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Abstract. Climate change significantly threatens crop yields levels and stability. The complex interplay of factors at the
local scale makes assessing these impacts difficult, requiring coupled climate-phenology models, which integrate climate
data and crop information. Identifying suitable local management practices and crop varieties under future conditions
becomes essential for developing effective adaptation strategies.

This study presents the implementation and application of an integrated climate-phenology adaptation support modelling

system. This is based on regional CORDEX climate models and the CERES Maize model from the DSSAT platform. Novel
modules for optimal management and genotype identification under climate change have been developed in the system,
employing a hybrid approach that combines deterministic modelling with machine learning (ML) techniques and genetic
algorithms. This system was run as a regional pilot over Southern Romania, operating in real-time in interaction with users,
performing agro-climate projections (combination of fertilization, sowing date, genotype) and providing best crop
management simulated under climate change projections. Multi-model ensemble simulations were conducted for two
radiative forcing scenarios RCP4.5 and RCP8.5 and twelve management scenarios, yielding novel results for the region.
Results indicate a projected decrease in maize yields for the current genotype across all tested scenarios, primarily attributed
to a shortened grain-filling period and reduced fertilization efficiency under warmer conditions. Soil initial conditions were
found to significantly influence yield responses.

The analysis warns about a projected narrowing of the agro-management options for maintaining a high yield level.
However, we find an added value from the impact of genotype selection in mitigating climate change impacts, even in
extreme years. Genotype optimisation across six crossed cultivar dependent parameters revealed that while maximum yields
decline, specific genotype windows exhibit increased intermediate yields under future climates compared to current
conditions. Sensitivity analysis identified the thermal time requirements during juvenile and maturity stages as the most
critical factors influencing genotype performance under warmer climates.

This research demonstrates the added value of combining deterministic and data-driven modelling approaches within a
coupled climate-crop system for developing effective adaptation strategies, including optimised fertilization pathways that
contribute to climate change mitigation.
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1. Introduction

According to the IPCC (2022), climate change is unequivocal, and its impacts appear more worrying today than decades ago.
While research on the effects of climate change on crop yields and agricultural harvests has advanced (Arnell and Freeman,
2021; Hatfield et al., 2021; Rezaei et al., 2024), translating these findings into actionable solutions and scales remains a
challenge. This is primarily due to the high complexity of factors that intervene at the local scale of the crop (Malhi et al.,
2021, Eyring et al., 2021) including sensitivities of the exchanges to variations in climate sub-components as atmosphere /
soil/ biosphere’s ecosystems under climate change, natural causes and human activities (Wheeler and Braun, 2013; Xie et al,
2023).

Given the projected global population increase estimated in scientific reports to over 9 billion by 2050 (Godfray and Charles,
2010), global food production would have to increase by 70-100% to meet the growing demand (Smil, 2005; World
Development Report, 2008; Selvaraju et al., 2011). This challenge is further compounded by the agro-climatic conditions
expected to become vulnerable and gradually decline due to climate change, particularly impacting water availability (Stehr
and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013).

Another challenge of the problem comes from the need that approaches, and sustainable solutions must not only address the
needs of agricultural producers but also align with climate change mitigation goals for 2050, aiming for climate neutrality
(Semenov and Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022).

Early studies investigating the impact of climate change on crop yields emphasized the necessity of high-resolution
modelling approaches. These models should accurately represent management practices and the local effects of climate
variables, such as temperature and precipitation (McKee et al., 1993; Trnka et al., 1995; Adams et al., 1998). These affect
thermal and water stress and plant physiological processes like stem water potential, stomatal opening, leaf transpiration
efficiency (Espadafor et al., 2017). At the regional scale, the relationship between crop yield and water and thermal
availability may exhibit strong dependencies on the crop type, geographical location, temporal scale, and plant
developmental stage (Webber et al., 2018, 2020; Marcinkowski and Piniewski, 2018; Berti et al., 2019; Ceglar et al., 2020;
Wau et al., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates, indicated for
future climate change a significant (~30%) decrease without adaptation, but a potential increase (15%) in corn yields under
irrigated or under radiation-based genotype efficient use. These findings underscore the critical need for regional simulations
that incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various
irrigation strategies under future climate scenarios.

In addition to atmospheric conditions, soil properties significantly influence plant growth. These influences occur through
physics-based interactions with climate and through alterations in soil chemical composition. Rising air temperatures have
been shown to impact the soil carbon budget, with a decline in soil carbon potentially affecting plant and root processes,

biochemical cycles, and species composition (Abhik Patra et al., 2021).
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Crop modelling at local, regional and global scale has significantly advanced, enhancing our understanding of crop systems
and enabling the simulation and projection of future yields. Studies (Tsvetsinskaya et al, 2001; Tao et al., 2009; Ganguly et
al., 2013; Schauberger et al., 2020; Chen and Tao, 2022) consistently project global mean harvest reductions with differences
in the regional pattern of climate change impact on crop and harvest (Asseng et al., 2015; Li et al. 2022). Not only projected
spatial but also temporal variability of the climate change impact appears larger and accelerated, motivating intensified
efforts on seasonal and multi-annual predictions of plant development and harvest (Baez-Gonzalez et al., 2005; Jin et al.,
2022). Analysis of these simulations emphasized also the need to include crop uncertainty in climate scenarios assessments
(Meehl et al., 2007, Rosenzweig et al. 2013, Basso Bruno et al., 2019; Chapagain et al., 2022).

