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Abstract.  Climate change significantly threatens crop yields levels and stability. The complex interplay of factors at the
local scale makes assessing these impacts difficult, requiring coupled climate-phenology models, which integrate climate
data  and  crop  information.  Identifying  suitable  local  management  practices  and  crop  varieties  under  future  conditions
becomes essential for developing effective adaptation strategies.
This study presents the implementation and application of an integrated climate-phenology adaptation support modelling
system. This is based on regional CORDEX climate models and the CERES Maize model from the DSSAT platform. Novel
modules for optimal management and genotype identification under climate change have been developed in the system,
employing a hybrid approach that combines deterministic modelling with machine learning (ML) techniques and genetic
algorithms. This system was run as a regional pilot over Southern Romania, operating in real-time in interaction with users,
performing  agro-climate  projections  (combination  of  fertilization,  sowing  date,  genotype)  and  providing  best  crop
management  simulated  under  climate  change  projections.  Multi-model  ensemble  simulations  were  conducted  for  two
radiative forcing scenarios RCP4.5 and RCP8.5 and twelve management scenarios, yielding novel results for the region.
Results indicate a projected decrease in maize yields for the current genotype across all tested scenarios, primarily attributed
to a shortened grain-filling period and reduced fertilization efficiency under warmer conditions. Soil initial conditions were
found to significantly influence yield responses.

The  analysis warns  about  a  projected  narrowing  of  the  agro-management  options  for  maintaining  a  high  yield  level.
However,  we find an added value from the impact of genotype selection in mitigating climate change impacts, even in
extreme years. Genotype optimisation across six crossed cultivar dependent parameters revealed that while maximum yields
declines,  specific  genotype  windows  exhibit  increased  intermediate  yields  under  future  climates  compared  to  current
conditions. Sensitivity analysis identified the thermal time requirements during juvenile and maturity stages as the most
critical factors influencing genotype performance under warmer climates.

This research demonstrates the added value of combining deterministic and data-driven modelling approaches within a
coupled climate-crop system for developing effective adaptation strategies, including optimised fertilization pathways that
contribute to climate change mitigation.
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1. Introduction

According to the IPCC (2022), climate change is unequivocal, and its impacts appear more worrying today than dekades

ago. While research on the effects of climate change on crop yields and agricultural  harvests has advanced (Arnell and

Freeman, 2021; Hatfield et al., 2021; Rezaei et al.,  2024), translating these findings into actionable solutions and scales

remains a challenge. This is primarily due to the high complexity of factors that intervene at the local scale of the crop

(Malhi et al., 2021, Eyring et al., 2021) including sensitivities of the exchanges to variations in climate sub-components as

atmosphere / soil/ biosphere’s ecosystems under climate change, natural causes and human activities (Wheeler and Braun,

2013; Xie et al, 2023).

Given the projected  global  population increase  estimated in scientific  reports  to over 9 billions by 2050 (Godfray  and

Charles, 2010), global food production would have to increase by 70-100% to meet the growing demand (Smil, 2005; World

Development Report, 2008; Selvaraju et al., 2011). This challenge is further compounded by the agro-climatic conditions

expected to become vulnerable and gradually decline due to climate change, particularly impacting water availability (Stehr

and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013).

Another challenge of the problem comes from the need that approaches, and sustainable solutions must not only address the

needs of agricultural producers but also align with climate change mitigation goals for 2050, aiming for climate neutrality

(Semenov and Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022).

Early  studies  investigating  the  impact  of  climate  change  on  crop  yields  emphasized  the  necessity  of  high-resolution

modelling approaches.  These models should accurately represent management practices  and the local  effects of climate

variables, such as temperature and precipitation (McKee et al., 1993; Trnka et al., 1995; Adams et al., 1998). These affect

thermal and water stress and plant physiological processes like stem water potential, stomatal opening, leaf transpiration

efficiency  (Espadafor  et  al.,  2017).  At  the  regional  scale,  the  relationship  between  crop  yield  and  water  and  thermal

availability  may  exhibit  strong  dependencies  on  the  crop  type,  geographical  location,  temporal  scale,  and  plant

developmental stage (Webber et al., 2018, 2020; Marcinkowski and Piniewski, 2018; Berti et al., 2019; Ceglar et al., 2020;

Wu et al., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates, indicated for

future climate change a significant (~30%) decrease without adaptation, but a potential increase (15%) in corn yields under

irrigated or under radiation-based genotype efficient use. These findings underscore the critical need for regional simulations

that incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various

irrigation strategies under future climate scenarios.

In addition to atmospheric conditions, soil properties significantly influence plant growth. These influences occur through

physics-based interactions with climate and through alterations in soil chemical composition. Rising air temperatures have

been shown to impact the soil carbon budget, with a decline in soil carbon potentially affecting plant and root processes,

biochemical cycles, and species composition (Abhik Patra et al., 2021).
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Crop modelling at local, regional and global scale has significantly advanced, enhancing our understanding of crop systems

and enabling the simulation and projection of future yields. Studies (Tsvetsinskaya et al, 2001; Tao et al., 2009; Ganguly et

al., 2013; Schauberger et al., 2020; Chen and Tao, 2022) consistently project global mean harvest reductions with differences

in the regional pattern of climate change impact on crop and harvest (Asseng et al., 2015; Li et al. 2022). Not only projected

spatial but also temporal  variability of the climate change impact  appears  larger and accelerated,  motivating intensified

efforts on seasonal and multi-annual predictions of plant development and harvest (Baez-Gonzalez et al., 2005; Jin et al.,

2022). Analysis of these simulations emphasized also the need to include crop uncertainty in climate scenarios assessments

(Meehl et al., 2007, Rosenzweig et al. 2013, Basso Bruno et al., 2019; Chapagain et al., 2022). 

Meanwhile, model simulations emerged as useful tool in plant breeding analysis (Bernardo, 2002; Banterng et al, 2004;

Cooper and Messina et al., 2023; Mamassi et al., 2023), supporting the development of superior genotypes and breeding

methods for maximizing crop performance. These simulations have proven effective in guiding cultivar selection through

techniques such as parental selection and breeding by design (Peleman and van der Voort, 2003; Qiao et al., 2022). 

In most recent years climate-crop modelling extended from deterministic crop models (Boogaard et al. 2013; Morell et al.,

2016) to data-driven techniques approaches for assessing crop response to weather and climate change (Schwalbert et al.,

2020; Meroni et al., 2021; Morales and Villalobos, 2023; Chang et al., 2023; Zhuang et al., 2024). Statistical methods as well

as machine learning (ML) used for crop forecast  and modelling were however shown to bring for now, limited benefits

(Paudel et al., 2021), pointing to possibly hybrid techniques that include physical process in the modelling as a key approach

for this challenging issue. On the other hand, breeding optimization techniques using fully deterministic model simulations

require a huge number of simulations, analysis and inter-comparisons of predicted crop performance (Pfeiffer et al., 2007;

Wang et al., 2023).

