10

15

20

25

30

35

A modelling system for identification of maize ideotypes, optimal
sowing dates and nitrogen fertilization under climate change —
PREPCLIM-v1

Mihaela Caian! Catalin Lazar?, Petru Neague!, Antoanela Dobre', Vlad Amihaesei', Zenaida Chitu',
Adrian Irasoc!, Andreea Popescu !, George Cizmas>

I- National Meteorological Administration Romania (NAM), Sos. Bucuresti-Ploiesti nr.97, Sector 1, 013686 Bucuresti
Romania
2 — National Agricultural Research and Development Institute (NARDI) Fundulea, 915200 Célarasi, Romania

Correspondence to: Mihaela Caian (mihaela.caian@gmail.com)

Abstract. Climate change significantly threatens crop yields levels and stability. The complex interplay of factors at the
local scale makes assessing these impacts difficult, requiring coupled climate-phenology models, which integrate climate
data and crop information. Identifying suitable local management practices and crop varieties under future conditions
becomes essential for developing effective adaptation strategies.

This study presents the implementation and application of an integrated climate-phenology adaptation support modelling

system. This is based on regional CORDEX climate models and the CERES Maize model from the DSSAT platform. Novel
modules for optimal management and genotype identification under climate change have been developed in the system,
employing a hybrid approach that combines deterministic modelling with machine learning (ML) techniques and genetic
algorithms. This system was run as a regional pilot over Romania, operating in real-time in interaction with users,
performing agro-climate projections (combination of fertilization, sowing date, genotype) and providing best crop
management simulated under climate change projections. Multi-model ensemble simulations were conducted for two
radiative forcing scenarios RCP4.5 and RCP8.5 and twelve management scenarios, yielding novel results for the region.
Results indicate a projected decrease in maize yields for the current genotype across all tested scenarios, primarily attributed
to a shortened grain-filling period and reduced fertilization efficiency under warmer conditions. Soil initial conditions were
found to significantly influence yield responses.

The analysis warns about a projected narrowing of the agro-management options for maintaining a high yield level.
However, we find an added value from the impact of genotype selection in mitigating climate change impacts, even in
extreme years. Genotype optimisation across six crossed cultivar dependent parameters revealed that while maximum yields
declines, specific genotype windows exhibit increased intermediate yields under future climates compared to current
conditions. Sensitivity analysis identified the thermal time requirements during juvenile and maturity stages as the most
critical factors influencing genotype performance under warmer climates.

This research demonstrates the added value of combining deterministic and data-driven modelling approaches within a
coupled climate-crop system for developing effective adaptation strategies, including optimised fertilization pathways that
contribute to climate change mitigation.



40

45

50

55

60

65

1. Introduction

According to the IPCC (2022), climate change is unequivocal, and its impacts appear more worrying today than dekades
ago. While research on the effects of climate change on crop yields and agricultural harvests has advanced (Arnell and
Freeman, 2021; Hatfield et al., 2021; Rezaei et al., 2024), translating these findings into actionable solutions and scales
remains a challenge. This is primarily due to the high complexity of factors that intervene at the local scale of the crop
(Malhi et al., 2021, Eyring et al., 2021) including sensitivities of the exchanges to variations in climate sub-components as
atmosphere / soil/ biosphere’s ecosystems under climate change, natural causes and human activities (Wheeler and Braun,
2013; Xie et al, 2023).

Given the projected global population increase estimated in scientific reports to over 9 billions by 2050 (Godfray and
Charles, 2010), global food production would have to increase by 70-100% to meet the growing demand (Smil, 2005; World
Development Report, 2008; Selvaraju et al., 2011). This challenge is further compounded by the agro-climatic conditions
expected to become vulnerable and gradually decline due to climate change, particularly impacting water availability (Stehr
and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013).

Another challenge of the problem comes from the need that approaches, and sustainable solutions must not only address the
needs of agricultural producers but also align with climate change mitigation goals for 2050, aiming for climate neutrality
(Semenov and Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022).

Early studies investigating the impact of climate change on crop yields emphasized the necessity of high-resolution
modelling approaches. These models should accurately represent management practices and the local effects of climate
variables, such as temperature and precipitation (McKee et al., 1993; Trnka et al., 1995; Adams et al., 1998). These affect
thermal and water stress and plant physiological processes like stem water potential, stomatal opening, leaf transpiration
efficiency (Espadafor et al., 2017). At the regional scale, the relationship between crop yield and water and thermal
availability may exhibit strong dependencies on the crop type, geographical location, temporal scale, and plant
developmental stage (Webber et al., 2018, 2020; Marcinkowski and Piniewski, 2018; Berti et al., 2019; Ceglar et al., 2020;
Wau et al., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates, indicated for
future climate change a significant (~30%) decrease without adaptation, but a potential increase (15%) in corn yields under
irrigated or under radiation-based genotype efficient use. These findings underscore the critical need for regional simulations
that incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various
irrigation strategies under future climate scenarios.

