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Abstract. We present Alquimia v1.0, a generic interface to geochemical solvers that facilitates development of multiphysics

simulators by enabling code coupling, prototyping and benchmarking. The interface enforces a call signature for setting up,

solving, serving up output data, and other common auxiliary tasks, while providing a set of structures for data transfer between

the multiphysics code driving the simulation and the geochemical solver. Alquimia relies on a single-cell approach that per-

mits operator splitting coupling and parallel computation. We describe the implementation in Alquimia of two widely-used5

open-source codes that perform geochemical calculations, PFLOTRAN and CrunchFlow. We then exemplify its use for the im-

plementation and simulation of reactive transport in porous media by two open-source flow and transport simulators, Amanzi

and Parflow. We also demonstrate its use for the simulation of coupled processes in novel multiphysics applications including

the effect of multiphase flow on reaction rates at the pore scale with openFOAM, the role of complex biogeochemical processes

in land surface models such as the E3SM Land Model (ELM), and the impact of surface-subsurface hydrological interactions10

on hydrogeochemical export from watersheds with the Advanced Terrestrial Simulator (ATS). These applications make it

apparent that the availability of a well-defined yet flexible interface has the potential to improve the software development

workflow, freeing up resources to focus on advances in process models and mechanistic understanding of coupled problems.

1 Introduction

Numerical modeling has become an integral part of the investigation of some of the world’s most pressing environmental15

challenges, such as climate change, pollution prevention, contaminant remediation or nuclear waste management (Steefel et al.,

2015; Li et al., 2017). For an accurate system representation, models must consider the gamut of processes affecting mass
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balances and underlying biogeochemical transformations. Different models exist for representing biogeochemical processes

including aqueous complexation, mineral dissolution-precipitation, surface sorption, and microbiologically-mediated reactions.

The mathematical expressions for biogeochemical reaction models are diverse and generally express nonlinear relationships20

with complex parameterizations between primary variables such as concentrations (Steefel et al., 2015).

Multicomponent reactive transport codes couple biogeochemical models with solvers for flow and transport and other rele-

vant processes such as heat transfer or geomechanics (Steefel and MacQuarrie, 1996; Steefel et al., 2005, 2015). Many of these

codes are the legacy of years of development and research, a period over which model complexity has increased incrementally.

Further development is driven by continued advances in process model descriptions across spatial scales and hydrological do-25

mains, from single pores to the subsurface reservoirs or watersheds. There is also a growing need to expand the role of reactive

transport to explore nonlinear interactions among the atmosphere, hydrosphere, biosphere, and geosphere in combination with

other community models such as land surface models (Li et al., 2017; Sulman et al., 2024). In parallel, hardware architectures

evolve continuously and new numerical approaches become available for application. Jointly, these developments enable the

simulation of tighter process coupling with increasing resolution and mechanistic detail, but they also demand continuous code30

development and, at times, refactoring. This increasing degree of sophistication also presents some challenges. How does one

develop, test and ultimately incorporate biogeochemical capabilities in codes for new applications? How does one ensure the

validity of a coupled simulator formulation prior to application? How does one continuously develop code to incorporate new

numerical approaches or to take advantage of new computational resources?

Often the complexity of implementing a comprehensive and flexible treatment of biogeochemistry is a significant obstacle to35

the development of new biogeochemical capabilities. As a result, this step is often circumvented by coupling flow and transport

codes to existing biogeochemical codes, an approach widely used, e.g. HYTEC+CHESS (van der Lee et al., 2003), Chombo-

Crunch (Molins et al., 2012), Comsol+PHREEQC (Nardi et al., 2014; Jara et al., 2017), or ParCrunchFlow (Beisman et al.,

2015). The use of PHREEQC as geochemical solver in this role for multiple codes, e.g. PHT3D (Prommer and Post, 2010),

Hydrus/HPx (Simunek et al., 2013) and PHAST (Parkhurst et al., 2010), has led to the development of dedicated coupling40

tools such as IPhreeqc (Charlton and Parkhurst, 2011) or PhreeqcRM (Parkhurst and Wissmeier, 2015). However, these tools

are specific to PHREEQC and thus tied to its capabilities.

Model development entails (among other tasks) prototyping, implementing and verifying the new coupled capabilities.

Prototyping makes it possible to evaluate approach feasibility and often benefits from using high-level weakly-typed languages

such as Python. Implementation requires a clear, well-documented description of the data structures and function calls that45

must allow enough flexibility such that a broad range of applications is possible. Ensuring the validity of complex coupled

models involves intercomparison studies where multiple codes solve the same problem (Steefel et al., 2015; Maxwell et al.,

2014; Molins et al., 2020).

In this manuscript we introduce Alquimia, a new open-source software library that provides a generic interface to existing

biogeochemical capabilities. This software is intended to facilitate interoperable code development by exposing tried-and-true50

biogeochemical capabilities in existing software. We present a general formulation of the problems the interface is designed

for (Sec. 2.1), and then describe the functions and data structures of the interface along with software design approaches (Sec.
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3). The implementation and use of Alquimia are given by the way of examples (Sec. 4). First, the geochemical capabilities in

the open-source reactive transport codes PFLOTRAN and CrunchFlow are implemented in Alquimia. Then, these geochemical

capabilities are made available for the simulation of reactive transport in porous media in two codes, Amanzi and ParFlow.55

We show that because Alquimia allows for different geochemical codes to share a common flow and transport solver, and

therefore the same spatial discretization, time stepping control, and coupling schemes, it may be a useful tool for multi-way

model intercomparison. We present examples of how Alquimia has enabled incorporation of geochemical capabilities to codes

for a range of applications, including prototyping land-surface processes in Python as well as in high-performance computing

simulations using an OpenFOAM-based code and the Advanced Terrestrial Simulator (ATS) (Sec. 5).60

2 Model description

2.1 Mass balance equations

The mass balance of each aqueous species may be written as

∂θci

∂t
= L(ci) + ri (1)

where ci is the concentration of species i, θ is the volumetric water content, L(ci) represents the transport operator and ri is65

the contribution of reactions to the mass balance of species i. While L(ci) represents the solute transport operator here, it may

be also read as a more general operator that includes other processes.

Equilibrium aqueous complexation reactions make it possible to rewrite Eq. 1 as

∂θΨi

∂t
= L(Ψi) +Ri (2)

where the aqueous concentration of each component (Ψi) is defined as the sum of the concentration of a primary species and a70

set of Nx secondary species (Steefel and MacQuarrie, 1996)

Ψi = ci +
Nx∑

j=1

νijcj (3)

where νij is the stoichoimetric coefficient of component i in reaction j and Ri is the contribution of kinetic reactions to the

mass balance of component i.

This approach reduces substantially the number of governing equations and unknowns from Ns species in Eq. 1 to Nc75

components in Eq. 2 by using the mass of law action equations of the Nx equilibrium reactions

cj =
∏Nc

i=1(ξici)νij

ξjKj
(4)

where ξi and ξj are the activity coefficient of primary and secondary species, and Kj is the equilibrium constant of reaction j.

Mass action law equations for heterogeneous equilibrium reactions follow a similar form (Steefel et al., 2015, e.g.). When

these are considered, the mass of each component (Ψt,i) also includes the mass present as a mineral (Ψm,i) or sorbed/exchanged80
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on a surface (Ψs, i)

Ψt,i = Ψi + Ψm,i + Ψs,i (5)

The kinetic reactions rates are calculated as functions of primary variables such as concentrations (ci) and sets of intrinsic

parameters (pk) that are specific to each reaction k

Ri =
∑

fk(ci,pk) (6)85

The fk functions take different mathematical forms for different reaction types. Different codes may implement somewhat

different formulations or allow for generalized formulations (Mayer et al., 2002, e.g.) and custom rate expressions (Hammond,

2022). Examples of established formulations include the transition-state-theory-type (TST) rate law for mineral-dissolution-

precipitation or the Monod-type rate expression for microbially-mediated reduction-oxidation reactions. The interface pre-

sented in Sec. 3 does not stipulate that any specific mathematical form that is used. Hence, we do not provide a specific form90

for fk here. In Sec. 4.3, we compare codes when well-established reaction models are used in different geochemical engines.

In Sec. 5, we give some specific reaction rate expressions connected to example applications.