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“Preparing for climate change”) project

in which we solve plant phenology using deterministic modelling and merge this technique with an on-line ML-genetic

algorithms (GA) iteratively selecting along simulations the multiple parameter range the cross-range of optimal crop cultivar

parameters, according to user-defined criteria for optimal target. The GA simulates the evolution of a population by applying

in  iterations,  genetic  operators  (selection,  crossover,  mutation)  to  a  set  of  candidate  solutions  (chromosomes).  The

chromosomes represent potential solutions to the problem and are encoded as strings of binary or symbolic values, with their

fitness assessed by a problem-specific evaluation function here, user-required based. GAs have demonstrated success for

optimizing agricultural practices using models like DSSAT for irrigation and fertilizer applications (Bai et al., 2021; Wang et

al., 2023).

The hybrid approach  implemented in this work focused on ideotype identification presents  the advantage  of physically

treating the crop complex process involved along optimizing iterations, thus allowing specific inclusion and understanding of

physical causes of responses and of optimal paths in various climate and management scenarios. Furthermore, it enhances

the ability of choosing optimum conditions from continuous multi-dimensional intervals for gene parameters, as opposed to

discrete sets. The continuum values approach is an important feature mainly for isolated extreme yield detection, or broader
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parameters’ range and high non-linearity, both aspects of increasing relevance in the context of climate change. Our findings

suggest  a  narrowing  of  agro-management  adaptation  opportunities  under  warmer  climates,  further  emphasizing  the

importance of this hybrid genotype-agro-management approach to support finding solutions for the future.

The developed system aims to provide efficient and operational support for farmers and stakeholders. It leverages the state-

of-the  art  DSSAT model,  a  widely  used  and  extensively  validated  platform for  agricultural  modelling  across  diverse

applications. The DSSAT model, incorporating complex parameterizations for soil processes, surface-atmosphere exchange,

plant development stages, and their interactions with climate and management practices, undergoes continuous refinement

through ongoing research and regional calibrations. For this study, the model was specifically adapted to the unique soil

characteristics of the pilot region, including parameters such as porosity, composition per soil layers, and thermal properties.

The developed system exhibits portability to other regions with available soil and management data. Its functionality and

user-friendliness are expected to improve through widespread adoption and the incorporation of advanced user requests and

management options.

Section 2 presents the developed system and its data flow.   Section 3a provides the motivation for system development,

focusing on projected climate change impacts for the target region. Section 3ab presents results obtained using the system to

simulate  projected  changes  in  plant  phenology  and  crop  parameters  for  the  target  region,  under  various  climate  and

management scenarios, for the current control genotype. Section 3bc discusses results obtained using the system's genotype

optimization package along agro-management scenarios. Finally, Section 4 presents perspectives and conclusions.

2. Data and methods

2.1 Study region

Recent observations indicate the Southern Romania as being one of the main hot-spots of climate warming in Europe in

summer,  with  high  and  persistent  extreme  heat  stress  and  drought  being  observed  (Copernicus  report,  2024).  Further,

projections of climate for the region show an amplification of this response in climate scenarios, mainly in RCP8.5 (suppl.

S1.a). For this region, also total precipitation is projected to decrease, while there is an enhancement of extreme precipitation

occurrence (suppl. S1.b). These tendencies are increasingly threatening agro-climate conditions in the region, projecting a

warmer and drier climate with enhancing extremes. 

2.2 Scientific approach

Projected changes in agro-climatic parameters for Romania were assessed under two Representative Concentration Pathways

(RCPs): RCP4.5 and RCP8.5. These changes were computed as anomalies relative to historical simulations (Hist) using an

ensemble of three CMIP5-CORDEX (Benestad et al., 2021, Karl et al., 2011) high resolution (11 km) climate models, based

on the CNRM, EC-EARTH, and  MPI global  models  coupled  to  the  regional  climate  model  RCA4. Subsequently,  the

DSSAT  crop  model  (Jones  et  al.,  2003;  Hoogenboom  et  al.,  2019)  was  employed  to  simulate  projected  changes  in
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phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions derived from each model of

the ensemble for the historical period and for the two RCP emission scenarios. 

A software package was developed for the DSSAT model that performs identification of optimal model parameters based on

user-defined:  criteria  for  optimum, climate-management  scenario,  region,  and time horizon.  Optimization  goals  include

maximizing harvest,  ensuring stable yields over time, and minimizing nitrogen leaching beyond the root zone (reducing

water pollution risk). Management scenarios allow users to explore optimal cross-combinations of sowing dates, fertilization

amounts, and genotypes.

FiveSix main cultivar-specific parameters (P1 to P56) characterizing the maize genotype were analysed across wide ranges

of  physically  realistic  values,  considering  both  current  and  extreme  future  climate  projections  for  the  target  area.  P1

represents the thermal time from seedling emergence to the end of the juvenile phase, ranging in these simulations from 100

to 500-degree days above a base temperature of 8°C. It significantly influences crop flowering times (Liu et al., 2020), water

availability, and ultimately, yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1)

can lead to increased harvest in humid regions but decreased harvest in semi-humid regions (Mi et al., 2021). 

P2, a photoperiod sensitivity parameter, represents the extent to which development (expressed in days) is delayed for

each hour increase in photoperiod above the photoperiod of maximum development rate (which is considered to be 12.5

hours), is ranging in simulations here from 0.1 to 2.6 days.  Or: Longer days increase the period of plant development only

up to a threshold value, here 12.5 hours. P2 measures (in days) the delay in plant growth for each hour of photosynthseys

above this threshold. P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant development, with long-

day plants  exhibiting faster  development under longer day lengths (Angus et  al.,  1981).  Related to these,  studies have

demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer climates (Liu et al.,

2023). P3, the thermal time from silking to physiological maturity, here tested for values from 500 to 1500-degree days

above a base temperature of 8°C),  significantly influences maturity dates.  It  also has a main role in plant  stress  levels

(longer-maturity hybrids increase harvest but under water stress it may provide lower yield (Su et al., 2021; Grewer et al,

2024)) and grain moisture at maturity (Tsimba et al., 2013). P4, representing the maximum number of kernels per plant,

exhibits a relatively predictable numerical response and is therefore held constant at the control value of 797.5 estimated for

the region, in this analysis. P45, the kernel filling rate parameter (ranging from 6 to 12 mg/day), influences grain filling

duration, desiccation, moisture at maturity and harvest (Chazarreta et al., 2021). P56, the phyllochron interval, the interval

inor the thermal time  (degree-days)  between successive leaves tip appearances (expressed in degree-days above a base

temperature of 8°C, ranging in these simulations from 3 to 70 °C- days), is a critical parameter for estimating the duration of

vegetative development  (Birch et  al.,  1998; Xu et  al.,  2023).  P5P4 and P56 are important  parameters  of  optimal plant

adaptation to climate conditions, since they are drivers of the phenological response and yield formation, in conjunction with

the temperature,  radiation, humidity, water stress. These genotype (or cultivar specific) parameters are the primary ones

considered in DSSAT model parameterizations for plant development processes (Hoogenboom et al., 2019).
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The parameter ranges were rigorously tested in simulations to ensure their representativeness for the target region,

includingand to allow further an  analysis of extreme values. The control values for these cultivar-specific parameters Pi in

the region are:  P1=200, P2=0.7, P3=800, P4=797.5, P45=8.60, and P56=38.90. All the simulations for combinations of

parameters values (cross-parameterPi simulations) were performed under Hist, RCP4.5, and RCP8.5 emission scenarios. For

each scenario,  crop projections simulations were conducted for twelve agro-management scenarios  (Table 1) consisting of

sowing date changes and fertilization treatments, characteristic for region after the year 2000 (Table 1a), for each model of

the ensemble. Then, for the genotype sensitivity simulations e.g. the response to genotype, optimal genotype selection we

have  chosen  a  lower  fertilisation  (Table  1b),  already  used  in  the  region  before  the  year  2000  (when  the  number  of

subsistence farms was high), value aimed for potential mitigation (Ursu,2025), in potential synergy with genotype selection.