In addition to atmospheric conditions, soil properties significantly influence plant growth. These influences occur through
physics-based interactions with climate and through alterations in soil chemical composition. Rising air temperatures have
been shown to impact the soil carbon budget, with a decline in soil carbon potentially affecting plant and root processes,

biochemical cycles, and species composition (Abhik Patra et al., 2021).
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Crop modelling at local, regional and global scale has significantly advanced, enhancing our understanding of crop systems
and enabling the simulation and projection of future yields. Studies (Tsvetsinskaya et al, 2001; Tao et al., 2009; Ganguly et
al., 2013; Schauberger et al., 2020; Chen and Tao, 2022) consistently project global mean harvest reductions with differences
in the regional pattern of climate change impact on crop and harvest (Asseng et al., 2015; Li et al. 2022). Not only projected
spatial but also temporal variability of the climate change impact appears larger and accelerated, motivating intensified
efforts on seasonal and multi-annual predictions of plant development and harvest (Baez-Gonzalez et al., 2005; Jin et al.,
2022). Analysis of these simulations emphasized also the need to include crop uncertainty in climate scenarios assessments
(Meehl et al., 2007, Rosenzweig et al. 2013, Basso Bruno et al., 2019; Chapagain et al., 2022).

Meanwhile, model simulations emerged as useful tool in plant breeding analysis (Bernardo, 2002; Banterng et al, 2004;
Cooper and Messina et al., 2023; Mamassi et al., 2023), supporting the development of superior genotypes and breeding
methods for maximizing crop performance. These simulations have proven effective in guiding cultivar selection through
techniques such as parental selection and breeding by design (Peleman and van der Voort, 2003; Qiao et al., 2022).

In most recent years climate-crop modelling extended from deterministic crop models (Boogaard et al. 2013; Morell et al.,
2016) to data-driven techniques approaches for assessing crop response to weather and climate change (Schwalbert et al.,
2020; Meroni et al., 2021; Morales and Villalobos, 2023; Chang et al., 2023; Zhuang et al., 2024). Statistical methods as well
as machine learning (ML) used for crop forecast and modelling were however shown to bring for now, limited benefits
(Paudel et al., 2021), pointing to possibly hybrid techniques that include physical process in the modelling as a key approach
for this challenging issue. On the other hand, breeding optimization techniques using fully deterministic model simulations
require a huge number of simulations, analysis and inter-comparisons of predicted crop performance (Pfeiffer et al., 2007;
Wang et al., 2023).

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“Preparing for climate change”) project
in which we solve plant phenology using deterministic modelling and merge this technique with an on-line ML-genetic
algorithms (GA) iteratively selecting along simulations the cross-range of optimal crop cultivar parameters, according to
user-defined criteria for optimal target. The GA simulates the evolution of a population by applying in iterations, genetic
operators (selection, crossover, mutation) to a set of candidate solutions (chromosomes). The chromosomes represent
potential solutions to the problem and are encoded as strings of binary or symbolic values, with their fitness assessed by a
problem-specific evaluation function here, user-required based. GAs have demonstrated success for optimizing agricultural
practices using models like DSSAT for irrigation and fertilizer applications (Bai et al., 2021; Wang et al., 2023).

The hybrid approach implemented in this work focused on ideotype identification presents the advantage of physically
treating the crop complex process involved along optimizing iterations, thus allowing specific inclusion and understanding of
physical causes of responses and of optimal paths in various climate and management scenarios. Furthermore, it enhances
the ability of choosing optimum conditions from continuous multi-dimensional intervals for gene parameters, as opposed to
discrete sets. The continuum values approach is an important feature mainly for isolated extreme yield detection, or broader

parameters’ range and high non-linearity, both aspects of increasing relevance in the context of climate change. Our findings
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suggest a narrowing of agro-management adaptation opportunities under warmer climates, further emphasizing the
importance of this hybrid genotype-agro-management approach to support finding solutions for the future.

The developed system aims to provide efficient and operational support for farmers and stakeholders. It leverages the state-
of-the art DSSAT model, a widely used and extensively validated platform for agricultural modelling across diverse
applications. The DSSAT model, incorporating complex parameterizations for soil processes, surface-atmosphere exchange,
plant development stages, and their interactions with climate and management practices, undergoes continuous refinement
through ongoing research and regional calibrations. For this study, the model was specifically adapted to the unique soil
characteristics of the pilot region, including parameters such as porosity, composition per soil layers, and thermal properties.
The developed system exhibits portability to other regions with available soil and management data. Its functionality and
user-friendliness are expected to improve through widespread adoption and the incorporation of advanced user requests and
management options.

Section 2 presents the developed system and its data flow. Section 3a provides the motivation for system development,
focusing on projected climate change impacts for the target region. Section 3b presents results obtained using the system to
simulate projected changes in plant phenology and crop parameters for the target region, under various climate and
management scenarios, for the current control genotype. Section 3c discusses results obtained using the system's genotype

optimization package along agro-management scenarios. Finally, Section 4 presents perspectives and conclusions.

2. Data and methods

Projected changes in agro-climatic parameters for Romania were assessed under two Representative Concentration Pathways
(RCPs): RCP4.5 and RCP8.5. These changes were computed as anomalies relative to historical simulations (Hist) using an
ensemble of three CMIPS-CORDEX (Benestad et al., 2021, Karl et al., 2011) high resolution (11 km) climate models, based
on the CNRM, EC-EARTH, and MPI global models coupled to the regional climate model RCA4. Subsequently, the
DSSAT crop model (Jones et al., 2003; Hoogenboom et al., 2019) was employed to simulate projected changes in
phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions derived from each model of
the ensemble for the historical period and for the two RCP emission scenarios.

A software package was developed for the DSSAT model that performs identification of optimal model parameters based on
user-defined: criteria for optimum, climate-management scenario, region, and time horizon. Optimization goals include
maximizing harvest, ensuring stable yields over time, and minimizing nitrogen leaching beyond the root zone (reducing
water pollution risk). Management scenarios allow users to explore optimal cross-combinations of sowing dates, fertilization
amounts, and genotypes.