2.2 Coupling approaches

The set of equations for all components along with the geochemical equilibrium and kinetic equations (Eqs. 2-6) (e.g., Steefel

et al., 2015), is in general a coupled system of nonlinear equations. Two broad approaches are used to solve this system.95

The global implicit approach entails the simultaneous solution of the coupled system including reactions and transport, often

directly substituting Eqs. 4, 6 in Eq. 2. In contrast, operator splitting consists of, first, simulating transport for each component

(and phase) separately, and second, updating the concentrations by solving the geochemical equations. Mathematically, the

method can be represented as a two-step sequential process consisting of a transport step (tr)

(θtrΨtr
i − θnΨn

i )
∆t

= L(Ψn
i ) (7)100

followed by a reaction step

θtr(Ψn+1
i −Ψtr

i )
∆t

= Rn+1
i (8)

where the reaction step includes the time-discretized form of the component balance over the different phases (Eq. 5), equilib-

rium aqueous speciation (Eq. 3), and kinetic reactions (Eq. 6)

Ψn+1
t,i = Ψn+1

i + Ψn+1
m,i + Ψn+1

s,i105

Ψn+1
i = cn+1

i +
Nx∑

j=1

νn+1
ij cn+1

j

Rn+1
i = fk(cn+1

i ,pk) (9)
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Figure 1. Example of a workflow in a code coupling a transport driver (left) and a geochemical engine (right) via Alquimia indicating the

responsibilities for each the driver (green), Alquimia (pink) and engine (blue) codes. Calls to Alquimia functions in the driver code (unfilled

boxes) replace development of native capabilities. Calls to Alquimia’s utility library are indicated with dashed lines in the bounding box. The

prefix Alquimia is omitted from Alquimia functions for clarity (i.e. AlquimiaSetup, AlquimiaProcessCondition, AlquimiaReactionStepOper-

atorSplit, AlquimiaGetAuxiliaryOutput).

While the transport step requires the solution over the entire domain, the geochemical equations can be solved independently

within each cell. By separating the problem into two steps, operator splitting allows for solving the transport problem with linear

solvers, confining the nonlinearity to the geochemical problem within a single cell. The time step size, however, is limited by110

the Courant criterion to avoid operator splitting error (Steefel and MacQuarrie, 1996).

3 Interface description

3.1 Functions

The Alquimia interface is designed to act as a generic, intermediary layer between a code that solves Eqs. (5-7) and a code that

solves Eqs. (8). We will refer to the former code as the driver and the latter as the engine (Fig. 1).115

The driver is the code that drives the simulation, handles the spatial description of the problem, including the meshing and

spatial discretization, and solves Eqs. (5-7). It is responsible for managing global variable storage, including reading spatially

and/or temporally varying material properties, looping through space, managing time stepping, unpacking and moving data

from the mesh dependent storage into data transfer containers, and input/output (I/O) operations.

5
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The geochemical engine defines the geochemical problem and solves Eq. 8 at each point in space independently. It is120

responsible for reading the geochemical reaction data, managing the geochemical system (e.g. reading the thermodynamic

database), reading and processing the initial and boundary solutions (e.g. equilibrating the solution with specific minerals, or a

pH value), and providing access to geochemical data for output (pH, mineral saturation indices, reaction rates).

The Alquimia interface itself handles the engine-dependent implementation for setting up, processing the speciation con-

straints, performing the reaction step solution, and shutting down. Alquimia does not do any geochemical calculations, but125

does perform any unit conversions required by each engine. At the start of each operation, it unpacks data from the Alquimia

data transfer containers provided by the engine, and packages them into the correct format for that engine. Then, calls to engine

subroutines are made to perform the appropriate calculations. At the end of the operation, it packages the results back into the

Alquimia containers for use by the driver.

3.2 Software130

Alquimia has two parts: (1) an engine-independent application programming interface (API) consisting of function call signa-

tures, data structures, and constants (Table 1) and (2) an optional utility library.

The API works by enforcing a signature for geochemical subroutines using a single-cell model. That is, the calls to the

geochemical solver are carried out for a single element of a given spatial discretization of a driver, and thus are made within a

loop over space.135

The main calls in the workflow include AlquimiaSetup, AlquimiaProcessCondition, and AlquimiaReactionStepOperator-

Split. AlquimiaSetup initializes the engine by reading the geochemical engine’s input file and database. This builds the geo-

chemical system, sets the values of the reaction parameters, and generates a list of aqueous solutions with appropriate equili-

bration constraints. AlquimiaProcessCondition performs the speciation calculations on this list of aqueous solutions to obtain

initial and boundary concentrations as needed by the engine, solving a steady-state form of Eqs. (8-5), with additional con-140

straints such as fixed species concentration or pH values, and charge balance or mineral equilibrium. AlquimiaReactionStep-

OperatorSplit performs the solution of the geochemical problem (Eq. 8-5).

Variables that may change in the engine with each call to reaction time-stepping are part of Alquimia’s AlquimiaState data

structure, including porosity, fluid density and pressure and the total concentrations (Ψi , Ψm,i , and Ψs,i), the reactive surface

areas of the minerals, the surface site density for sorption and the cation exchange capacity. Variables that do not change in145

the engine are part of the AlquimiaProperties data structure, including water saturation and cell volume and miscellaneous

reaction parameters (sorption constants, Freundlich sorption exponents, Langmuir sorption coefficients, mineral rate constants,

and kinetic reaction rate constants). The units used for each set of variables are required by the interface as outlined in the

documentation. This implies that the driver must supply in the values in these units but it is the responsibility of the Alquimia

interface implementation of each engine to perform the necessary conversions to the engine’s internal units.150

Other structures contain information about the available functionality in the engine (AlquimiaFunctionality) (e.g. is porosity

updated by the engine?), the status of the geochemistry engine after the last operation (AlquimiaEngineStatus) (e.g. did the

solution converge for the time step?), data such as names of all species (AlquimiaProblemMetaData), and data for output

6
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Table 1. Summary of Alquimia’s API (data transfer containers, functions, constants) and C utilities library

Data Transfer Containers

struct: AlquimiaVectors struct: AlquimiaEngineFunctionality

void pointer: engine_state struct: AlquimiaProblemMetaData

struct: AlquimiaSizes struct: AlquimiaAuxiliaryOutputData

struct: AlquimiaState struct: AlquimiaGeochemicalCondition

struct: AlquimiaProperties struct: AlquimiaAqueousConstraint

struct: AlquimiaAuxiliaryData struct: AlquimiaMineralConstraint

struct: AlquimiaEngineStatus

Functions

void AlquimiaSetup void AlquimiaProcessCondition

void AlquimiaShutdown void AlquimiaReactionStepOperatorSplit

void AlquimiaGetEngineMetaData void AlquimiaGetAuxiliaryOutput

Constants

error codes

string lengths

strings

C Utilities Library

struct: AlquimiaInterface void AllocateAlquimiaXXX

void CreateAlquimiaInterface void FreeAlquimiaXXX

struct: AlquimiaData void PrintAlquimiaXXX

void AllocateAlquimiaData

purposes (AlquimiaAuxiliaryOutputData). Another structure (AlquimiaAuxiliaryData) is used to store data necessary for the

engine, the type of which is known but on which the driver should not do any operation. These data include for example the155

initial guesses for the next nonlinear solution, and thus the driver must return them on the next call and write them to checkpoint

files. Last, a standalone pointer variable contains all the persistent internal state data for the chemistry engine that is not mesh

dependent and can be reinitialized from the input file upon restart (AlquimiaEngineState).

Generally, the parameter values of the geochemical model are set by the engine. This simplifies code development on the

driver side as the engines already have facilities to read in these parameters. However, there are cases where finer-grained160

control of certain parameter values by the driver. For example, in parameter estimation simulations or inverse problems that

involve varying these values, it may be easier to control model parameters from the driver rather than having to write scripts

that change the values in engine input files. For this purpose, Alquimia provides the ability to control a limited set of reaction

parameters. These are part of the AlquimiaProperties data structure and include the linear sorption constant, the Freundlich
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sorption exponent, the Langmuir sorption coefficient, the mineral dissolution/precipitation kinetic rate constant, and the aque-165

ous kinetic reaction rate constant. A single flag controls this behavior. When turned on ("hands-on" mode), Alquimia will use

the parameter values coming from the driver for each cell at every time step to populate the appropriate data holders in the

engine. Otherwise ("hands-off" mode), the default behavior is to let the engine control these parameters. While enabling this

option gives the driver more control over some engine parameters, this approach is involved in terms of coding and must be

used with caution, especially because it may expand the capabilities of the engines. For example, one can specify a different170

value of the rate constants in each grid cell, which in general is not an option available in most geochemical models.

The second part of the Alquimia library is a C utility library that contains reusable code for common tasks such as allo-

cating memory, printing data and other miscellaneous auxiliary tasks. These are optionally used in driver codes to facilitate

implementation of these common tasks.

For wide compatibility with mixed language programming, Alquimia is implemented in the C language as it offers the most175

flexibility to mix with other languages, including C++, Python, or Fortran. Examples of this flexibility are given in Secs. 4 and

5. The two engines currently available in Alquimia are implemented in Fortran (Sec. 4.1).

3.3 Development practices

Alquimia adheres to best practices set forth by the Extreme-scale Scientific Software Development Kit (xSDK) (Bartlett et al.,

2017). Among other things, this means that Alquimia uses a CMake-based build system, provides a comprehensive test suite,180

provides a documented, reliable way to contact the development team, and has an accessible repository.

