certain threshold value, eroding the soil and releasing dust particles (Chun et al., 50 

2001). In WRF-Chem, the dust emission flux mainly depends on the soil type and the near-surface winds (Kok et al., 2012; 

Shao, 2008) within the dust emission scheme. Conversely, soil moisture, vegetation, and snow can influence changes in dust 

emission flux (Ginoux et al., 2001; Park et al., 2010), In WRF-Chem, the dust emission flux depends on various factors, 

including soil type, near-surface winds, soil moisture, surface roughness, vegetation, snow, and others within the dust 

emission scheme (Ginoux et al., 2001; Laurent et al., 2013; Legrand et al., 2019; Park et al., 2010; Rubinstein et al., 2020; 55 

Singh et al., 2017), and they are primarily associated with the land surface scheme in WRF-Chem. For this reason, numerous 

studies have investigated the sensitivity of different parameterization schemes of the dust emission or land surface processes 

on simulating SDSs using WRF-Chem.  

Yuan et al. (2019) investigated the sensitivity of a severe dust storm that occurred in Central Asia to three different dust 

emission schemes and showed that the sensitivity results varied across regions, indicating that significant differences in dust 60 

emission schemes essentially depend on the sensitivities of threshold friction velocity to surface properties. Najafpour et al. 

(2023) also examined the accuracy of five different dust emission schemes in estimating dust concentration for a severe SDS 
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in Tehran, Iran; they found that the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) and Air Force 

Weather Agency (AFWA) schemes had the best performance compared to the in-situ measurements. Zhao et al. (2020) 

studied the ability of five dust emission schemes to simulate dust emission and transport processes in northwest China; they 65 

identified that each of the five schemes had its own strengths and weaknesses, in terms of spatial pattern of dust source 

region, aerosol optical depth (AOD), aerosol extinction coefficient, and surface PM10 concentrations. Lee et al. (2022) 

conducted WRF-Chem simulations by changing the five dust emission schemes for severe wintertime ADS events over 

South Korea, noting that the University of Cologne 2001 (UoC01) and University of Cologne 2004 (UoC04) schemes were 

the most successful in simulating severe wintertime Asian dust events while the University of Cologne 2011 (UoC11), 70 

GOCART (GO01), and AFWA (GA19) schemes failed to predict them. Rizza et al. (2018) simulated AOD and PM10 for a 

severe Saharan dust event over southern Italy using three land surface schemes within the WRF-Chem model and reported 

that the Rapid Update Cycle (RUC) scheme significantly overestimated dust emissions, whereas Noah and Noah land 

surface model with Multiple Parameterization options (Noah-MP) performed better; they demonstrated the impact of the 

choice of land surface scheme on the prediction of dust emissions. Parra (2023) emphasized the critical importance of 75 

accurately representing surface-atmosphere interactions for numerical air-quality modeling by conducting sensitivity 

experiments on four land surface schemes within the WRF-Chem model. 

Despite the direct influence of surface properties such as soil moisture, vegetation cover, snow, soil type, and near-surface 

wind on the dust emission flux, most of these sensitivity experiments focused solely on either dust emission or land surface 

schemes. Therefore, there were limitations in obtaining the best scheme combination that considers interaction between dust 80 

emissions and surface conditions. Furthermore, in the event of severe dust storms deviating from typical conditions, there 

may be discrepancies in outcomes compared to existing sensitivity studies. Hence, it is necessary to evaluate and propose 

schemes or combinations through appropriate sensitivity experiments.  

In this study, we evaluated the performance of scheme combinations—five for dust emission schemes and four for land 

surface schemes—for meteorological and air quality variables in a mega ADS event, specifically on March 28–29, 2021., by 85 

using in-situ, including the Automated Surface Observing System (ASOS) and Asian dust observation data, remote sensing 

data, including the AErosol RObotic NETwork (AERONET) and the MODerate resolution Imaging Spectroradiometer 

(MODIS), and reanalysis data such as Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA2), over South Korea. 

Section 2 describes the ADS event and methodology, including parameterization schemes in WRF-Chem, and Section 3 90 

describes the evaluation results. Conclusions are given in Section 4. 
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2 Methodology 

2.1 Mega Asian dust event 

Since South Korea is geographically located in the westerly wind zone, it is often affected by the ADSs that occur mainly in 

the Gobi and Inner Mongolia deserts in spring (March to May) (Lee et al., 2013). Consequently, the government of South 95 

Korea introduced the “ADS Crisis Warning System (ACWS)” in 2015. Additionally, the government and local authorities 

have prepared for health and safety problems that may arise among the population by utilizing the "ADS Response Manual" 

during the occurrence of ADSs. 

The ACWS is divided into four-stage crisis warnings—Attention, Caution, Alert, and Severe. These stages are determined 

by the hourly average concentrations of PM10: 1) the Attention stage when hourly average concentrations of PM10 are 100 

expected to exceed 150 μg m-3; 2) the Caution stage, more than 300 μg m-3 for longer than 2 hours; 3) the Alert stage, more 

than 800 μg m-3 for longer than 2 hours; 4) the Severe stage, more than 2,400 μg m-3 for 24 hours and then expected to remain 

at that level for next 24 hours, or more than 1,600 μg m-3 for 24 hours and then expected to maintain at that level for 48 hours. 

Generally, in South Korea, the PM10 concentrations more than 300 μg m-3 indicate a high level, whereas those more than 

800 μg m-3 are considered a very high level (Boo et al., 2021). 105 

On March 29, 2021, a mega ADS with the PM10 concentrations more than 1,000 μg m-3 were observed in some regions of 

the Yellow Sea and South Korea. For the first time following the introduction of the ACWS in 2015, the Ministry of 

Environment of South Korea issued the Caution stage warning to 17 cities and provinces nationwide (Kim et al., 2022). 

Figure. 1 shows that the highest PM10 concentration was recorded at 1,491 μg m-3 at Heuksando, an island located in the 

Yellow Sea, at 1800 UTC on March 29, 2021 (0300 LST on March 30). During this period, 9 out of 25 Asian dust 110 

observation stations from Korea Meteorological Administration (KMA) exceeded 800 μg m-3, indicating a very severe ADS 

event in South Korea. Based on these findings, we selected this ADS event for this study, which occurred on March 29-30, 

2021, and significantly impacted the air quality of South Korea. 
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Figure 1: Time series of the hourly averaged PM10 concentrations from 0000 UTC (0900 LST) on March 27 to 1500 UTC on 

March 30 (0000 LST on March 31) at 25 Asian dust observation stations operated by KMA. Colored solid lines represent the 

PM10 concentrations at each Asian dust observation station. Blue and red dashed lines indicate the threshold values for the 

ACWS: the Caution (≥ 300 μg m-3) and Alert (≥ 800 μg m-3) stage, respectively. 

 120 

Figure 2 shows surface weather charts associated with the ADS from March 26 to 29, 2021. Here, the source region and site 

observations of ADSs are identified by the orange shaded area and red circles, respectively. At 1800 UTC on March 26, 

2021, the ADS originated along the high pressure gradient side of a low pressure system in Mongolia (Fig. 2a). At 1200 

UTC on March 27, as the low-pressure center moved to the eastern Mongolia and Inner Mongolia, the ADS moved to the 

Gobi Desert/Inner Mongolia (Fig. 2b). At 0600 UTC on March 28, the low-pressure center moved toward north of 125 

Manchuria, forming a northwest wind that could carry the sand dusts to South Korea; thus, the ADS moved toward the Bohai 

Bay, including the Liaodong Peninsula (Fig. 2c). Finally, by 0000 UTC on March 29, the ADS affected the entire areas of 

the Shandong Peninsula and South Korea (Fig. 2d). 
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Figure 2: Surface weather charts indicating the source region (orange shading) and site observations (red circles) of the ADS event, 

along with the sea-level pressure (solid lines; in hPa for (a) 1800 UTC on 26 March, (b) 1200 UTC on 27 March, (c) 0600 UTC on 

28 March, and (d) 0000 UTC on 29 March 2021. The source region represents the Gobi Desert, including part of Inner Mongolia. 

Modified from the weather charts by KMA (https://data.kma.go.kr/cmmn/main.do). 

 135 

2.2 WRF-Chem  

In this study, we utilized the WRF-Chem model version 4.3.3, a fully coupled meteorology-chemistry model that accounts 

for interactions between meteorological and chemical processes (Grell et al., 2005). The model domain covers most of East 

Asia, focusing on the source regions and transport route of ADSs impacting South Korea (see Fig. 3), with a grid spacing of 

30 km and 50 vertical levels up to 50 hPa. 140 

The meteorological initial and boundary conditions are obtained from the global final analysis (FNL;  

https://rda.ucar.edu/datasets/ds083.3/dataaccess) dataset with a resolution of 0.25° × 0.25°, produced by the Global Forecast 

System (GFS) of the National Centers for Environmental Prediction (NCEP); the boundary conditions are updated every 6 h. 

The chemical initial and boundary conditions are derived from the Community Atmosphere Model with Chemistry (CAM-

chem; https://www.acom.ucar.edu/cam-chem/cam-chem.shtml), part of the National Center for Atmospheric Research 145 

https://data.kma.go.kr/cmmn/main.do
https://rda.ucar.edu/datasets/ds083.3/dataaccess
https://rda.ucar.edu/datasets/ds083.3/dataaccess
https://www.acom.ucar.edu/cam-chem/cam-chem.shtml
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(NCAR)’s Community Earth System Model (CESM) and are produced using the mozbc pre-processing tool 

(https://www.acom.ucar.edu/wrf-chem/download.shtml). 

The physical and chemical schemes used in the study, excluding the dust emission and land surface schemes, are detailed in 

Table 1. The default physics schemes are as follows: Grell 3D ensemble for cumulus parameterization (Grell and Dévényi, 

2002), Morrison two-moment scheme for cloud microphysics (Morrison et al., 2009), Mellor-Yamada-Nakanishi-Niino level 150 

2.5 (MYNN2; Nakanishi and Niino, 2006) for planetary boundary layer processes, and the Rapid Radiative Transfer Model 

for General Circulation Models (RRTMG) for both shortwave and longwave radiation (Iacono et al., 2008). For chemistry 

option, MOZCART is selected, which merges the Model for Ozone and Related Chemical Tracers (MOZART) gas-phase 

chemistry module (Emmons et al., 2010) with the GOCART aerosol module (Chin et al., 2000a, b; Ginoux et al., 2001; Chin 

et al., 2002). The global emission inventory for anthropogenic emissions is obtained from the Emission Database for Global 155 

Atmospheric Research developed for the Hemispheric Transport of Air Pollutants assessment (EDGAR-HTAP; Janssens-

Maenhout et al., 2015), and the updated Tropospheric Ultraviolet Visible (TUV; Madronich et al., 2002) scheme for 

photolysis is used. 