Six main cultivar-specific parameters (P1 to P6) characterizing the maize genotype were analysed across wide ranges of
physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents

the thermal time from seedling emergence to the end of the juvenile phase (ranging in these simulations from 100 to 500-
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degree days above 8°C). It significantly influences crop flowering times (Liu et al., 2020), water availability, and ultimately,
yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1) can lead to increased harvest in
humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).

P2, the photoperiod-development delay parameter (ranging in simulations here from 0.1 to 2.6 days) shows the extent to
which development is delayed for each hour of photoperiod increase above the longest photoperiod of maximum
development rate (considered 12.5 hours). P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant
development, with long-day plants exhibiting faster development under longer day lengths (Angus et al., 1981). Related to
these, studies have demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer
climates (Liu et al., 2023). P3, the thermal time from silking to physiological maturity (tested here for values from 500 to
1500-degree days above 8°C), significantly influences maturity dates. It also has a main role in plant stress levels (longer-
maturity hybrids increase harvest but under water stress it may provide lower yield (Su et al., 2021; Grewer et al, 2024)) and
grain moisture at maturity (Tsimba et al., 2013). P4, representing the maximum number of kernels per plant, exhibits a
relatively predictable numerical response and is therefore held constant at the control value of 797.5 estimated for the region,
in this analysis. PS5, the kernel filling rate parameter (ranging from 6 to 12 mg/day), influences grain filling duration,
desiccation, moisture at maturity and harvest (Chazarreta et al., 2021). P6, the phyllochron interval or the thermal time
between successive leaves (ranging from 3 to 70 °C) is a critical parameter for estimating the duration of vegetative
development (Birch et al., 1998; Xu et al., 2023). P5 and P6 are important parameters of optimal plant adaptation to climate
conditions, since they are drivers of the phenological response and yield formation, in conjunction with the temperature,
radiation, humidity, water stress. These genotype (or cultivar specific) parameters are the primary ones considered in
DSSAT model parameterizations for plant development processes (Hoogenboom et al., 2019).

The parameter ranges were rigorously tested in simulations to ensure their representatives for the target region, including an
analysis of extreme values. The control values for these cultivar-specific parameters Pi in the region are: P1=200, P2=0.7,
P3=800, P4=797.5, P5=8.60, and P6=38.90. All the simulations for combinations of parameters values (cross-Pi simulations)
were performed under Hist, RCP4.5, and RCPS8.5 emission scenarios. For each scenario, simulations were conducted for twelve
agro-management scenarios consisting of sowing date changes and fertilization treatments, for each model of the ensemble.

By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three
fertilization levels (zero, then a regional average and its double). For each agro-management scenario, genotype optimization
(finding the optimal set of Pi values under the given climate -agro-management and optimum criteria) was performed using
two methods: 1) discretized parameter-space runs with subsequent post-processing ordering, and 2) continuum parameter-
space search with iterative selection during simulations, employing genetic algorithms (GA).

The proposed GA-based method employs an iterative approach. It commences with an initial population of randomly
generated solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is
performed to choose the fittest chromosomes for reproduction, based on their fitness scores. Subsequently, crossover

(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from
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their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness
of the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by
balancing exploration (searching the problem’s space for diverse solutions exploiting promising regions) and exploitation
(refining the best solutions found so far). Here GA has been newly applied to develop an innovative crop selection
algorithm, optimizing genotypes across various agro-management scenarios. Steps along the algorithms are described in
Annex.

The system generates output data (agro-climate and optimal paths) which is disseminated on two platforms (Fig.1). One is a
platform (Info-Platform, Fig.1a) providing one-way interactive (static) agro-climate information at local scale (NUTS3 level,
aligned with the European Union's Nomenclature of Territorial Units for Statistics) over the region. It delivers pre-computed
climate -agro-climate indicators, indices of agro-climate extremes based on observations, re-analysis and climate scenarios
for future projections for the region.

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component,
where user requests are submitted, processed as input to the modelling chain and results delivered back to the user for a new,
refined request.

The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate models
(Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include the

ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-

management practices and genotype selections along simulations.
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The system was implemented and validated over Southern Romania, target agricultural area, for maize. Potential
beneficiaries include researchers, farmers, policymakers, and maize breeders. The system can also assist maize breeders in
adapting to climate change by enabling them to evaluate and select genotypes more resistant to challenging climatic
conditions. Given the accelerating pace of climate change, such a system may provide valuable support in numerous ways.

Table 1: The agro-management treatments (TR): each treatment is described in terms of the sowing date and fertilization amount,
Nitrogen [kg/ha]. We denote two experiments: exper “1N” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent
on the experiment: Fx0 is no fertilisation, Fx1 is the unit fertilisation of the experiment and Fx2 is the double unit fertilisation of
the experiment. We define the unit fertilisation of the exper “1N” equal to 23 N/kg and the unit fertilisation of the exper “3N” as 60
kg/ha. Sowing date format is “DD.MM”.