The required parts of the Alquimia are compiled using CMake-based build system into libalquimia_c.a and libalquimia_fortran.a.

Semantic versioning is used for its public API. The source code and tagged releases are hosted in a GitHub repository, pub-

licly available via a three-clause BSD licence. A test suite is provided that is based on two simple driver codes: one for batch

geochemistry calculations and another for coupled reactive transport calculations. Both the build system and the test suite are185

included in the automated continuous integration framework available from GitHub Actions (GitHub, 2024), which is triggered

by pull requests and used as condition for their approval. Alquimia is documented using restructured text files included in the

source distribution and may be built and exported to different formats using Python’s Sphinx package (Sphinx, 2024).

4 Implementation and use

The implementation and use of Alquimia are illustrated here by describing selected examples of the two tasks that Alquimia190

separates for engine and driver codes. One is the implementation of the geochemical calls in driver codes (e.g. left column in

Fig. 1). This implementation is independent of the engines available; it only depends on Alquimia’s data structures and call

signatures. The second task is the implementation of the engine-specific function calls in Alquimia for a given engine (e.g. right

column in Fig. 1). This also includes the necessary transfer of data between Alquimia data transfer containers and the engine’s

internal data structures. This implementation is independent of the use any driver makes of Alquimia and does not need to be195

repeated every time the interface is implemented in a new driver code. That is, if a new engine is added, no changes are needed

8
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in any driver that uses Alquimia to make use of these new engine’s capabilities. This allows for performing simulations using

the same driver replacing the geochemical engine. We use this feature to compare results from simulations performed using

different driver-engine combinations of the codes presented in what follows.

4.1 Geochemical engines200

The widely-used open-source codes PFLOTRAN and CrunchFlow have been implemented as engines in Alquimia. PFLO-

TRAN is an open-source, massively parallel multiscale and multiphysics code for subsurface multiphase flow, reactive trans-

port, geomechanics and geophysics applications (Hammond et al., 2014; Lichtner et al., 2015; Jaysaval et al., 2023). Crunch-

Flow is an open-source software package for simulating reactive transport (Steefel et al., 2015). Although both codes also

solve for flow and transport processes and are known for implementing the global implicit approach, they also give the user205

the possibility of running reactive transport simulations in operator splitting mode, e.g. Steefel and MacQuarrie (1996). This

facilitated the isolation of the geochemical capabilities of these codes for implementation in Alquimia. Although this applies to

AlquimiaSetup, AlquimiaProcessCondition, and AlquimiaReactionStepOperatorSplit, we focus here on the latter function for

brevity to exemplify the steps to implement engine capabilities in Alquimia.

The implementation of AlquimiaReactionStepOperatorSplit for both engines follows essentially the same steps. These in-210

clude copying the data from the transfer containers, passing the initial guesses to the appropriate variables, performing the

iterative nonlinear solve of the geochemical problem, and upon checking for convergence updating mineral concentrations

(Code blocks 1-2). However, the details of the implementation differ somewhat owing to the differences between the two

codes.

Code Block 1. Selected sections of Alquima’s implementation of the PFLOTRAN operator splitting step in AlquimiaReactionStepOperator-

Split. Lines starting with "!..." indicate portions of the code omitted for brevity. Some sections have been edited for legibility. The reader is

directed to the actual code for full details.215
1: subroutine ReactionStepOperatorSplit(pft_engine_state, &

2: delta_t, properties, state, aux_data, status)

3: ! ... include and "use module" statements, and variable declarations

4: ! ... assigning of the target of a C pointer to the Fortran engine_state pointer, check for

integrity220

5: reaction => engine_state%reaction

6: call CopyAlquimiaToAuxVars(copy_auxdata, engine_state%hands_off, &

7: state, aux_data, properties, &

8: reaction, engine_state%global_auxvar, &

9: engine_state%material_auxvar, engine_state%rt_auxvar)225

10: ! copy free ion primaries into initial guess array

11: allocate(guess(reaction%ncomp))

12: do i = 1, reaction%naqcomp

13: guess(i) = engine_state%rt_auxvar%pri_molal(i)

14: enddo230

15: do i = 1, reaction%immobile%nimmobile
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16: guess(i+reaction%offset_immobile) = engine_state%rt_auxvar%immobile(i)

17: enddo

18: ! perform batch calculation

19: vol_frac_prim = 1.0235

20: engine_state%option%tran_dt = delta_t

21: call RReact(guess, engine_state%rt_auxvar, engine_state%global_auxvar, &

22: engine_state%material_auxvar, num_newton_iterations, &

23: reaction, natural_id, engine_state%option, &

24: PETSC_FALSE, PETSC_FALSE, ierror)240

25: deallocate(guess)

26: ! check for errors, copy solution back to alquimia data struct

27: if (ierror /= 1) then

28: call RUpdateKineticState(engine_state%rt_auxvar, engine_state%global_auxvar, &

29: engine_state%material_auxvar, engine_state%reaction, engine_state%option)245

30: call CopyAuxVarsToAlquimia( &

31: engine_state%reaction, &

32: engine_state%global_auxvar, &

33: engine_state%rt_auxvar, &

34: porosity, &250

35: state, aux_data)

36: else

37: ! ...

38: endif

39: end subroutine ReactionStepOperatorSplit255

PFLOTRAN uses an object-oriented programming model introduced in a code refactoring (Hammond, 2022), while Crunch-

Flow uses a legacy procedural modular programming. These two different approaches require different ways of storing and

manipulating engine data within Alquimia.

In PFLOTRAN, most data structures needed to describe the geochemical problem are passed as arguments and thus must260

be included as part of the AlquimiaEngineState in Alquimia. This include those that contain geochemical reaction data such as

stoichiometric coefficients, engine_state%reaction, global variables such as aqueous saturation, engine_state%global_auxvar,

reactive transport variables such as total concentrations, engine_state%rt_auxvar, or material properties such as porosity, en-

gine_state%material_auxvar. As shown in Code Block 1, handling this within Alquimia is straigthforward using Alquimi-

aEngineState and also makes it for easy-to-maintain code. When new variables are added in PFLOTRAN the Alquimia in-265

terface does not need to change; only if the capabilities of Alquimia are expanded and there are new variables that need to

be passed explicitly, the interface require modification. These changes would mostly be limited to CopyAlquimiaToAuxVars

and CopyAuxVarsToAlquimia, which are helper subroutines that copy data from Alquimia transfer containers to the engine’s

variables and back.

CrunchFlow relies on global variables declared in modules, which are dynamically allocated upon initialization from the270

inputs. This requires that these modules are included in the Alquimia interface. Examples include aqueous saturation (satliq)

10

https://doi.org/10.5194/gmd-2024-108
Preprint. Discussion started: 27 August 2024
c© Author(s) 2024. CC BY 4.0 License.



from the transport module, porosity (por) from the medium properties module, or total concentrations (sn) from the concentra-

tion module (see CopyAlquimiaToAuxVars subroutine in crunch_alquimia_interface.F90). By contrast, CrunchFlow passes the

dimensions of the geochemical problem from high-level subroutines to low-level subroutines, thus the AlquimiaEngineState

data structure is used to store them (e.g. engine_state%ncomp, engine_state%nspec, engine_state%nkin, among other geo-275

chemical sizes). While Alquimia’s approach to engine data sometimes introduces more detail into code, its flexibility allows

Alquimia to accommodate the needs of very different engines.

Code Block 2. Selected sections of Alquimia implementation of the CrunchFlow operator splitting step in AlquimiaReactionStepOperator-

Split. Lines starting with "!..." indicate portions of the code omitted for brevity. Some sections have been edited for brevity. The reader is

directed to the actual code for full details.

1: subroutine ReactionStepOperatorSplit(cf_engine_state, &

2: delta_t, properties, state, aux_data, status)280

3: ! ... "use module" statements and variable declarations

4: ! ... assigning of the target of a C pointer to the Fortran engine_state pointer, check for

integrity

5: call CopyAlquimiaToAuxVars(copy_auxdata,engine_state%hands_off,state,aux_data,properties,&

6: engine_state%ncomp,nspec,engine_state%nkin,engine_state%nrct,engine_state%ngas,&285

7: engine_state%nexchange,engine_state%nsurf,engine_state%ndecay,engine_state%npot,&

8: engine_state%nretard)

9: ! ...

