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Abstract. Climate change significantly threatens crop yields levels and stability. The complex interplay of factors at the 10 

local scale makes assessing these impacts difficult, requiring coupled climate-phenology models, which integrate climate 

data and crop information. Identifying suitable local management practices and crop varieties under future conditions 

becomes essential for developing effective adaptation strategies. 

This study presents the implementation and application of an integrated climate-phenology adaptation support modelling 

system. This is based on regional CORDEX climate models and the CERES Maize model from the DSSAT platform. Novel 15 

modules for optimal management and genotype identification under climate change have been developed in the system, 

employing a hybrid approach that combines deterministic modelling with machine learning (ML) techniques and genetic 

algorithms. This system was run as a regional pilot over Romania, operating in real-time in interaction with users, 

performing agro-climate projections (combination of fertilization, sowing date, genotype) and providing best crop 

management simulated under climate change projections. Multi-model ensemble simulations were conducted for two 20 

radiative forcing scenarios RCP4.5 and RCP8.5 and twelve management scenarios, yielding novel results for the region. 

Results indicate a projected decrease in maize yields for the current genotype across all tested scenarios, primarily attributed 

to a shortened grain-filling period and reduced fertilization efficiency under warmer conditions. Soil initial conditions were 

found to significantly influence yield responses. 

The analysis warns about a projected narrowing of the agro-management options for maintaining a high yield level. 25 

However, we find an added value from the impact of genotype selection in mitigating climate change impacts, even in 

extreme years. Genotype optimisation across six crossed cultivar dependent parameters revealed that while maximum yields 

declines, specific genotype windows exhibit increased intermediate yields under future climates compared to current 

conditions. Sensitivity analysis identified the thermal time requirements during juvenile and maturity stages as the most 

critical factors influencing genotype performance under warmer climates. 30 

This research demonstrates the added value of combining deterministic and data-driven modelling approaches within a 

coupled climate-crop system for developing effective adaptation strategies, including optimised fertilization pathways that 

contribute to climate change mitigation. 

 

 35 
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1. Introduction 

According to the IPCC (2022), climate change is unequivocal, and its impacts appear more worrying today than dekades 

ago. While research on the effects of climate change on crop yields and agricultural harvests has advanced (Arnell and 

Freeman, 2021; Hatfield et al., 2021; Rezaei et al., 2024), translating these findings into actionable solutions and scales 

remains a challenge. This is primarily due to the high complexity of factors that intervene at the local scale of the crop 40 

(Malhi et al., 2021, Eyring et al., 2021) including sensitivities of the exchanges to variations in climate sub-components as 

atmosphere / soil/ biosphere’s ecosystems under climate change, natural causes and human activities (Wheeler and Braun, 

2013; Xie et al, 2023). 

Given the projected global population increase estimated in scientific reports to over 9 billions by 2050 (Godfray and 

Charles, 2010), global food production would have to increase by 70-100% to meet the growing demand (Smil, 2005; World 45 

Development Report, 2008; Selvaraju et al., 2011). This challenge is further compounded by the agro-climatic conditions 

expected to become vulnerable and gradually decline due to climate change, particularly impacting water availability (Stehr 

and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013). 

Another challenge of the problem comes from the need that approaches, and sustainable solutions must not only address the 

needs of agricultural producers but also align with climate change mitigation goals for 2050, aiming for climate neutrality 50 

(Semenov and Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022). 

Early studies investigating the impact of climate change on crop yields emphasized the necessity of high-resolution 

modelling approaches. These models should accurately represent management practices and the local effects of climate 

variables, such as temperature and precipitation (McKee et al., 1993; Trnka et al., 1995; Adams et al., 1998). These affect 

thermal and water stress and plant physiological processes like stem water potential, stomatal opening, leaf transpiration 55 

efficiency (Espadafor et al., 2017). At the regional scale, the relationship between crop yield and water and thermal 

availability may exhibit strong dependencies on the crop type, geographical location, temporal scale, and plant 

developmental stage (Webber et al., 2018, 2020; Marcinkowski and Piniewski, 2018; Berti et al., 2019; Ceglar et al., 2020; 

Wu et al., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates, indicated for 

future climate change a significant (~30%) decrease without adaptation, but a potential increase (15%) in corn yields under 60 

irrigated or under radiation-based genotype efficient use. These findings underscore the critical need for regional simulations 

that incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various 

irrigation strategies under future climate scenarios. 

In addition to atmospheric conditions, soil properties significantly influence plant growth. These influences occur through 

physics-based interactions with climate and through alterations in soil chemical composition. Rising air temperatures have 65 

been shown to impact the soil carbon budget, with a decline in soil carbon potentially affecting plant and root processes, 

biochemical cycles, and species composition (Abhik Patra et al., 2021). 
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Crop modelling at local, regional and global scale has significantly advanced, enhancing our understanding of crop systems 

and enabling the simulation and projection of future yields. Studies (Tsvetsinskaya et al, 2001; Tao et al., 2009; Ganguly et 

al., 2013; Schauberger et al., 2020; Chen and Tao, 2022) consistently project global mean harvest reductions with differences 70 

in the regional pattern of climate change impact on crop and harvest (Asseng et al., 2015; Li et al. 2022). Not only projected 

spatial but also temporal variability of the climate change impact appears larger and accelerated, motivating intensified 

efforts on seasonal and multi-annual predictions of plant development and harvest (Baez-Gonzalez et al., 2005; Jin et al., 