Meanwhile, model simulations emerged as useful tool in plant breeding analysis (Bernardo, 2002; Banterng et al, 2004;
Cooper and Messina et al., 2023; Mamassi et al., 2023), supporting the development of superior genotypes and breeding
methods for maximizing crop performance. These simulations have proven effective in guiding cultivar selection through
techniques such as parental selection and breeding by design (Peleman and van der Voort, 2003; Qiao et al., 2022).

In most recent years climate-crop modelling extended from deterministic crop models (Boogaard et al. 2013; Morell et al.,
2016) to data-driven techniques approaches for assessing crop response to weather and climate change (Schwalbert et al.,
2020; Meroni et al., 2021; Morales and Villalobos, 2023; Chang et al., 2023; Zhuang et al., 2024). Statistical methods as well
as machine learning (ML) used for crop forecast and modelling were however shown to bring for now, limited benefits
(Paudel et al., 2021), pointing to possibly hybrid techniques that include physical process in the modelling as a key approach
for this challenging issue. On the other hand, breeding optimization techniques using fully deterministic model simulations
require a huge number of simulations, analysis and inter-comparisons of predicted crop performance (Pfeiffer et al., 2007;
Wang et al., 2023).

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“Preparing for climate change”) project
in which we solve plant phenology using deterministic modelling and merge this technique with an on-line ML-genetic
algorithms (GA) iteratively selecting along simulations the multiple parameter range of crop cultivar parameters, according
to user-defined criteria for optimal target. The GA simulates the evolution of a population by applying in iterations, genetic
operators (selection, crossover, mutation) to a set of candidate solutions (chromosomes). The chromosomes represent
potential solutions to the problem and are encoded as strings of binary or symbolic values, with their fitness assessed by a
problem-specific evaluation function here, user-required based. GAs have demonstrated success for optimizing agricultural
practices using models like DSSAT for irrigation and fertilizer applications (Bai et al., 2021; Wang et al., 2023).

The hybrid approach implemented in this work focused on ideotype identification presents the advantage of physically
treating the crop complex process involved along optimizing iterations, thus allowing specific inclusion and understanding of
physical causes of responses and of optimal paths in various climate and management scenarios. Furthermore, it enhances
the ability of choosing optimum conditions from continuous multi-dimensional intervals for gene parameters, as opposed to
discrete sets. The continuum values approach is an important feature mainly for isolated extreme yield detection, or broader

parameters’ range and high non-linearity, both aspects of increasing relevance in the context of climate change. Our findings
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suggest a narrowing of agro-management adaptation opportunities under warmer climates, further emphasizing the
importance of this hybrid genotype-agro-management approach to support finding solutions for the future.

The developed system aims to provide efficient and operational support for farmers and stakeholders. It leverages the state-
of-the art DSSAT model, a widely used and extensively validated platform for agricultural modelling across diverse
applications. The DSSAT model, incorporating complex parameterizations for soil processes, surface-atmosphere exchange,
plant development stages, and their interactions with climate and management practices, undergoes continuous refinement
through ongoing research and regional calibrations. For this study, the model was specifically adapted to the unique soil
characteristics of the pilot region, including parameters such as porosity, composition per soil layers, and thermal properties.
Section 2 presents the developed system and its data flow. Section 3a presents results obtained using the system to simulate
projected changes in plant phenology and crop parameters for the target region, under various climate and management
scenarios, for the current control genotype. Section 3b discusses results obtained using the system's genotype optimization

package along agro-management scenarios. Finally, Section 4 presents perspectives and conclusions.

2. Data and methods

2.1 Study region

Recent observations indicate the Southern Romania as being one of the main hot-spots of climate warming in Europe in
summer, with high and persistent extreme heat stress and drought being observed (Copernicus report, 2024). Further,
projections of climate for the region show an amplification of this response in climate scenarios, mainly in RCP8.5 (suppl.
S1.a). For this region, also total precipitation is projected to decrease, while there is an enhancement of extreme precipitation
occurrence (suppl. S1.b). These tendencies are increasingly threatening agro-climate conditions in the region, projecting a

warmer and drier climate with enhancing extremes.

2.2 Scientific approach

Projected changes in agro-climatic parameters for Romania were assessed under two Representative Concentration Pathways
(RCPs): RCP4.5 and RCP8.5. These changes were computed as anomalies relative to historical simulations (Hist) using an
ensemble of three CMIPS-CORDEX (Benestad et al., 2021, Karl et al., 2011) high resolution (11 km) climate models, based
on the CNRM, EC-EARTH, and MPI global models coupled to the regional climate model RCA4. Subsequently, the
DSSAT crop model (Jones et al., 2003; Hoogenboom et al., 2019) was employed to simulate projected changes in
phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions derived from each model of

the ensemble for the historical period and for the two RCP emission scenarios.

A software package was developed for the DSSAT model that performs identification of optimal model parameters based on

user-defined: criteria for optimum, climate-management scenario, region, and time horizon. Optimization goals include
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maximizing harvest, ensuring stable yields over time, and minimizing nitrogen leaching beyond the root zone (reducing
water pollution risk). Management scenarios allow users to explore optimal cross-combinations of sowing dates, fertilization
amounts, and genotypes.

Five main cultivar-specific parameters (P1 to P5) characterizing the maize genotype were analysed across wide ranges of
physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents
the thermal time from seedling emergence to the end of the juvenile phase, ranging in these simulations from 100 to 500-

degree days above a base temperature of 8°C. It significantly influences crop flowering times (Liu et al., 2020), water

availability, and ultimately, yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1)
can lead to increased harvest in humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).