10: delt = delta_t / secyr

11: newtmax = 0290

12: jx=1; jy=1; jy=1

13: CALL keqcalc2(ncomp,nrct,nspec,ngas,nsurf_sec,jx,jy,jz)

14: IF (igamma == 3) THEN

15: IF (Duan) THEN

16: CALL gamma_co2(ncomp,nspec,ngas,jx,jy,jz)295

17: ELSE

18: CALL gamma(ncomp,nspec,jx,jy,jz)

19: END IF

20: END IF

21: CALL AqueousToBulkConvert(jx,jy,jz,AqueousToBulk)300

22: CALL os3d_newton(engine_state%ncomp,engine_state%nspec,engine_state%nkin,nrct,engine_state%ngas,&

23: engine_state%ikin,engine_state%nexchange,engine_state%exch_sec,engine_state%nsurf,&

24: engine_state%nsurf_sec,engine_state%npot,engine_state%ndecay,engine_state%neqn,&

25: engine_state%igamma,delt,engine_state%corrmax,engine_state%jx,engine_state%engine_state%jy,&

26: engine_state%jz,iterat,icvg,engine_state%nx,engine_state%ny,engine_state%nz,time,AqueousToBulk)305

27: CALL SpeciesLocal(ncomp,nspec,jx,jy,jz)

28: CALL totconc(ncomp,nspec,jx,jy,jz)

29: ! ...

30: if (icvg == 1) then

31: ! not converged, do nothing310

32: ! ... recover appropriate initial guesses
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33: else

34: CALL mineral_update(nx,ny,nz,nrct,delt,dtnewest,ineg,jpor,deltmin)

35: ! ...

36: end if315

37: ! ... update variables holding previous time step solutions with new

38: ! send state variables back to Alquimia state with solution of this solve

39: call CopyAuxVarsToAlquimia(engine_state%ncomp,engine_state%nspec,engine_state%nkin,&

40: engine_state%nrct,engine_state%ngas,engine_state%nexchange,engine_state%nsurf,&

41: engine_state%ndecay,engine_state%npot,engine_state%nretard,state,aux_data)320

42: return

43: end subroutine ReactionStepOperatorSplit

4.2 Drivers

The widely-used open-source codes Amanzi and ParFlow use Alquimia to implement geochemical capabilities. Amanzi is a325

multi-process high-performance-computing simulator that provides a flexible and extensible simulation capability. ParFlow is

a parallel, integrated hydrology model that simulates spatially distributed surface and subsurface flow, as well as land surface

processes including evapotranspiration and snow. The implementation of Alquimia in these codes responded to the particular

needs and capabilities in each case.

Code Block 3. Amanzi implementation of Alquima’s AlquimiaReactionStepOperatorSplit. Lines starting with "// ..." indicate portions of the

code omitted for brevity.330
1: bool

2: ChemistryEngine::Advance(const double delta_time,

3: const AlquimiaProperties& mat_props,

4: AlquimiaState& chem_state,

5: AlquimiaAuxiliaryData& aux_data,335

6: AlquimiaAuxiliaryOutputData& aux_output,

7: int& num_iterations)

8: {

9: // ...

10:340

11: // Advance the chemical reaction all operator-split-like.

12: chem_.ReactionStepOperatorSplit(&engine_state_,

13: delta_time,

14: &(const_cast<AlquimiaProperties&>(mat_props)),

15: &chem_state,345

16: &aux_data,

17: &chem_status_);

18: // ...

19:

20: // Retrieve auxiliary output.350

21: chem_.GetAuxiliaryOutput(&engine_state_,

12

https://doi.org/10.5194/gmd-2024-108
Preprint. Discussion started: 27 August 2024
c© Author(s) 2024. CC BY 4.0 License.



22: &(const_cast<AlquimiaProperties&>(mat_props)),

23: &chem_state,

24: &aux_data,

25: &aux_output,355

26: &chem_status_);

27:

28: // Did we succeed?

29: if (chem_status_.error != kAlquimiaNoError) return false;

30:360

31: // Did we converge?

32: if (!chem_status_.converged) return false;

33:

34: // Write down the (maximum) number of Newton iterations.

35: num_iterations = chem_status_.num_newton_iterations;365

36: return true;

37: }

In Amanzi, unstructured-mesh and structured-mesh discretizations are available in a single C++ code base and Alquimia was

the right solution for a unified geochemical interface that worked for the different data structures holding the state variables370

for both meshes. (In this work we use the labels Amanzi-U and Amanzi-S for convenience to distinguish between unstructured

and structured capabilities, respectively.) ChemistryEngine::Advance is the C++ function that provides a unified access within

Amanzi to Alquimia’s AlquimiaReactionStepOperatorSplit C function (Code Block 3). After calling AlquimiaReactionStep-

OperatorSplit, it obtains the auxiliary output variables. This is by choice here; there is no requirement to do so every time step

but in Amanzi, it is done so that when requested by the user, certain output variables can be written to the output file. This375

function is called for each cell of the discretization, thus the driver is responsible for handling how their data structures are

accessed for each cell.

The structured-mesh capabilities rely on block-structured adaptive mesh refinement (AMR) from the BoxLib library (Dubey

et al., 2014), build upon Fortran Array Boxes (FArrayBox). The function that solves the geochemical problem is written

for this FArrayBox. Using the available box iterators, the codes iterates for each grid cell in the box, performing three op-380

erations (Code Block 4). First, the Alquimia transfer containers are updated using the structured variables, then the Chem-

istryEngine::Advance) function (described above) is called with these updated data structures, solving the geochemical prob-

lem, and last the new solution is passed back to the (FArrayBox) structures for the next transport step.

Code Block 4. Amanzi-S call to advance chemistry. Lines starting with "// ..." indicate portions of the code omitted for brevity.

1: void385

2: AlquimiaHelper_Structured::Advance(const FArrayBox& aqueous_saturation, int sSat,

3: const FArrayBox& aqueous_pressure, int sPress,

4: const FArrayBox& porosity, int sPhi,

5: const FArrayBox& volume, int sVol,

6: FArrayBox& primary_species_mobile, int sPrimMob,390

7: FArrayBox& fcnCnt, int sFunc,
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8: FArrayBox& aux_data, Real water_density, Real temperature,

9: const Box& box, Real dt, int chem_verbose)

10: {

11: // ...395

12: Box thread_box(box);

13: thread_box.setSmall(BL_SPACEDIM-1,tli);

14: thread_box.setBig(BL_SPACEDIM-1,tli);

15:

16: for (IntVect iv=thread_box.smallEnd(), End=thread_box.bigEnd(); iv<=End; thread_box.next(iv)) {400

17:

18: BL_to_Alquimia(aqueous_saturation, sSat,

19: aqueous_pressure, sPress,

20: porosity, sPhi,

21: volume, sVol,405

22: primary_species_mobile, sPrimMob,

23: aux_data, iv, water_density, temperature,

24: alquimia_properties[threadid],

25: alquimia_state[threadid],

26: alquimia_aux_in[threadid],410

27: alquimia_aux_out[threadid]);

28:

29: // ...

30:

31: int newton_iters;415

32: engine->Advance(dt,alquimia_properties[threadid],alquimia_state[threadid],

33: alquimia_aux_in[threadid],alquimia_aux_out[threadid],newton_iters);

34:

35: // ...

36:420

37: Alquimia_to_BL(primary_species_mobile, sPrimMob,

38: aux_data, iv,

39: alquimia_properties[threadid],

40: alquimia_state[threadid],

41: alquimia_aux_in[threadid],425

42: alquimia_aux_out[threadid]);

43:

44: fcnCnt(iv,sFunc) = newton_iters;

45: }

46: }430

47: }

The three operations are also present in the unstructured counterpart of the Advance function (Code Block 5). The copy

operations from and to Alquimia data structures are different than those in the structured function and thus cannot be re-used.
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However, the call to the chemistry engine Advance is the same as in the structured function. This exemplifies how the single-cell435

model adopted in Alquimia offers significant flexibility in enabling a broad range of discretizations.

Code Block 5. Amanzi-U call to advance chemistry

1: int

2: Alquimia_PK::AdvanceSingleCell(double dt,

3: Teuchos::RCP<Epetra_MultiVector>& aqueous_components,440

4: int cell)

5: {

6: // Copy the state and property information from Amanzi's state within

7: // this cell to Alquimia.

8: CopyToAlquimia(445

9: cell, aqueous_components, alq_mat_props_, alq_state_, alq_aux_data_, Tags::DEFAULT);

10:

11: int num_iterations = 0;

12: if (alq_mat_props_.saturation > saturation_tolerance_) {

13: bool success = chem_engine_->Advance(450

14: dt, alq_mat_props_, alq_state_, alq_aux_data_, alq_aux_output_, num_iterations);

15: if (not success) {

16: if (vo_->os_OK(Teuchos::VERB_MEDIUM)) {

17: Teuchos::OSTab tab = vo_->getOSTab();

18: *vo_->os() << "no convergence in cell: " << mesh_->cell_map(false).GID(cell) << std::endl;455

19: }

20: return -1;

21: }

22: }

23:460

24: // Move the information back into Amanzi's state, updating the given total concentration vector.