It was shown that Romania, with a consumption of 46 kg/ha, had an efficiency comparable to countries with much higher

consumption, indicating a significant potential for improvement without increasing environmental pressure (Ursu, 2025) .

In the platform,  By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart)

and three fertilization levels (zero, then a regional average and its double, Table 1a). For each agro-management scenario,

genotype  optimization  (finding the  optimal  set  of  parametersPi values  under  the  given  climate  -agro-management  and

optimum criteria) was performed using two methods: 1) discretized parameter-space runs with subsequent post-processing

ordering, and 2) continuum parameter-space search with iterative selection during simulations, employing genetic algorithms

(GA). The

optimization is performed for each year,  allowing the optimal management  and cultivars  to evolve over time, and also

allowing   further investigations of response e.g. during critical years or in clusters of climate conditions, or as ensemble time-  

mean.

The  proposed  GA-based  method employs  an  iterative  approach.  It  commences  with  an  initial  population  of  randomly

generated solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is

performed  to  choose  the  fittest  chromosomes  for  reproduction,  based  on  their  fitness  scores.  Subsequently,  crossover

(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from

their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness

of the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by

balancing exploration (searching the problem’s space for diverse solutions exploiting promising regions) and exploitation

(refining the best solutions found so far). 

2.3 The Software
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Here GA has been newly applied to develop an innovative crop selection algorithm, optimizing genotypes across various

agro-management scenarios. Steps along the  algorithms are described in Annex.  workflow of ML algorithms for optimal

genotype identification are: 

              1. Start with 10 randomly chosen solutions within the bounds of P1-P5;

              2. Calculate the mean and standard deviation of harvest of each solution for the 30 years 1976-2005;

              3. Calculate fitness = (mean of harvest) – (standard deviation of harvest)/4;

              4. Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;

              5. For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random

number of P’s to be subjected to crossover, called x;

              6. For each child, modify Px as follows:

                            Pxa = round (B * Pxa + (1 - B) * Pxb );  

                            Pxb = round (1 - B) * Pxa + B * Pxb )

              7. Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the

blending factor, set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that

inherit real-valued traits from both parents while exploring the search space between the parents' positions. The blending

crossover promotes a smoother and more gradual search for optimal solutions in continuous domains.

              8. Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means

setting one of the P’s to a random value between its allowed minimum and maximum.

              9. At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute

them with the children.

              10. Repeat from 2.

The system generates output data (agro-climate and optimal paths of cultivars and agro-management) which is disseminated

on two platforms (Fig.1).  One is a  platform (Info-Platform, Fig.1a)  providing  one-way interactive  (static)  agro-climate

information at local scale (NUTS3 level, aligned with the European Union's Nomenclature of Territorial Units for Statistics,

primarily corresponding to county level in Romania) over the region. It delivers pre-computed regional climate and -agro-

climate indicators (e.g.  drought,  soil  moisture,  evapotranspiration,  aridity indices,  storminess,  model-based phenological

dates,  yield), indices  of agro-climate extremes (e.g.  extreme precipitation frequency and intensity, extreme temperature,

scorching index, wind gust, number of freezing / icing days, diurnal temperature range, biological  effective degree days)

based on observations, re-analysis and climate scenarios for future projections for the region.

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component,

where user requests are submitted, processed as input to the modelling chain and results delivered back to the user for a new,

refined request.
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The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate models

(Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include the

ability  of  conducting  parameter-varying  cross-simulations  and  advanced  algorithms  for  identifying  optimal  agro-

management practices and genotype selections along simulations.

Fig.1 a):  Info-Platform:  Provides  local-regional  scale information derived from high-resolution regional  climate models
(CORDEX), e.g. climate, agro-climate data and indicators, indices of agro-climate extremes at the NUTS3 level. 
b)
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Fig.1 b): User-Platform for adaptation support: Processes in real time specific user requests, and simulates management scenarios,
identifying optimal  paths:  Users input parameters (left,  e.g:  region,  period (present /  future climate scenarios),  management
options  (e.g.  sowing  date,  fertilization/irrigation  time  and  amount,  genotype);  System Output  (right,  e.g:  harvest,  projected
phenology  dates,  precipitation/evapotranspiration,  Nitrogen  and  carbon  balances,  optimal  management  paths  (dates  and
management actions), optimal genotype) estimated from ensemble simulations.
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Fig.2: The PREPCLIM-v1 work schema: DSSAT-core and modelling components (middle), and data flow: input data (left), output
information (right). Red modules were developed in PREPCLIM-v1.

The  system  was  implemented  and  validated  over  Southern  Romania,  target  agricultural  area,  for  maize.  Potential

beneficiaries include researchers, farmers, policymakers, and maize breeders. The system can also assist maize breeders in

adapting  to  climate  change  by  enabling  them to  evaluate  and  select  genotypes  more  resistant  to  challenging  climatic

conditions. Given the accelerating pace of climate change, such a system may provide valuable support in numerous ways.

Table 1: The agro-management treatments: each treatment is described in terms of the sowing date and Nitrogen fertilization amount.,
Nitrogen [kg/ha]. We denote two experiments: exper “1N” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent on the
experiment: In  function  of  the  experiment  type:  a) the  experimental  set-up  for  crop  phenological  projections  has:  Fx0=0  (is  no
fertilisation), Fx1 (the regional average fertilization after the year 2000, 60 kg/ha) is the unit fertilisation of the experiment and Fx2 (is the
double of Fx1, 120kg/ha)unit fertilisation of the experiment. We define the unit fertilisation of the exper “1N” equal to 23 N/kg and the
unit fertilisation of the exper “3N” as 60 kg/ha, for each treatment (TR); b)  the experimental set-up for genotype optimisations has:
Fx0=0, Fx1=23; Fx2=46 kg/ha, values used before 2000,, for each treatment (GTR). Sowing date format is “DD.MM” 

a) The experimental set-up for crop phenological projections 
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Treatment TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12
Sowing date 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05
Fertilization
(exper “3N”)

Fx0
=0

Fx0 Fx0 Fx0 Fx1=
60

Fx1
=60

Fx1=
60

Fx1=
60

Fx2
=120

Fx2
=120

Fx2
=120

Fx2
=120

Fertilization
(exper “1N”)

Fx0
=0

Fx0 Fx0 Fx0 Fx1=
23

Fx1
=23

Fx1=
23

Fx1=
23

Fx2
=46

Fx2
=46

Fx2
=46

Fx2
=46

b) The experimental set-up for genotype optimisation
Treatment GTR1 GTR2 GTR3 GTR4 GTR5 GTR6 GTR7 GTR8 GTR9 GTR10 GTR11 GTR12