When the light period of 24h cycle exceed a threshold of 12.5 hours the advancement towards flowering may be delayed in a
measure that it is genetically controlled. P2 measures (in days) the delay in plant growth for each hour of photoperiod above
this threshold, and here is ranging in simulation from 0.1 to 2.6 days. P2 influences the flowering time (Langworthy et al.
2018) and the rate of plant development, with long-day plants exhibiting faster development under longer day lengths
(Angus et al., 1981). Some tropical maize cultivar needs longer nights to flower (short day plants). Related to these, studies
have demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer climates (Liu et
al., 2023). P3, the thermal time from silking to physiological maturity, here tested for values from 500 to 1500-degree days
above a base temperature of 8°C), significantly influences maturity dates. It also has a main role in plant stress levels
(longer-maturity hybrids increase harvest but under water stress it may provide lower yield (Su et al., 2021; Grewer et al,
2024)) and grain moisture at maturity (Tsimba et al., 2013). P4, the kernel filling rate parameter (ranging from 6 to 12
mg/day), influences grain filling duration, desiccation, moisture at maturity and harvest (Chazarreta et al., 2021). P5, the
phyllochron interval, the interval in thermal time (degree-days) between successive leaves tip appearances (expressed in
degree-days above a base temperature of 8°C, ranging in these simulations from 3 to 70 °C- days), is a critical parameter for
estimating the duration of vegetative development (Birch et al., 1998; Xu et al., 2023). P4 and P5 are important parameters
of optimal pant adaptation to climate conditions, since they are drivers of the phenological response and yield formation, in
conjunction with the temperature, radiation, humidity, water stress. These genotype (or cultivar specific) parameters are the
primary ones considered in DSSAT model parameterizations for plant development processes (Hoogenboom et al., 2019).
The parameter ranges were selected based on extensive genetic database of the original model, and here extended in order to
allow investigation the extreme changes induced by climate scenarios. The control values for these cultivar-specific
parameters belong to hybrid PIO 3475: P1=200, P2=0.7, P3=800, P4=8.60, and P5=38.90. All the simulations for
combinations of parameters values (cross-parameter simulations) were performed under Hist, RCP4.5, and RCP8.5 emission
scenarios. For each scenario, crop projections simulations were conducted for twelve agro-management scenarios (Table 1)
consisting of sowing date changes and fertilization treatments, characteristic for region after the year 2000 (Table 1a), for
each model of the ensemble. Then, for the genotype sensitivity simulations e.g. the response to genotype, optimal genotype

selection we have chosen a lower fertilisation (Table 1b), already used in the region before the year 2000 (when the number
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of subsistence farms was high), value aimed for potential mitigation (Ursu,2025), in potential synergy with genotype
selection. It was shown that Romania, with a consumption of 46 kg/ha, had an efficiency comparable to countries with much
higher consumption, indicating a significant potential for improvement without increasing environmental pressure (Ursu,
2025).

In the platform, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three
fertilization levels (zero, then a regional average and its double, Table 1a). For each agro-management scenario, genotype
optimization (finding the optimal set of parameters values under the given climate -agro-management and optimum criteria)
was performed using two methods: 1) discretized parameter-space runs with subsequent post-processing ordering, and 2)
continuum parameter-space search with iterative selection during simulations, employing genetic algorithms (GA). The
optimization is performed for each year, allowing the optimal management and cultivars to evolve over time, and also
allowing further investigations of response e.g. during critical years or in clusters of climate conditions, or as ensemble time-
mean.

The GA-based method employs an iterative approach. It commences with an initial population of randomly generated
solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is performed
to choose the fittest chromosomes for reproduction, based on their fitness scores. Subsequently, crossover (recombination)
and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from their parents.
The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness of the
population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by
balancing exploration (searching the problem’s space for diverse solutions exploiting promising regions) and exploitation

(refining the best solutions found so far).

2.3 The Software
Here GA has been newly applied to develop an innovative crop selection algorithm, optimizing genotypes across various
agro-management scenarios. Steps along the workflow of ML algorithms for optimal genotype identification are:
1. Start with 10 randomly chosen solutions within the bounds of P1-P5;
2. Calculate the mean and standard deviation of harvest of each solution for the 30 years 1976-2005;
3. Calculate fitness = (mean of harvest) — (standard deviation of harvest)/4;
4. Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;
5. For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random
number of P’s to be subjected to crossover, called x;
6. For each child, modify Px as follows:
Pxa =round (B * Pxa+ (1 - B) * Pxb);
Pxb =round (1 - B) * Pxa+ B * Pxb)
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7. Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the
blending factor, set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that
inherit real-valued traits from both parents while exploring the search space between the parents' positions. The blending
crossover promotes a smoother and more gradual search for optimal solutions in continuous domains.

8. Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means
setting one of the P’s to a random value between its allowed minimum and maximum.

9. At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute
them with the children.

10. Repeat from 2.

The system generates output data (agro-climate and optimal paths of cultivars and agro-management) which is disseminated
on two platforms (Fig.1). One is a platform (Info-Platform, Fig.1a) providing agro-climate information at local scale
(NUTS3 level, aligned with the European Union's Nomenclature of Territorial Units for Statistics, primarily corresponding
to county level in Romania) over the region. It delivers pre-computed regional climate and agro-climate indicators (e.g.
drought, soil moisture, evapotranspiration, aridity indices, storminess, model-based phenological dates, yield), indices of
agro-climate extremes (e.g. extreme precipitation frequency and intensity, extreme temperature, scorching index, wind gust,
number of freezing / icing days, diurnal temperature range, biological effective degree days) based on observations, re-
analysis and climate scenarios for future projections for the region. This platform is publicly accessible
<https://climatologis.shinyapps.io/PrepClim/>.