25: CopyAlquimiaStateToAmanzi(

26: cell, alq_mat_props_, alq_state_, alq_aux_data_, alq_aux_output_, aqueous_components);

27:

28: return num_iterations;465

29: }

In ParFlow, earlier work entailed coupling solute transport in the subsurface to a subset of the geochemical capabilities in

CrunchFlow via a custom interface (Beisman et al., 2015). In that case, the same C-to-Fortran macros used for coupling Parflow

with the CLM land model (Maxwell and Miller, 2005) were applied. This earlier work served as the basis for the implemen-470

tation of Alquimia in the code, although the availability of Alquimia’s C interface here enabled a more seamless coupling,

without the need of C to Fortran macros. For example, the AlquimiaReactionStepOperatorSplit C function is called directly

within a loop inside block structured discretization (Code Block 6). The function in Code Block 6 shows how the coupling

utilizes extensively the C utility library. ParFlow calls CopyAlquimiaState, CopyAlquimiaProperties, and CopyAlquimiaAux-

iliaryData are used to store and retrieve data before and after the call to AlquimiaReactionStepOperatorSplit in case of non475
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convergence of the solution (Code Block 6). This is in contrast to Amanzi, where similar functions are used but they are written

as new C++ code in Amanzi itself and encapsulated in BL_to_Alquimia and Alquimia_to_BL for the structured capabilities and

CopyToAlquimia and CopyAlquimiaStateToAmanzi for the unstructured.

Code Block 6. Parflow call to Alquima. Lines starting with "// ..." indicate portions of the code omitted for brevity.

1: void AdvanceChemistry(ProblemData *problem_data, AlquimiaDataPF *alquimia_data, Vector **480

concentrations, Vector *saturation, double dt, double t, int *any_file_dumped, int dump_files,

int file_number, char *file_prefix)

2: {

3: // ...

4: // copy the transported primary mobile concentrations to alquimia485

5: AdvectedPrimaryToChem(alquimia_data->chem_state, &alquimia_data->chem_sizes, concentrations,

problem_data);

6:

7: // solve chemistry cell-by-cell

8: ForSubgridI(is, subgrids)490

9: {

10: subgrid = SubgridArraySubgrid(subgrids, is);

11:

12: // ...

13: por_sub = VectorSubvector(ProblemDataPorosity(problem_data), is);495

14: por = SubvectorData(por_sub);

15: sat_sub = VectorSubvector(saturation, is);

16: sat = SubvectorData(sat_sub);

17:

18: GrGeomInLoop(i, j, k, gr_domain, r, ix, iy, iz, nx, ny, nz,500

19: {

20: por_index = SubvectorEltIndex(por_sub, i, j, k);

21: sat_index = SubvectorEltIndex(sat_sub, i, j, k);

22:

23: chem_index = (i-ix) + (j-iy) * nx + (k-iz) * nx * ny;505

24:

25: alquimia_data->chem_properties[chem_index].volume = vol;

26: alquimia_data->chem_properties[chem_index].saturation = sat[sat_index];

27:

28: // Set the thermodynamic state.510

29: alquimia_data->chem_state[chem_index].water_density = water_density;

30: alquimia_data->chem_state[chem_index].temperature = 25.0;

31: alquimia_data->chem_state[chem_index].porosity = por[por_index];

32: alquimia_data->chem_state[chem_index].aqueous_pressure = aqueous_pressure;

33:515

34: //copy pre-solution state and aux data to temp containers in case non-convergence is an issue

35: CopyAlquimiaState(&alquimia_data->chem_state[chem_index], &alquimia_data->chem_state_temp);
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36: CopyAlquimiaAuxiliaryData(&alquimia_data->chem_aux_data[chem_index], &alquimia_data->

chem_aux_data_temp);

37: CopyAlquimiaProperties(&alquimia_data->chem_properties[chem_index], &alquimia_data->520

chem_properties_temp);

38:

39: // Solve the geochemical system

40: alquimia_data->chem.ReactionStepOperatorSplit(&alquimia_data->chem_engine,

41: dt_seconds, &alquimia_data->chem_properties[chem_index],525

42: &alquimia_data->chem_state[chem_index],

43: &alquimia_data->chem_aux_data[chem_index],

44: &alquimia_data->chem_status);

45: if (alquimia_data->chem_status.error != 0)

46: {530

47: amps_Printf("ReactionStepOperatorSplit() error: %s\n",

48: alquimia_data->chem_status.message);

49: PARFLOW_ERROR("Geochemical engine error, exiting simulation.\n");

50: }

51:535

52: if (!(alquimia_data->chem_status.converged))

53: {

54: // ...

55: }

56:540

57: alquimia_data->chem.GetAuxiliaryOutput(&alquimia_data->chem_engine,

58: &alquimia_data->chem_properties[chem_index],

59: &alquimia_data->chem_state[chem_index],

60: &alquimia_data->chem_aux_data[chem_index],

61: &alquimia_data->chem_aux_output[chem_index],545

62: &alquimia_data->chem_status);

63: if (alquimia_data->chem_status.error != 0)

64: {

65: amps_Printf("GetAuxiliaryOutput() auxiliary output fetch failed: %s\n",

66: alquimia_data->chem_status.message);550

67: PARFLOW_ERROR("Geochemical engine error, exiting simulation.\n");

68: }

69: });

70: }

71:555

72: // copy solved primary concentrations back to PF

73: ReactedPrimaryToPF(alquimia_data->chem_state, &alquimia_data->chem_sizes, concentrations,

problem_data);

74:

75: // ...560

76: }
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4.3 Multi-way comparison

We build on the tests in the Alquimia test suite to develop a set of one-dimensional simulations of reactive transport with

Amanzi and ParFlow. The test suite (Sec. 3.3) ensures the correct functioning in the simulation of specific reaction types sep-565

arately: mineral dissolution-precipitation, aqueous kinetics, ion exchange, surface complexation, and isotherm-based sorption

in batch and reactive transport scenarios. In addition, a non-reactive tracer simulation is used to identify how the different dis-

cretization schemes affect the differences in the results but also to rule out numerical issues by the data transfer steps involved

in using Alquimia.

The simulations are simple with regard to the transport processes and the spatial distribution of properties in this domain.570

The domain is one-dimensional, 100 meters in length and discretized with 100 cells, with a porosity of 0.25. A uniform flow

rate is applied along the domain in fully-saturated conditions such as the infiltrating front is half-way through the domain in the

50-year simulations. Diffusive-dispersive processes are not considered. In the tests with heterogeneous reactions, the solution

initially in the domain is in equilibrium with the mineral or surface. A solution with a distinct composition infiltrates from

the left boundary, displacing the initial solution and driving the geochemical reactions considered in each case (except for the575

non-reactive tracer.)
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Figure 2. Selected results from six 1D reactive transport simulations that consider common geochemical reactions separately: (a) non-

reactive tracer, (b) tritium decay, (c) calcite dissolution, (d) ion exchange, (e) surface complexation and (f) isotherm-based sorption. Each

simulation was performed with different code combinations Amanzi (-S and -U) and Parflow were used as driver codes, with PFLOTRAN and

CrunchFlow as engine codes. Additionally, PFLOTRAN and CrunchFlow were also used as reactive transport simulators, where GIMRT and

OS3D refer to the global implicit and operator splitting capabilities of CrunchFlow. In global implicite mode, PFLOTRAN and CrunchFlow

solve transport implicitly resulting in diffuse solutions, which are omitted in the figure. The Langmuir and Freundlich sorption isotherms

presented for CrunchFlow as they are not directly available in CrunchFlow, although Langmuir could be readily implemented with a surface

complexation model and a single sorbing species. Standalone CrunchFlow does not output sorbed concentrations for Kd linear sorption.
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Each problem is simulated eight times. This includes six times with different driver-engine combinations (two each with

Amanzi-S, Amanzi-U, and ParFlow, using PFLOTRAN and CrunchFlow as engines). Two additional simulations are performed

with PFLOTRAN and CrunchFlow as standalone codes using their own transport solvers. In all cases, the Courant number was

kept to 1, as needed by the operator splitting approach.580

Results from the non-reactive tracer show that the advective front is at 50 m at 50 years (Figure 2a). Spreading of the

front can be attributed exclusively to numerical dispersion added by the numerical scheme employed in each case. Results

from Amanzi-S show the sharpest advective front, consistent with the high-order methods in BoxLib (Dubey et al., 2014),

especially when Courant number equals 1. CrunchFlow’s third-order time-diminishing variation (TVD) scheme (Gupta et al.,

1991) in operator splitting mode results in a numerical dispersion similar to that of Amanzi-U’s explicit second order scheme.585

PFLOTRAN and CrunchFlow in global implicit mode use both implicit solvers that result in larger numerical dispersion.