Sowing date 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05 1.04 15.04 1.05 15.05
Fertilization
(exper “3N”)

GFx0
=0

GFx0 GFx
0

GFx0 GFx1
=23

GFx1
=23

GFx
1=23

GFx1
=23

GFx2
=46

GFx2
=46

GFx2
=46

GFx2
=46

3. Results

3.1 Model validation

Model validation was conducted using Control simulations (Ctrl) driven by ERA5 reanalysis data (Simmons et al., 2021) for

each treatment outlined in Table 1a. These simulations, spanning the period 1976-2005, demonstrate the model's ability to

capture inter-annual variability in harvest yields, including both high and low yield years, when compared to the measured

available data for the region (Fig.3). .  The amount is more challenging for validation due to time-evolving contraints over

the region. Some contributions were identified, as large variations in fertilization over 1990-2000 with an abrupt decay after

1991, then followed by an increase around 2000 (Popescu et al, 2021), variations in the work practices, pest and willing and

lack of countercating methodology. However these are traceable in these simulations’ comparisons (with lower skill about

1995, for which it was reported a minimum of sowing effective (INSP, 2022, suppl. S2) and a mximum of wilig (ref) 
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Fig.3: Simulated (colors) vs.  measured (black) harvest in southern Romania for 12 management scenarios (Table 1a).  Right:
treatment defined by sowing date and fertilisation (Table 1a) and Pearson correlation between simulated treatments and measured
Harvest (*** p<0.01, ** p<0.05, * p<0.10; zero are missing values).

3.1 Agro-climate changes in the region

              3.1.1 Climate changes in agro-climate indicators

Agro-climatic Indicators, derived from CORDEX models and available on the Info-Platform, provide time-series data for

ensemble or individual model metrics at the NUTS3 level across Romania. Figure 3 illustrates projected changes in key

agro-climatic characteristics. 

The anticipated climate shift in the region is evidenced by changes in the Johansson Continentality Index (JCI, Fig.3a),

calculated as JCI = 1.7 * dT / sin(φ) - 20.4 (where dT is the annual maximum range of monthly mean temperatures and φ is

latitude; (Flocas, 1994; Baltas, 2007)). Changes in the JCI generally reveal robust evidence of large-scale changes influences

on the regional climate. For this domain it shows a Southwards meridional gradient of the intra-annual variability (Arctic

amplification remote impacts on Europe). Hence enhanced intra-annual variability (JCI) with much warmer summers than

winters over the main agricultural areas in South (and the opposite in the North), information useful for farmers to estimate

changes in the sowing time.

In agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding

32°C), used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought

conditions (H32temp ≥ 51),  about  doubling the Hist  values  and expanding significantly across  the southern regions in

RCP8.5 with already high-level drought conditions (31<H32temp<51) occurring in RCP4.5 (Fig.3b).
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Accounting  also  for  precipitation  changes,  the  de  Martonne  Aridity  Index  (IM,  the  ratio  of  annual  precipitation  to  a

translation  function  (+10C)  of  the  annual  mean  temperature),  exhibits  also  significant  projected  changes.  It  shows

particularly increased aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an

accelerating change up to 2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050).

              a)

                           
              b)

Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and
changes (2021-2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are:
marine for 0<k≤33, continental for 33<k≤66 and exceptionally continental for 66<k≤100). b) The Scorching index
H32temp classes are: reduced intensity drought for H32temp∊[0,10], moderate intensity for H32temp∊(10,30], high
intensity for H32temp∊(30,50] and severe drought conditions for H32temp > 50.
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Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top)
and 2071-2100 (bottom). IM index classes are: arid for 0<IM≤10 arid, semi-arid for 10<IM≤20, Mediterranean for 20<IM≤24,
semi-humid for 24<IM≤28, wet for 28<IM≤36, very wet for 36<IM≤55 very wet and extreme wet for IM>55; (all indices are time
mean 30 years, ensemble mean).

3.1.2 Changes in agro-climate extremes

Projected changes in extremes for temperature and precipitation, highly useful information for agriculture, show important

features in the region. A main aspect of interest is related to late-spring freezing days that may drastically affect the whole

crop of the year. Fig.5a shows for South Romania (Călăraşi subregion) that in spite of the decreasing trend (5% p-level

significance) of the total number of freezing days in spring, we still may have severe events with interestingly, a number of

freezing days in late-spring that is even higher in scenarios than in Hist, late-spring being one of the most vulnerable period

to freezing for the plant already under development. Also note that successive extreme freezing years in late spring may

occur.

a)

b)

c)
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Fig.5: Extreme climate parameters (NUTS region 103032, representative for the target region), along historical (Hist) and RCP8.5
scenarios; a): FD, the number of frost days (minimum temperature < 0°C in a 10-day period); b): RR10, the number of days with
heavy precipitation (>10 mm per day) in a 10-day period; c): RR, total precipitation (mm) per 10-day period; (left): the 10-day
period is centred on April 5th;; (right): the 10-day period is centred on April 25th. Values indicate the slope of the linear trend
(black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).

This late spring blizzard feature over the region, was analysed in a previous work and shown to be related to the combined

context of Polar Jet instability meanwhile with warmer sea surface temperature in the Eastern Mediterranean (Caian and

Andrei, 2019). Both these features are projected to enhance in a warmer climate (Lelieveld et al., 2012; Shaw and Miyawaki,

2024), indicating higher potential for severe late-spring blizzards in the region.

For precipitation, analysis of extreme precipitation events (RR10mm) and total precipitation (RR) reveals a notable shift in their
temporal distribution within April. While a decreasing trend is observed in the first dekad, a positive trend emerges in the third
(and second, not shown) dekades (Fig.5b). These suggest a time-shift tendency towards the end of April and into early May for the
occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level, this shift is consistently
observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme values of RR and RR10 are
projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b,c), more often during late spring. Extreme daily
precipitation is, in most cases detrimental for the crop, causing soil erosion and surface runoff mainly after drought periods. 

3.2 Phenology and Harvest Projections for the Control Genotype

Projected changes  in phenology for the control  genotype (Pioneer 375) were  simulated using the DSSAT model under

historical  (Hist)  and  multi-model  climate  projections  of  CRCP4.5  and  RCP8.5  scenarios.  Further,  multi-genotype

simulations are discussed in Section 3.3c.

Model validation was conducted using Control simulations (Ctrl) driven by ERA5 reanalysis data (Simmons et al., 2021) for

each treatment outlined in Table 1 (experiment "3N"). 

These simulations, spanning the period 1976-2005, demonstrate the model's ability to capture inter-annual variability in

harvest yields, including both high and low yield years, when compared to the measured available data for the region ( suppl.

S1). They also allowed model set-up improvements through sensitivity simulations and model calibration including soil

parameters (suppl. S2) as soil water, nitrogen, and organic carbon content.

However,  further  improvements in model accuracy are to be achieved if incorporating factors  such as inter-annual soil

variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing

dates.  For  example,  simulations  with  fertilization  specifications  closer  to  the  year’s  management  practices  (e.g.

approximately 80-120 kg N/ha and sowing around April 15 th for 1995) resulted in more accurate (reduced bias) predictions
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(TR6, TR10). These, together with the well simulated inter-annual variability, demonstrate the model's ability to capture the

combined influence of climate and management practices on crop performance. 