2022). Analysis of these simulations emphasized also the need to include crop uncertainty in climate scenarios assessments 

(Meehl et al., 2007, Rosenzweig et al. 2013, Basso Bruno et al., 2019; Chapagain et al., 2022).  75 

Meanwhile, model simulations emerged as useful tool in plant breeding analysis (Bernardo, 2002; Banterng et al, 2004; 

Cooper and Messina et al., 2023; Mamassi et al., 2023), supporting the development of superior genotypes and breeding 

methods for maximizing crop performance. These simulations have proven effective in guiding cultivar selection through 

techniques such as parental selection and breeding by design (Peleman and van der Voort, 2003; Qiao et al., 2022).  

In most recent years climate-crop modelling extended from deterministic crop models (Boogaard et al. 2013; Morell et al., 80 

2016) to data-driven techniques approaches for assessing crop response to weather and climate change (Schwalbert et al., 

2020; Meroni et al., 2021; Morales and Villalobos, 2023; Chang et al., 2023; Zhuang et al., 2024). Statistical methods as well 

as machine learning (ML) used for crop forecast and modelling were however shown to bring for now, limited benefits 

(Paudel et al., 2021), pointing to possibly hybrid techniques that include physical process in the modelling as a key approach 

for this challenging issue. On the other hand, breeding optimization techniques using fully deterministic model simulations 85 

require a huge number of simulations, analysis and inter-comparisons of predicted crop performance (Pfeiffer et al., 2007; 

Wang et al., 2023). 

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“Preparing for climate change”) project 

in which we solve plant phenology using deterministic modelling and merge this technique with an on-line ML-genetic 

algorithms (GA) iteratively selecting along simulations the cross-range of optimal crop cultivar parameters, according to 90 

user-defined criteria for optimal target. The GA simulates the evolution of a population by applying in iterations, genetic 

operators (selection, crossover, mutation) to a set of candidate solutions (chromosomes). The chromosomes represent 

potential solutions to the problem and are encoded as strings of binary or symbolic values, with their fitness assessed by a 

problem-specific evaluation function here, user-required based. GAs have demonstrated success for optimizing agricultural 

practices using models like DSSAT for irrigation and fertilizer applications (Bai et al., 2021; Wang et al., 2023). 95 

The hybrid approach implemented in this work focused on ideotype identification presents the advantage of physically 

treating the crop complex process involved along optimizing iterations, thus allowing specific inclusion and understanding of 

physical causes of responses and of optimal paths in various climate and management scenarios. Furthermore, it enhances 

the ability of choosing optimum conditions from continuous multi-dimensional intervals for gene parameters, as opposed to 

discrete sets. The continuum values approach is an important feature mainly for isolated extreme yield detection, or broader 100 

parameters’ range and high non-linearity, both aspects of increasing relevance in the context of climate change. Our findings 



4 
 

suggest a narrowing of agro-management adaptation opportunities under warmer climates, further emphasizing the 

importance of this hybrid genotype-agro-management approach to support finding solutions for the future. 

The developed system aims to provide efficient and operational support for farmers and stakeholders. It leverages the state-

of-the art DSSAT model, a widely used and extensively validated platform for agricultural modelling across diverse 105 

applications. The DSSAT model, incorporating complex parameterizations for soil processes, surface-atmosphere exchange, 

plant development stages, and their interactions with climate and management practices, undergoes continuous refinement 

through ongoing research and regional calibrations. For this study, the model was specifically adapted to the unique soil 

characteristics of the pilot region, including parameters such as porosity, composition per soil layers, and thermal properties. 

The developed system exhibits portability to other regions with available soil and management data. Its functionality and 110 

user-friendliness are expected to improve through widespread adoption and the incorporation of advanced user requests and 

management options. 

Section 2 presents the developed system and its data flow. Section 3a provides the motivation for system development, 

focusing on projected climate change impacts for the target region. Section 3b presents results obtained using the system to 

simulate projected changes in plant phenology and crop parameters for the target region, under various climate and 115 

management scenarios, for the current control genotype. Section 3c discusses results obtained using the system's genotype 

optimization package along agro-management scenarios. Finally, Section 4 presents perspectives and conclusions. 

2. Data and methods 

Projected changes in agro-climatic parameters for Romania were assessed under two Representative Concentration Pathways 

(RCPs): RCP4.5 and RCP8.5. These changes were computed as anomalies relative to historical simulations (Hist) using an 120 

ensemble of three CMIP5-CORDEX (Benestad et al., 2021, Karl et al., 2011) high resolution (11 km) climate models, based 

on the CNRM, EC-EARTH, and MPI global models coupled to the regional climate model RCA4. Subsequently, the 

DSSAT crop model (Jones et al., 2003; Hoogenboom et al., 2019) was employed to simulate projected changes in 

phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions derived from each model of 

the ensemble for the historical period and for the two RCP emission scenarios.  125 

A software package was developed for the DSSAT model that performs identification of optimal model parameters based on 

user-defined: criteria for optimum, climate-management scenario, region, and time horizon. Optimization goals include 

maximizing harvest, ensuring stable yields over time, and minimizing nitrogen leaching beyond the root zone (reducing 

water pollution risk). Management scenarios allow users to explore optimal cross-combinations of sowing dates, fertilization 

amounts, and genotypes. 130 

Six main cultivar-specific parameters (P1 to P6) characterizing the maize genotype were analysed across wide ranges of 

physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents 

the thermal time from seedling emergence to the end of the juvenile phase (ranging in these simulations from 100 to 500-
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degree days above 8°C). It significantly influences crop flowering times (Liu et al., 2020), water availability, and ultimately, 

yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1) can lead to increased harvest in 135 

humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).  