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component,
where user requests are submitted, processed as input to the modelling chain and results delivered back to the user for a new,
refined request. The access to this platform, hosted on an internal server is granted at request addressed to the correspondent
author.

The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate models
(Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include the
ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-
management practices and genotype selections along simulations.

The DSSAT code used in PREPCLIM project, the PREPCLIM software and a PREPCLIM sample data set are available on
ZENODO (DOI 10.5281/zenodo.13145521, DOI 10.5281/zenodo.13132587 and respective DOI 10.5281/zenodo.13133107)
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Fig.1 a): Info-Platform: Provides local-regional scale information derived from high-resolution regional climate models
235 (CORDEX), e.g. climate, agro-climate data and indicators, indices of agro-climate extremes at the NUTS3 level. b): User-Platform

for adaptation support: Processes in real time specific user requests, and simulates management scenarios, identifying optimal

paths: Users input parameters (left, e.g: region, period (present / future climate scenarios), management options (e.g. sowing date,

fertilization/irrigation time and amount, genotype); System Output (right, e.g: harvest, projected phenology dates,

precipitation/evapotranspiration, Nitrogen and carbon balances, optimal management paths (dates and management actions),
240  optimal genotype) estimated from ensemble simulations.
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Fig.2: The PREPCLIM-v1 work schema: DSSAT-core and modelling components (middle), and data flow: input data (left), output

information (right). Red modules were developed in PREPCLIM-v1.

The system was implemented and validated over Southern Romania, target agricultural area, for maize. Potential

beneficiaries include researchers, farmers, policymakers, and maize breeders. The system can also assist maize breeders in

adapting to climate change by enabling them to evaluate and select genotypes more resistant to challenging climatic

conditions. Given the accelerating pace of climate change, such a system may provide valuable support in numerous ways.

Table 1: The agro-management treatments: each treatment is described in terms of the sowing date and Nitrogen fertilization amount.
In function of the experiment type: a) the experimental set-up for crop phenological projections has: Fx0=0 (no fertilisation), Fx1 and Fx2
(the double of Fx1, 120kg/ha), for each treatment (TR); b) the experimental set-up for genotype optimisations has: Fx0=0, Fx1=23;
Fx2=46 kg/ha, values used before 2000, for each treatment (GTR). Sowing date format is “DD.MM”

a) The experimental set-up for crop phenological projections

Treatment TR1  TR2 TR3 TR4 TRS TR6 TR7 TR8 TRY9 TRI10 TR11 TRI12
Sowing date 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05
Fertilization Fx0 Fx0 Fx0  Fx0 Fxl= Fxl Fxl= Fxl= Fx2 Fx2 Fx2 Fx2
(experiment) =0 60 =60 60 60 =120 =120 =120 =120
b) The experimental set-up for genotype optimisation
Treatment GTR1 GTR2 GTR3 GTR4 GTRS GTR6 GTR7 GTR8 GTR9 GTR10 GTRI11 GTRI12
Sowing date 1.04 15.04 1.05 15.05 1.04 1504 1.05 1505 1.04 15.04 1.05 15.05
Fertilization GFx0 GFx0 GFx GFx0 GFxl GFxl GFx GFxl GFx2 GFx2 GFx2 GFx2
(experiment) =0 0 =23 =23 1=23 =23 =46 =46 =46 =46
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3. Results

3.1 Model validation

Model validation was conducted using Control simulations (Ctrl) driven by ERAS reanalysis data (Simmons et al., 2021) for
each treatment outlined in Table 1a. These simulations, spanning the period 1976-2005, demonstrate the model's ability to
capture inter-annual variability in harvest yields, including both high and low yield years, when compared to the measured
available data for the region (Fig.3). The amount is more challenging for validation due to time-evolving constraints over the
region. Some contributions were identified, as large variations in fertilization over 1990-2000 with an abrupt decay after
1991, then followed by an increase around 2000 (Popescu et al, 2021), variations in the available field machinery, pest and
weeding, and lack of counteracting methodology. However, these are traceable in these simulations’ comparisons (that show

lower skill about 1995, for which it was reported a minimum of fertilizer plant protection equipment (National Institute of

Statistics, 2025, suppl. S2)

10000
| O1.04_Fx0Q (O.73%%)
9009 15.04 FxQO (D.65%)
8000 - 01.05 - Fx0 - (0:67 %)
15.05_Fx0 (0.73%%)
7000 O1.04_Fxl1 (O.73%%)
S000 15.04_ Fxl - (0.64%)
5000 01.05_Fx1 (0.654+)
24000 {5
3000 -
2000 15.05 Fx2 (0.75%=x)
oBS
1000
O_
_1000 T T T T T =T T T T T

Fig.3: Simulated (colors) vs. measured (black) harvest in southern Romania for 12 management scenarios (Table 1a). Right:
treatment defined by sowing date and fertilisation (Table 1a) and Pearson correlation between simulated treatments and measured

Harvest (*** p<0.01, ** p<0.05, * p<0.10; zero are missing values).