3.2.1 Phenology dates - projected changes 
Ensemble  model  simulations  provide  projected  changes  in  phenology,  for  the  control  genotype  (G0),  under  different

fertilization levels (0, 60, 120 kg/ha, Table 1, exper "3N") and sowing dates, averaged over 30-years, in scenarios (2021-

2050,  RCP4.5  and  RCP8.5),  versus  Hist  (experiment  set-up  “E_3N_G0”).  Figure  6a,b  illustrates  the  ensemble  model

changes, demonstrating an earlier anthesis date by up to ~6 days and an earlier maturity date by up to ~10 days across all

scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a

consistent  response  observed  in  each  individual  model.  Early  sowing dates  exhibit  a  more  pronounced earlier  shift  in

anthesis under warming scenarios, a response even more pronounced under RCP8.5. 

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential

crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and

temperature  (Huang  et  al.,  2024)  with  excessive  fertilization  during  reproductive  stages  under  elevated  temperatures

potentially inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more

frequently in treatments with higher nitrogen fertilization, leading in average only small changes in maturity days. This may

favour leaves development, enhanced transpiration and earlier depletion of the soil moisture leading later to water stress.

                         a)    b)
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Fig.6Fig.4: Simulated a): anthesis  dates ([dap],  days after sowing) and b): maturity dates ([dap]),  under historical conditions
(black), RCP4.5 (blue), and RCP8.5 (red) scenarios, experiment setup E_3N_G0. Results are shown for the four sowing dates and
nitrogen fertilization level of 60 kg/ha (Table 1, exper “3N”). The maximum and minimum value over the ensemble members for
each treatment and climate is shown (dots).

3.2.2 Harvest - projected changes

For  harvest,  the  ensemble  simulations  (along  E_3N_G0)  project  an  overall  decrease  under  both  RCP4.5  and  RCP8.5

scenarios and across all sowing dates and fertilization levels (Fig.7Fig.5), compared to the historical period. 

Harvest decline in climate scenarios is related to several factors: 1) reduced rainfall during the growing season (Fig.8Fig.6),

as evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-August, over 30 years, suppl. S2) found between harvest

(H) and accumulated precipitation in the Ctrl and in model simulations; 2) a shortened grain-filling period due to a projected

earlier flowering and an even earlier maturity across all the models (Fig.6Fig.4), potentially limiting biomass accumulation;

and 3) decreased fertilization efficiency under warming conditions, in the sense that theH difference of harvest in Hist versus

in scenarioHist minus scenario, increases (non-linearly) with enhanced fertilisation (Fig.7Fig.5). Hence for a same climate,

the same increase in fertilisation brings less benefit in a warmer climate. This benefit for H is of about 10% in Hist versus

7.6% in RCP8.5 for early sowing and about 8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of

nitrogen  (Fig.7Fig.5b,c).  This  efficiency  decay  feature  underscores  the  primacy  of  reduced  accumulated  precipitation

(Fig.8Fig.6) and of higher temperature,  that  lead to a  non-linear  H response to fertilization (Huang et  al,  2024).  Their

influence is noticed as well in the absence of fertilization (Fig.7Fig.5a), when H still declines in warmer climates, with a

dominant control from precipitation. The correlation along sowing dates between H and accumulated precipitation until

maturity (Pmat, Fig.8Fig.6), is r(H, Pmat) >0.96 in both scenarios. 

a) b) c)

Fig.7F: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across
three fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E_3N_G0. 
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Fig.5: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three
fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right). The maximum and minimum value
over the ensemble members for each treatment and climate is shown (dots).
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Fig.8Fig.6: Precipitation accumulated until  maturity (mm)  in experiment E_3N_G0 (legend as in Fig.5. 7).The maximum and
minimum value over the ensemble members for each treatment and climate is shown (dots).

The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a

shorter accumulation season (Fig.6Fig.4) but having projected a precipitation increase towards late spring (Fig.S1b5), that

may significantly favour critical growth stages.

3.3 Optimal Genotype Identification

The system was  further  developed to extend the management  scenarios  for  multi-genotype  simulations and implement

methods to identify ideotypes under each agro-climate scenario. The aim is to search for management scenarios that yield

optimal  outcomes  defined  by  user-criteria  such  as  maximizing harvest  yield,  stabilizing  yield,  or  minimizing  pollutant

emissions. Two optimization methods are implemented: a discrete-parameter, purely deterministic technique, and a hybrid

approach that combines deterministic modelling with continuous-parameter Machine Learning-based Genetic Algorithms for

iterative genotype selection.

The deterministic method involves conducting multiple-genotype crop model simulations, with optimization performed as a

post-processing  step.  Genotype parameters  Pi  are  defined  within  pre-established  limits  and  discretization.  Multi-model

simulations  are  then  performed,  where  each  parameter  is  individually  varied  while  the  remaining  parameters  are  held

constant. The total number of simulations in this case is determined by the chosen discretization level. In contrast, in the

hybrid  technique  the  parametersPi values  are  selected  from  a  continuous  range  of  values,  identifying  and  iteratively

improving the best sub-domains. This section presents the results of genotype optimization experiments (E_1N_Gn+w), built

upon the E_1N_G0 and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting

near-term (2035 as centre of interval 2021-2050).

3.3.1 Optimal genotype under climate change

i) harvest as a function of the genotype H(G) in scenarios versus current climate

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and

denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario)

dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the

ensemble-model PDF (probability density function) of H under warmer climate.
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A first outcome demonstrates in Fig.9Fig.7a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H)

occurs within the range of maximum H values (genotypes in the topupper H-percentile interval, interval GX (0%, 2.5%) of

the H-ordered genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9Fig.7b). Across models

of the ensemble,  we note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios.

Precipitation  exhibits  high  inter-model  variability  and  significant  regional-scale  uncertainty,  pointing  to  the  need  of

ensemble modelling for reducing it.  In contrast,  the warming trend is a consistent  feature across models in the region,

contributing other model-systematic responses such as earlier anthesis and maturity dates and shortening of the grain filling

season.

The  second  note  regards  a  different  response  projected  in  the  intermediate  H  values  (Fig.9Fig.7a,  c).  Genotypes

corresponding to the intermediate H values (genotypes of  intermediatemiddle H-percentile interval, the interval GI (25%,

70%) of the H-ordered genotypes) show projected higher H values in GI in climate scenarios than in Hist (Fig.9Fig.7c),

affecting less the earlier sowing (Fig.9Fig.7c).

These together lead to a narrowing of the H-values range of responses, in the top and intermediate H-percentile intervals GX

and GI, to the same managements applied, in scenarios compared to Hist. Same management spread would lead to closer H-

responses, with enhancing the expectancy for occurrence of intermediate values and decreasing the expectancy for highest H

values (a third feature of projected changes).

Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9Fig.7a),

improving by up to 2%-(4) % in scenarios (respectively to 4% in Hist) unfertilized case and up to 8% -(12) % in fertilised

case in scenarios (respectively to 12% in Hist) (Fig.9Fig.7a), with the lowest percentage for RCP8.5. Earlier sowing was

reported in other recent studies as optimal for spring maize harvest (Djaman et al, 2022).

ii) options for adaptation and mitigation using genotype analysis

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for

early sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in  the top and

intermediate H-percentile intervals GX and GI with higher/ lower expectancy of intermediate/ high values occurrence, have

practical adaptation outcomes. 