P2, the photoperiod-development delay parameter (ranging in simulations here from 0.1 to 2.6 days) shows the extent to 

which development is delayed for each hour of photoperiod increase above the longest photoperiod of maximum 

development rate (considered 12.5 hours). P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant 

development, with long-day plants exhibiting faster development under longer day lengths (Angus et al., 1981). Related to 140 

these, studies have demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer 

climates (Liu et al., 2023). P3, the thermal time from silking to physiological maturity (tested here for values from 500 to 

1500-degree days above 8°C), significantly influences maturity dates. It also has a main role in plant stress levels (longer-

maturity hybrids increase harvest but under water stress it may provide lower yield (Su et al., 2021; Grewer et al, 2024)) and 

grain moisture at maturity (Tsimba et al., 2013). P4, representing the maximum number of kernels per plant, exhibits a 145 

relatively predictable numerical response and is therefore held constant at the control value of 797.5 estimated for the region, 

in this analysis. P5, the kernel filling rate parameter (ranging from 6 to 12 mg/day), influences grain filling duration, 

desiccation, moisture at maturity and harvest (Chazarreta et al., 2021). P6, the phyllochron interval or the thermal time 

between successive leaves (ranging from 3 to 70 °C) is a critical parameter for estimating the duration of vegetative 

development (Birch et al., 1998; Xu et al., 2023). P5 and P6 are important parameters of optimal plant adaptation to climate 150 

conditions, since they are drivers of the phenological response and yield formation, in conjunction with the temperature, 

radiation, humidity, water stress. These genotype (or cultivar specific) parameters are the primary ones considered in 

DSSAT model parameterizations for plant development processes (Hoogenboom et al., 2019). 

The parameter ranges were rigorously tested in simulations to ensure their representatives for the target region, including an 

analysis of extreme values. The control values for these cultivar-specific parameters Pi in the region are: P1=200, P2=0.7, 155 

P3=800, P4=797.5, P5=8.60, and P6=38.90. All the simulations for combinations of parameters values (cross-Pi simulations) 

were performed under Hist, RCP4.5, and RCP8.5 emission scenarios. For each scenario, simulations were conducted for twelve 

agro-management scenarios consisting of sowing date changes and fertilization treatments, for each model of the ensemble. 

By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three 

fertilization levels (zero, then a regional average and its double). For each agro-management scenario, genotype optimization 160 

(finding the optimal set of Pi values under the given climate -agro-management and optimum criteria) was performed using 

two methods: 1) discretized parameter-space runs with subsequent post-processing ordering, and 2) continuum parameter-

space search with iterative selection during simulations, employing genetic algorithms (GA). 

The proposed GA-based method employs an iterative approach. It commences with an initial population of randomly 

generated solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is 165 

performed to choose the fittest chromosomes for reproduction, based on their fitness scores. Subsequently, crossover 

(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from 
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their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness 

of the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by 

balancing exploration (searching the problem’s space for diverse solutions exploiting promising regions) and exploitation 170 

(refining the best solutions found so far). Here GA has been newly applied to develop an innovative crop selection 

algorithm, optimizing genotypes across various agro-management scenarios. Steps along the algorithms are described in 

Annex.  

The system generates output data (agro-climate and optimal paths) which is disseminated on two platforms (Fig.1). One is a 

platform (Info-Platform, Fig.1a) providing one-way interactive (static) agro-climate information at local scale (NUTS3 level, 175 

aligned with the European Union's Nomenclature of Territorial Units for Statistics) over the region. It delivers pre-computed 

climate -agro-climate indicators, indices of agro-climate extremes based on observations, re-analysis and climate scenarios 

for future projections for the region. 

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component, 

where user requests are submitted, processed as input to the modelling chain and results delivered back to the user for a new, 180 

refined request. 

The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate models 

(Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include the 

ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-

management practices and genotype selections along simulations. 185 

a) 
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b) 

 
Fig.1 a): Info-Platform: Provides local-regional scale information derived from high-resolution regional climate models (CORDEX), 190 
e.g. climate, agro-climate data and indicators, indices of agro-climate extremes at the NUTS3 level. b): User-Platform for adaptation 

support: Processes in real time specific user requests, and simulates management scenarios, identifying optimal paths: Users input 

parameters (left, e.g: region, period (present / future climate scenarios), management options (e.g. sowing date, fertilization/irrigation 

time and amount, genotype); System Output (right, e.g: harvest, projected phenology dates, precipitation/evapotranspiration, 

Nitrogen and carbon balances, optimal management paths (dates and management actions), optimal genotype) estimated from 195 
ensemble simulations. 

