

A modeling Systemmodelling system for Identificationidentification of Maize Ideotypesmaize ideotypes, optimal sowing dates and nitrogen

5 fertilization under climate change – PREPCLIM-v1

Mihaela Caiān⁽¹⁾, Caiān¹, Catalin Lazar⁽²⁾, Lazar², Petru Neagoe⁽¹⁾, Neagoe¹, Antoanela Dobre⁽¹⁾, Dobre¹, Vlad Amihaesei⁽¹⁾, Amihaesei¹, Zenaida Chitu⁽¹⁾, Chitu¹, Adrian Irasoe⁽¹⁾, Irasoc¹, Andreea Popescu⁽¹⁾,
10 George Cizmas⁽²⁾, Cizmas²

1- National Meteorological Administration Romania –(NAM), Sos. Bucureşti-Ploieşti nr.97, Sector 1, 013686
Bucureşti România

2 – National Agricultural Research and Development Institute (NARDI) Fundulea, 915200 Călăraşi, România

* Corresponding author: Correspondence to: Mihaela Caiān (mihaela.caiān@gmail.com)

15

Abstract

The impact of climate, Climate change on cropssignificantly threatens crop yields levels and agricultural yield is an
20 actual threat while being a challenging issue due to the high complexitystability. The complex interplay of factors that intervene at the local scale of the crop. Assessing it, requires the use ofmakes assessing these impacts difficult, requiring coupled models climate-phenology, meanwhile methods to identify management models, which integrate climate data and genotypescrop information. Identifying suitable for local management practices and crop varieties under future conditions, in order to sustain becomes essential for developing effective adaptation strategies.
25 We presentThis study presents the implementation and useapplication of a newan integrated climate-phenology adaptation support modelingmodelling system. This is based on regional CORDEX climate models and the CERES Maize model from the DSSAT platform, with new. Novel modules for optimal management and genotype identification usingunder climate change have been developed in the system, employing a hybrid method:approach that combines deterministic modeling and modelling with machine learning (ML/) techniques and genetic algorithms. IfThis system was run as a regional pilot
30 over Romania, operating in real-time in interaction with users, performing agro-climate projections (combination of fertilization, sowing date, soilgenotype) and providing best crop management simulated under climate change projections. Multi-model ensemble simulations were conducted for two climateradiative forcing scenarios RCP4.5 and RCP8.5 and twelve management scenarios show new, yielding novel results for the region. Results indicate a projected decrease in maize

Style Definition: Normal: Font: (Default) Times New Roman, 10 pt, English (United Kingdom), Justified, Line spacing: 1.0 lines, Hyphenate

Style Definition: Heading 1: Font: (Default) Times New Roman, 10 pt, Font color: Black, English (United Kingdom), Kern at 16 pt, Justified, Space After: 12 pt, Don't keep lines together, Hyphenate

Style Definition: Heading 2: Font: (Default) Times New Roman, 10 pt, English (United Kingdom), Justified, Space Before: 12 pt, After: 12 pt, Don't keep lines together, Hyphenate

Style Definition: Heading 3: Font: (Default) Times New Roman, 10 pt, English (United Kingdom), Justified, Space Before: 12 pt, After: 12 pt, Don't keep lines together, Hyphenate

Style Definition: Heading 4: Font: (Default) Times New Roman, 10 pt, English (United Kingdom), Justified, Space Before: 0 pt, After: 0 pt, Line spacing: 1.5 lines, Don't keep lines together, Hyphenate

Style Definition

Style Definition

Style Definition

Style Definition: Hyperlink: Font color: Blue

Style Definition

35 yields for the current genotype across all tested scenarios, primarily attributed to a shortened grain-filling period and reduced fertilization efficiency under warmer conditions. Soil initial conditions were found to significantly influence yield responses.

For the actual genotype we find The analysis warns about a projected mean decrease in yield in both climate scenarios for all sowing dates and fertilization levels tested, response shown to be sensitive to initial soil parameters. This response was linked to two factors: a shorter growing season by up to 10% and a loss of fertilization efficiency in a warmer climate. A warning points to results showing a narrowing of the agro-management opportunities options for maintaining a high yield but in opposite it is shown a significant role level. However, we find an added value from the impact of optimal genotype range identification that may provide crop solutions under selection in mitigating climate change impacts, even in extreme years. Identifying best genotype under warmer climate along sets of Genotype optimisation across six cross-parameter simulations show systematic lower values of the maximum crossed cultivar dependent parameters revealed that while maximum yields, but emphasizes declines, specific genotype windows of increases in the exhibit increased intermediate yield values in scenarios yields under future climates compared to actual climate. The highest harvest sensitivity to genotype is shown to be to changes in current conditions. Sensitivity analysis identified the thermal time to juvenile respectively to requirements during juvenile and maturity stages as the most critical factors influencing genotype performance under warmer climate. The results sustain using acclimates.