Finding mitigation solutions,  while preserving yield,  e.g.  finding appropriante chages in agro-management  practice that

allows  a  lower,  less  pollutant  fertilization,  at  a  same  Harvest  percentile,  appears  indeed  to  be  supported  by  genotype

selection. Fig. 9 (mitigation window shown for RCP4.5) indicates that for a Harvest given percentile, we get intervals in GI

and also in GX where changing the sowing date for a lower fertilization, brings even improved solutions. These intervals are

defined by intersection points of H-curves defining parameter-zones of both mitigation and optimisation.   

The first two points are equivalent to slopes’ change of H as a function of the ordered genotype, as shown in (Supl. S3) in

climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the

result in scenario compared to Hist, for a given agro management.  Alternatively, for a given H value and treatment, one

may estimate the interval of genotype leading that value, information useful to improve local usage.
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genotype one could find how a change in management practice could optimize the result. In this last case for example, one

could choose a small shift in the sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher

H, as shown for example in TR5 versus TR11 in Fig.9a, RCP4.5 (Fig.9). 

a)

b)                                                                                                   c)

Fig.9 a): Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale).
The simulations are for:  Hist  (left),  RCP4.5 (middle)  and RCP8.5 (right),  experiment setup E_1N_Gn+w, for cross-genotype
changes in six  Pi  parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist
(left) and RCP8.5 minus Hist (right), for the upper H percentile (the first 50 values, [1-50] on x axis) and intermediate in c), range
[400-1400] on x-axis. (“Hmax left” indicates that increasing values of H are on leftward direction of the axis).
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Fig.7 a): Harvest multi-model time mean: percentiles of the H distribution ordered from maximum to minimum value (left to right
on x-axis,  logarithmic  scale).  The  simulations  are  for:  Hist  (left),  RCP4.5  (middle)  and RCP8.5  (right)  for  multi-parameter
genotype changes (for six parameters resulting 1890 simulations); b) differences in projected harvest for a) RCP4.5 minus Hist
(left) and RCP8.5 minus Hist (right), for the upper H 2.5 percentile (the first 50 values) and intermediate in c), percentile 25%-
75% (475-1400) on x-axis. Plum rectangle in Fig.7b (RCP4.5) shows in simulations, a window of potential actions for mitigation
through genotype- agro-management selection (text).
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Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with

high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9Fig.7b). 

At yearly  level,  the interest  for  some of  these genotype parameters  combinations may increase,  providing that  distinct

weather  favourable patterns  will  be identified,  once with progress  achieved  in  seasonal  and annual  weather  forecasting

(Dewitte et al., 2021).

3.3.2 Optimal Genotype parameters Pi under climate change

i) optimal genotype parameters 

We further discriminate H response per genotype parameters (P1-P56), to understand the source of the changes in Fig.9Fig.7

and the possible adaptation paths under climate and management scenarios.

Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from

seedling  to  juvenile  phase  (P1,  Fig.  10  a),  shorter  photoperiod-delay  (P2,  Fig.10Fig.8b),  slightly  shorter  thermal  time

between successive leaves appearance (phyllochron, P56, Fig. 10 e) in the intermediate H-percentile interval GI and longer

in the top oneGX, but longer thermal time to maturity (P3, Fig.10Fig.8c) and higher grain filling rate (P45, Fig. 10d). These

results are in coherence with findings along recent works. Shorter P1 or lowering the seedling-juvenile thermal time for

increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-humid areas, (the current class of this region, with

semi-arid trends projected, Fig. 4), and the same for P2, while slower maturity (P3) and enhanced filling rate (P 45) being

linked to higher kernel weight and harvest in agreement with recent studies (Grewer et al., 2024).

ii) changes in optimal genotype parameters in climate scenarios

Comparing  the genotype parametersPi in climate scenarios against Hist, reveals the new plant strategy put in place in the

new climatic conditions, for maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are

reached  with genotypes that  ensure  a  longer  thermal  time from seedling  to  juvenile  phase and  longer  thermal  time to

maturity in scenarios compared to Hist. To a smaller extent this is also achieved by a longer photoperiod delay  P2, higher

grain filling rate P4 and longer phyllochron interval P5, in scenarios, than for a same percentile of the Harvest in Hist. These

show that under warmer climate it is essentially important to avoid too fast growth on  vegetative and grain filling  main

stages of the development.

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10Fig.8a, b) and related to

these,  under longer photoperiod (P2 increases,  Fig.10Fig.8b).  Other contributions come from ensuring a slower rate  of

appearance of successive leaves (P45 increase), while a higher grain filling rate (P56 increase) appears to partly compensate
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for the negative effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally

the harvest. 

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate

(Singh  et  al.,  2013)  that  points  to  P1  and  P3  as  main  drivers  for  Harvest  in  climate  scenarios.  Percentages  of  the

parameters’Pi changes in scenarios versus Hist for a given percentile of harvest (suppl.. S44) confirm this main driving.

a) b)     c)        d) e)
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Fig.10Fig.8: Parameters’i values corresponding to percentiles of the H distribution (ordered from maximum to minimum value).
On Ox is  the percent of  parameter change relative to the interval  tested for each,  normalised to its  control  value.  ordered,
decreasing harvest (on y axis, the number of the ordered simulation, y=1 is the highest harvest simulation) . The figure compares
these percentiles for Hist (black), RCP4.5 (blue) and RCP8.5 (red), running mean values, ensemble mean, time-mean (full lines,
100 values window); unsmoothed values are shown by dots only for Hist and RCP8,5, RCP4.5 being  intermediate in all cases).
Percentiles are from a number of 1890 genotype simulations.  X-axis shows the  Pi interval-number of discretization, increasing
with  increased values.  Discretization here  have  used 5x7x6x1x3x3 intervals  for  P1xP2xP3xP4xP5xP6 (total  1890). These  are
Simulations are shown for two treatments (01.04_Fx0TR1 at top and 15.05_Fx2TR12 at bottom)., for: Hist (black), RCP4.5 (blue,
only shown for the running mean) and RCP8.5 (red), ensemble time-mean; full lines show running means over 100 values window.
The short arrows in a) and c) indicate, for a same harvest percentile (y=constant) the corresponding Pi intervals for Hist (black)
and RCP8.5 (red); long arrows indicate the P0i values of the intersection of running-mean  Pi for Hist with RCP8.5. The plum
rectangle indicates a critical parameter value for P1 and P3 (text), threshold that controls when the scenario leads better/ worse H
values that Hist in scenario simulations here.

iii) optimal genotype parameters in management and climate scenarios 

Agro-treatments  choice  may significantly  modulate  the  H response  to  genotype  parameters.  Delaying  sowing,  requires

gradually decreasing  parameterPi in order  to  maximize H (Fig.11Fig.9,  also in  Fig.10Fig.8),  for  both Hist  and climate

scenarios. For P1-P3 this decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate

conditions) and a too late (autumn) maturity stage that is slowing the grain filling and leading crop failure.