 

https://www.acom.ucar.edu/wrf-chem/download.shtml
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Figure 3: The computational domain with WRF-Chem for (a) simulation, (b) verification against in-situ and AERONET data in 

South Korea, and (c) locations of the ASOS, Asian dust observation stations, and AERONET used for verification: In (a), the gray 

shading represents the ADSs source regions for this study case, and the red dashed arrow indicates the main route of ADSs. The 

yellow solid line denotes the location for vertical cross-section analysis (see Figs. 11 14 and Fig. S7S11), and the blue dotted line 165 
represents the CALIPSO orbit path (see Figs. 13 and S10). In the ADSs source regions, the black square box denotes the area used 

for verification (see Fig. 10), and the red circle indicates the specific location for additional analysis (see Subsection 3.3). In (c), the 

green circles indicate the locations where the ASOS and Asian dust observation stations coexist—23 stations; the blue circles 

represent ASOS stations only—3 stations; the red circles depict Asian dust observation stations only—2 stations; and the black 

triangles indicate AERONET sites—6 sites. 170 

 

Table 1: The default physical and chemical schemes used in WRF-Chem simulations. 
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 Processes Schemes / Options 

Physics 

Microphysics Morrison double-moment 

Cumulus Grell 3D ensemble 

PBL MYNN2 

Shortwave radiation RRTMG 

Longwave radiation RRTMG 

Chemistry 

Gas phase chemistry/Aerosols MOZCART 

Anthropogenic EDGAR-HTAP 

Photolysis Updated TUV  

 

 

We run WRF-Chem with a 1-hour interval from the occurrence of ADSs in the source region to their complete 175 

disappearance in South Korea, including a spin-up time of 72 hoursWe ran WRF-Chem, including a 72-hour spin-up time, 

from the occurrence of ADSs in the source region until their complete disappearance in South Korea, and the model output 

was saved at 1-hour intervals; therefore, the model run period is from 1200 UTC March 24 to 0000 UTC on March 31, 2021. 

Note that the 72-hour spin-up time is not included in the evaluation process whose performance is calculated every hour and 

summed up for the total analysis period. 180 

 

2.3 Dust emission and land surface schemes 

In this study, the sensitivity experiments of scheme combinations are performed for a total of 20 combinations of five dust 

emission and four land surface schemes in WRF-Chem: the dust emission scheme include the GOCART (Ginoux 

et al., 2001), AFWA (LeGrand et al., 2019), and 3 versions of University of Cologne schemes—UoC01, UoC4, and UoC11 185 

(Shao, 2001, 2004; Shao et al., 2011); the land surface schemes include Noah land surface model (Noah; Chen and Dudhia, 

2001; Ek et al., 2003), Rapid Update Cycle (RUC; Benjamin et al., 2004), Noah land surface model with multiple 

parameterization options (Noah-MP; Niu et al., 2011), and Community Land Model version 4.0 (CLM4; Oleson et al., 2010). 

Table 2 lists the parameterization schemes used in the above-mentioned description. Hereinafter, in order to distinguish 

between different scheme combinations, each sensitivity experiment is named in the following format: ‘dust emission 190 

scheme-land surface scheme’ (e.g., GOCART-Noah, GOCART-RUC, AFWA-Noah, etc.). 

 

Table 2: Parameterization schemes of WRF-Chem used for the sensitivity experiment: the dust emission and land surface schemes. 

The option numbers are the same as in the namelist of WRF-Chem. 
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Dust emission scheme Land surface scheme 

Scheme 
Option 

(dust_opt / dust_scheme) 
Scheme 

Option 

(sf_surface_physics) 

GOCART 1 / - Noah 2 

AFWA 3 / - RUC 3 

UoC01 4 / 1 Noah-MP 4 

UoC04 4 / 2 CLM4 5 

UoC11 4 / 3   

 195 

2.3.1 Dust emission schemes 

The GOCART scheme calculates the dust emission flux based on 10 m wind speed and soil wetness for five bin sizes of dust 

particles (bin 1: 0.2–2 μm, bin 2:–3.6 μm, bin 3: 3.6–6 μm, bin 4: 6–12 μm, bin 5: 12–20 μm). The dust emission flux at each 

bin size is estimated as function of 𝐹𝑝  (Ginoux et al., 2001)    

𝐹𝑝 = {
𝐶𝑆𝑠𝑝𝑢10𝑚

2  (𝑢10𝑚 − 𝑢𝑡)               if  𝑢10𝑚 > 𝑢𝑡
  

0                                                          otherwise,
                                                                                                                          (1)    200 

where 𝐶 is an empirical constant (0.8); 𝑆 is dust erodibility factor; 𝑠𝑝 is the fraction of each bin size class—it is fixed as 0.1 

for bin 1 and 0.25 for the other bin sizes; 𝑢10𝑚 is the horizontal wind speed at 10 m height above ground level; 𝑢𝑡 is the 

threshold velocity, a minimum wind speed at which dust emission can occur, and it depends on particle size and soil wetness.  

The AFWA scheme was updated version based on the Marticorena-Bergametti (MB) dust emission scheme (Marticorena 

and Bergametti, 1995) in GOCART scheme (Chin et al., 2000). It uses friction velocity (𝑢∗) to calculate saltation flux from 205 

the surface for a particular dust size as (White, 1979) 

𝐻(𝐷𝑠) =   

{
 
 

 
   𝐶

𝜌𝑎
𝑔
𝑢∗
3 (1 +

𝑢∗𝑡
𝑢∗
) (1 −

𝑢∗𝑡
2

𝑢∗
2
)

 
                𝑢∗  ≥ 𝑢∗𝑡   

      0                                                            𝑢∗ < 𝑢∗𝑡 ,
 

                                                                                                            (2) 

where 𝐻(𝐷𝑠) is the saltation flux; 𝐶 is an empirical constant (1.0); 𝜌𝑎 is the air density; 𝑔 is gravitational acceleration; 𝑢∗ is 

the friction velocity; 𝑢∗𝑡 is threshold friction velocity—a function of particle size, air and soil density, soil moisture, and 

roughness. The total horizontal saltation flux calculated as follows: 210 

𝐺 = ∑𝐻(𝐷𝑠)𝑑𝑆𝑟𝑒𝑙(𝐷𝑠),                                                                                                                                                                           

𝑠

 (3) 
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where 𝐺 is total horizontal saltation flux considering the sum of each particle size (𝐷𝑠); s represents 9 sand particles that are 

composed of 1 Clay, 5 Silt, and 3 Sand particles, each defined by specific particle density and effective diameter; 𝑑𝑆𝑟𝑒𝑙  is 

relative weighting factor for each particle size bin (𝐷𝑠 ). The vertical dust flux is then calculated as (Marticorena and 

Bergametti, 1995) 215 

𝐹𝑏𝑢𝑙𝑘 = 𝐺𝑆𝛽,                                                                                                                                                                                                  (4) 

where 𝐹𝑏𝑢𝑙𝑘  is the vertical dust flux—a dust emission flux; 𝑆 is the erodibility function; 𝛽 is the sandblasting efficiency 

factor (Gillette, 1979)—an empirical function of soil properties (Marticorena and Bergametti, 1995) 

The UoC01, UoC04, and UoC11 are three versions of dust emission schemes based on Shao (2001), Shao (2004) and Shao 

et al. (2011), respectively. This latter is further divided into three emission parameterizations with an increasing level of 220 

simplification (Shao, 2001, 2004; Shao et al., 2011). The calculation of dust emission flux for UoC01 is as follows: 

𝐹(𝑑𝑖 , 𝑑𝑠) =  𝑐𝑦 [(1 − 𝛾) +  𝛾
𝑝𝑚(𝑑𝑖)

𝑝𝑓(𝑑𝑖)
]
𝑄𝑑𝑠𝑔

𝑢∗
2𝑚

(𝜌𝑏𝜂𝑓𝑖Ω + 𝜂𝑐𝑖𝑚 ),                                                                                                          (5) 

where 𝐹(𝑑𝑖 , 𝑑𝑠)  is the vertical dust flux of particle size (𝑑𝑖 ) generated by the saltation of particle size (𝑑𝑠 ); 𝑐𝑦  is a 

dimensionless coefficient; γ is the weight factor related to dust particle size distribution, 𝑝𝑚(𝑑𝑖) and 𝑝𝑓(𝑑𝑖) are minimally 

and fully disturbed particle size distribution of the parent soil, respectively; 𝜌𝑏 is the soil density; m is dust particle mass; Ω 225 

is the volume removed by an impacting saltation particle; 𝜂𝑓𝑖 is the mass fraction of dust that can be discharged; 𝜂𝑐𝑖 is the 

mass fraction of the aggregated dust; 𝑄𝑑𝑠 is the saltation flux of particles of size 𝑑𝑠.  

The dust emission flux in UoC04 is simplified compared to that in the UoC01 scheme (Shao, 2004). The calculation is as 

follows: 

𝐹(𝑑𝑖 , 𝑑𝑠) =  𝑐𝑦𝜂𝑓𝑖[(1 − 𝛾) +  𝛾𝜎𝑝]
𝑄𝑑𝑠𝑔

𝑢∗
2
(1 + 𝜎𝑚),                                                                                                                              (6) 230 

𝜎𝑝 = 
𝑝𝑚(𝑑𝑖)

𝑝𝑓(𝑑𝑖)
,                                                                                                                                                                                                 (7) 

where 𝜎𝑝 is the mass ratio of free and aggregated dust; 𝜎𝑚 is the bombardment efficiency.  