Treatment TR1 TR2 TR3 TR4 TR5 TR6 TR7 TRS TR9 TR10 TR11 TRI12
Sowing date 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05
Fertilization Fx0 Fx0 Fx0 Fx0 Fxl= Fxl Fxl= Fxl= Fx2 Fx2 Fx2 Fx2
(exper “3N”) =0 60 =60 60 60 =120 =120 =120 =120
Fertilization Fx0 Fx0 Fx0 Fx0 Fxl= Fxl Fxl= Fxl= Fx2 Fx2 Fx2 Fx2
(exper “1N”) =0 23 =23 23 23 =46 =46 =46 =46
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3. Results
3.1 Agro-climate changes in the region
3.1.1 Climate changes in agro-climate indicators

Agro-climatic Indicators, derived from CORDEX models and available on the Info-Platform, provide time-series data for
ensemble or individual model metrics at the NUTS3 level across Romania. Figure 3 illustrates projected changes in key
agro-climatic characteristics.

The anticipated climate shift in the region is evidenced by changes in the Johansson Continentality Index (JCI, Fig.3a),
calculated as JCI = 1.7 * dT / sin(o) - 20.4 (where dT is the annual maximum range of monthly mean temperatures and ¢ is
latitude; (Flocas, 1994; Baltas, 2007)). Changes in the JCI generally reveal robust evidence of large-scale changes influences
on the regional climate. For this domain it shows a Southwards meridional gradient of the intra-annual variability (Arctic
amplification remote impacts on Europe). Hence enhanced intra-annual variability (JCI) with much warmer summers than
winters over the main agricultural areas in South (and the opposite in the North), information useful for farmers to estimate
changes in the sowing time.

In agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding
32°C), used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought
conditions (H32temp > 51), about doubling the Hist values and expanding significantly across the southern regions in
RCP8.5 with already high-level drought conditions (31<H32temp<51) occurring in RCP4.5 (Fig.3b).

Accounting also for precipitation changes, the de Martonne Aridity Index (IM, the ratio of annual precipitation to a

translation function (+10C) of the annual mean temperature), exhibits also significant projected changes. It shows




particularly increased aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an
accelerating change up to 2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050).
230 a)

JCI, RCP4.5-Hist, 2021_2050

JCI, Hist: 1971_2000 JCI, RCP8.5-Hist, 2021_2050

asnd

47.5N 47.5N 475N
3 47N +IN
465N 465N 465N
48N o
45.5N . 45.5N 45.5N
45N 45N
44.5N 44.5N 445N

44N P 44N ('*'J e

206 20 23 24F 25€ 26E 27 28€ 29E 216 226 23 24E 256 26E 27E 28E 29E 7 2 2% 2k 2 2% 29t 2% 2%
10 20 33 38 40 45 50 55 60 66 =1.6-1.2-0.8-0.4-0.20.2 0.4 0.8 1.2 1.6 =1.6-1.2-0,8-0.4-0.20.2 0.4 0.8 1.2 1.6
H32temp, Hist: 1971_2000 H32temp, RCP4.5—Hist, 2021_2050 H32temp, RCP8.5-Hist, 2021_2050

21E 22E 23E 24E 25E 26E 27E 28E 29E 8
——— o —— —— _ ee— ——— =
0 3 10 15 20 30 35 40 45 50 70100 0 3 10 15 20 30 35 40 45 50 70 100 O 3 10 15 20 30 35 40 45 Sm

Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and changes

235  (2021-2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are: marine for 0<k<33,
continental for 33<k<66 and exceptionally continental for 66<k<100). b) The Scorching index H32temp classes are: reduced
intensity drought for H32tempe[0,10], moderate intensity for H32tempe(10,30], high intensity for H32tempe(30,50] and severe
drought conditions for H32temp > 50.

Martonne, Hist: 1971_2000 Martonne, RCP4.5: 2021_2050 Martonne, RCP8.5: 2021_2050
asnd 48N r aand
47.5N 4750 47.5N
4N 4N 47N
46.5N 46.5N 46.5N
48N 46N PR
45.5N 455N 455N
45N 45N 45N
445N 44.5N - 445N
4N [ = ! i [ 3 44N { it
21 2% 236 24 25€ 2BE 27E 28€ 20€ 21F 22€ 5k SAE (5F 20E:2/E; 20 29K 21 23 236 246 28 266 27 2BE 2%
o . e _—— — o ——
0 10 20 24 28 35 55 80 120 0 10 20 24 28 35 55 80120 0 10 20 24 28 35 55 80 120
Martonne, Hist: 1971_2000 Martonne, RCP4,5: 2071_2100 Martonne, RCP8.5: 2071_2100
488 48N aanq -
475N 475N 475N
47N 47N 4N
465N 465N 46.5N
48N 48N \M‘\ PLIVE
45.5N 455N won| L
45N 45N 45N
445N 445N 44.5N
o (ST o Cu { g = .
20E 226 256 24€ 25E 26 27E 28E 29E 2TE 20E 25F 24E 25 28E 20 2B 29F 21E 23 25 24 25 2BE 276 2BE 29€
L o —— o ——
0 10 20 24 28 35 55 80120 0 10 20 24 28 35 55 80120 0 10 20 24 28 35 55 80 120

240  Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top)
and 2071-2100 (bottom). IM index classes are: arid for 0<IM<10 arid, semi-arid for 10<IM<20, Mediterranean for 20<IM<24,
semi-humid for 24<IM<28, wet for 28<IM<36, very wet for 36<IM<55 very wet and extreme wet for IM>55; (all indices are time
mean 30 years, ensemble mean).