3.2 Phenology and Harvest Projections for the Control Genotype

Projected changes in phenology for the control genotype (Pioneer 3475) were simulated using the DSSAT model under

historical (Hist) and multi-model climate projections of RCP4.5 and RCP8.5 scenarios. Further, multi-genotype simulations

are discussed in Section 3.3.
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3.2.1 Phenology dates - projected changes

Ensemble model simulations provide projected changes in phenology, for the control genotype (GO), under different
fertilization levels (0, 60, 120 kg/ha, Table 1, exper "3N") and sowing dates, averaged over 30-years, in scenarios (2021-
2050, RCP4.5 and RCP8.5), versus Hist (experiment set-up “E_3N_GO0”). Figure 6a,b illustrates the ensemble model
changes, demonstrating an earlier anthesis date by up to ~6 days and an earlier maturity date by up to ~10 days across all
scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a
consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in
anthesis under warming scenarios, a response even more pronounced under RCP8.5.

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential
crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and
temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures
potentially inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more
frequently in treatments with higher nitrogen fertilization, leading in average only small changes in maturity days. This may

favour leaves development, enhanced transpiration and earlier depletion of the soil moisture leading later to water stress.

a) b)

1o 60 kg/ha Hist 155 60 kg/ha Hist

105 4 RCP4.5) 150 RCP4.5

]
1004 RCP8.5 145 RCP8.5

anthesis [dap]
maturity [dap]

treatment treatment

Fig.4: Simulated a): anthesis dates ([dap], days after sowing) and b): maturity dates ([dap]), under historical conditions (black),
RCP4.5 (blue), and RCP8.5 (red) scenarios. Results are shown for the four sowing dates and nitrogen fertilization level of 60 kg/ha
(Table 1, exper “3N”). The maximum and minimum value over the ensemble members for each treatment and climate is shown
(dots).
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3.2.2 Harvest - projected changes

For harvest, the ensemble simulations project an overall decrease under both RCP4.5 and RCP8.5 scenarios and across all
sowing dates and fertilization levels (Fig.5), compared to the historical period.

Harvest decline in climate scenarios is related to several factors: 1) reduced rainfall during the growing season (Fig.6), as
evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-August, over 30 years, suppl. S2) found between harvest
(H) and accumulated precipitation in the Ctrl and in model simulations; 2) a shortened grain-filling period due to a projected
earlier flowering and an even earlier maturity across all the models (Fig.4), potentially limiting biomass accumulation; and
3) decreased fertilization efficiency under warming conditions, in the sense that the difference of harvest in Hist versus in
scenario, increases (non-linearly) with enhanced fertilisation (Fig.5). Hence for a same climate, the same increase in
fertilisation brings less benefit in a warmer climate. This benefit for H is of about 10% in Hist versus 7.6% in RCP8.5 for
early sowing and about 8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of nitrogen (Fig.5b,c).
This efficiency decay feature underscores the primacy of reduced accumulated precipitation (Fig.6) and of higher
temperature, that lead to a non-linear H response to fertilization (Huang et al, 2024). Their influence is noticed as well in the
absence of fertilization (Fig.5a), when H still declines in warmer climates, with a dominant control from precipitation. The
correlation along sowing dates between H and accumulated precipitation until maturity (Pmat, Fig.6), is r(H, Pmat) >0.96 in

both scenarios.
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Fig.5: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three
fertilization levels (Table 1): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right). The maximum and minimum value over the
ensemble members for each treatment and climate is shown (dots).
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Fig.6: Precipitation accumulated until maturity (mm) (legend as in Fig.5)

The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a
shorter accumulation season (Fig.4) but having projected a precipitation increase towards late spring (Fig.S1b), that may

significantly favour critical growth stages.

3.3 Optimal Genotype Identification

The system was further developed to extend the management scenarios for multi-genotype simulations and implement
methods to identify ideotypes under each agro-climate scenario. The aim is to search for management scenarios that yield
optimal outcomes defined by user-criteria such as maximizing harvest yield, stabilizing yield, or minimizing pollutant
emissions. Two optimization methods are implemented: a discrete-parameter, purely deterministic technique, and a hybrid
approach that combines deterministic modelling with continuous-parameter Machine Learning-based Genetic Algorithms for
iterative genotype selection.

The deterministic method involves conducting multiple-genotype crop model simulations, with optimization performed as a
post-processing step. Genotype parameters are defined within pre-established limits and discretization. Multi-model
simulations are then performed, where each parameter is individually varied while the remaining parameters are held

constant. The total number of simulations in this case is determined by the chosen discretization level. In contrast, in the
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hybrid technique the parameters values are selected from a continuous range of values, identifying and iteratively improving

the best sub-domains.

3.3.1 Optimal genotype under climate change

i) harvest as a function of the genotype H(G) in scenarios versus current climate

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and
denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario)
dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the
ensemble-model PDF (probability density function) of H under warmer climate.

A first outcome demonstrates in Fig.7a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H)
occurs within the range of maximum H values (genotypes in the top H-percentile interval (0%, 2.5%) of the H-ordered
genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.7b). Across models of the ensemble, we
note a strong modulation of this behaviour by precipitation (Suppl.3), particularly for unfertilized scenarios. Precipitation
exhibits high inter-model variability and significant regional-scale uncertainty, pointing to the need of ensemble modelling
for reducing it. In contrast, the warming trend is a consistent feature across models in the region, contributing other model-
systematic responses such as earlier anthesis and maturity dates and shortening of the grain filling season.