However, Fig. 11 also shows that these parameter’sPi decreases cease or even reverse under extreme delay of sowing. For

highest delays the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming

higher, hampering the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick

grain filling. Hence the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its

adaptation to warmer climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease

or even increases of Pi parameters along with gradual increasing delays in the sowing date. 

This gradual switch in the mechanism of parametersPi performing high harvest, with sowing delay appears quite systematic

for all  parametersPi. This crop adaptation mechanism, converging to the one projected for climate scenarios,  shows that
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gradually under enhanced warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological

conditions for the development to the key issue of avoiding a too fast growth leading crop failure.

This gradual change of switch in the monothony along mechanism of parametersPi performing high harvest, with sowing

delay appears quite systematic for all  Piparameters. This crop adaptation mechanism towards the  ,  converging to the

one one found in projectionsed for climate scenarios, shows that gradually under enhanced warming, the  maincrucial

priority  in  adaptation, transfers, from  the  key  constraint  issue  of  ensuring  climatological  conditions  for  the

development to the key issue of avoiding a too fast growth and leading crop failure.

a) b)     c)        d) e)

Fig.11Fig.9 As in Fig.10Fig.8 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom).
Parameters Pi are shown for the top 10% 200 highest harvest (y from 1 to 400)..On Ox is the percent of parameter change relative
to the interval tested for each. Grey colours are for Hist and yellow-red for RCP8.5 (light to dark is from earlier to latest sowing). 
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iv) optimal genotype parameters in adaptation and mitigation strategy

For each agro-management and climate scenario one can identify threshold values of  parametersPi (critical window

shown in Fig.8 for P1 and P3 at the intersection between scenario and Hist)P0i that depend on the parameterPi, the sowing

date and the fertilization level., shown in Fig.10Fig.8) of intersection between scenario and Hist. When reaching At this

parameter value, for the genotypes leads the same H-percentile  the two have the same H percentile. So this value (critical

parameter on Fig.8, P1 and P3) P0i shows the value for which the advantage brought by shortening (P1) and/or decreasing

(P3) in scenarios compared to Hist, information useful for adaptation under climate scenarios.

if we get an enhanced percentile or decreased from genotypes with higher or lower  Pi in the scenario compared to Hist

(Fig.10Fig.8, shown by arrows). 

Second remark is on the expectancy of an outcome. Since all the slopes of  parameterPi, each as a function of H ordered-

values are lower than in Hist (suppl. S53), there is a narrower Piparameter interval for all those Piparameters decreasing with

H (e.g. P1) and a border one for those Piparameters increasing with H (P3, Fig.10Fig.8c), in climate scenarios. P3 increases

are  broadening  the  interval  for  H-highest  percentile,  potentially  presenting,  in  this  sense,  more  expectancy  (than  P1,

Fig.10Fig.8a) on highest values outcome. 

The genotyping results were found both in simulations involving deterministic and the hybrid deterministic-ML methods.

The hybrid method involved the same cross-simulations, but the selection of  parametersPi values for H optimization and

ordering was no more following a pre-defined discretisation but instead a random picking up over a continuous interval of

values with successively retrieving the best generation. It applies for optimization, classic Genetic Algorithms methods in

which selection of pairs is based on the user-criteria (e.g. maximum harvest, stable harvest, etc.). Our results show that for

the same physical intervals of the genotype parameters, the ML hybrid technique only after 20 generations shows at least

50% chances to get a better result than the deterministic model, while after 100 generations, it already increases at 80%

chances to get better results with also computational efficiency. CPU time is reduced in this case by more than 30% using the

hybrid technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better

solution since it can identify improved optimums at lower computational prices.

4. Discussions 

The results found are in line with other results in recent studies, using different approaches and observational data, and offer

an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For

the plant response under management treatment delaying sowing date, limiting elongations of the development phase was

also found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation

decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10,

11). Also fertilization lowering P56 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for
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warmer climates (Hokmalipour et al., 2011; Sardans et al., 2017;  dos Santos et al., 2021) was recently put in relation to P2

decrease mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration

maximizing the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10Fig.8f,  Fig.911f), limitations in the

expansion of new leaves (increase of P56, Fig.10Fig.8) was shown to be an adaptive tolerance mechanism to drought and

heat stress conditions (Fahad et al., 2017).

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P45, Fig.11Fig.9d) under reduced

P1, P2 and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-

irrigated crop (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11Fig.9d).

This increase for P45 under increased warming may reflect an adaptive strategy of plants to accelerate development under

drought stress, allowing plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003;

Roeber at al., 2022).

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise

some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows

the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management

scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only

offers  a  general  picture  of  adaptation  cross-solutions  but  identifies  critical  values  of  the  parameters  that  for  small

perturbations may lead the system response into different states (threshold sowing-delays, or P0i for genotypes). Without an

integrated modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since

these are simulation (climate-management scenario) dependent.

5. Conclusions

The main outcome of this study is that an agroclimatic real-time Interactive Service was implemented towards adaptation

support,  that  allows  performing  real-time,  user-requested,  agro-management  modelling  scenarios  for  the  region,  under

current and future climate. A novel feature of the system is the ability for identifying optimal management paths for the

user’s  request,  along with  multiple  cross-cultivar  parameters,  such  as  cross-optimal  sowing date,  genotype  parameters,

amount and date of fertilization.

The system provides solutions and estimates the associated uncertainty by using multi-model ensembles for each agro-

climate and management scenario.  The crop optimization criteria are user-defined and can relate to high harvest,  stable

harvest, low pollution. The optimization module implemented uses a hybrid deterministic - ML methodology. It performs

multi-model  simulations using physical  models  of  climate and  plant  penology and optimization  is  done either  through

discretizing  the  parameters’  space  and  optimisation  post-processing  or  using  hybrid  physical-ML  Genetic  Algorithms

methods. ML methods are spanning continuous parameter’s space and iteratively selecting along the simulations the best fit

parameters,  allowing  to  identify  unprecedented  optimal  configurations  (H  maxims),  not  reachable  under  the  discrete
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deterministic method. The overall system output information is layered and accessed from two interfaces: one static, for

information purpose  (phenology,  harvest,  climate,  extremes at  high resolution NUTS3 level)  and a second is  real-time

interactive  online,  through which  the  user  places  requests  and  receives  the system-performed  management  simulations

required  (including  uncertainty  along  multi-models)  and  identified  optimal  paths  for  adaptation.  These  platforms  are

operational  for  two  emission  scenarios  RCP4.5  and  RCP8.5  and  twelve  management  scenarios  (sowing  dates  and

fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these were discussed

in this work for the pilot region South Romania.

For the current genotype, in both emission scenarios it is projected a mean decrease (14% in ensemble mean, with

higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and fertilization) tested.

This was linked to a projected shortening of the grain filling season (10% quicker with an earlier shift of both anthesis (5

day) and maturity (10 day) phases) and to a mean decrease of the fertilisation efficiency under climatic scenarios, stronger in

RCP 8.5 emissions.

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-

management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal

harvest? How do these differ under projected climate change and/ or under agro-management options and can these enhance

our understanding to guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the

region?