The UoC11 scheme is further simplified based on the UoC04 scheme. In this scheme, 𝛾 is set to 1, and the dust emission flux 

is determined as follows: 

𝐹(𝑑𝑖 , 𝑑𝑠) =  𝑐𝑦𝜂𝑓𝑖𝜎𝑝
𝑄𝑑𝑠𝑔

𝑢∗
2
(1 + 𝜎𝑚)                                                                                                                                                        (8)  235 
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2.3.2 Land surface schemes 

The Noah scheme assesses soil moisture and temperature in four soil layers with thicknesses of 10, 30, 60, and 100 cm, 

incorporating vegetation and snow dynamics. It uses equations for soil thermal diffusion and hydrology to determine soil 

moisture and temperature while accounting for surface energy and water balance. Moreover, it explicitly includes physics 

related to vegetation and hydrological processes such as evapotranspiration, canopy resistance, surface runoff, soil drainage, 240 

albedo, and the influence of urban canopies. 

The RUC scheme demonstrates various phases of soil surface water, vegetation effects, and canopy water dynamics; it 

calculates heat diffusion and moisture transfer through nine soil layers from 0 to 300 cm, with a focus on soil temperature, 

soil moisture, and snow dynamics (Smirnova et al., 2016). This scheme features a thin surface layer that covers half of the 

first atmospheric layer and half of the topsoil layer, ensuring accurate representation of the energy budget and incorporates 245 

the part of canopy moisture and soil texture to reflect the effect of vegetation on evaporation. 

The Noah-MP scheme built on the Noah framework but includes updates in physics that encompass dynamic vegetation and 

ecological processes, as well as snow and underground water processes. This scheme allows flexibility in selecting from 

multiple options for each physical parameterization. In this study, the default options for each parameterization in the WRF-

Chem model are used. 250 

The CLM4 is applied in climate studies because of its advanced handling of hydrology, biogeochemistry, biogeophysics, and 

dynamic vegetation. Its vertical structure consists of a single-layer vegetation canopy, a ten-layer soil column, and a five-

layer snowpack (Skamarock et al., 2008). It employs a conceptual Topography-based Hydrological Model (TOPMODEL) to 

calculate overland flow, focusing on the biogeophysics of the land surface and vegetation dynamics. 

 255 

2.4 Evaluation data and methods 

We evaluated the performance of scheme combinations using three types of data: in-situ data, including the Automated 

Surface Observing System (ASOS) and Asian dust observation data; remote sensing data, including the AErosol RObotic 

NETwork (AERONET), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and the MODerate 

resolution Imaging Spectroradiometer (MODIS); and reanalysis data, including Modern-Era Retrospective Analysis for 260 

Research and Applications, version 2 (MERRA-2). 

2.4.1 Surface observation data 

The surface meteorological variables, including 2 m temperature (T2m), 2 m relative humidity (RH2m), 10 m wind speed 

(WS10m) and surface PM10 concentration, obtained from the ASOS and the Asian dust observation stations (see Fig. 3c) as 

operated by KMA, were used to evaluate the performance of scheme combinations during the mega ADS event. The T2m 265 

and RH2m were utilized as observation data collected at hourly intervals. Due to fluctuations, the WS10m was used as the 
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10-minute average wind speed before each hourly. Since the PM10 concentrations were collected at 5-minute intervals, the 

analysis was conducted using the hourly average concentrations. 

2.4.2 Remote sensing data 

The AERONET is a global network of ground-based remote sensing aerosol and provides a long-term database of globally 270 

distributed aerosol optical properties—AOD, single scattering albedo, and particle size distribution (Holben et al., 1998). In 

this study, we utilized the Angström exponent (AE) between 440 and 675 nm and AOD at 500 nm, collected from six sites 

over South Korea (see Fig. 3c), to calculate the AOD at 550 nm for evaluation. The conversion formula is as follows: 

𝐴𝑂𝐷(550) = 𝐴𝑂𝐷(500) × (
550

500
)
−𝛼

,                                                                                                                                                      (9) 

where 𝛼  indicates AE between 440 and 675 nm, and 𝐴𝑂𝐷(500)  and 𝐴𝑂𝐷(550)  represents AOD at 500 and 550 nm, 275 

respectively.  

The MODIS instruments on the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites observe 

and monitor Earth's changes with high spatial resolution. They provide near-daily global coverage, allowing the monitoring 

of various phenomena such as tropospheric aerosols (Kaufman et al., 1997). The MODIS Deep Blue algorithm enables the 

retrieval of AOD data even over high-albedo surfaces such as deserts and snow-covered areas (Hsu et al., 2006), with a 280 

spatial resolution of 10 × 10 km2 at 550 nm. In this study, the AOD data retrieved from Terra Collection 6.1 Level 2 MODIS 

Deep Blue algorithm (MOD04_L2) are used to assess the time-varying horizontal distribution of simulated AOD by scheme 

combinations. 

The CALIPSO carries an aerosol lidar that measures the vertical structure of the atmosphere using an Orthogonal 

Polarimeter. It provides aerosol extinction coefficients at 532 nm and 1064 nm, as well as column AOD data in the 285 

troposphere and stratosphere (Vaughan et al., 2004; Winker et al., 2003). In this study, vertical profiles of aerosol extinction 

coefficients at 532 nm (CAL_LID_L2_05kmAPro-Standard-V4-21; Vaughan et al., 2004) were used to evaluate the vertical 

structure of modeled dust concentrations. 

2.4.3 Reanalysis data 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), represents the latest 290 

atmospheric and aerosol reanalysis product from NASA's Global Modeling and Assimilation Office (Gelaro et al., 2017). 

The MERRA-2 is derived from the Goddard Earth Observing System, version 5 (GEOS-5) (Molod et al., 2015; Rienecker et 

al., 2008), utilizing the GOCART model (Chin et al., 2002) aerosol module (Buchard et al., 2017; Randles et al., 2016) and 

offers a spatial resolution of 0.5° latitude by 0.625° longitude, with 72 vertical layers from the surface up to 0.01 hPa. The 

MERRA-2 assimilates AOD from a variety of ground-based and remote sensing sources, including the AErosol RObotic 295 

NETwork (AERONET; 1999–2014), Advanced Very High Resolution Radiometer (AVHRR), Multiangle Imaging 
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SpectroRadiometer (MISR; 2000–2014), and MODIS on both Terra (2000–present) and Aqua (2002–present) satellites 

(Buchard et al., 2017; Gelaro et al. 2017). In this study, MERRA-2 is employed to compare the AOD spatial distribution 

with the AOD simulated by various scheme combinations. 

2.4.4 Evaluation Metrics 300 

In this study, the simulated surface meteorological variables and PM10 concentrations were compared with observation data 

using two types of evaluation methods: 1) Using the difference between predicted and observed values—Pearson’s 

correlation coefficient (PCC) represents the level of linear relationship between the forecasts and observations; mean bias 

error (MABE) is the arithmetic average of the differences between forecasts and observations; root mean square error 

(RMSE) estimates the average error of the model and uses the square of the difference between the forecasts and 305 

observations; 2) Determining detection success using an arbitrary threshold (categorical metrics)—this method requires a 

threshold for binary classification using a 2 x 2 contingency table (see Table 3) and was applied for only PM10 evaluations 

in this study.  

For categorical metrics, we considered the threshold values of the Fine dust alert and ACWS provided by the Atmospheric 

Environment Administration of South Korea—the threshold values are 80 μg m-3 (poor air quality due to fine dust), 150 μg 310 

m-3 (very poor air quality due to fine dust; Attention), 300 μg m-3 (Caution), and 800 μg m-3 (Alert), respectively. In Table 3, 

'Hit' and 'Correct rejection' indicate accurate predictions, whereas 'False alarm' and 'Miss' suggest inaccurate predictions. The 

Probability Of Detection (POD) evaluates the ratio of accurate forecasts to observed events, indicating how often an event is 

predicted correctly when it occurs. It ranges from 0 to 1, with 1 indicating a perfectskillful forecast and below 0.5, poor 

performance. Note that POD does not account for events without observed events, which means that an increased tendency 315 

to overestimate the frequency of events can lead to an artificial improvement in performance. The False Alarm Rate (FAR) is 

utilized to assess the ratio of false alarms to events, predicting an event when it is not observed. FAR also ranges between 0 

and 1, where values closer to 0 indicate better forecast skill. In contrast to POD, since FAR does consider events without 

observed events, an increased tendency to underestimate the frequency of non-events can result in an artificial skill 

improvement. Therefore, it is essential to consider FAR with POD to address these limitations. The formulas for POD and 320 

FAR are as follows:-Additionally, the Critical Success Index (CSI) is an important metric used to evaluate the overall 

accuracy of forecasts. It measures the ratio of correctly forecast events to the total number of observed and forecast events, 

accounting for both ‘False Alarm’ and ‘Miss’ events. In other words, CSI addresses the limitations of POD and FAR by 

integrating both metrics, providing a clearer assessment of overall forecast performance. The CSI value ranges from 0 to 1, 

with values closer to 1 indicating higher forecast skill. CSI is particularly useful because it considers both over-forecasting 325 

and under-forecasting, showing how accurate the forecast is. The formulas for POD, FAR, and CSI are as follows:  

 

𝑃𝑂𝐷 =  
𝑎

𝑎 + 𝑐
                                                                                                                                                                                              (10) 
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𝐹𝐴𝑅 =  
𝑏

𝑏 + 𝑑
                                                                                                                                                                                              (11)  

𝐶𝑆𝐼 =  
𝑎

𝑎 +  𝑏 + 𝑐
                                                                                                                                                                                        (12)  

 330 

 

Table 3: Contingency table for forecast evaluation: this table categorizes the outcomes of forecasts versus actual observations into 

four distinct types—Hit (a), when both the forecast and observation agree on the event occurring; False alarm (b), when the 

forecast predicts an event that does not occur; Miss (c), when an event occurs but is not forecasted; and Correct rejection (d), 335 
when neither the forecast nor the observation indicates the occurrence of an event. 

 
Observation 

Yes No 

Forecast 
Yes Hit (a) False alarm (b) 

No Miss (c) Correct rejection (d) 

 

3 Results 

3.1 VerificationEvaluation with using in-situ data 

The verification against the in-situ data (i.e., ASOS and Asian dust observation stations) is conducted for T2m, RH2m, 340 

WS10m, and surface PM10 concentrations at the given observational stations in South Korea. The values are averaged over 

the stations (see the station locations in Fig. 3c). 