The second note regards a different response projected in the intermediate H values (Fig.7a, c). Genotypes corresponding to
the intermediate H values (genotypes of intermediate H-percentile interval (25%, 70%) of the H-ordered genotypes) show
projected higher H values in GI in climate scenarios than in Hist (Fig.7c), affecting less the earlier sowing (Fig.7c).

These together lead to a narrowing of the H-values range of responses, in the top and intermediate H-percentile intervals , to
the same managements applied, in scenarios compared to Hist. Same management spread would lead to closer H-responses,
with enhancing the expectancy for occurrence of intermediate values and decreasing the expectancy for highest H values (a
third feature of projected changes).

Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.7a),
improving by up to 2%in scenarios (respectively to 4% in Hist) unfertilized case and up to 8% in fertilised case in scenarios
(respectively to 12% in Hist) (Fig.7a), with the lowest percentage for RCP8.5. Earlier sowing was reported in other recent
studies as optimal for spring maize harvest (Djaman et al, 2022).

ii) options for adaptation and mitigation using genotype analysis

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for
early sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in the top and
intermediate H-percentile intervals with higher/ lower expectancy of intermediate/ high values occurrence, have practical
adaptation outcomes.

Finding mitigation solutions, while preserving yield, e.g. finding appropriate changes in agro-management practice that

allows a lower, less pollutant fertilization, at a same Harvest percentile, appears indeed to be supported by genotype
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selection. Fig. 9 (mitigation window shown for RCP4.5) indicates that for a Harvest given percentile, we get intervals in GI
and also in GX where changing the sowing date for a lower fertilization, brings even improved solutions. These intervals are
defined by intersection points of H-curves defining parameter-zones of both mitigation and optimisation.

Alternatively, for a given H value and treatment, one may estimate the interval of genotype leading that value, information

375 useful to improve local usage.
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Fig.7 a): Harvest multi-model time mean: percentiles of the H distribution ordered from maximum to minimum value (left to right
on x-axis, logarithmic scale). The simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for multi-parameter
genotype changes (for six parameters resulting 1890 simulations); b) differences in projected harvest for a) RCP4.5 minus Hist
(left) and RCP8.5 minus Hist (right), for the upper H 2.5 percentile (the first 50 values) and intermediate in c), percentile 25%-
75% (475-1400) on x-axis. Plum rectangle in Fig.7b (RCP4.5) shows in simulations, a window of potential actions for mitigation
through genotype- agro-management selection (text).

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with
high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.7b).

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct
weather favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting

(Dewitte et al., 2021).

3.3.2 Optimal Genotype parameters under climate change

i) optimal genotype parameters

We further discriminate H response per genotype parameters (P1-P5), to understand the source of the changes in Fig.7 and
the possible adaptation paths under climate and management scenarios.

Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from
seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.8b), slightly shorter thermal time between
successive leaves appearance (phyllochron, P5, Fig. 10 e) in the intermediate H-percentile interval and longer in the top one
but longer thermal time to maturity (P3, Fig.8c) and higher grain filling rate (P4, Fig. 10d). These results are in coherence
with findings along recent works. Shorter P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in
agreement with Mi et al., (2021) for semi-humid areas, (the current class of this region, with semi-arid trends projected, Fig.
4), and the same for P2, while slower maturity (P3) and enhanced filling rate (P4) being linked to higher kernel weight and

harvest in agreement with recent studies (Grewer et al., 2024).
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ii) changes in optimal genotype parameters in climate scenarios

Comparing the genotype parameters in climate scenarios against Hist, reveals the new plant strategy put in place in the new
climatic conditions, for maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached
with genotypes that ensure a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in
scenarios compared to Hist. To a smaller extent this is also achieved by a longer photoperiod delay P2, higher grain filling
rate P4 and longer phyllochron interval P5, in scenarios, than for a same percentile of the Harvest in Hist. These show that
under warmer climate it is essentially important to avoid too fast growth on vegetative and grain filling stages of the
development.

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.8a, b) and related to these,
under longer photoperiod (P2 increases, Fig.8b). Other contributions come from ensuring a slower rate of appearance of
successive leaves (P4 increase), while a higher grain filling rate (P5 increase) appears to partly compensate for the negative
effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the harvest.

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate
(Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the parameters’

changes in scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving.
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Fig.8: Parameters’ values corresponding to percentiles of the H distribution (ordered from maximum to minimum value). On Ox
is the percent of parameter change relative to the interval tested for each, normalised to its control value. . The figure compares
these percentiles for Hist (black), RCP4.5 (blue) and RCP8.5 (red), running mean values, ensemble mean, time-mean (full lines,
100 values window); unsmoothed values are shown by dots only for Hist and RCP8,5, RCP4.5 being intermediate in all cases).
Percentiles are from a number of 1890 genotype simulations. These are shown for two treatments (01.04_Fx0 at top and 15.05_Fx2
at bottom). The plum rectangle indicates a critical parameter value for P1 and P3 (text), threshold that controls when the scenario
leads better/ worse H values that Hist in scenario simulations here.
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iii) optimal genotype parameters in management and climate scenarios

Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires
gradually decreasing parameter in order to maximize H (Fig.9, also in Fig.8), for both Hist and climate scenarios. For P1-P3
this decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too
late (autumn) maturity stage that is slowing the grain filling and leading crop failure.