 
Fig.2: The PREPCLIM-v1 work schema: DSSAT-core and modelling components (middle), and data flow: input data (left), output 

information (right). Red modules were developed in PREPCLIM-v1. 
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The system was implemented and validated over Southern Romania, target agricultural area, for maize. Potential 200 

beneficiaries include researchers, farmers, policymakers, and maize breeders. The system can also assist maize breeders in 

adapting to climate change by enabling them to evaluate and select genotypes more resistant to challenging climatic 

conditions. Given the accelerating pace of climate change, such a system may provide valuable support in numerous ways. 

Table 1: The agro-management treatments (TR): each treatment is described in terms of the sowing date and fertilization amount, 

Nitrogen [kg/ha]. We denote two experiments: exper “1N” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent 205 
on the experiment: Fx0 is no fertilisation, Fx1 is the unit fertilisation of the experiment and Fx2 is the double unit fertilisation of 

the experiment. We define the unit fertilisation of the exper “1N” equal to 23 N/kg and the unit fertilisation of the exper “3N” as 60 

kg/ha. Sowing date format is “DD.MM”. 

Treatment TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 

Sowing date 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 

Fertilization 

(exper “3N”) 

Fx0 

=0 

Fx0 Fx0 Fx0 Fx1=

60 

Fx1 

=60 

Fx1=

60 

Fx1=

60 

Fx2 

=120 

Fx2 

=120 

Fx2 

=120 

Fx2 

=120 

Fertilization 
(exper “1N”) 

Fx0 
=0 

Fx0 Fx0 Fx0 Fx1=
23 

Fx1 
=23 

Fx1=
23 

Fx1=
23 

Fx2 
=46 

Fx2 
=46 

Fx2 
=46 

Fx2 
=46 

3. Results 

3.1 Agro-climate changes in the region 210 

 3.1.1 Climate changes in agro-climate indicators 

Agro-climatic Indicators, derived from CORDEX models and available on the Info-Platform, provide time-series data for 

ensemble or individual model metrics at the NUTS3 level across Romania. Figure 3 illustrates projected changes in key 

agro-climatic characteristics.  

The anticipated climate shift in the region is evidenced by changes in the Johansson Continentality Index (JCI, Fig.3a), 215 

calculated as JCI = 1.7 * dT / sin(φ) - 20.4 (where dT is the annual maximum range of monthly mean temperatures and φ is 

latitude; (Flocas, 1994; Baltas, 2007)). Changes in the JCI generally reveal robust evidence of large-scale changes influences 

on the regional climate. For this domain it shows a Southwards meridional gradient of the intra-annual variability (Arctic 

amplification remote impacts on Europe). Hence enhanced intra-annual variability (JCI) with much warmer summers than 

winters over the main agricultural areas in South (and the opposite in the North), information useful for farmers to estimate 220 

changes in the sowing time. 

In agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding 

32°C), used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought 

conditions (H32temp ≥ 51), about doubling the Hist values and expanding significantly across the southern regions in 

RCP8.5 with already high-level drought conditions (31<H32temp<51) occurring in RCP4.5 (Fig.3b). 225 

Accounting also for precipitation changes, the de Martonne Aridity Index (IM, the ratio of annual precipitation to a 

translation function (+10C) of the annual mean temperature), exhibits also significant projected changes. It shows 
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particularly increased aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an 

accelerating change up to 2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050). 

  a) 230 

     
   b) 

 
Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and changes 

(2021-2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are: marine for 0<k≤33, 235 
continental for 33<k≤66 and exceptionally continental for 66<k≤100). b) The Scorching index H32temp classes are: reduced 

intensity drought for H32temp∊[0,10], moderate intensity for H32temp∊(10,30], high intensity for H32temp∊(30,50] and severe 

drought conditions for H32temp > 50. 

   

 

   

Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top) 240 
and 2071-2100 (bottom). IM index classes are: arid for 0<IM≤10 arid, semi-arid for 10<IM≤20, Mediterranean for 20<IM≤24, 

semi-humid for 24<IM≤28, wet for 28<IM≤36, very wet for 36<IM≤55 very wet and extreme wet for IM>55; (all indices are time 

mean 30 years, ensemble mean). 
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3.1.2 Changes in agro-climate extremes 245 

Projected changes in extremes for temperature and precipitation, highly useful information for agriculture, show important 

features in the region. A main aspect of interest is related to late-spring freezing days that may drastically affect the whole 

crop of the year. Fig.5a shows for South Romania (Călăraşi subregion) that in spite of the decreasing trend (5% p-level 

significance) of the total number of freezing days in spring, we still may have severe events with interestingly, a number of 

freezing days in late-spring that is even higher in scenarios than in Hist, late-spring being one of the most vulnerable period 250 

to freezing for the plant already under development. Also note that successive extreme freezing years in late spring may 

occur. 

a) 

 
b) 255 

 
c) 

 
Fig.5: Extreme climate parameters (NUTS region 103032, representative for the target region), along historical (Hist) and RCP8.5 

scenarios; a): FD, the number of frost days (minimum temperature < 0°C in a 10-day period); b): RR10, the number of days with 260 
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heavy precipitation (>10 mm per day) in a 10-day period; c): RR, total precipitation (mm) per 10-day period; (left): the 10-day 

period is centred on April 5th;; (right): the 10-day period is centred on April 25th. Values indicate the slope of the linear trend 

(black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level). 