3.1.1 Surface meteorological variables 

Figure 4 shows PCC for all scheme combinations. Since surface meteorological variables are primarily influenced by the 

land surface scheme, the performance differences caused by the dust emission schemes were very small in the validation 345 

results. The scheme combinations generally have good performance with high to moderate PCCs for surface meteorological 

variables: 0.73−0.77 for T2m, 0.73−0.77 for RH2m, 0.58−0.62 for WS10m (Fig.4). More details are as follows: 1) For T2m, 

the best performance is achieved by scheme combinations based on Noah-MP (0.77), followed by CLM4 (0.74−0.75), Noah 

(0.74), and RUC (0.72−0.73) (Fig 4a); 2) For RH2m, the best performance is also shown by combinations based on Noah -

MP (0.77), followed by CLM4 (0.74−0.75), Noah (0.74−0.75), and RUC (0.72−0.73) (Fig. 4b); 3) For WS10m, similar 350 

performance is achieved by scheme combinations based on Noah-MP (0.61−0.62), RUC (0.61−0.62), and CLM4 (0.61), 

followed by Noah (0.58−0.60) (Fig. 4c). 
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Figure S1 shows the RMSE for all scheme combinations: 1) For T2m, Noah-MP-based combinations showed the best 

performance, followed by Noah-, CLM4-, and RUC-based combinations (Fig. S1a); 2) For RH2m, Noah-MP- and Noah-

based combinations showed similarly good performance, followed by CLM4- and RUC-based combinations (Fig. S1b); 3) 355 

For WS10m, Noah-MP-based combinations still showed the best performance, followed by RUC-based combinations (Fig. 

S1c). Fig.ure S2 shows the MBE for all scheme combinations: 1) For T2m, Noah-MP- and Noah-based combinations 

showed similarly small MBEs, with a negative trend across all experiments (Fig. S2a); 2) For RH2m, Noah-MP- and Noah-

based combinations also showed similarly good performance, with positive bias across all experiments (Fig. S2b); 3) For 

WS10m, Noah-MP-based combination showed the best performance, with positive bias (Fig. S2c). 360 

Overall, for surface meteorological variables, the Noah-MP-based combinations showed the best performance. The Noah-

MP scheme provides reliable lower boundary conditions by accurately representing surface variables through more precise 

calculations of heat and moisture fluxes compared to other land surface schemes within the planetary boundary layer (Rizza 

et al., 2018; Wang et al., 2023). 

 365 
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Figure 4: Pearson’s correlation coefficient (PCC) of all scheme combinations for (a) T2m, (b) RH2m, and (c) WS10m, respectively, 

using the ASOS data. The y-axis represents values greater than 0.43, indicating the minimum threshold for a weak correlation. 

The values are averaged over the stations (see Fig. 3c). 370 

 

Figure 5 shows the scatter diagram for T2m of Noah-MP-based combinations, which exhibited the best performance for T2m, 

RH2m, and WS10m in the verification. Consistent with the verification results, the dust emission scheme does not 

significantly impact the linear correlation between observed and simulated surface meteorological variables. Similar 

outcomes were observed for RH2m and WS10m (not shown). 375 

 

Figure 5: Scatter plots showing the relationship between observed and forecasted values for T2m, using Noah-MP-based 

combinations. Each panel represents a different scheme combinations: (a) GOCART-Noah-MP, (b) AFWA-Noah-MP, (c) UoC01-

Noah-MP, (d) UoC04-Noah-MP, and (e) UoC11-Noah-MP. The black dashed line represents that the forecast perfectly matches 

the observation. The blue line indicates the linear regression fit to the data, providing relationship between the observed and 380 
forecasted values. 

Figure 5 shows the scatter plot of WS10m for UoC04-based combinations. In these combinations, the simulated values 

exhibited a clear tendency to overestimate compared to the observed values. Notably, UoC04-Noah-MP, which showed the 

best performance in WS10m validation based on MBE and RMSE, had the smallest intercept, indicating the lowest 

systematic bias among the four scheme combinations, followed by UoC04-RUC, UoC04-CLM4, and UoC04-Noah. Similar 385 



19 

 

results were observed for T2m and RH2m (not shown). This finding aligns with the validation of meteorological variables, 

where Noah-MP-based combinations demonstrated the best performance. 

 

  

Figure 5: Scatter plots showing the relationship between observed and simulated values for WS10m, using UoC04-based 390 
combinations. Each panel represents a different scheme combination: (a) UoC04-Noah, (b) UoC04-RUC, (c) UoC04-Noah-MP, and 

(d) UoC04-CLM4. The black dashed line represents that the simulation perfectly matches the observation. The blue line indicates 

the linear regression fits the data, providing a relationship between the observed and simulated values. 

 

 395 

Figure S3 shows time series comparisons of observations and CLM4-based combinations of T2m (Fig. S3a), RH2m (Fig. 

S3b), and WS10m (Fig. S3c), at two ASOS stations in South Korea—Yeongwol and Cheonan. The time series of T2m, 

RH2m, and WS10m showed very similar patterns, as meteorological variables are generally influenced more by land surface 

schemes than by dust emission schemes. For T2m, CLM4-based combinations showed an underestimation trend, whereas 

RH2m and WS10m tended to be overestimated. In particular, RH2m reached nearly 100% before the ADS entered South 400 

Korea due to precipitation from a passing low-pressure system. The north-westerly winds behind this system, driven by an 
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accompanying high-pressure system, often transport ADS from Inner Mongolia and the Gobi Desert to South Korea in 

spring (Lee et al., 2016). Meanwhile, despite the similar time series patterns of T2m, RH2m, and WS10m in the CLM4-

based combinations, the PM10 time series showed that GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 failed to 

reproduce the observed values (see Fig. 8). This failure is attributed to the inability to simulate dust emissions at the source 405 

regions, resulting in the absence of ADS transport to South Korea (see Figs. 12 and S9). 

Figure S4 is the same as Figure S3, except for UoC04-based combinations. T2m, RH2m, and WS10m showed significant 

differences based on the land surface schemes. Similar to the CLM4-based combinations, T2m was underestimated, whereas 

RH2m and WS10m were overestimated. For T2m, UoC04-Noah-MP closely matched the observations during the daytime, 

whereas UoC04-RUC performed better at night. For RH2m, UoC04-RUC, UoC04-Noah-MP, and UoC04-CLM4 matched 410 

the observations during periods of decreasing relative humidity, although UoC04-RUC showed noticeable differences. 

However, during periods of increasing RH2m, UoC04-based combinations differed significantly from the observations. For 

WS10m, UoC04-Noah and UoC04-CLM4 showed greater overestimation compared to UoC04-RUC and UoC04-Noah-MP. 

3.1.2 Surface PM10 concentrations 

We compared the PM10 prediction performance of all scheme combinations against in-situ data—Asian dust observation 415 

station (see the station locations in Fig. 3c). Fig.ure 6 shows PCC, RMSE, and MBE for all scheme combinations. Overall, 

UoC04-CLM4 showed the best performance, followed by UoC01-CLM4. The UoC04-RUC and UoC01-RUC also showed 

good also demonstrated relatively better  performance compared to other scheme combinations. Conversely, the 

combinations of UoC01 and UoC04 with Noah and Noah-MP, as well as the combinations of GOCART, AFWA, and 

UoC11 with all land surface schemes, showed poor performance. performed poorly. The detailed descriptions of the 420 

verification results are as follows: 1) For PCC (Fig. 6a), UoC04-CLM4 showed the highest value (0.61), indicating the best 

performance, followed by UoC01-CLM4 (0.60), UoC04-RUC (0.47), and UoC01-RUC (0.44). In all scheme combinations 

except for combinations of UoC04 and UoC01 with CLM4 and RUC, PCC was below 0.4, indicating very weak or almost 

no correlation1) For PCC (Fig. 6a), UoC04-CLM4 showed the highest value (0.61), indicating a moderate correlation, 

followed by UoC01-CLM4 (0.60), UoC04-RUC (0.47), UoC01-RUC (0.44), UoC04-Noah-MP (0.35), and UoC01-Noah-425 

MP(0.33), which also showed moderate correlations. Except for these schemes, the other combinations showed PCC values 

below 0.3, indicating a weak or almost no correlation; 2) For RMSE (Fig. 6b), UoC04-CLM4 showed the lowest value 

(199.59), indicating the best performance, followed by UoC01-CLM4 (201.618), UoC04-RUC (242.40), and UoC01-RUC 

(247.25). The other scheme combinations exhibited high values ranging 271−284, indicating relatively poor performance; 3) 

For MBE (Fig. 6c), all scheme combinations showed negative values, indicating an underestimation. UoC04-CLM4 showed 430 

the best performance (-6.29), followed by UoC01-CLM4 (-21.31), UoC04-RUC (-85.08), and UoC01-RUC (-90.28). In 

scheme combinations, excluding combinations of UoC04 and UoC01 with CLM4 and RUC, relatively larger magnitude of 

large negative MBE (-137−-120) were exhibited, indicating a significantly low performance compared to UoC04-CLM4  
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Figure 6: Verification results of all experiments for PM10 concentrations; (a) PCC, (b) RMSE, and (c) MBE, respectively, using 

the in-situ data. The blue dashed line represents the baseline indicating no correlation, while the red dashed line denotes the 

threshold for a weak correlation. Based on PCC values, the blue dashed line represents the minimum threshold for a moderate 

correlation.  The values are averaged over the stations (see Fig. 3c). 440 

 

Figure 7 shows a scatter plot for CLM4-based combinations—the land surface scheme that showed the best prediction 

performance when combined with UoC04 and UoC01 in the verification (see Fig. 6). The x-axis represents PM10 

observations, while the y-axis indicates the predicted values of PM10 for each experiment. The red circles represent the 

predicted PM10 values corresponding to observations. The UoC04-CLM4 (Fig. 7c) and UoC01-CLM4 (Fig. 7d) showed 445 

similarly good performances while the other three combinations showed no correlations between observations and 

simulations (Figs. 7a, b, and e): UoC04-CLM4—the best performance in verification—primarily showed overestimation for 

values below approximately 180 μg m-3 and wider dispersion with underestimation tendencies for values above 180 μg m-3. 