However, Fig. 11 also shows that these parameter’s decreases cease or even reverse under extreme delay of sowing. For
highest delays the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming
higher, hampering the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick
grain filling. Hence the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its
adaptation to warmer climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease
or even increases of parameters along with gradual increasing delays in the sowing date.

This gradual switch in the mechanism of parameters performing high harvest, with sowing delay appears quite systematic for
all parameters. This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually
under enhanced warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological
conditions for the development to the key issue of avoiding a too fast growth leading crop failure.

This gradual change in monothony along the parameters leading to high harvest as a function of sowing delay appears quite
systematic for all parameters. This crop adaptation mechanism towards the one found also in projections, shows that under
enhanced warming, The main priority in crop adaptation, gradually transfers from searching optimal climatological

conditions for growth to the key issue of avoiding a too fast growth leading to potential crop failure.
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Fig.9 As in Fig.8 but for all sowing dates, no fertilization Fx0 (top) and with fertilization Fx2 (bottom). Parameters are shown for
the top 10% highest harvest. On Ox is the percent of parameter change relative to the interval tested for each. Grey colours are for
Hist and yellow-red for RCP8.5 (light to dark is from earlier to latest sowing).
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iv) optimal genotype parameters in adaptation and mitigation strategy

For each agro-management and climate scenario one can identify threshold values of parameters (critical window shown in
Fig.8 for P1 and P3 at the intersection between scenario and Hist). These values depend on the parameter, the sowing date
and the fertilization level. When reaching this parameter value, the genotypes lead the same H-percentile in scenario and
Hist. So, this value (critical parameter on Fig.8, P1 and P3) shows the limit value until which an advantage is brought by
changes in P1 and P3 in scenarios compared to Hist, information useful for adaptation under climate scenarios.

Second remark is on the expectancy of an outcome. Since all the slopes of parameter, each as a function of H ordered-values
are lower than in Hist (suppl. S5), there is a narrower parameter interval for all those parameters decreasing with H (e.g. P1)
and a border one for those parameters increasing with H (P3, Fig.8¢), in climate scenarios. P3 increases are broadening the
interval for H-highest percentile, potentially presenting, in this sense, more expectancy (than P1, Fig.8a) on highest values
outcome.

The genotyping results were found both in simulations involving deterministic and the hybrid deterministic-ML methods.
The hybrid method involved the same cross-simulations, but the selection of parameters values for H optimization and
ordering was no more following a pre-defined discretisation but instead a random picking up over a continuous interval of
values with successively retrieving the best generation. It applies for optimization, classic Genetic Algorithms methods in
which selection of pairs is based on the user-criteria (e.g. maximum harvest, stable harvest, etc.). Our results show that for
the same physical intervals of the genotype parameters, the ML hybrid technique only after 20 generations shows at least
50% chances to get a better result than the deterministic model, while after 100 generations, it already increases at 80%
chances to get better results with also computational efficiency. CPU time is reduced in this case by more than 30% using the
hybrid technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better

solution since it can identify improved optimums at lower computational prices.

4. Discussions

The results found are in line with other results in recent studies, using different approaches and observational data, and offer
an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For
the plant response under management treatment delaying sowing date, limiting elongations of the development phase was
also found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation
decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10,
11). Also fertilization lowering P5 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for
warmer climates (Hokmalipour et al., 2011; Sardans et al., 2017; dos Santos et al., 2021) was recently put in relation to P2
decrease mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration

maximizing the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.8f, Fig.9f), limitations in the expansion of

19



490

495

500

505

510

515

new leaves (increase of P5, Fig.8) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions
(Fahad et al., 2017).

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P4, Fig.9d) under reduced P1, P2
and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated
crop (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.9d). This increase for
P4 under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress,
allowing plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber at al.,
2022).

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise
some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows
the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management
scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only
offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small
perturbations may lead the system response into different states (threshold sowing-delays, or POi for genotypes). Without an
integrated modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since

these are simulation (climate-management scenario) dependent.

5. Conclusions

The main outcome of this study is that an agroclimatic real-time Interactive Service was implemented towards adaptation
support, that allows performing real-time, user-requested, agro-management modelling scenarios for the region, under
current and future climate. A novel feature of the system is the ability for identifying optimal management paths for the
user’s request, along with multiple cross-cultivar parameters, such as cross-optimal sowing date, genotype parameters,
amount and date of fertilization.

The system provides solutions and estimates the associated uncertainty by using multi-model ensembles for each agro-
climate and management scenario. The crop optimization criteria are user-defined and can relate to high harvest, stable
harvest, low pollution. The optimization module implemented uses a hybrid deterministic - ML methodology. It performs
multi-model simulations using physical models of climate and plant penology and optimization is done either through
discretizing the parameters’ space and optimisation post-processing or using hybrid physical-ML Genetic Algorithms
methods. ML methods are spanning continuous parameter’s space and iteratively selecting along the simulations the best fit
parameters, allowing to identify unprecedented optimal configurations (H maxims), not reachable under the discrete
deterministic method. The overall system output information is layered and accessed from two interfaces: one static, for
information purpose (phenology, harvest, climate, extremes at high resolution NUTS3 level) and a second is real-time

interactive online, through which the user places requests and receives the system-performed management simulations
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required (including uncertainty along multi-models) and identified optimal paths for adaptation. These platforms are
operational for two emission scenarios RCP4.5 and RCP8.5 and twelve management scenarios (sowing dates and
fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these were discussed
in this work for the pilot region South Romania.