The differences in the discretization schemes affect the results from the reactive transport simulations differently. For

kinetically-controlled aqueous reactions such as first-order tritium radioactive decay, r =−λc, differences arise at the lead-

ing edge of the infiltration front but disappear with time behind the front (Figure 2b). For fast or equilibrium heterogeneous

reactions, two fronts may be present, one associated with the advective infiltration front and one with the heterogeneous reac-590

tion.

In the calcite simulation, dissolution is treated as a kinetic reaction with a transition-state-theory-type rate law:

Ri = kA(1−Q/Ks) (10)

where k is the rate constant, Q is the ion activity product, Ks is the equilibrium constant of the reaction, and A is the reactive

surface area. The intrinsic rate of reaction (kA) is much faster than the rate of advective transport, which effectively results595

in equilibrium conditions. The incoming solution drives dissolution, depleting over time the initial mass of calcite. Where

calcite is still present, the solution is in equilibrium with respect to calcite (between 22-100 m at 50 years, 2c). Where calcite

has been depleted, the concentrations reflect the incoming solution (between 0-22 m at 50 years). The reactive front is thus

sharp. All codes capture accurately the location of this sharp front, with only minor differences in the values in the grid cells

near the front compared to the absolute variation in values in the front. Thus, this front is not as affected by the numerical600

dispersion discussed earlier. In contrast, the infiltration front at 50 m shares the same issues discussed previously with regard to

the front spreading. The solution resulting from calcite dissolution upstream mixes with the initial solution owing to numerical

dispersion (Figure 2c). In this example, the reaction reduce differences that may arise from the transport calculations such as

those from discretization schemes. In reactive transport systems at steady-state or quasi-steady state conditions (such as this

slow-moving calcite dissolution front), numerical dispersion is often less of a concern to practitioners in contrast to the small605

time steps required with the operator splitting approach.

Surface reactions (sorption isotherms, ion exchange, and surface complexation) are all treated as equilibrium reactions by

the two engines available in Alquimia. Results for the associated test examples also show a very reasonable agreement between

codes capturing the resulting fronts (Fig. 2). Sorption isotherms (linear-Kd, Freundlich and Langmuir) express relationships

between aqueous and sorbed concentrations. As such, there is only the advective front present in the results, with the sorbed610
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concentrations tracking this front (Fig. 2f, compare with Fig. 2a), and the codes perform according to their performance in the

conservative tracer simulations.

The ion exchange simulation shows two sets of fronts (Fig. 2d). The fronts are limited to very narrow bands near the inlet

and at 50 m (not visible in Fig. 2d). The infiltrating solution is dilute in comparison to the initial solution but the proportions

of the solutes are different. Sorbed concentrations change accordingly, with Mg2+ and Ca2+ increasing relatively to initial615

and Na+ decreasing. Surface complexation of Zn2+ also shows good agreement between codes, where the greater Zn2+

concentrations in the infiltrating solution result in increasing sorbed concentrations with time (Figure 2e).

5 Applications

This section presents examples of how Alquimia can be deployed within very different applications and purposes. Alquimia’s

interface is well-defined (i.e. variables and parameters given and returned are unequivocally specified with their units, and620

functions are clearly described), and is flexible enough to allow for the peculiarities associated with each application, making it

broadly applicable to the simulation of geochemical systems. From a software perspective, the interface must couple with codes

written in different programming languages, and the code performance must not be hindered by the coupling. This section also

documents issues associated with the development and how they were overcome in each case.

5.1 Pore-scale multiphase flow and reactive transport625

In recent years, there has been an increase in the use of reactive transport models to simulate pore-scale processes, e.g. Molins

et al. (2020, 2024b). A distinctive aspect of pore-scale models is that they represent explicitly the fluid and solid phases that

make up porous media. From a geochemical perspective, this allows for consideration of mineral surface areas directly from

the pore space geometry and thus for the accessibility of the reactive fluids to the mineral surfaces (Molins, 2015).

A recent area of interest is the coupling of pore-scale models for multiphase flow to reactive transport. In this direction,630

Li et al. (2022) developed a multiphase flow and reactive transport simulator building on capabilities of openFOAM (noa,

2022). OpenFOAM (for “Open-source Field Operation And Manipulation") is a very popular open-source platform written in

C++ to develop computational models in fluid dynamics applications and beyond. For the application presented in Li et al.

(2022), openFOAM provides the solver tools for multiphase flow and transport of solutes in the aqueous phase. However,

no geochemical packages are available to represent multicomponent aqueous speciation and mineral dissolution-precipitation635

reactions. CrunchFlow has been used previously in this role, including in pore-scale applications (Molins et al., 2012; Beisman

et al., 2015; Zhang et al., 2022, 2024), and thus its use was a preferred choice.

Alquimia facilitated the development of the application. Because it is written in C, it was straightforward to use in Open-

FOAM’s C++-based code. It also provided enough flexibility to incorporate the pore-scale conceptualization of reactive pro-

cesses. Importantly for pore-scale applications, the reactive surface area (A′) in the mineral rate (R′i) is in units of area. e.g.,640

m2. Mineral dissolution in the pore-scale model is simulated with a transition-state-theory-type rate law:

R′i = kA′(1−Q/Ks) (11)
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where k is the rate constant, Q is the ion activity product, Ks is the equilibrium constant of the reaction, and A′ is the reactive

surface area. Alquimia was originally designed with porous-media applications and it also assumes mass balance is performed

per unit volume. As such, it requires this surface area to be in units of specific area, namely m2/m3−bulk as the conservation645

equation 8 is written per unit volume. In other words, this implies that the surface area must be normalized by the volume

of medium it occupies. In a discretized form, this volume is the volume of the grid cell n (V n). Hence, in the single-cell

Alquimia model, the surface area is the area of the interface as computed by openFOAM normalized by the grid cell volume

(An = A′n/V n). At the same time, the volumetric water content (θ) on the left-hand side of Eq. 8 is set to be the water volume

in the cell normalized to the grid cell volume (θn = V n
aq/V n). Hence, the function fk in Eq. 6, is in discretized form:650

Rn
i = kAn(1−Qn/Ks) (12)

In a cell n where A′n is not zero (i.e. in contact with the solid phase) and where V n
aq is not zero (i.e. the aqueous phase is

present), can be non-zero (i.e. dissolution or precipitation may take place).

OpenFOAM uses header files for setting up and initializing the problem at hand. This implies that initial values for primary

variables such as species concentrations in solute transport problems are given in these files. In multicomponent geochemical655

models, the value of the initial and boundary concentrations is generally not known before the simulation, rather, a set of

constraints is given to obtain species concentrations. The specialized Alquimia AlquimiaProcessCondition function call is used

for this purpose in Li et al. (2022). In a first step, the dimensions of the geochemical problem are given in an openFOAM

header files, which then are used to allocate and initialize the concentration variables with dummy values. In a second step, the

Alquimia AlquimiaSetup function is called which provides the dimensions of the geochemical system, which must be checked660

for consistency with those in the header files, followed by a call to AlquimiaProcessCondition (Fig. 3) to initialize and set the

boundary conditions of the pore-scale problem in OpenFOAM.
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Figure 3. Diagram summarizing the computational workflow of CrunchFOAM, including initialization of the CrunchFlow geochemical

problem and calls to its solver via Alquimia. Reprinted from Li et al. (2022)

5.2 Land surface processes

In the Earth System Model (ESM) context, the land surface represents the lower boundary of the atmosphere. It also acts

as host of biogeochemical cycles such as soil organic matter decomposition that influence the global carbon budget. Land665

surface models (LSMs) couple the relevant processes in terrestrial environments in order to quantify key interactions including

greenhouse gas exchange fluxes between soil and atmosphere or the capacity of soils to sequester carbon. LSMs generally

use simplified representations of biogeochemical cycling that consider the role of carbon, nitrogen, phosphorus and water but

neglect other components, pH, and the aqueous reactions associated with it, including detailed terminal electron accepting

processes (Sulman et al., 2024). There is an opportunity to significantly improve LSMs by incorporating the broad range of670

reactions that are available in general-purpose geochemical models. In particular, PFLOTRAN offers flexible options via its

Reaction Sandbox feature to readily implement custom reaction rate models (Hammond, 2022). LSMs are already complex

codes, in that they include many processes, and thus development often benefits from prototyping new process models, testing

them considering a reduced number of coupled processes or exploring scenarios systematically. This process typically also

benefits from using tools that automate processing and visualization of the results.675

In this example application, Sulman and co-authors (Wang et al., 2024; Sulman et al., 2024) used Alquimia to incorporate

geochemical processes in land surface modeling. Rather than tackling a full implementation to an existing land surface model,

a two-step approach was used.
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In a first step, a Python-based prototyping simulator was developed and applied to the simulations of methane processes

in Arctic soils. A Python interface implemented Alquimia’s API functions and data structures as Python functions using the680

CFFI package (CFFI, 2023). Alquimia’s C interface was used to couple it to this Python implementation. As a prototyping

tool, the model consisted of a single-cell representation of the system and the main use was to systematically prescribe fluxes

in the Python code directly. This allowed for setting up the domain in Python data structures while retaining the PFLOTRAN

reaction network capabilities. Time-stepping was done in the Python code. The hands-on mode in Alquimia allowed setting

and updating reaction rate constants from the Python code in each time step. This is not necessarily possible with PFLOTRAN685

directly. This Python-Alquimia prototyping system was further applied to simulate one-dimensional soil column processes in

coastal wetlands (Wang et al., 2024).