The x-axis represents PM10 observations, while the y-axis indicates the simulated PM10 values for each experiment. The 

red circles represent the simulated PM10 values corresponding to the observations. In UoC04-CLM4 (Fig. 7c) and UoC01-450 

CLM4 (Fig. 7d), the blue solid line shows that the trend between observed and simulated values generally increases 

positively compared to other scheme combinations. However, in UoC04-CLM4—which showed the best performance in the 

verification—the model primarily overestimates values below approximately 180 μg m-3 and exhibits wider dispersion with 

underestimation tendencies for values above 180 μg m-3. In contrast, the other three combinations (Fig. 7a, b, and e) showed 

little to no correlation between observations and simulations, with a wider spread of data. Therefore, UoC04-CLM4 showed 455 

relatively better performance compared to the other scheme combinations.  

Fig. S3 shows a scatter plot for UoC04-based combination—the dust emission scheme that showed the best prediction 

performance when combined with CLM4 in the verification (see Fig. 6). As mentioned earlier, the UoC04-CLM4 

combination exhibited the highest correlation, followed by UoC04-RUC. In contrast, the UoC04-Noah and UoC04-Noah-

MP showed no linear correlation (Figs. S3a and c).Fig. S5 shows a scatter plot for the UoC04-based combinations—the dust 460 

emission scheme that showed the best prediction performance when combined with CLM4 in the verification (see Fig. 6). 

The UoC04-CLM4 combination showed the highest correlation between observed and simulated values among the UoC04-

based combinations. In contrast, UoC04-Noah and UoC04-Noah-MP demonstrated little to no correlation, suggesting very 

low prediction reliability. 

 465 
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Figure 7: Same as in Fig. 5 but for PM10 concentration, using CLM4-based combinations: (a) GOCART-CLM4, (b) AFWA-

CLM4, (c) UoC01-CLM4, (d) UoC04-CLM4, and (e) UoC11-CLM4.  

 470 

Table 4 shows the POD and FAR, calculated based on the PM10 thresholds using the Fine dust alert and ACWS in South 

Korea. A higher POD and a lower FAR indicate better prediction performance. Typically, a POD value below 0.5 indicates a 

failure to detect the observed events. The POD values for all scheme combinations at each threshold are as follows: 1) At 80 

μg m-3, UoC04-CLM4 exhibited a very high POD (0.928), followed by UoC01-CLM4 (0.918), UoC04-RUC (0.544) and 

UoC01-RUC (0.516). The other experiments failed to predict the observed events, with POD ranging from 0.031 to 0.223; 2) 475 

At 150 μg m-3, UoC04-CLM4 also showed a high POD (0.799), followed by UoC01-CLM4 (0.758). Conversely, other 

experiments failed to detect the observed events or did not predict at all; 3) At 300 μg m-3, only UoC04-CLM4 achieved a 

POD of 0.520, surpassing the minimum detection threshold of 0.5; 4) At 800 μg m-3, UoC04-CLM4 failed to forecast the 

observed events while the others did not predict at all. Overall, in terms of POD, UoC04-CLM4 showed the best prediction 

performance, with a POD of exceeding 0.5 up to 300 μg m-3. 480 

The FAR close to 0 indicates a low probability of false alarms. Note that FAR could lead to a decrease as the frequency of 

non-events increases because FAR considers non-events. The FAR values of all experiments for each threshold are as 
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follows: 1) At 80 μg m-3, overall, Noah- and Noah-MP-based combinations showed relatively lower FAR than RUC- and 

CLM4-based combinations; 2) At 150 μg m-3, combinations of all dust emission schemes with RUC and CLM4 showed 

FARs ranging from 0.063 to 0.500. Notably, the AFWA-RUC showed the lowest FAR (0.063). Other combinations could 485 

not predict dust events—thus, calculating their FAR was impossible. 3) At 300 μg m-3, combinations of UoC01 and UoC04 

with the RUC and CLM4 yielded FAR ranging from 0.048 to 0.325. Significantly, the UoC04-RUC achieved the lowest 

FAR (0.037). As with the threshold of 151 μg m-3, other combinations were unable to simulate exceeding 300 μg m-3 of 

PM10, making FAR calculations impossible; 4) At 800 μg m-3, FAR was calculated only for UoC04-CLM4 and UoC01-

CLM4, showing high values exceeding 0.7.  490 

When non-events occur frequently, FAR may falsely indicate skill improvement—highlighting the importance of 

considering both POD and FAR when evaluating prediction capability of detection. Therefore, considering both POD and 

FAR, UoC04-CLM4 demonstrated the best performance, followed by UoC01-CLM4. 

In addition to POD and FAR, CSI provides a comprehensive evaluation of forecast accuracy by accounting for correct 

predictions, false alarms, and missed events. The CSI values for all scheme combinations for each threshold are as follows: 1) 495 

At 80 μg m-3, UoC04-CLM4 and UoC01-CLM4 exhibited the highest CSI values of 0.655 and 0.661, respectively, while the 

other schemes had significantly lower values, mostly below 0.2, except for UoC04-RUC (0.396) and UoC01-RUC (0.383);  

2) At 150 μg m-3, UoC04-CLM4 and UoC01-CLM4 demonstrated CSI values of 0.538 and 0.537, respectively, indicating 

higher prediction accuracy compared to other scheme combinations; 3) At 300 μg m-3, UoC04-CLM4 outperformed the other 

schemes with a CSI of 0.418. Although this was a comparatively lower value, it still demonstrated better performance 500 

compared to the other schemes, most of which showed poor or non-existent forecast skill; 4) At 800 μg m-3, only UoC01-

CLM4 and UoC04-CLM4 were calculated only for CSI, but both showed very low values of 0.059 and 0.032, respectively. 

Overall, UoC04-CLM4 consistently maintained CSI values above 0.5 up to 300 μg m-3, showing the highest performance 

among all experiments. 

 505 

 

Table 4: POD and FAR values for each PM10 threshold across all scheme combinations. The bold numbers indicate POD greater 

than 0.5. The dashes '-' indicate POD and FAR values that cannot be calculated. 

  
> 80 μg m-3 > 150 μg m-3 ≥ 300 μg m-3 ≥ 800 μg m-3 

POD FAR POD FAR POD FAR POD FAR 

GOCART 

Noah 0.055  0.164  - - - - - - 

RUC 0.097  0.221  - - - - - - 

Noah-MP 0.114  0.120  - - - - - - 

CLM4 0.079  0.298  0.002  0.500  - - - - 

AFWA 
Noah 0.090  0.128  - - - - - - 

RUC 0.223  0.256  0.027  0.063  - - - - 
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Noah-MP 0.126  0.103  - - - - - - 

CLM4 0.110  0.264  0.007  0.333  - - - - 

UoC01 

Noah 0.076  0.171  - - - - - - 

RUC 0.516  0.401  0.251  0.305  0.057  0.048  - - 

Noah-MP 0.138  0.073  - - - - - - 

CLM4 0.918  0.297  0.758  0.351  0.448  0.325  0.034  0.727  

UoC04 

Noah 0.077  0.169  - - - - - - 

RUC 0.544  0.407  0.282  0.331  0.075  0.037  - - 

Noah-MP 0.152  0.093  - - - - - - 

CLM4 0.928  0.310  0.799  0.378  0.520  0.320  0.069  0.714  

UoC11 

Noah 0.031  0.257  - - - - - - 

RUC 0.149  0.225  - - - - - - 

Noah-MP 0.060  0.138  - - - - - - 

CLM4 0.071  0.298  0.002  0.500  - - - - 

Table 4: POD, FAR, and CSI values for each PM10 threshold across all scheme combinations. The bold numbers indicate that 

POD is greater than 0.5 and CSI is relatively higher compared to the others. The dashes '-' indicate POD, FAR, and CSI values 510 
that cannot be calculated. 

  
> 80 μg m-3 > 150 μg m-3 ≥ 300 μg m-3 ≥ 800 μg m-3 

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

GO-

CART 

Noah 0.055 0.164 0.055 - - - - - - - - - 

RUC 0.097 0.221 0.095 - - - - - - - - - 

Noah-MP 0.114 0.120 0.112 - - - - - - - - - 

CLM4 0.079 0.298 0.077 0.002 0.500 0.002 - - - - - - 

AFWA 

Noah 0.090 0.128 0.089 - - - - - - - - - 

RUC 0.223 0.256 0.207 0.027 0.063 0.027 - - - - - - 

Noah-MP 0.126 0.103 0.124 - - - - - - - - - 

CLM4 0.110 0.264 0.106 0.007 0.333 0.007 - - - - - - 

UoC01 

Noah 0.076 0.171 0.074 - - - - - - - - - 

RUC 0.516 0.401 0.383 0.251 0.305 0.226 0.057 0.048 0.057 - - - 

Noah-MP 0.138 0.073 0.136 - - - - - - - - - 

CLM4 0.918 0.297 0.661 0.758 0.351 0.537 0.448 0.325 0.369 0.034 0.727 0.032 

UoC04 

Noah 0.077 0.169 0.076 - - - - - - - - - 

RUC 0.544 0.407 0.396 0.282 0.331 0.247 0.075 0.037 0.074 - - - 

Noah-MP 0.152 0.093 0.150 - - - - - - - - - 

CLM4 0.928 0.310 0.655 0.799 0.378 0.538 0.520 0.320 0.418 0.069 0.714 0.059 
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UoC11 

Noah 0.031 0.257 0.031 - - - - - - - - - 

RUC 0.149 0.225 0.143 - - - - - - - - - 

Noah-MP 0.060 0.138 0.059 - - - - - - - - - 

CLM4 0.071 0.298 0.069 0.002 0.500 0.002 - - - - - - 

 

 

Figure 8 compares the PM10 time series between observations and simulations, using combinations of all dust emission 

schemes and CLM4, at six Asian dust observation stations in South Korea—Seoul, Suwon, Yeongwol, Andong, Cheonan, 515 

and Mungyeong: UoC04-CLM4 and UoC01-CLM4 showed excellent performance in PM10 prediction and effectively 

captured the onset and peak PM10 concentrations when ADSs entered South Korea. During the analysis period, UoC04-

CLM4 simulated slightly higher PM10 concentrations than UoC01-CLM4 and approached the peak of PM10 concentrations 

closer to observations. Conversely, GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 poorly simulated and significantly 

underestimated PM10 concentrations throughout the forecast hours, leading to failure in predicting PM10 concentrations 520 

during the mega ADS event in South Korea. 