245

250

260

3.1.2 Changes in agro-climate extremes

Projected changes in extremes for temperature and precipitation, highly useful information for agriculture, show important
features in the region. A main aspect of interest is related to late-spring freezing days that may drastically affect the whole
crop of the year. Fig.5a shows for South Romania (Calarasi subregion) that in spite of the decreasing trend (5% p-level
significance) of the total number of freezing days in spring, we still may have severe events with interestingly, a number of
freezing days in late-spring that is even higher in scenarios than in Hist, late-spring being one of the most vulnerable period

to freezing for the plant already under development. Also note that successive extreme freezing years in late spring may

occur.
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heavy precipitation (>10 mm per day) in a 10-day period; c): RR, total precipitation (mm) per 10-day period; (left): the 10-day
period is centred on April 5%; (right): the 10-day period is centred on April 25", Values indicate the slope of the linear trend
(black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).

This late spring blizzard feature over the region, was analysed in a previous work and shown to be related to the combined
context of Polar Jet instability meanwhile with warmer sea surface temperature in the Eastern Mediterranean (Caian and
Andrei, 2019). Both these features are projected to enhance in a warmer climate (Lelieveld et al., 2012; Shaw and Miyawaki,
2024), indicating higher potential for severe late-spring blizzards in the region.

For precipitation, analysis of extreme precipitation events (RR10mm) and total precipitation (RR) reveals a notable shift in
their temporal distribution within April. While a decreasing trend is observed in the first dekad, a positive trend emerges in
the third (and second, not shown) dekades (Fig.5b). These suggest a time-shift tendency towards the end of April and into
early May for the occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level,
this shift is consistently observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme
values of RR and RR10 are projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b,c), more often
during late spring. Extreme daily precipitation is, in most cases detrimental for the crop, causing soil erosion and surface

runoff mainly after drought periods.

3.2 Phenology and Harvest Projections for the Control Genotype

Projected changes in phenology for the control genotype (Pioneer 375) were simulated using the DSSAT model under
historical (Hist) and multi-model climate projections of CRP4.5 and RCP8.5 scenarios. Further, multi-genotype simulations
are discussed in Section 3.c.

Model validation was conducted using Control simulations (Ctrl) driven by ERAS5 reanalysis data (Simmons et al., 2021) for
each treatment outlined in Table 1 (experiment "3N").

These simulations, spanning the period 1976-2005, demonstrate the model's ability to capture inter-annual variability in
harvest yields, including both high and low yield years, when compared to the measured available data for the region (suppl.
S1). They also allowed model set-up improvements through sensitivity simulations and model calibration including soil
parameters (suppl. S2) as soil water, nitrogen, and organic carbon content.

However, further improvements in model accuracy are to be achieved if incorporating factors such as inter-annual soil
variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing
dates. For example, simulations with fertilization specifications closer to the year’s management practices (e.g.
approximately 80-120 kg N/ha and sowing around April 15" for 1995) resulted in more accurate (reduced bias) predictions
(TR6, TR10). These, together with the well simulated inter-annual variability, demonstrate the model's ability to capture the

combined influence of climate and management practices on crop performance.

3.2.1 Phenology dates - projected changes
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Ensemble model simulations provide projected changes in phenology, for the control genotype (GO), under different
fertilization levels (0, 60, 120 kg/ha, Table 1, exper "3N") and sowing dates, averaged over 30-years, in scenarios (2021-
2050, RCP4.5 and RCP8.5), versus Hist (experiment set-up “E_3N_GO0”). Figure 6a,b illustrates the ensemble model
changes, demonstrating an earlier anthesis date by up to ~6 days and an earlier maturity date by up to ~10 days across all
scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a
consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in
anthesis under warming scenarios, a response even more pronounced under RCP8.5.

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential
crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and
temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures
potentially inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more
frequently in treatments with higher nitrogen fertilization, leading in average only small changes in maturity days. This may

favour leaves development, enhanced transpiration and earlier depletion of the soil moisture leading later to water stress.
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Fig.6: Simulated a): anthesis dates ([dap], days after sowing) and b): maturity dates ([dap]), under historical conditions (black),
RCP4.5 (blue), and RCP8.5 (red) scenarios, experiment setup E_3N_G0. Results are shown for the four sowing dates and nitrogen
fertilization level of 60 kg/ha (Table 1, exper “3N”).

3.2.2 Harvest - projected changes

For harvest, the ensemble simulations (along E 3N_GO) project an overall decrease under both RCP4.5 and RCP8.5
scenarios and across all sowing dates and fertilization levels (Fig.7), compared to the historical period.

Harvest decline in climate scenarios is related to several factors: 1) reduced rainfall during the growing season (Fig.8), as
evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-August, over 30 years) found between harvest (H) and

accumulated precipitation in the Ctrl and in model simulations; 2) a shortened grain-filling period due to a projected earlier
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flowering and an even earlier maturity across all the models (Fig.6), potentially limiting biomass accumulation; and 3)
decreased fertilization efficiency under warming conditions, in the sense that H difference Hist minus scenario, increases

320 (non-linearly) with enhanced fertilisation (Fig.7). Hence for a same climate, the same increase in fertilisation brings less
benefit in a warmer climate. This benefit for H is of about 10% in Hist versus 7.6% in RCP8.5 for early sowing and about
8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of nitrogen (Fig.7b,c). This efficiency decay
feature underscores the primacy of reduced accumulated precipitation (Fig.8) and of higher temperature, that lead to a non-
linear H response to fertilization (Huang et al, 2024). Their influence is noticed as well in the absence of fertilization

325 (Fig.7a), when H still declines in warmer climates, with a dominant control from precipitation. The correlation along sowing
dates between H and accumulated precipitation until maturity (Pmat, Fig.8), is r(H, Pmat) >0.96 in both scenarios.
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Fig.7: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three
fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E_3N_GO0.
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Fig.8: Precipitation accumulated until maturity (mm) in experiment E_3N_GO0 (legend as in Fig. 7).
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The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a
shorter accumulation season (Fig.6) but having projected a precipitation increase towards late spring (Fig.5), that may

significantly favour critical growth stages.