This late spring blizzard feature over the region, was analysed in a previous work and shown to be related to the combined 

context of Polar Jet instability meanwhile with warmer sea surface temperature in the Eastern Mediterranean (Caian and 265 

Andrei, 2019). Both these features are projected to enhance in a warmer climate (Lelieveld et al., 2012; Shaw and Miyawaki, 

2024), indicating higher potential for severe late-spring blizzards in the region. 

For precipitation, analysis of extreme precipitation events (RR10mm) and total precipitation (RR) reveals a notable shift in 

their temporal distribution within April. While a decreasing trend is observed in the first dekad, a positive trend emerges in 

the third (and second, not shown) dekades (Fig.5b). These suggest a time-shift tendency towards the end of April and into 270 

early May for the occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level, 

this shift is consistently observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme 

values of RR and RR10 are projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b,c), more often 

during late spring. Extreme daily precipitation is, in most cases detrimental for the crop, causing soil erosion and surface 

runoff mainly after drought periods.  275 

3.2 Phenology and Harvest Projections for the Control Genotype 

Projected changes in phenology for the control genotype (Pioneer 375) were simulated using the DSSAT model under 

historical (Hist) and multi-model climate projections of CRP4.5 and RCP8.5 scenarios. Further, multi-genotype simulations 

are discussed in Section 3.c. 

Model validation was conducted using Control simulations (Ctrl) driven by ERA5 reanalysis data (Simmons et al., 2021) for 280 

each treatment outlined in Table 1 (experiment "3N").  

These simulations, spanning the period 1976-2005, demonstrate the model's ability to capture inter-annual variability in 

harvest yields, including both high and low yield years, when compared to the measured available data for the region (suppl. 

S1). They also allowed model set-up improvements through sensitivity simulations and model calibration including soil 

parameters (suppl. S2) as soil water, nitrogen, and organic carbon content. 285 

However, further improvements in model accuracy are to be achieved if incorporating factors such as inter-annual soil 

variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing 

dates. For example, simulations with fertilization specifications closer to the year’s management practices (e.g. 

approximately 80-120 kg N/ha and sowing around April 15th for 1995) resulted in more accurate (reduced bias) predictions 

(TR6, TR10). These, together with the well simulated inter-annual variability, demonstrate the model's ability to capture the 290 

combined influence of climate and management practices on crop performance.  

 

3.2.1 Phenology dates - projected changes  
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Ensemble model simulations provide projected changes in phenology, for the control genotype (G0), under different 

fertilization levels (0, 60, 120 kg/ha, Table 1, exper "3N") and sowing dates, averaged over 30-years, in scenarios (2021-295 

2050, RCP4.5 and RCP8.5), versus Hist (experiment set-up “E_3N_G0”). Figure 6a,b illustrates the ensemble model 

changes, demonstrating an earlier anthesis date by up to ~6 days and an earlier maturity date by up to ~10 days across all 

scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a 

consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in 

anthesis under warming scenarios, a response even more pronounced under RCP8.5.  300 

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential 

crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and 

temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures 

potentially inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more 

frequently in treatments with higher nitrogen fertilization, leading in average only small changes in maturity days. This may 305 

favour leaves development, enhanced transpiration and earlier depletion of the soil moisture leading later to water stress. 

  a)       b) 

 
Fig.6: Simulated a): anthesis dates ([dap], days after sowing) and b): maturity dates ([dap]), under historical conditions (black), 

RCP4.5 (blue), and RCP8.5 (red) scenarios, experiment setup E_3N_G0. Results are shown for the four sowing dates and nitrogen 310 
fertilization level of 60 kg/ha (Table 1, exper “3N”). 

3.2.2 Harvest - projected changes 

For harvest, the ensemble simulations (along E_3N_G0) project an overall decrease under both RCP4.5 and RCP8.5 

scenarios and across all sowing dates and fertilization levels (Fig.7), compared to the historical period.  

Harvest decline in climate scenarios is related to several factors: 1) reduced rainfall during the growing season (Fig.8), as 315 

evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-August, over 30 years) found between harvest (H) and 

accumulated precipitation in the Ctrl and in model simulations; 2) a shortened grain-filling period due to a projected earlier 
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flowering and an even earlier maturity across all the models (Fig.6), potentially limiting biomass accumulation; and 3) 

decreased fertilization efficiency under warming conditions, in the sense that H difference Hist minus scenario, increases 

(non-linearly) with enhanced fertilisation (Fig.7). Hence for a same climate, the same increase in fertilisation brings less 320 

benefit in a warmer climate. This benefit for H is of about 10% in Hist versus 7.6% in RCP8.5 for early sowing and about 

8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of nitrogen (Fig.7b,c). This efficiency decay 

feature underscores the primacy of reduced accumulated precipitation (Fig.8) and of higher temperature, that lead to a non-

linear H response to fertilization (Huang et al, 2024). Their influence is noticed as well in the absence of fertilization 

(Fig.7a), when H still declines in warmer climates, with a dominant control from precipitation. The correlation along sowing 325 

dates between H and accumulated precipitation until maturity (Pmat, Fig.8), is r(H, Pmat) >0.96 in both scenarios.  

 a)     b)     c) 

   
Fig.7: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three 

fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E_3N_G0.  