Figure S4 S6 compares observations and forecasts of PM10 concentrations for combinations of land surface schemes and 

UoC04. Note that PM10 concentrations are substantially different for different land surface schemes. As noted in Fig. 8, 

UoC04-CLM4 simulated most similarly to observations, followed by UoC04-RUC. However, other scheme combinations, 

including UoC04-RUC, notably underestimated the PM10 concentrations. 525 
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Figure 8: Time series comparison of PM10 concentrations between observations and combinations of all dust emission schemes 

and CLM4 for (a) Seoul, (b) Suwon, (c) Yeongwol, (d) Andong, (e) Cheonan, and (f) Mungyeong. The black dots represent the 

observed PM10 concentrations, while the colored lines depict various scheme combinations: the lime green for GOCART-CLM4, 530 
the yellow for AFWA-CLM4, the blue for UoC01-CLM4, the red for UoC04-CLM4, and the green for UoC11-CLM4. 

 

3.2  Evaluation with using remote sensing dataand reanalysis data 

3.2.1 Time series comparison of AOD: AERONET 

Figure 9 shows the comparison of AOD time series between observations and simulations, using combinations of all dust 535 

emission schemes and CLM4, at six AERONET sites in South Korea: Overall, UoC04-CLM4 and UoC01-CLM4 showed 

better agreement with observation than other experiments across all sites. On March 29th, a significant dust event, with AOD 
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values exceeding 0.9, was observed at the Gwangju (Fig. 9c), Ulsan (Fig. 9e), and Gosan (Fig. 9f) sites. All experiments 

indicated underestimation, but GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 showed notably more significant 

underestimation than UoC04-CLM4 and UoC01-CLM4. 540 

Fig. S5 S7 shows same as Fig. 9 except for combinations of all surface schemes and UoC04: Overall, both UoC04-RUC and 

UoC04-CLM4 effectively captured the peak of ADSs around March 29th in South Korea—especially UoC04-RUC, which 

accurately simulated the AOD peak at the Ulsan site (Fig. S5eS7e). However, UoC04-Noah and UoC04-Noah-MP 

significantly underestimated the peak, resulting in poorer AOD prediction performance. 

 545 

 

Figure 9: Hourly time series of AERONET and simulated AOD in (a) Yonsei University, (b) Seoul, (c) Gwangju, (d) Gangneung, (e) 

Ulsan, and (f) Gosan in South Korea. The black dots represent AERONET AOD values, and the colored lines depict various 

scheme combinations—the lime green for GOCART-CLM4, the yellow for AFWA-CLM4, the blue for UoC01-CLM4, the red for 

UoC04-CLM4, and the green for UoC11-CLM4. 550 
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3.2.2 Surface wind speed: MERRA-2 

The near-surface wind across the source region is a critical factor for dust emission and transport. We identified areas with 

high values in the source region based on the MODIS AOD (see Fig. 12a) and validated WS10m from all experiments in this 

region against MERRA-2 data using MBE, RMSE, and PCC metrics. Figure 10 shows PCC, RMSE, and MBE for all 555 

scheme combinations. Consistent with the previous verification results for meteorological variables over South Korea, the 

scheme combinations with the same land surface scheme showed similar performance. The detailed verification results are 

as follows: 1) For PCC, all experiments exhibited high values ranging from 0.83 to 0.89. The PCC values of the scheme 

combinations using CLM4- and RUC-based combinations were relatively higher than those using Noah- and Noah-MP-

based combinations (Fig. 10a); 2) For RMSE, UoC04-CLM4 (1.81) and UoC01-CLM4 (1.81) exhibited the same lowest 560 

values (Fig. 10b). These scheme combinations showed the best performance in PM10 verification over South Korea; 3) For 

MBE, the scheme combinations based on Noah-MP showed positive MBE values, whereas the others exhibited negative 

MBE values. The CLM4-based combinations had the smallest magnitude of negative MBE values of around -0.02 (Fig. 10c). 

Overall, the CLM4-based combinations, including UoC04-CLM4 and UoC01-CLM4—which demonstrated good 

performance in predicting PM10 and AOD over South Korea—also showed the best performance for WS10m in the source 565 

region. 

 

Figure 10: Verification results of all experiments for 10 m wind speed in the source region; (a) PCC, (b) RMSE, and (c) MBE, 

respectively, using the MERRA-2. The values are averaged over grid points of MERRA-2 (see Fig. 3a). 
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Figure 11 shows the spatial evolution of surface total dust (DUST) concentrations and 10 m wind for CLM4-based 

combinations. Both MERRA-2 and the CLM4-based combinations similarly formed strong north-westerly winds in the 

source region, creating favourable conditions for dust emission and transport. However, MERRA-2, GOCART-CLM4, 

AFWA-CLM4, and UoC11-CLM4 exhibited significantly lower dust concentrations, whereas UoC04-CLM4 and UoC01-575 

CLM4 showed notably higher concentrations (Fig. 11a). Subsequently, despite similar wind between MERRA-2 and CLM4-

based combinations, only UoC04-CLM4 and UoC01-CLM4 successfully transported dust toward the Bohai Sea with strong 

north-westerly winds (Fig. 11b). As a result, UoC04-CLM4 and UoC01-CLM4 successfully transported dust to South Korea, 

reproducing a high-concentration dust event (Fig. 11c). These results are evident in comparison to MODIS AOD 

observations (see Fig. 12), as MERRA-2, GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 significantly underestimated 580 

dust concentrations, whereas UoC04-CLM4 and UoC01-CLM4 provided more reliable results. 

 

 

Figure 11: Spatial distribution of surface DUST concentrations (𝝁𝒈 𝒎−𝟑) and 10m wind (𝒎 𝒔−𝟏)  in the model domain for 

MERRA-2, and combinations of all dust emission schemes and CLM4: (a) dust emission in the Gobi/Inner Mongolia desert at 0600 585 
UTC on March 27, (b) transport towards the Bohai Sea at 0300 UTC on March 28, (c) appearance in South Korea at 0300 UTC on 

March 29, 2021. 

 

 

 590 

Figure S8 is the same as Figure 11, except for the UoC04-based combinations. The wind patterns in the dust emission and 

transport processes were similar between MERRA-2 and the UoC04-based combinations in the source region (Fig. S8a and 

b). However, as dust was transported into South Korea, the wind over the West Sea was weaker in MERRA-2 but stronger in 
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the UoC04-based combinations (Fig. S8c). In terms of dust concentrations, UoC04-RUC and UoC04-CLM4 provided the 

most reliable simulations overall. 595 

3.2.2 3 Spatial distribution of AOD: MODIS 

Figure 10 shows the spatial distribution of AOD depicting the processes of dust origination(Fig. 10a), transportation (Fig. 

10b), and appearance in South Korea (Fig. 10c) Figure 12 shows the spatial distribution of AOD, comparing dust evolution 

processes—dust emission (Fig. 12a), transport (Fig. 12b), and appearance in South Korea (Fig. 12c)—among MODIS (i.e., 

observation), with MERRA-2 (i.e., reanalysis), and combinations of dust emission schemes and CLM4 (i.e., model results). 600 

The comparison for each stage is as follows: 1) At 0500 UTC on March 27, 2021 (Fig. 10a12a), dust origination emission 

stage, MODIS AOD notably exceeded 1.8 over the Gobi Desert/Inner Mongolia. UoC04-CLM4 and UoC01-CLM4 showed 

AOD values similar to MODIS with over 1.8. In contrast, MERRA-2, GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 

showed significantly low values below 0.5, failing to simulate the dust origin; 2) At 0300 UTC on March 28, 2021 (Fig. 

10b12b), while maintaining high values (>1.8), MODIS AOD moved towards the Bohai Bay, including the Shandong and 605 

the Liaodong Peninsulas. UoC04-CLM4 and UoC01-CLM4 showed spatial distribution similar to MODIS AOD. However, 

MERRA-2 and the other scheme combinations did not simulate the dust transportation due to the absence of dust 

originationemission in the source region; 3) At 0300 UTC on March 29, 2021 (Fig. 10c12c), as the dust inflows the inland of 

South Korea, the MODIS AOD exceeded 1.0 in the southern and southwestern regions of South Korea. MERRA-2, UoC04-

CLM4 and UoC01-CLM4 underestimated AOD compared to MODIS, particularly in the southern and southwestern regions 610 

(≤ 0.6); the other scheme combinations failed in AOD simulation (≤ 0.3). In summary, while UoC04-CLM4 and UoC01-

CLM4 effectively simulated the processes of dust origin, transportation, and appearancethe spatial evolution processes of 

dust in South Korea similar to MODIS AOD, they showed a tendency to overestimate. Conversely, MERRA-2, GOCART-

CLM4, AFWA-CLM4, and UoC11-CLM4 failed to predict AODs at all three processes, with a substantial underestimation. 

Figure S6 S9 shows the same features as in Fig. 10 12 except for combinations of land surface schemes and UoC04. The 615 

MERRA-2, UoC04-Noah and UoC04-Noah-MP tended to underestimate and consequently failed to simulate the dust storm 

accurately. In contrast, UoC04-RUC and UoC04-CLM4 exhibited a strong tendency to overestimation. Nevertheless, from 

the origin of the source region to the appearance in South Korea, their simulations were closer to MODIS than those from 

other experiments. 