3.3 Optimal Genotype Identification

The system was further developed to extend the management scenarios for multi-genotype simulations and implement
methods to identify ideotypes under each agro-climate scenario. The aim is to search for management scenarios that yield
optimal outcomes defined by user-criteria such as maximizing harvest yield, stabilizing yield, or minimizing pollutant
emissions. Two optimization methods are implemented: a discrete-parameter, purely deterministic technique, and a hybrid
approach that combines deterministic modelling with continuous-parameter Machine Learning-based Genetic Algorithms for
iterative genotype selection.

The deterministic method involves conducting multiple-genotype crop model simulations, with optimization performed as a
post-processing step. Genotype parameters Pi are defined within pre-established limits and discretization. Multi-model
simulations are then performed, where each parameter is individually varied while the remaining parameters are held
constant. The total number of simulations in this case is determined by the chosen discretization level. In contrast, in the
hybrid technique the Pi values are selected from a continuous range of values, identifying and iteratively improving the best
sub-domains. This section presents the results of genotype optimization experiments (E_1N_Gn+w), built upon the
E_IN_GO and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting near-term

(2035 as centre of interval 2021-2050).

3.3.1 Optimal genotype under climate change

i) harvest as a function of the genotype H(G) in scenarios versus current climate

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and
denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario)
dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the
ensemble-model PDF (probability density function) of H under warmer climate.

A first outcome demonstrates in Fig.9a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H)
occurs within the range of maximum H values (genotypes in the upper H-percentile, interval GX (0%, 2.5%) of the H-
ordered genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9b). Across models of the
ensemble, we note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios.
Precipitation exhibits high inter-model variability and significant regional-scale uncertainty, pointing to the need of

ensemble modelling for reducing it. In contrast, the warming trend is a consistent feature across models in the region,
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contributing other model-systematic responses such as earlier anthesis and maturity dates and shortening of the grain filling
season.

The second note regards a different response projected in the intermediate H values (Fig.9a, c¢). Genotypes corresponding to
the intermediate H values (genotypes of middle H-percentile, the interval GI (25%, 70%) of the H-ordered genotypes) show
projected higher H values in GI in climate scenarios than in Hist (Fig.9¢), affecting less the earlier sowing (Fig.9c).

These together lead to a narrowing of the H-values range of responses, in GX and GI, to the same managements applied, in
scenarios compared to Hist. Same management spread would lead to closer H-responses, with enhancing the expectancy for
occurrence of intermediate values and decreasing the expectancy for highest H values (a third feature of projected changes).
Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9a),
improving by up to 2-(4) % in scenarios (respectively Hist) unfertilized case and up to 8-(12) % in fertilised case (Fig.9a),
with the lowest percentage for RCPS8.5. Earlier sowing was reported in other recent studies as optimal for spring maize
harvest (Djaman et al, 2022).

ii) options for adaptation and mitigation using genotype analysis

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for
early sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in GX and GI with

higher/ lower expectancy of intermediate/ high values occurrence, have practical adaptation outcomes.

The first two points are equivalent to slopes’ change of H as a function of the ordered genotype, as shown in (Supl. S3) in
climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the
result in scenario compared to Hist, for a given agro management. Alternatively, for a given genotype one could find how a
change in management practice could optimize the result. In this last case for example, one could choose a small shift in the
sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher H, as shown for example in TRS

versus TR11 in Fig.9a, RCP4.5 (Fig.9).
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Fig.9 a): Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale).
The simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right), experiment setup E_IN_Gn+w, for cross-genotype
changes in six Pi parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist
(left) and RCP8.5 minus Hist (right), for the upper H percentile (the first 50 values, [1-50] on x axis) and intermediate in c), range
[400-1400] on x-axis. (“Hmax left” indicates that increasing values of H are on leftward direction of the axis).

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with
high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9b).

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct
weather favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting

(Dewitte et al., 2021).

3.3.2 Optimal Genotype parameters Pi under climate change

i) optimal genotype parameters

We further discriminate H response per genotype parameters (P1-P6), to understand the source of the changes in Fig.9 and
the possible adaptation paths under climate and management scenarios.

Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from
seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.10b), slightly shorter thermal time between
successive leaves appearance (phyllochron, P6, Fig. 10 e) in GI and longer in GX, but longer thermal time to maturity (P3,
Fig.10c) and higher grain filling rate (P5, Fig. 10d). These results are in coherence with findings along recent works. Shorter
P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-
humid areas, (the current class of this region, with semi-arid trends projected, Fig. 4), and the same for P2, while slower
maturity (P3) and enhanced filling rate (P5) being linked to higher kernel weight and harvest in agreement with recent
studies (Grewer et al., 2024).

ii) changes in optimal genotype parameters in climate scenarios
Comparing Pi in climate scenarios against Hist, reveals the new plant strategy put in place in the new climatic conditions, for

maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached with genotypes that
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ensure a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in scenarios compared to
Hist. To a smaller extent this is also achieved by a longer photoperiod delay, higher grain filling rate and longer phyllochron
interval, in scenarios, than for a same percentile of the Harvest in Hist. These show that under warmer climate it is
essentially important to avoid too fast growth on main stages of the development.