 330 
Fig.8: Precipitation accumulated until maturity (mm) in experiment E_3N_G0 (legend as in Fig. 7). 
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The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a 

shorter accumulation season (Fig.6) but having projected a precipitation increase towards late spring (Fig.5), that may 

significantly favour critical growth stages. 335 

3.3 Optimal Genotype Identification 

The system was further developed to extend the management scenarios for multi-genotype simulations and implement 

methods to identify ideotypes under each agro-climate scenario. The aim is to search for management scenarios that yield 

optimal outcomes defined by user-criteria such as maximizing harvest yield, stabilizing yield, or minimizing pollutant 

emissions. Two optimization methods are implemented: a discrete-parameter, purely deterministic technique, and a hybrid 340 

approach that combines deterministic modelling with continuous-parameter Machine Learning-based Genetic Algorithms for 

iterative genotype selection. 

The deterministic method involves conducting multiple-genotype crop model simulations, with optimization performed as a 

post-processing step. Genotype parameters Pi are defined within pre-established limits and discretization. Multi-model 

simulations are then performed, where each parameter is individually varied while the remaining parameters are held 345 

constant. The total number of simulations in this case is determined by the chosen discretization level. In contrast, in the 

hybrid technique the Pi values are selected from a continuous range of values, identifying and iteratively improving the best 

sub-domains. This section presents the results of genotype optimization experiments (E_1N_Gn+w), built upon the 

E_1N_G0 and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting near-term 

(2035 as centre of interval 2021-2050). 350 

3.3.1 Optimal genotype under climate change 

i) harvest as a function of the genotype H(G) in scenarios versus current climate 

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and 

denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario) 

dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the 355 

ensemble-model PDF (probability density function) of H under warmer climate. 

A first outcome demonstrates in Fig.9a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H) 

occurs within the range of maximum H values (genotypes in the upper H-percentile, interval GX (0%, 2.5%) of the H-

ordered genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9b). Across models of the 

ensemble, we note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios. 360 

Precipitation exhibits high inter-model variability and significant regional-scale uncertainty, pointing to the need of 

ensemble modelling for reducing it. In contrast, the warming trend is a consistent feature across models in the region, 
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contributing other model-systematic responses such as earlier anthesis and maturity dates and shortening of the grain filling 

season. 

The second note regards a different response projected in the intermediate H values (Fig.9a, c). Genotypes corresponding to 365 

the intermediate H values (genotypes of middle H-percentile, the interval GI (25%, 70%) of the H-ordered genotypes) show 

projected higher H values in GI in climate scenarios than in Hist (Fig.9c), affecting less the earlier sowing (Fig.9c). 

These together lead to a narrowing of the H-values range of responses, in GX and GI, to the same managements applied, in 

scenarios compared to Hist. Same management spread would lead to closer H-responses, with enhancing the expectancy for 

occurrence of intermediate values and decreasing the expectancy for highest H values (a third feature of projected changes). 370 

Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9a), 

improving by up to 2-(4) % in scenarios (respectively Hist) unfertilized case and up to 8-(12) % in fertilised case (Fig.9a), 

with the lowest percentage for RCP8.5. Earlier sowing was reported in other recent studies as optimal for spring maize 

harvest (Djaman et al, 2022). 

ii) options for adaptation and mitigation using genotype analysis 375 

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for 

early sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in GX and GI with 

higher/ lower expectancy of intermediate/ high values occurrence, have practical adaptation outcomes.  

 

The first two points are equivalent to slopes’ change of H as a function of the ordered genotype, as shown in (Supl. S3) in 380 

climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the 

result in scenario compared to Hist, for a given agro management. Alternatively, for a given genotype one could find how a 

change in management practice could optimize the result. In this last case for example, one could choose a small shift in the 

sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher H, as shown for example in TR5 

versus TR11 in Fig.9a, RCP4.5 (Fig.9).  385 

 

a) 
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b)        c) 

    
Fig.9 a): Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale). 390 
The simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right), experiment setup E_1N_Gn+w, for cross-genotype 

changes in six Pi parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist 

(left) and RCP8.5 minus Hist (right), for the upper H percentile (the first 50 values, [1-50] on x axis) and intermediate in c), range 

[400-1400] on x-axis. (“Hmax left” indicates that increasing values of H are on leftward direction of the axis). 

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with 395 

high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9b).  

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct 

weather favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting 

(Dewitte et al., 2021). 

3.3.2 Optimal Genotype parameters Pi under climate change 400 

i) optimal genotype parameters  

We further discriminate H response per genotype parameters (P1-P6), to understand the source of the changes in Fig.9 and 

the possible adaptation paths under climate and management scenarios. 

Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from 

seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.10b), slightly shorter thermal time between 405 

successive leaves appearance (phyllochron, P6, Fig. 10 e) in GI and longer in GX, but longer thermal time to maturity (P3, 

Fig.10c) and higher grain filling rate (P5, Fig. 10d). These results are in coherence with findings along recent works. Shorter 

P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-

humid areas, (the current class of this region, with semi-arid trends projected, Fig. 4), and the same for P2, while slower 

maturity (P3) and enhanced filling rate (P5) being linked to higher kernel weight and harvest in agreement with recent 410 

studies (Grewer et al., 2024). 

ii) changes in optimal genotype parameters in climate scenarios 

Comparing Pi in climate scenarios against Hist, reveals the new plant strategy put in place in the new climatic conditions, for 

maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached with genotypes that 
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ensure a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in scenarios compared to 415 

Hist. To a smaller extent this is also achieved by a longer photoperiod delay, higher grain filling rate and longer phyllochron 

interval, in scenarios, than for a same percentile of the Harvest in Hist. These show that under warmer climate it is 

essentially important to avoid too fast growth on main stages of the development. 

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10a, b) and related to 

these, under longer photoperiod (P2 increases, Fig.10b). Other contributions come from ensuring a slower rate of appearance 420 

of successive leaves (P5 increase), while a higher grain filling rate (P6 increase) appears to partly compensate for the 

negative effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the 

harvest.  

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate 

(Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the Pi changes 425 

in scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving. 

a)   b)       c)         d)   e) 

Fig.10: Pi values corresponding to ordered, decreasing harvest (on y axis, the number of the ordered simulation, y=1 is the highest 

harvest simulation). X-axis shows the Pi interval-number of discretization, increasing with increased values. Discretization here 

have used 5x7x6x1x3x3 intervals for P1xP2xP3xP4xP5xP6 (total 1890). Simulations are shown for two treatments (TR1 at top and 430 
TR12 at bottom), for: Hist (black), RCP4.5 (blue, only shown for the running mean) and RCP8.5 (red), ensemble time-mean; full 

lines show running means over 100 values window. The short arrows in a) and c) indicate, for a same harvest percentile 

(y=constant) the corresponding Pi intervals for Hist (black) and RCP8.5 (red); long arrows indicate the P0i values of the 

intersection of running-mean Pi for Hist with RCP8.5. 

 435 

iii) optimal genotype parameters in management and climate scenarios  

Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires 

gradually decreasing Pi in order to maximize H (Fig.11, also in Fig.10), for both Hist and climate scenarios. For P1-P3 this 
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decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too late 

(autumn) maturity stage that is slowing the grain filling and leading crop failure. 440 

However, Fig. 11 also shows that these Pi decreases cease or even reverse under extreme delay of sowing. For highest delays 

the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming higher, 

hampering the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick grain 

filling. Hence the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its 

adaptation to warmer climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease 445 

or even increases of Pi parameters along with gradual increasing delays in the sowing date.  

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi. 

This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced 

warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the 

development to the key issue of avoiding a too fast growth leading crop failure. 450 

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi. 

This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced 

warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the 

development to the key issue of avoiding a too fast growth leading crop failure. 

a)   b)       c)         d)    e) 455 

 
Fig.11 As in Fig.10 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom). 

Parameters Pi are shown for the top 200 highest harvest (y from 1 to 400). Grey colours are for Hist and yellow-red for RCP8.5 

(light to dark from earlier to latest sowing).  

 460 

iv) optimal genotype parameters in adaptation and mitigation strategy 

For each agro-management and climate scenario one can identify threshold values of Pi (P0i that depend on the Pi, the 

sowing date and the fertilization level, shown in Fig.10) of intersection between scenario and Hist. At this value, for the 
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genotype the two have the same H percentile. So P0i shows if we get an enhanced percentile or decreased from genotypes 

with higher or lower Pi in the scenario compared to Hist (Fig.10, shown by arrows).  465 

Second remark is on the expectancy of an outcome. Since all the slopes of Pi, each as a function of H ordered-values are 

lower than in Hist (suppl. S3), there is a narrower Pi interval for all those Pi decreasing with H (e.g. P1) and a border one for 

those Pi increasing with H (P3, Fig.10c), in climate scenarios. P3 increases are broadening the interval for H-highest 

percentile, potentially presenting, in this sense, more expectancy (than P1, Fig.10a) on highest values outcome.  

The genotyping results were found both in simulations involving deterministic and the hybrid deterministic-ML methods. 470 

The hybrid method involved the same cross-simulations, but the selection of Pi values for H optimization and ordering was 

no more following a pre-defined discretisation but instead a random picking up over a continuous interval of values with 

successively retrieving the best generation. It applies for optimization, classic Genetic Algorithms methods in which 

selection of pairs is based on the user-criteria (e.g. maximum harvest, stable harvest, etc.). Our results show that for the same 

physical intervals of the genotype parameters, the ML hybrid technique only after 20 generations shows at least 50% chances 475 

to get a better result than the deterministic model, while after 100 generations, it already increases at 80% chances to get 

better results with also computational efficiency. CPU time is reduced in this case by more than 30% using the hybrid 

technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better solution 

since it can identify improved optimums at lower computational prices. 

4. Discussions  480 

The results found are in line with other results in recent studies, using different approaches and observational data, and offer 

an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For 

the plant response under management treatment delaying sowing date, limiting elongations of the development phase was 

also found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation 

decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10, 485 

11). Also fertilization lowering P6 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for 

warmer climates (Hokmalipour et al., 2011; Sardans et al., 2017;  dos Santos et al., 2021) was recently put in relation to P2 

decrease mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration 

maximizing the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10f, 11f), limitations in the expansion of 

new leaves (increase of P6, Fig.10) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions 490 

(Fahad et al., 2017). 