 620 
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Figure 1012: Spatial distribution of AOD in the model domain for MODIS, MERRA-2, and combinations of all dust emission 

schemes and CLM4: (a) dust originationemission in the Gobi/Inner Mongolia desert at 0500 UTC on March 27, (b) transport 

towards the Bohai Sea at 0300 UTC on March 28, (c) appearance in South Korea at 0200 UTC on March 29, 2021. The black 

dashed circles represent the main comparison regions of MODIS and each experiment. 625 

 

 

3.2.43 Vertical distributions of extinction coefficients and dust concentrations: CALIPSO 

Figure 13 shows a comparison of the vertical profiles of extinction coefficients between simulations (550 nm)—using 

CLM4-based combinations—and CALIPSO observations (532 nm). At 0500 UTC on March 28, the CALIPSO orbit passed 630 

through the Bohai Bay, including the Shandong Peninsula (see Fig 3a), where high extinction coefficients were observed 

(117–120°E and 36–41°N) (Fig. 13a). Compared to the CALIPSO observations, overall, the extinction coefficients in the 

UoC04-CLM4 and UoC01-CLM4 are consistent with the observations, particularly in regions with high values over the 

Bohai Bay and the Shandong Peninsula (Figs. 13d and e). In contrast, GOCART-CLM4, AFWA-CLM4, and UoC11-CLM4 

significantly underestimate the values. This finding is consistent with the MODIS AOD (see Fig. 12b) and supports the 635 

reliability of the vertical distributions of DUST concentrations from the scheme combinations (see Fig. 14b).  

Figure S10 is the same as Figure 13, except for the UoC04-based combinations. UoC04-CLM4 showed the greatest 

similarity to the observations (Fig. S10e), whereas UoC04-RUC simulated a too-narrow horizontal extent of high extinction 

coefficients (Fig. S10c). In contrast, UoC04-Noah and UoC04-Noah-MP significantly underestimate the values (Figs. S10b 

and d). 640 
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Figure 13: Vertical distributions of aerosol extinction coefficient for (a) CALIPSO, (b) GOCART-CLM4, (c) AFWA-CLM4, (d) 

UoC01-CLM4, (e) UoC04-CLM4, and (f) UoC11-CLM4 at 0500 UTC on March 28, 2021. Blue dotted lines in Fig. 3a represent the 

sectional paths. 

 645 

Figure 11 14 shows the vertical distributions of DUST concentrations along the main route of the ADS from the dust source 

regions to South Korea (see Fig. 2a3a), representing the DUST concentrations from all particle size bin in WRF-Chem. The 

comparisons of combinations of dust emission schemes and CLM4 are as follows: 1) At 1200 UTC on March 27, 2021, 

GOCART-CLM4 and AFWA-CLM4 simulated dust concentrations very weakly (≤ 450 μg m-3) from the dust source region. 

In contrast, UoC04-CLM4 and UoC01-CLM4 showed dust concentrations surpassing 3000 μg m-3 up to 9.5 km over the dust 650 

source region, more than six times higher than those of GOCART-CLM4 and AFWA-CLM4. The UoC11-CLM4 simulated 

DUST concentrations higher than GOCART-CLM4 and AFWA-CLM4 but lower than UoC04-CLM4 and UoC01-CLM4. 

During this period, westerly winds prevailed in the source region, while easterly winds persisted over the Bohai Sea and 

Yellow Sea; 2) At 0200 UTC on March 28, UoC04-CLM4 and UoC01-CLM4 indicated a shift from easterly winds to 

westerly winds over the Bohai and Yellow Sea, which initiated the movement of dust from the source region, with both 655 

having very similar patterns. Overall, the maximum altitude of dust has decreased, and DUST concentrations above 1000 μg 

m-3 were simulated up to approximately 6 km. Since other experiments simulated very low dust concentrations in the source 
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region, almost no transportation was observed); 3) At 1200 UTC on March 28, while westerly winds persisted in UoC04-

CLM4 and UoC01-CLM4, DUST concentrations exceeding 1000 μg m-3 passed through the Yellow Sea at altitudes of 

approximately 4.5 km; 4) At 0200 UTC on March 29, both UoC04-CLM4 and UoC01-CLM4 simulated DUST 660 

concentrations exceeding 500 μg m-3 was simulated at the lowest altitude as the ADS reached South Korea. 

Figure S7S11 shows same as Fig. 14 except for combinations of all land surface schemes and UoC04: 1) At 1200 UTC on 

March 27, 2021, UoC04-RUC and UoC04-CLM4 simulated DUST concentrations above 3000 μg m-3 from the source region, 

with UoC04-RUC simulating dust to higher altitudes than UoC04-CLM4. In contrast, UoC04-Noah and UoC04-Noah-MP 

simulated significantly weaker DUST concentrations; 2) At 0200 UTC on March 28, UoC04-RUC and UoC04-CLM4 665 

simulated dust transport towards the Bohai Sea by westerly winds. Once dust reached the Bohai Sea, UoC04-RUC showed 

primarily higher concentrations in the upper levels, while UoC04-CLM4 revealed higher concentrations at lower altitudes. 

UoC04-Noah and UoC04-Noah-MP did not simulate significant dust emissions from the source region, resulting in a lack of 

simulated dust transport; 3) At 1200 UTC on March 28, as the dust passed over the Yellow Sea, UoC04-RUC simulated 

DUST concentrations above 1500 μg m-3 up to approximately 9.5 km altitude. Meanwhile, UoC04-CLM4 simulated similar 670 

concentrations up to about 5 km, primarily at lower altitudes; 4) At 0200 UTC on March 29, as dust flowed into South Korea, 

UoC04-CLM4 simulated higher concentrations than UoC04-RUC, and dust was also simulated over the Yellow Sea. 

UoC04-Noah and UoC04-Noah-MP did not simulate any dust in South Korea. 
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 675 

Figure 1114: Vertical distributions of the total dustDUST concentrations simulated by the combinations of all dust emission 

schemes and CLM4 for (a) GOCART-CLM4, (b) AFWA-CLM4, (c) UoC01-CLM4, (d) UoC04-CLM4, and (e) UoC11-CLM4, for 

given different times. The black solid lines and dashed lines denote the westerly and easterly wind speeds, respectively. The colored 

shading represents the total dustDUST concentration. The black shading indicates topographic height. The location of the cross 

section is referenced in Fig. 3a. 680 

3.3 Impact of scheme combinations on dust emission 

The sensitivity experiments showed that each scheme combination produced different simulation results for meteorological 

variables and air quality variables over South Korea, with notable differences in PM10, AOD, and DUST. To identify the 

underlying causes of these differences, we analysed the meteorological conditions and surface DUST at the source regions 

for each scheme combination. The analysis focused on a specific point (44.18°N, 110.61°E) (see Fig. 3a) in the source 685 

regions where high MODIS AOD was observed during the dust emission period (see Fig. 12a). In general, in dust source 

regions, higher 2m temperature, lower 2m relative humidity, and stronger 10m wind speed increase the probability of dust 

occurrence—high temperature and low humidity dry the surface, making it easier for dust particles to be lifted, and strong 

winds transport the dust into the atmosphere (Yang et al., 2019).  

Figure S12 shows the time series of DUST, T2m, RH2m, and WS10m for UoC04-based combinations at the analysis point. 690 

The light orange shading indicates the period with the higher T2m, lower RH2m, stronger WS10m, and the initial increase in 
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DUST. Overall, the meteorological variables varied depending on the scheme combination but were consistent with the 

general conditions required for dust emission. Notably, higher DUST concentrations were observed in UoC04-CLM4 and 

UoC01-CLM4, whereas lower concentrations were found in UoC04-Noah and UoC04-Noah-MP (Fig. S12a). These 

differences reflect the unique characteristics of each land surface scheme, despite using the same UoC04 parameterization. 695 

In general, aeolian erosion, which contributes to dust emission in arid and semi-arid regions, occurs when the friction 

velocity is greater than the threshold value. Threshold values vary depending on soil properties and conditions, such as soil 

texture, particle size, and soil moisture (Fécan et al., 1999). The UoC schemes first calculate 𝑢∗𝑡 for dry and bare surface and 

then incorporate surface roughness features and soil moisture content to derive a more realistic threshold friction velocity 

(Shao and Lu, 2000). The calculation of 𝑢∗𝑡 is as follows: 700 

𝑢∗𝑡 = 𝑢∗𝑡(𝑑𝑟𝑦𝑏𝑎𝑟𝑒)𝑓𝑟𝑓𝑠,                                                                                                                                                                           (13) 

 

where 𝑢∗𝑡(𝑑𝑟𝑦𝑏𝑎𝑟𝑒) represents the threshold friction velocity for dry and bare surfaces; 𝑓𝑟 indicates roughness features, and 

𝑓𝑠  denotes soil moisture content (Fécan et al., 1999). 𝑓𝑟  is calculated based on the drag partition theory, whereas 𝑓𝑠  is 

explicitly related to the land surface model. The latter is computed using the following equation: 705 

𝑓𝑠 = √1 + 𝑎(𝑖)(𝑆 − 𝑆𝑑𝑟𝑦(𝑖))
𝑏(𝑖),                                                                                                                                                            (14) 

 

where 𝑖 represents the soil texture index, which ranges from 1 to 12 (e.g., 1: sand, 2: loamy sand, 3: sandy loam, etc.); 𝑎(𝑖), 

𝑏(𝑖) and 𝑆𝑑𝑟𝑦(𝑖) indicate tabulated parameter values corresponding to the soil texture index, respectively. Here, S represents 

soil moisture, and 𝑆𝑑𝑟𝑦(𝑖) denotes the dry soil moisture threshold at which direct evaporation from the topsoil layer ends. 710 

This threshold varies depending on the land surface schemes, influencing the explicit calculation of different 𝑢∗𝑡 values and 

ultimately playing a significant role in the dust emission process.  

Figure 15 shows the time series of DUST, 𝑢∗𝑡  and 𝑢∗  for UoC04-based combinations. The light orange shading marks 

periods of simulated dust emission. The DUST concentrations showed significant differences depending on the land surface 

scheme. Details are as follows: 1) In the first shaded period, UoC04-CLM4 exhibited the highest DUST concentration, 715 

followed by UoC04-RUC, UoC04-Noah-MP, and UoC04-Noah. In the second, the DUST concentrations were lower than in 

the first, with UoC04-RUC exhibiting the highest concentration, followed by UoC04-CLM4. In contrast, UoC04-Noah-MP 

and UoC04-Noah showed DUST concentrations close to zero (Fig. 15a); 2) For UoC04-Noah, 𝑢∗ barely exceeded 𝑢∗𝑡 in the 

first period, resulting in very low DUST concentrations, whereas in the second period, 𝑢∗ did not exceed 𝑢∗𝑡, leading to 

DUST concentrations close to zero (Fig. 15b); 3) For UoC04-RUC, 𝑢∗ significantly exceeded 𝑢∗𝑡 in both the first and second 720 

shaded periods, resulting in high DUST concentrations (Fig. 15c); 4) For UoC04-Noah-MP, 𝑢∗ exceeded 𝑢∗𝑡  in the first 

period, but only slightly exceeded it during the second period, resulting in very low dust concentrations in the first period 
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and nearly zero in the second (Fig. 15d); 5) For UoC04-CLM4, a pattern similar to UoC04-RUC was observed, with 𝑢∗ 

greatly exceeding 𝑢∗𝑡, leading to high DUST concentrations (Fig. 15e).  