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10a, b) and related to
these, under longer photoperiod (P2 increases, Fig.10b). Other contributions come from ensuring a slower rate of appearance
of successive leaves (P5 increase), while a higher grain filling rate (P6 increase) appears to partly compensate for the
negative effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the
harvest.

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate
(Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the Pi changes

in scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving.

a) b) c) d) e)
T 1800 T 1800 T 1800 T 1800 T 1800
£ 1600 £ 1600 £ 1600 £ 1600 £ 1600
o 1400 P1 o 1400 P2 o 1400 P3 o 1400 P5 ° 1400 P6
5 120 TR1 5 120 TR1 5 120 TR1 3 1200 TR1 § 1200 TR1
Z 1000 Z 1000 Z 1000 I, 1000 I 1000
s 800 & 800 s 800 & 800 s 800
o o o ] o
o 600 o 600 o 600 o 600 o 600
H H H H :
$ a0 $ 400 $ 400 $ 400 S 400
3 3 3 3 3
§ 200 § 200 § 200 § 20 § 200
5 5 & () )
121518212427 3 33363942 2427 3 3336394245485.154 15 2 25 3 35 4 45 5 55 1.1121.3141.50.61.71.819 2 2.12.2.2.425 16171819 2 212223242526
interval —number of Pi interval —number of Pi interval —number of Pi interval —number of Pi interval —number of Pi
= 1800 T 1800 T 1800 + 1800 T 1800
£ 1600 £ 1600 £ 1600 1600 £ 1600
2 1400 P1 2 1400 P2 2 1400 PR3 1400 P5 2 1400 P6
g o TR12 g o TR12 g 0 TR12 200 TR12 g o TR12
I 1000 I 1000 I 1000 , 1000 I 1000
& 800 & 800 s 800 300 s 800
o o o ]
o 600 o 600 o 600 600 o 600
e H H T H
2 400 > 40 > 400 Lo400 5400
3 | 3 3 3
§ 200 § 200 € 200 200 § 200
s & s . )
121518212427 3 33363942 2427 3 3336394245485, 54 15 2 25 3 35 4 45 5 55 11121.31.41.5061.71.81.9 2 2.12.22.2.425 16171819 2 212223242526

interval —number of Pi interval —number of Pi interval —number of Pi interval —number of Pi interval —number of Pi

Fig.10: Pi values corresponding to ordered, decreasing harvest (on y axis, the number of the ordered simulation, y=1 is the highest
harvest simulation). X-axis shows the Pi interval-number of discretization, increasing with increased values. Discretization here
have used 5x7x6x1x3x3 intervals for P1xP2xP3xP4xP5xP6 (total 1890). Simulations are shown for two treatments (TR1 at top and
TR12 at bottom), for: Hist (black), RCP4.5 (blue, only shown for the running mean) and RCP8.5 (red), ensemble time-mean; full
lines show running means over 100 values window. The short arrows in a) and c) indicate, for a same harvest percentile
(y=constant) the corresponding Pi intervals for Hist (black) and RCP8.5 (red); long arrows indicate the POi values of the
intersection of running-mean Pi for Hist with RCP8.5.

iii) optimal genotype parameters in management and climate scenarios
Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires

gradually decreasing Pi in order to maximize H (Fig.11, also in Fig.10), for both Hist and climate scenarios. For P1-P3 this
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decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too late
(autumn) maturity stage that is slowing the grain filling and leading crop failure.

However, Fig. 11 also shows that these Pi decreases cease or even reverse under extreme delay of sowing. For highest delays
the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming higher,
hampering the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick grain
filling. Hence the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its
adaptation to warmer climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease
or even increases of Pi parameters along with gradual increasing delays in the sowing date.

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi.
This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced
warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the
development to the key issue of avoiding a too fast growth leading crop failure.

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi.
This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced
warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the

development to the key issue of avoiding a too fast growth leading crop failure.
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Fig.11 As in Fig.10 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom).

Parameters Pi are shown for the top 200 highest harvest (y from 1 to 400). Grey colours are for Hist and yellow-red for RCP8.5
(light to dark from earlier to latest sowing).

iv) optimal genotype parameters in adaptation and mitigation strategy
For each agro-management and climate scenario one can identify threshold values of Pi (POi that depend on the Pi, the

sowing date and the fertilization level, shown in Fig.10) of intersection between scenario and Hist. At this value, for the
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genotype the two have the same H percentile. So POi shows if we get an enhanced percentile or decreased from genotypes
with higher or lower Pi in the scenario compared to Hist (Fig.10, shown by arrows).

Second remark is on the expectancy of an outcome. Since all the slopes of Pi, each as a function of H ordered-values are
lower than in Hist (suppl. S3), there is a narrower Pi interval for all those Pi decreasing with H (e.g. P1) and a border one for
those Pi increasing with H (P3, Fig.10c), in climate scenarios. P3 increases are broadening the interval for H-highest
percentile, potentially presenting, in this sense, more expectancy (than P1, Fig.10a) on highest values outcome.

The genotyping results were found both in simulations involving deterministic and the hybrid deterministic-ML methods.
The hybrid method involved the same cross-simulations, but the selection of Pi values for H optimization and ordering was
no more following a pre-defined discretisation but instead a random picking up over a continuous interval of values with
successively retrieving the best generation. It applies for optimization, classic Genetic Algorithms methods in which
selection of pairs is based on the user-criteria (e.g. maximum harvest, stable harvest, etc.). Our results show that for the same
physical intervals of the genotype parameters, the ML hybrid technique only after 20 generations shows at least 50% chances
to get a better result than the deterministic model, while after 100 generations, it already increases at 80% chances to get
better results with also computational efficiency. CPU time is reduced in this case by more than 30% using the hybrid
technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better solution

since it can identify improved optimums at lower computational prices.