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then

increase in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to

reach the historical values in this range through agro-management and breeding. These indicate a narrowing of the responses

range to same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of

Hist,  in  climate  scenarios.  In  practice,  these  express  that  we  can  identify  the  H-percentile  (genotype),  where  agro-

management choice will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less

pollutant.

For effective support in adaptation applications, individual genotype parameters Pi were analysed in climate scenarios versus

Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest

changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile

range. This range is identified through critical values of the parameters (P01), determined for each treatment and climate

scenario. There is significant variability of P0i under agro-management treatments. Moderate delayed sowing and enhanced

fertilisation may diminish the shifts in  parametersPi in scenarios compared to Hist for a same H-percentile, in contrast to

extreme managements. 

These results show that  Genetic approaches offer adaptation strategy support in helping plants to resist drought

stress under warming climate. Moreover,  it was shown that the optimization is improved by using a hybrid ML genetic
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algorithm method coupled  to  the deterministic  model-output,  leading to  detecting better  solutions,  under  a  continuous-

parameter  space  search.  The system can  be  further  used  for  searching  paths  along extreme  drought  years,  along with

irrigation options investigation. Coupled with weather extended predictions (seasonal, year -decadal) this could provide near

real-time adaptation support.
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Annex: Data and Methods: Steps in ML algorithm

Schema of steps in workflow of ML algorithms for optimal genotype identification: 

Start with 10 randomly chosen solutions within the bounds of P1-P6;

Calculate the mean and std of harvest of each solution for the 30 years 1976-2005;

Calculate fitness = (Mean of harvest) – (Standard-deviation of Harvest/4);

Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;

For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of P’s to

be subjected to crossover, called x;

For each child, modify Px as follows:

Pxa = round (B * Pxa + (1 - B) * Pxb )

Pxb = round (1 - B) * Pxa + B * Pxb )

Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor,

set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued

traits from both parents while exploring the search space between the parents' positions. The blending crossover promotes a

smoother and more gradual search for optimal solutions in continuous domains.

Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting one of

the P’s to a random value between its allowed minimum and maximum.

At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute them with

the children.

Repeat.

Supplementary material: 

S1: Simulated (ERA5 control runs) versus measured harvest
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Fig.S1: Simulated (thin lines) vs. measured (red, thick) harvest in southern Romania for 12 management scenarios (Table 1, exper
"3N"). Box: Pearson correlation between simulated treatments and measured Harvest (*** p<0.01, ** p<0.05, * p<0.10; zero are
missing values).

S1: Projected changes in agro-climate indicators over the SE Romania

              a)

b) 

S.1  a): The scorching index H32temp (degrees above 32C in summer JJA) for: Hist (1971-2000) and changes (2021-2050) relative
to it, under RCP4.5 (middle) and RCP8.5 (right). The ccorching index classes are: reduced intensity drought for H32temp∊[0,10],
moderate intensity for H32temp∊(10,30], high intensity for H32temp∊(30,50] and severe drought conditions for H32temp > 50. 

b):  Climate  parameters (NUTS region 103032 Ilfov county,  representative for  the target  region),  along historical  (Hist)  and
RCP8.5 scenarios; a): RR10, the number of days with heavy precipitation (>10 mm per day) in a 10-day period; b): RR, total
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precipitation (mm) per 10-day period; (left): the 10-day period is centred on April 5 th;  ; (right): the 10-day period is centred on
April 25th   ; c).  FD, the number of frost days (minimum temperature < 0°C in a 10-day period). Values indicate the slope of the
linear trend (black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).
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S2: Sensitivity to changes in nutrients

Replicability for system portability on other pilot regions requires estimates of sensitivity to new local forcing. Sensitivity

ensemble simulations were performed, with increasing soil Carbon and Nitrogen at the initial time by 20%, for a same

control genotype (experiment setup E_1N_G0_soil+CN). 

              a)                                       b)                                       c)

Fig.S2.1:  Harvest  ([kg/ha])  comparison  between  the  experiment  setup  E_3N_G0  (top,  same  as  Fig.7Fig.5)  and  the

experiment setup E_1N_G0_soil+CN (bottom). Panels are as in Fig7, for Fx0(a), Fx1 (b), Fx2 (c), ensemble time mean for

Hist (black), RCP4.5 (green) and RCP8.5 (red), on Ox there is the treatment (1 to 12, Table 1).

Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig.7Fig.5) shows that Harvest loss is only up to 7% for about 60%

reduction in fertilization (exper “1N” versus “3N”, Table 1), when the soil nutrients content is increased by 20%. Also, the

comparison shows that there are still options even under warmer climate to equal or exceed the historical Harvest if there is

an appropriate soil composition (e.g. in RCP4.5 TR6 and TR7, Fig.S2.1b-bottom), also under RCP8.5 (TR10 and TR11,

Fig.S2.1c-bottom), and even at lower fertilization levels (exp “1N”, Table 1). A possible mechanism in this case involves

delayed maturity (Fig.S2.2b), and consequent more precipitation accumulated (Fig.S2.2a, c). In practice this slower maturity

could  be  due  to  soil  C/N  composition  influencing  soil  water  holding  capacity,  moisture  and  temperature,  slowing

germination or plant growth. Previous research (Kakar et al. 2014; Khan et al.,  2014) also reported delayed silking and

maturity in the case of enhanced soil nitrogen when compared to control case, showing also a stronger response for early

sowing.

Fig.S2.2: Precipitation (mm) accumulated from the initial time of the simulation for experiment setup E_3N_G0 (a), (same

as Fig.7); differences [dap] in the maturity date (b) and in precipitation accumulated until maturity (c) for the experiment
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setup E_3N_G0 minus the experiment setup E_1N_G0_soil+CN, (mm). Lines are for Hist (black),  RCP4.5 (green) and

RCP8.5 (red).

S2: Harvest as a function of fertilization and precipitation

S3:  Model-spread for optimal genotype

S3: Slopes of Pi genotype parameters in Hist and climate scenarios

Fig.S3 The slopes (thick lines) of Pi genotype parameters (y-axis) as a function of decreasing ordered harvest (x-axis) for

Hist (black), RCP4.5 (green and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of harvest and over the

rest of decreasing ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean, TR12 (as in

Fig.10Fig.8 bottom, grey).

S44: Percent changes in Pi in climate scenarios relative to Hist
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Fig.S4: Percent changes of Pi genotype parameters (y-axis) as a function of the ordered Harvest from highest (left, x-axis) to lowest
(right, x-axis). Differences (running means over 378=P2xP3xP4xP45xP56 the product of discretization intervals for P1-P56) are
shown for TR1 (yellow for RCP4.5 minus Hist) and green (RCP4.5 minus Hist) and for TR12 (red for RCP8.5 minus Hist) and
blue (for RCP4.5 minus Hist). Percent changes are expressed as differences relative to Hist. Arrows indicate the monotony of Pi
values that correspond to the ordered decreasing harvest (shown in Fig.10Fig.8).

‍

‍

S5: Slopes of Pi genotype parameters in Hist and climate scenarios

Fig.S3 The slopes (thick lines) of Pi genotype parameters (y-axis) as a function of decreasing ordered harvest (x-axis) for Hist
(black), RCP4.5 (green and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of harvest and over the rest of
decreasing ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean, TR12 (as in Fig.8 bottom,
grey).
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