For the current genotype, in both emission scenarios it is projected a mean decrease (14% in ensemble mean, with
higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and fertilization) tested.
This was linked to a projected shortening of the grain filling season (10% quicker with an earlier shift of both anthesis (5
day) and maturity (10 day) phases) and to a mean decrease of the fertilisation efficiency under climatic scenarios, stronger in
RCP 8.5 emissions.

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-
management-climate scenarios. The main questions: 1) Can we identify optimal genotype parameters that lead to maximal
harvest? How do these differ under projected climate change and/ or under agro-management options and can these enhance
our understanding to guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the
region?

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then
increase in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to
reach the historical values in this range through agro-management and breeding. These indicate a narrowing of the responses
range to same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of
Hist, in climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-
management choice will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less
pollutant.
For effective support in adaptation applications, individual genotype parameters were analysed in climate scenarios versus
Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest
changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile
range. This range is identified through critical values of the parameters (P01), determined for each treatment and climate
scenario. There is significant variability of POi under agro-management treatments. Moderate delayed sowing and enhanced
fertilisation may diminish the shifts in parameters in scenarios compared to Hist for a same H-percentile, in contrast to
extreme managements.

These results show that Genetic approaches offer adaptation strategy support in helping plants to resist drought
stress under warming climate. Moreover, it was shown that the optimization is improved by using a hybrid ML genetic
algorithm method coupled to the deterministic model-output, leading to detecting better solutions, under a continuous-

parameter space search. The system can be further used for searching paths along extreme drought years, along with
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irrigation options investigation. Coupled with weather extended predictions (seasonal, year -decadal) this could provide near

real-time adaptation support.
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S1: Projected changes in agro-climate indicators over the SE Romania
790 a)

H32temp, Hist: 1971_2000 H32temp, RCP4.5—Hist, 2021_2050 H32temp, RCP8.5-Hist, 2021_2050
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S.1 a): The scorching index H32temp (degrees above 32C in summer JJA) for: Hist (1971-2000) and changes (2021-2050) relative
to it, under RCP4.5 (middle) and RCP8.5 (right). The scorching index classes are: reduced intensity drought for H32temp€[0,10],
moderate intensity for H32tempe(10,30], high intensity for H32tempe(30,50] and severe drought conditions for H32temp > 50.

800 b): Climate parameters (NUTS region 103032 Ilfov county, representative for the target region), along historical (Hist) and
RCPS8.5 scenarios; a): RR10, the number of days with heavy precipitation (>10 mm per day) in a 10-day period; b): RR, total
precipitation (mm) per 10-day period; (left): the 10-day period is centred on April 5%; (right): the 10-day period is centred on
April 25" ; ¢). FD, the number of frost days (minimum temperature < 0°C in a 10-day period). Values indicate the slope of the
linear trend (black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).
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S2: Fertlization: a) levels of N fertilization in Romania; b) Harvest as a function of precipitation

a)

Estimated nitrogen average use per hectar in Romania
(FAOSTAT data)
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S2a) Evolution of the fertlization levels in Romania (FAOSTAT register data) showing a string decay after 1991, and an
increase starting after 2003; b) Correlations between model precipitation (accumulated since January- plim) and monthly
(pink) and Harvest for the models: ECEARTH (left); CNRM (middle) and MPI (right); full line is for Hist, dt-line is for
RCP4.5 and dot is for RCP8.5; for each there are twelve curves corresponsing to the treatment in Table 1. Note all models

show high correlation with accumulated precipitation ( to a max ~0.9) by spring-summer.
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S3: Model-spread for optimal genotype
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S3: Harvest model time mean: percentiles of the H distribution ordered from maximum H values (left) to minimum H
(right); logarithmic scale, x=200 is at 10% percentile. The simulations are for: ECEARTH model (left), MPI model
(center) and CNRM model (right), Hist (top) and RCP8.5 (bottom). Note: in some models genotypes are found that

lead superior highest Harvest in scenarios compared to Hist, mainly linked to projected precipitation for the region.

S4: Changes in genotype parameters: percents of change in scenarios relative to Hist for a same H-percentile
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S4: Percent changes of P1 and P3 genotype parameters (y-axis) as a function of the ordered Harvest from highest (left, x-axis) to
lowest (right, x-axis). Differences (running means over 378=P2xP3xxP5 interval ) are shown for treatment 01.04_Fx) (TR1 in
Table 1) (yellow for RCP4.5 minus Hist and green for RCP4.5 minus Hist) and for treatment 15.05_Fx2 (TR12 in Tablel) (red for
RCP8.5 minus Hist and blue for RCP4.5 minus Hist). Percent changes are expressed as differences relative to Hist. Arrows
indicate the parameter monothony with harverst (direction of the H axis where the parameter incresaes), (seen also in in Fig. 8).
(P1 and P3 show the main percentage of change in scenarios compared to Hist).
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SS5: Slopes of P-genotype parameters in Hist and climate scenarios
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Fig.S5 The slopes (thick lines) of P1 and P3 parameters as a function of decreasing harvest (x-axis, H ordered along the total
number simulations) for: Hist (black), RCP4.5 (green and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of
harvest and over the rest of decreasing ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean,
TR12 (as in Fig.8 bottom, grey). Note lower slopes in scenarios, allowing windows of adaptation compared to Hist in scenarios in
the intermediate percentile interval GI (ordered genotype > 400, here running mean over 100 values) as discussed in 3.1.
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