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P5, Fig.11d) under reduced P1, P2 

and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated 

crop (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11d). This increase for 

P5 under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress, 495 
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allowing plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber at al., 

2022). 

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise 

some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows 

the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management 500 

scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only 

offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small 

perturbations may lead the system response into different states (threshold sowing-delays, or P0i for genotypes). Without an 

integrated modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since 

these are simulation (climate-management scenario) dependent. 505 

5. Conclusions 

The main outcome of this study is that an agroclimatic real-time Interactive Service was implemented towards adaptation 

support, that allows performing real-time, user-requested, agro-management modelling scenarios for the region, under 

current and future climate. A novel feature of the system is the ability for identifying optimal management paths for the 

user’s request, along with multiple cross-cultivar parameters, such as cross-optimal sowing date, genotype parameters, 510 

amount and date of fertilization. 

The system provides solutions and estimates the associated uncertainty by using multi-model ensembles for each agro-

climate and management scenario. The crop optimization criteria are user-defined and can relate to high harvest, stable 

harvest, low pollution. The optimization module implemented uses a hybrid deterministic - ML methodology. It performs 

multi-model simulations using physical models of climate and plant penology and optimization is done either through 515 

discretizing the parameters’ space and optimisation post-processing or using hybrid physical-ML Genetic Algorithms 

methods. ML methods are spanning continuous parameter’s space and iteratively selecting along the simulations the best fit 

parameters, allowing to identify unprecedented optimal configurations (H maxims), not reachable under the discrete 

deterministic method. The overall system output information is layered and accessed from two interfaces: one static, for 

information purpose (phenology, harvest, climate, extremes at high resolution NUTS3 level) and a second is real-time 520 

interactive online, through which the user places requests and receives the system-performed management simulations 

required (including uncertainty along multi-models) and identified optimal paths for adaptation. These platforms are 

operational for two emission scenarios RCP4.5 and RCP8.5 and twelve management scenarios (sowing dates and 

fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these were discussed 

in this work for the pilot region South Romania. 525 

For the current genotype, in both emission scenarios it is projected a mean decrease (14% in ensemble mean, with 

higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and fertilization) tested. 
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This was linked to a projected shortening of the grain filling season (10% quicker with an earlier shift of both anthesis (5 

day) and maturity (10 day) phases) and to a mean decrease of the fertilisation efficiency under climatic scenarios, stronger in 

RCP 8.5 emissions. 530 

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-

management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal 

harvest? How do these differ under projected climate change and/ or under agro-management options and can these enhance 

our understanding to guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the 

region? 535 

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding 

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then 

increase in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to 

reach the historical values in this range through agro-management and breeding. These indicate a narrowing of the responses 

range to same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of 540 

Hist, in climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-

management choice will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less 

pollutant. 

For effective support in adaptation applications, individual genotype parameters Pi were analysed in climate scenarios versus 

Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest 545 

changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile 

range. This range is identified through critical values of the parameters (P01), determined for each treatment and climate 

scenario. There is significant variability of P0i under agro-management treatments. Moderate delayed sowing and enhanced 

fertilisation may diminish the shifts in Pi in scenarios compared to Hist for a same H-percentile, in contrast to extreme 

managements.  550 

These results show that Genetic approaches offer adaptation strategy support in helping plants to resist drought 

stress under warming climate. Moreover, it was shown that the optimization is improved by using a hybrid ML genetic 

algorithm method coupled to the deterministic model-output, leading to detecting better solutions, under a continuous-

parameter space search. The system can be further used for searching paths along extreme drought years, along with 

irrigation options investigation. Coupled with weather extended predictions (seasonal, year -decadal) this could provide near 555 

real-time adaptation support. 

 

Code and data availability: The code is available in the Github repository at: https://github.com/pneague/Genetic-

Algorithm-for-Corn-Genotype-sowing-Date-Optimization under a BSD 2-Clause Simplified License 

 560 

http://h-percentile.in/
https://github.com/pneague/Genetic-Algorithm-for-Corn-Genotype-Planting-Date-Optimization
https://github.com/pneague/Genetic-Algorithm-for-Corn-Genotype-Planting-Date-Optimization
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Annex: Data and Methods: Steps in ML algorithm 

Schema of steps in workflow of ML algorithms for optimal genotype identification:  

Start with 10 randomly chosen solutions within the bounds of P1-P6; 

Calculate the mean and std of harvest of each solution for the 30 years 1976-2005; 

Calculate fitness = (Mean of harvest) – (Standard-deviation of Harvest/4); 790 

Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness; 

For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of P’s to  

be subjected to crossover, called x; 

For each child, modify Px as follows: 

Pxa = round (B * Pxa + (1 - B) * Pxb ) 795 

Pxb = round (1 - B) * Pxa + B * Pxb ) 

Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor, 

set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued 

traits from both parents while exploring the search space between the parents' positions. The blending crossover promotes a 

smoother and more gradual search for optimal solutions in continuous domains. 800 

Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting one of 

the P’s to a random value between its allowed minimum and maximum. 

At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute them with 

the children. 

Repeat. 805 