In a second step, Alquimia was used to couple PFLOTRAN to the existing Energy Exascale Earth System Model (E3SM)

Land Model (ELM). This allowed for representing complex redox dynamics, aqueous and solid-phase chemistry, and pH dy-

namics in ELM (LaFond-Hudson and Sulman, 2023; Sulman et al., 2024). This is especially important in tidal wetlands, which690

are subject to both saltwater and freshwater inputs driven by tidal hydrological dynamics. Saltwater inputs inputs are associ-

ated with elevated sulfate concentrations that provide alternative terminal electron acceptors and reduce methane emissions

in saltwater-affected wetlands. This work built on the prototype developed earlier but relied on the FORTRAN interface in

Alquimia for convenience given that ELM is written in FORTRAN. Although PFLOTRAN is also in FORTRAN, from the

engine’s perspective (ELM in this case), the implementation is independent of the language the engine is written. Alquimia695

initialization (AlquimiaSetup) and initial condition equilibration (AlquimiaProcessCondition) subroutines were added to the

ELM initialization code, and the Alquimia time stepping subroutine was added to ELM (Figure 4).
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Figure 4. Diagram summarizing the computational workflow of ELM-PFLOTRAN, including initialization of the PLFOTRAN geochemical

problem and calls to its solver via Alquimia.

ELM has its own description of biogeochemical processes, including consideration of carbon and nitrogen, which are present

in multiple solid-state pools such as litter and soil organic matter, as well as aqueous soil nitrate and ammonium. In order to

replace the ELM description of biogeochemical processes with that of PFLOTRAN, there has to be a one-to-one correspon-700

dence between ELM pools and the pools that are included in the PFLOTRAN reaction network used in the coupling (Tang

et al., 2016). This is accomplished via the PFLOTRAN input file, along with soil organic matter decomposition kinetics defined

using the PFLOTRAN Reaction Sandbox (Hammond, 2022). In this process, however, the Alquimia data structure interface

was also augmented to treat solid-state SOM pools as immobile chemicals, allowing for transparent data transfer of the SOM

pools from ELM to PFLOTRAN and back via the interface.705

In the implementation, ELM decomposition processes were fully replaced by equivalent or modified calculations on the

PFLOTRAN side and included the pools required by ELM. However, additional reactive processes are not affected by any

requirements, enabling the consideration of reaction networks of arbitrary complexity using PFLOTRAN’s flexible input file.

For example, additional elemental cycles such as Mn redox processes or inorganic C interactions with soil minerals could

be added to ELM simulations with minimal changes to ELM code. From a software design perspective, ELM stores all state710

variables of the geochemical problem (e.g., C and N concentrations as well as aqueous concentrations of H+, SO2−
4 , HS−,

etc. and soil minerals such as iron oxides and iron sulfides if defined in the reaction network) but only those that are directly

25

https://doi.org/10.5194/gmd-2024-108
Preprint. Discussion started: 27 August 2024
c© Author(s) 2024. CC BY 4.0 License.



relevant to ELM state are visible to other model components (primarily organic matter and nutrient pools) while others are only

handled by the interface. This allows for minimizing changes in ELM. We can, however, envision that certain process models

in ELM could be improved on or refined with the addition of variables from the geochemical model currently not considered.715

For example, vegetation responses to phytotoxic sulfide concentrations or soil oxygen concentration could be added to improve

representation of wetland vegetation (LaFond-Hudson and Sulman, 2023).

5.3 Reactive transport for integrated surface-subsurface hydrology

There is an increasing interest in using integrated hydrology models to quantify not only the water exports but also the solute

exports from watersheds that impact human activities downstream (Bao et al., 2017). While integrated hydrology models720

have been used extensively to capture the feedback between flow in the surface and subsurface, solute transport and reactive

processes are not represented in most models.

Molins et al. (2022) developed an approach to simulate reactive transport processes in integrated surface-subsurface hydrol-

ogy problems. This approach was implemented in the open-source Advanced Terrestrial Simulator (ATS) (Coon et al., 2019),

an integrated hydrology code built upon Amanzi solvers for subsurface flow and transport. The approach included geochemical725

processes both in the surface and subsurface compartments. Alquimia facilitated the implementation because ATS is built upon

Amanzi, which already implemented Alquimia. In turn, the flexible multiphysics framework in ATS, which specifies interfaces

for coupled processes (process kernels) and automates coupling strategies, allowed for defining separate process kernels for

geochemistry in the surface and the subsurface (Fig. 5).

Figure 5. Process tree for a model of integrated hydrology and integrated reactive transport implemented in ATS (Coon et al., 2019; Molins

et al., 2022) with calls to Alquimia, including both CrunchFlow and PFLOTRAN. In the example presented here, CrunchFlow is used in the

Subsurface Reaction PK (left), and PFLOTRAN in the Overland Reaction PK (right). Reprinted from Molins et al. (2022).
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The separation of multiphysics process kernels in ATS offers an excellent opportunity to showcase the flexibility that730

Alquimia provides in order to develop increasingly complex conceptual models and facilitate its implementation in software.

This is exemplified here with simple simulations of reactive transport in a vertical column. To do so, we consider distinct

geochemical models in the surface and subsurface, and then use both geochemical engines, CrunchFlow and PFLOTRAN, in

the same simulation.

In the column, the subsurface soil is initially partially saturated and the surface is dry. Over the initial 105 days, a constant735

precipitation rate is applied to the surface domain, which exceeds the rate of drainage at the bottom of the column. As a

result, water infiltrates into the subsurface, which becomes progressively saturated. The surface domain remains dry initially,

but eventually the subsurface becomes fully saturated and water accumulates in the surface as well. The saturated hydraulic

conductivity of the soil is larger than any of the prescribed water fluxes, precipitation or drainage. At 105 days, precipitation

ceases and drainage increases. As a result, the ponded depth of water accumulated on the surface decreases. For the geochemical740

problem, we consider the presence of calcite and a set of dissolved species that describe the calcium carbonate system, including

Ca2+, HCO−3 , and H+ as primaries. The water in the column is initially in equilibrium with calcite. Rainwater is equilibrated

with atmospheric CO2, resulting in a relatively low pH, which drives calcite dissolution.

We consider 2 separate scenarios that represent two end-member conceptual models. Because in ATS surface water is treated

with the shallow water approximation, water on the surface is well mixed. If heterogeneous reactions such as calcite dissolution745

are considered, this implies that the entire water column volume is in contact with mineral surfaces. This may overestimate

the actual rate of dissolution if well mixed conditions are not achieved (e.g. gradients in concentrations exist along the water

column). In scenario 1, surface water is assumed not to be in contact with the mineral at all and calcite dissolution is not

included. In scenario 2, calcite is also present in the surface for dissolution.

In these simulations, we further demonstrate Alquimia’s flexibility by using it to couple ATS with PFLOTRAN in the surface750

and CrunchFlow in the subsurface. These simultaneous couplings are not strictly necessary here because the capabilities to

describe mineral dissolution and aqueous complexation in PFLOTRAN and CrunchFlow are very similar (yielding to the

results shown in Section 4.3). However, one can envision situations where different engines have different capabilities, or

that different process representations could be used in different parts of the domain with different codes. For example, a land

surface model could be used to describe geochemical processes in the shallow subsurface in connection with SOM, vegetation755

and microbial dynamics, and a specialized geochemical model could be used to describe deeper subsurface processes, including

mineral weathering.

27

https://doi.org/10.5194/gmd-2024-108
Preprint. Discussion started: 27 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 6. Results from surface-subsurface reactive transport simulation by ATS, with PFLOTRAN solving the geochemical problem in the

surface and CrunchFlow in the subsurface, showing (a) ponded depth and water saturation, (b) Ca2+ concentrations in scenario 1 with

dissolution in the surface, and (c) Ca2+ concentrations in scenario 2. Surface variables are shown as symbols at an arbitrary height and

subsurface variables as solid lines as a function of height.