In conclusion, UoC04-RUC and UoC04-CLM4 exhibited higher DUST concentrations despite 𝑢∗ being similar to or even 725 

smaller than that of UoC04-Noah-MP. This results from the relatively lower 𝑢∗𝑡  in UoC04-RUC and UoC04-CLM4 

compared to UoC04-Noah-MP, allowing 𝑢∗ to exceed the threshold more easily. Additionally, the greater difference between 

𝑢∗𝑡 and 𝑢∗ contributed to the observed higher DUST concentrations. This highlights the interaction between dust emission 

schemes and land surface schemes, emphasizing the complexity of physical processes and surface-atmosphere interactions. 

 730 

 

Figure 15: Hourly time series of surface DUST, threshold friction velocity (𝒖∗𝒕), and friction velocity (𝒖∗) for combinations of all 

land surface schemes and UoC04. The light orange shadings indicate the periods of simulated dust emission: (a) surface DUST 

concentrations, 𝒖∗𝒕, and 𝒖∗ for (b) UoC04-Noah, (c) UoC04-RUC, (d) UoC04-Noah-MP, and (e) UoC04-CLM4. 
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  735 

Figure S13 shows the time series of DUST, T2m, RH2m, and WS10m for CLM4-based combinations at the analysis point. 

The UoC04-CLM4 showed the highest DUST concentrations, followed by UoC01-CLM4, while the other combinations 

exhibited significantly lower values. For T2m, RH2m, and WS10m, CLM4-based combinations showed similar patterns 

until their maximum or minimum values were reached. Afterward, UoC04-CLM4 and UoC01-CLM4, which simulated the 

highest DUST concentrations, exhibited distinct patterns compared to the other combinations—dust blocks or absorbs solar 740 

radiation, affecting temperature and humidity, thereby altering atmospheric thermal stability, which can influence the wind 

(Darvishi Boloorani et al., 2021). These differences reflect the unique characteristics of each dust emission scheme, despite 

using the same land surface model CLM4. 

The GOCART-based schemes (GOCART and AFWA) and the UoC-based schemes (UoC01, UoC04, and UoC11) differ 

significantly in calculating dust emission flux. The GOCART-based schemes directly incorporate the dust erodibility factor 745 

into the calculation of dust emission flux, whereas the UoC-based schemes primarily use it as a dust source indicator. 

Additionally, the GOCART-based schemes use the porosity, whereas the UoC schemes account for various vegetation and 

soil physical properties—soil bulk density, vegetation fraction, disturbed particle size distribution, and soil plastic pressure—

to enhance the accuracy of simulations (Zhao et al., 2020). Each scheme can be examined in detail as follows: 1) GOCART 

tends to overestimate 𝑢𝑡, leading to underpredictions of dust emissions, particularly for smaller particles (LeGrand et al., 750 

2019); 2) AFWA, a modified version of GOCART, improves accuracy by replacing 𝑢𝑡 with 𝑢∗𝑡. It also incorporates soil clay 

content and aerodynamic roughness length, enabling more precise dust emission simulations; 3) UoC01 provides a more 

realistic representation of soil particle types by incorporating the size distribution of airborne dust particles, constrained by 

minimally disturbed 𝑝 𝑚(𝑑𝑖) and fully disturbed  𝑝 𝑓(𝑑𝑖)  states (see Eq. 5). Naturally, dust particles generally exist as 

coatings on sand grains in sandy soils or as aggregates in clay-rich soils. In weak wind erosion, dust-coated sand particles 755 

and clay aggregates act as individual units and may not be released, representing a minimally disturbed state. In contrast, 

strong winds break them apart, increasing dust emissions in a fully disturbed state; 4) The UoC04 is simplified compared to 

UoC01 but still considers 𝑝 𝑚(𝑑𝑖) and 𝑝 𝑓(𝑑𝑖); 5) The UoC11 does not account for 𝑝 𝑚(𝑑𝑖) and 𝑝 𝑓(𝑑𝑖), thereby removing 

the kinematic impact on dust particle size distribution (Shao et al., 2011; see Eq. 8). This improves computational efficiency 

but reduces the accuracy of dust emission simulations. Consequently, as shown in Fig. S13a, the simulated DUST 760 

concentrations are low.  

These differences in dust emission schemes led to distinct dust simulation results, even when the same land surface scheme 

was applied. In the CLM4-based combinations, UoC04 and UoC01 simulated high DUST concentrations in the source 

region (Fig. S13a), which were then transported to South Korea (Fig. 8). In contrast, GOCART, AFWA, and UoC11 failed to 

simulate both dust emissions and transport (Fig. S13a and Fig. 8). These findings are similar to those of Lee et al. (2022), 765 

which emphasized the sensitivity of dust emission schemes to dust events in South Korea. 
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4 Conclusion 

This study aims to evaluate the performance of various combinations of parameterization schemes—five for dust emission 770 

and four for land surface schemes—in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 

for a mega Asian dust storm (ADS) event (i.e., 28-29 March 2021) over South Korea. Since the introduction of the ADS 

Crisis Warning System (ACWS) in South Korea in 2015, a nationwide Caution stage was announced for the first time in six 

years on March 29, 2021. The PM10 concentrations in Heuksando, located in the westernmost part of South Korea, were 

recorded as high as 1,491 μg m-3—one of the record-breaking events of severe Asian dust storms (ADSs) in South Korea. 775 

We evaluated the performance of various scheme combinations in WRF-Chem for this mega ADS event in the following 

steps. 

First, we evaluated the performance of all scheme combinations in forecasting the surface meteorological variables related to 

dust storms—air temperature at 2 m (T2m), relative humidity at 2 m (RH2m), and wind speed at 10 m (WS10m)—and 

surface PM10 concentrations. They were verified against surface observation data using various static metrics: 1) It turns out 780 

that the land surface schemes have a greater effect on surface meteorological variables than the dust emission schemes—

showing little difference in model performance using different dust emission schemes. AdditionallyNotably, the 

combinations of all dust emission and Noah-MP schemes, known for its excellence as a land surface scheme, showed the 

best performance for meteorological variables; 2) For surface PM10 concentrations, we observed significant variations of 

prediction performance across different scheme combinations, as the dust emission schemes directly influence the generation 785 

of dust storms. UoC04-CLM4 showed the best performance, followed by UoC01-CLM4, UoC04-RUC, and UoC01-RUC. In 

contrast, other scheme combinations showed very poor performance and failed to predict PM10 in this study.  

Second, we also compared the time series of simulated PM10 and AOD with the in-situ and remote sensing data: 1) For 

surface PM10 concentrations, UoC04-CLM4 and UoC01-CLM4, which demonstrated good performance through 

verification, effectively captured the timing of dust inflow into South Korea and the peak PM10 concentrations, with little 790 

difference between the two scheme combinations. However, the other experiments exhibited significant underestimations 

and completely failed to predict PM10 concentrations.; 2) For AOD, when strong dust storms occur and the AERONET 

AOD value is high, all experiments were underestimated, with combinations of UoC01- and UoC04-based RUC and CLM4 

showing the simulations most similar to the AERONET AOD. 

FinallyThird, we found that UoC04-CLM4 and UoC01-CLM4 effectively simulated the three processes of 795 

originationemission, transport, and appearance in South Korea, similar to MODIS AOD, but with a tendency to overestimate 

these processes. In contrast, MERRA-2 and other scheme combinations failed to predict those processes, with significant 

underestimations.  

Finally, we confirmed that UoC04-CLM4 and UoC01-CLM4 showed the highest consistency with CALIPSO observations 

in simulating extinction coefficients. 800 
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These findings highlight prominent differences in the capabilities among different scheme combinations, specifically dust 

emission and land surface schemes, in forecasting dust storms. 

Since this study focuses on the selected parameterization schemes within the WRF-Chem model, it may just partially 

consider important factors that could affect the accuracy of ADS forecasting. Additionally, the evaluation is made for a 

specific mega ADS event, which may limit the generalization of the findings to other ADS events or regions. Nonetheless, 805 

this study provides valuable insights into the capabilities of various scheme combinations, thus laying a foundation for 

improvements in forecast skills for ADSs. Further research is needed to explore additional factors influencing dust storm 

forecasting accuracy and to generalize our findings to diverse weather conditions and regions. 

Code and data availability 

The base version (V4.3.3) of the WRF-Chem is publicly released and available at https://github.com/wrf-810 

model/WRF/releases/tag/v4.3.3. The FNL data set for the meteorological initial and boundary conditions is available from 

the National Centers for Environmental Prediction (NCEP) at https://rda.ucar.edu/datasets/ds083.3/dataaccess. The 

Community Atmosphere Model with Chemistry (CAM-chem) data for the chemical initial and boundary conditions is 

provided by the National Center for Atmospheric Research (NCAR) at https://www.acom.ucar.edu/cam-chem/cam-

chem.shtml. The mozbc utility is available for download at https://www.acom.ucar.edu/wrf-chem/download.shtml. The 815 

surface weather charts (Fig. 1), meteorological variables, and PM10 are provided by the Korea Meteorological 

Administration (KMA) Weather Data Service at https://data.kma.go.kr/cmmn/main.do. The AERONET, MODIS, MERRA-

2 data sets for evaluating the model are available at  https://ladsweb.modaps.eosdis.nasa.gov/search, 

https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html, and https://disc.gsfc.nasa.gov/datasets?project=MERRA-

2, respectively. All data used in this study can be downloaded from https://zenodo.org/records/11649488. 820 
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