4. Discussions

The results found are in line with other results in recent studies, using different approaches and observational data, and offer
an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For
the plant response under management treatment delaying sowing date, limiting elongations of the development phase was
also found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation
decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10,
11). Also fertilization lowering P6 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for
warmer climates (Hokmalipour et al., 2011; Sardans et al., 2017; dos Santos et al., 2021) was recently put in relation to P2
decrease mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration
maximizing the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10f, 11f), limitations in the expansion of
new leaves (increase of P6, Fig.10) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions
(Fahad et al., 2017).

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P5, Fig.11d) under reduced P1, P2
and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated
crop (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11d). This increase for

P5 under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress,
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allowing plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber at al.,
2022).

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise
some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows
the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management
scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only
offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small
perturbations may lead the system response into different states (threshold sowing-delays, or POi for genotypes). Without an
integrated modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since

these are simulation (climate-management scenario) dependent.

5. Conclusions

The main outcome of this study is that an agroclimatic real-time Interactive Service was implemented towards adaptation
support, that allows performing real-time, user-requested, agro-management modelling scenarios for the region, under
current and future climate. A novel feature of the system is the ability for identifying optimal management paths for the
user’s request, along with multiple cross-cultivar parameters, such as cross-optimal sowing date, genotype parameters,
amount and date of fertilization.
The system provides solutions and estimates the associated uncertainty by using multi-model ensembles for each agro-
climate and management scenario. The crop optimization criteria are user-defined and can relate to high harvest, stable
harvest, low pollution. The optimization module implemented uses a hybrid deterministic - ML methodology. It performs
multi-model simulations using physical models of climate and plant penology and optimization is done either through
discretizing the parameters’ space and optimisation post-processing or using hybrid physical-ML Genetic Algorithms
methods. ML methods are spanning continuous parameter’s space and iteratively selecting along the simulations the best fit
parameters, allowing to identify unprecedented optimal configurations (H maxims), not reachable under the discrete
deterministic method. The overall system output information is layered and accessed from two interfaces: one static, for
information purpose (phenology, harvest, climate, extremes at high resolution NUTS3 level) and a second is real-time
interactive online, through which the user places requests and receives the system-performed management simulations
required (including uncertainty along multi-models) and identified optimal paths for adaptation. These platforms are
operational for two emission scenarios RCP4.5 and RCP8.5 and twelve management scenarios (sowing dates and
fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these were discussed
in this work for the pilot region South Romania.

For the current genotype, in both emission scenarios it is projected a mean decrease (14% in ensemble mean, with

higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and fertilization) tested.
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This was linked to a projected shortening of the grain filling season (10% quicker with an earlier shift of both anthesis (5
day) and maturity (10 day) phases) and to a mean decrease of the fertilisation efficiency under climatic scenarios, stronger in
RCP 8.5 emissions.

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-
management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal
harvest? How do these differ under projected climate change and/ or under agro-management options and can these enhance
our understanding to guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the
region?

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then
increase in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to
reach the historical values in this range through agro-management and breeding. These indicate a narrowing of the responses
range to same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of
Hist, in climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-
management choice will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less
pollutant.
For effective support in adaptation applications, individual genotype parameters Pi were analysed in climate scenarios versus
Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest
changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile
range. This range is identified through critical values of the parameters (PO1), determined for each treatment and climate
scenario. There is significant variability of POi under agro-management treatments. Moderate delayed sowing and enhanced
fertilisation may diminish the shifts in Pi in scenarios compared to Hist for a same H-percentile, in contrast to extreme
managements.

These results show that Genetic approaches offer adaptation strategy support in helping plants to resist drought
stress under warming climate. Moreover, it was shown that the optimization is improved by using a hybrid ML genetic
algorithm method coupled to the deterministic model-output, leading to detecting better solutions, under a continuous-
parameter space search. The system can be further used for searching paths along extreme drought years, along with
irrigation options investigation. Coupled with weather extended predictions (seasonal, year -decadal) this could provide near

real-time adaptation support.

Code and data availability: The code is available in the Github repository at: https:/github.com/pneague/Genetic-

Algorithm-for-Corn-Genotype-sowing-Date-Optimization under a BSD 2-Clause Simplified License
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Annex: Data and Methods: Steps in ML algorithm

Schema of steps in workflow of ML algorithms for optimal genotype identification:

Start with 10 randomly chosen solutions within the bounds of P1-P6;

Calculate the mean and std of harvest of each solution for the 30 years 1976-2005;

Calculate fitness = (Mean of harvest) — (Standard-deviation of Harvest/4);

Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;

For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of P’s to
be subjected to crossover, called x;

For each child, modify Px as follows:

Pxa=round (B * Pxa+ (1 - B) * Pxb)

Pxb =round (1 - B) * Pxa+ B * Pxb)

Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor,
set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued
traits from both parents while exploring the search space between the parents' positions. The blending crossover promotes a
smoother and more gradual search for optimal solutions in continuous domains.

Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting one of
the P’s to a random value between its allowed minimum and maximum.

At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute them with
the children.

Repeat.
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