Results show differences in Ca2+ concentrations with depth in the two scenarios (Fig. 6). Before day 75, the surface is

dry and there are no solutes in the surface. Rainwater infiltrates directly into the subsurface and in both scenarios results

are identical for concentrations, with concentrations increasing with depth as calcite dissolves. From day 75, concentrations760

appear in the surface. In scenario 1, dissolution in the surface results in an increase of concentrations there with respect to

rainwater values, while in scenario 2, the values reflect those in rainwater. As surface water infiltrates, it continues to drive

calcite dissolution in both scenarios. Concentration profiles until day 105 are visually very similar in both scenarios, although

numerical values differ by as much as 6%. This is due to how ATS calculates mass fluxes at the surface-subsurface interface

(Molins et al., 2022). As indicated in the PK tree in Fig. 5, solute fluxes are obtained first for integrated transport, then the765

resulting concentrations from these fluxes are used to solve the geochemical problem. In this case, this means that fluxes into

the subsurface not only reflect concentrations in the surface but also concentrations in the rainwater. Because concentrations

in the rainwater are essentially zero, the solution infiltrating in the subsurface until day 105 is much more diluted than that in

the surface. When precipitation ceases, the infiltrating concentrations reflect solely those in the ponded water and thus start

to differ more clearly between scenario 1 and 2 (Fig. 6). This type of conceptual choices are made in the development of the770

driver code (ATS in this case) and enabled by the flexibility of the software interface.

6 Discussion and conclusions

6.1 Flexibility

The examples presented above highlight the flexibility of the generic interface Alquimia to expand the capabilities of multi-

physics simulators to include multicomponent geochemical processes. Some of these applications go beyond the use initially775
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envisioned for the interface, i.e. flow and reactive transport in subsurface porous media (Moulton et al., 2011). From this point

of view, the operator L in Eq. 2 can be seen as a generic process operator that applies to concentration and affects the mass

balance of component i.

For example, Alquimia can be used even when there is no transport to explore the in situ dynamics of land surface processes

or compare with batch-scale laboratory experiments while using driver code to expand on the native capabilities of reaction780

engines (Sulman et al., 2022, 2020). Further, when column-based land surface models such as ELM are used (Sulman et al.,

2024), in addition to solute transport, the L operator can also include gas transport and lateral fluxes associated with tidal

fluctuations along the depth of column with consideration of the corresponding salinity gradients.

Generally, however, the operator L includes transport processes. In the pore-scale application, transport was considered

in the aqueous phase only (Sec. 5.1). In the integrated hydrology application (Sec 5.3), the subsurface was simulated as a785

porous medium like in Amanzi or Parflow (Sec. 4.2) but the surface was represented as a 2D domain using the shallow water

approximation. There, the solute mass balance is solved for the ponded depth of water. Because the surface may be wet or dry

as a result of the dynamic conditions driven by rain events, the reactive transport processes are solved only for the wet portion

of the surface.

The flexibility is also demonstrated by its application to different meshing and discretization schemes. The single-cell ap-790

proach enabled the use of structured and unstructured meshes in Amanzi (Moulton et al., 2011). The unstructured capabilities

in Amanzi allowed for traditional finite volume schemes, mimetic finite differences, and nonlinear finite volumes (Moulton

et al., 2011), while the structured capabilities allowed for adaptive mesh refinement (AMR) Dubey et al. (2014).

6.2 Prototyping and benchmarking

Alquimia allows for rapid prototyping new capabilities and approaches. Examples include time stepping schemes or imple-795

mentations of processes that are not readily available in engine codes. In the example of Sulman et al. (2022), this enabled

prescribing the oxic/anoxic fluctuations of the system from the Python driver code by exchanging oxygen via a time-varying

external boundary condition. Similarly, rate constants were updated by the driver at specified time points using the fine-grained

access to the reaction parameters provided by Alquimia’s hands-on mode.

As a generic interface, once Alquimia is implemented in a driver, one can swap engines for the same problem as long as800

these engines provide the same capabilities. This is of particular interest in benchmarking of reactive transport models. Because

of the coupled nature of RTM, it is important to narrow down the source of discrepancies between codes. By sharing the same

engine or by sharing the same driver, the use of Alquimia allows to isolate the potential sources of discrepancies. The example

presented in Sec. 4.3 demonstrated how this approach can be used to investigate the impact of discretization schemes but this

could be extended to other aspects.805

6.3 Limitations and Future work

As a generic interface, Alquimia is designed to allow for the implementation of different engines. However, the current number

of implemented engines is still limited. As a result, only a small portion of all potential options have been demonstrated here.
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Alquimia allows for the canonical approach (Eqs. 2-3), commonly used in reactive transport models such as PFLOTRAN

and CrunchFlow (Lichtner, 1991), but this is not required. If this approach is not available in a given engine or equilibrium810

may not be assumed, there are no restrictions in setting the number of aqueous complexes (Nx) to zero and using the to-

tal mobile concentrations to hold all the species concentrations. Heterogeneous reactions present a similar case. For mineral

dissolution-precipitation, mineral volume fractions and surface areas are passed between driver and engine but there is no

implied assumption whether they are implemented as equilibrium or kinetic reactions in the engine. Likewise, only sorbed

concentrations are required for surface complexation reactions, which have been modeled both as equilibrium (Steefel et al.,815

2015) and as kinetic processes (Greskowiak et al., 2015). The assumption on the driver side is only that total mobile concen-

trations are to be transported with the aqueous phase, while total immobile concentrations are not.

Alquimia currently only permits operator splitting coupling between engines and drivers. This poses a constraint on the time

step size and thus hampers the solution of certain problems, e.g. rapid transport. However, the interface can be expanded to

allow for the global implicit approach. The same single-cell model used for operator splitting would be applicable, but the820

Alquimia state variables would have to include the Jacobian matrix of the geochemical problem in each grid cell. The driver

code would set up a solve the nonlinear problem resulting from coupling solute transport and reactions over the spatial domain.

For the operator splitting coupling, there are no restrictions on how it is implemented and other schemes could be considered

such as Strang symmetrization.

In the applications presented here, the choice of engine was often a function of the familiarity of the users with one of the825

engines available but also with the availability of specific capabilities from one engine. While most codes with geochemical

capabilities share a set of basic capabilities (Steefel et al., 2015), one can anticipate that, as the number of engines connected to

Alquimia grows, specialized capabilities will vary more widely between engines and this will open up the range of applications

Alquimia can be used for. The example in Sec. 5.3 can serve an example of this, where different geochemical engines can be

used in different parts of the domain as appropriate. Further, increasingly geochemical models make use of machine learning830

tools to accelerate calculations (Leal et al., 2020) or replace process-based calculations (Chang et al., 2023). These machine

learning models could be seamlessly integrated in the interface as additional engines, which may be used in isolation or in

combination with process-based engines as needed. While the two engines currently available are Fortran codes, the interface

is prepared to couple with engines in other languages, e.g. PHREEQC, written in C++.

Against the backdrop of continuous evolution and development of multiphysics simulators driven and enabled by new835

approaches and capabilities, tools like Alquimia that simplify coupling by codifying a clear and flexible interface between

codes and processes are increasingly valuable. Specifically, Alquimia enables access to existing true-and-tried geochemical

models but also it facilitates future development and implementation of new models. Code interoperability gives access to a

range of capabilities with simple, easily maintainable code bases that also facilitate prototyping and validation of new software.

Ultimately, improved software productivity and sustainability have the potential to increase the pace of scientific discovery and840

promote more efficient and effective use of research resources.
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Code availability. Alquimia (Andre et al., 2013) is developed and maintained using the repository at github.com/LBL-EESA/alquimia-dev,

with releases generally timed with xSDK releases (Bartlett et al., 2017). Different versions of the code were used for results presented here.

Snapshots of Alquimia, PFLOTRAN, CrunchFlow, Amanzi, Parflow and ATS for the versions involved in this work (as noted below) as

well as the input files for the included simulations are available at dx.doi.org/10.5281/zenodo.11414442 (Molins et al., 2024a). The Amanzi845

source code used in this work is the version with hash 4867af7, which includes input files for Section 4.3 and reference solutions for

CrunchFlow and PFLOTRAN. The Parflow source code used in this work is the version with hash d4b20b9. The versions of Alquimia,

PFLOTRAN, CrunchFlow and PETSC used with these versions of Amanzi and Parflow are 1.0.9, 3.0.2., 906e164, and 3.16.0, respectively.

The crunchFOAM application is described in detail by Li et al. (2022) and is based on version 1.0.6 of Alquimia. The land surface model

applications are described in detail by (Sulman et al., 2022; Wang et al., 2024; LaFond-Hudson and Sulman, 2023; Sulman et al., 2024),850

and are based on version 1.0.8 of Alquimia, which can be found in the model-data archives associated with these publications Sulman et al.

(2020, 2023). The integrated hydrology application with ATS is described in detail by Molins et al. (2022), with results presented here

obtained with the version with hash 37a7b6e of ATS, which include the input files of the simulations as part of the regression tests. The

versions of Alquimia, PFLOTRAN, CrunchFlow and PETSC used in this version of ATS are 1.0.9, 5.0.0, cf938c8, and 3.20.0, respectively.
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