50 This research demonstrates the added value of combining deterministic coupled modeling system combined with and data-driven modeling for identifying optimal modelling approaches within a coupled climate-crop system for developing effective adaptation strategies, including optimised fertilization pathways that contribute to climate change mitigation.

55

1. Introduction

According to the IPCC reports (IPCC, (2022)), climate change is evident unequivocal, and the prospects its impacts appear more worrying today than a few decades ago. Although progress is being made in studying the 60 impacts While research on the effects of climate change on crop yields and agricultural yields has advanced (Arnell and Freeman, 2021; Hatfield et al., 2021; Rezaei et al., 2024), translating these are rarely directly applicable to provide findings into actionable solutions and scales remains a challenge. This is primarily due to the extremely high complexity of factors that intervene at the local scale of the crop (Malhi et al., 2021; Eyring et al., 2021). These factors include culture-scale) including sensitivities to of the interacting exchanges to variations in climate sub-components as

65 atmosphere / soil/ phenological processes/biosphere's ecosystems, to under climate change, to natural causes or and human activities (Wheeler and Braun, 2013; Xie et al, 2023).

Formatted

Taking into account scientific research estimating that Given the world projected global population will continue increase estimated in scientific reports to grow and it is expected to arrive to over 9,1 milliards until the 70 year billions by 2050 (Godfray and Charles, 2010), the total global food yield will production would have to grow increase by 70-100% to meet the growing demand (Smil, 2005; World Development Report, 2008; Selvaraju et al., 2011). Meanwhile This challenge is further compounded by the agro-climatic conditions are expected to become vulnerable and gradually, more deficient in the context of decline due to climate change and its impact on, particularly impacting water availability (Stehr and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013; Roeuzzo et al., 2014; 75 Stehr and von Storch, 2009).

Formatted

Formatted: Normal, Left

Another facechallenge of the problem comes from the need that approaches, and sustainable solutions should both: merge user must not only address the needs, and be in line of agricultural producers but also align with neutral climate adaptation stringency climate change mitigation goals for 2050, aiming for climate neutrality. (Semenov et and 80 Strattonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022).

Formatted

Early studies on investigating the impact of climate change impact on crops have pointed to on crop yields emphasized the neednecessity of very high-resolution modeling, capable of representingmodelling approaches. These models should accurately represent management practices and the local scale impact effects of climate on plantvariables, such as 85 temperature and precipitation (McKee et al., 1993; Trnka et al., 2015., 1995; Adams et al., 1998; McKee et al., 1993) affecting). These affect thermal and water stress (e.g. the stomatal opening, and plant physiological processes like stem water potential, stomatal opening, leaf transpiration efficiency (Espadafor et al., 2017)). Further at). At the regional scale, the relationship between crop yield and water and thermal availability relation to yield indicated a may exhibit strong 90 dependencies on the crop, region, time type, geographical location, temporal scale, and plant physiological developmental stage (Webber et al., 2018, 2020; Webber et al. 2018; Marcinkowski and Piniewski, 2018; Berti et al., 2019; Ceglar et al., 2020; Wu et al., 2021; Berti et al. 2019; Marcinkowski and Piniewski 2018). In this regard, under., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates,

Formatted: Normal, Left

Formatted

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 c

indicated for future climate changes, perspectives for corn yield rises change a significant (~30%) decrease without adaptation, but a potential increase (15%) in corn yields under irrigated conditions were identified by simulations for areas currently more arid than the geographical region of interest considered in this paper (Kothari et al., 2022). This points out the need for continuation of the or under radiation-based genotype efficient use. These findings underscore the critical need for regional simulations taking in consideration soil humidity accuracy and that incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various irrigation strategies under future climate scenarios.

Apart from In addition to atmospheric conditions, soil ~~changes properties~~ significantly ~~affect influence~~ plant growth. These influences occur through physics-based interactions with climate and through ~~changes alterations~~ in ~~soil~~ chemical compositions. Increasing air temperature ~~was~~ composition. Rising air temperatures have been shown to ~~affect impact~~ the soil carbon budget, ~~its decrease with~~ a decline in soil carbon potentially affecting plant and root ~~level~~ processes, biochemical cycles, and species ~~composition~~ (Abhik Patra et al., 2021).

Modeling Crop modelling at local, regional and also global scale reported significant advances in has significantly advanced, enhancing our understanding, simulating and projecting future crop (+ of crop systems and enabling the simulation and projection of future yields. Studies (Tsvetinskaya et al., 2001; Tao et al., 2009; Ganguly et al., 2010; Coek et al., 2021; Chen and Tao, 2022) consistently project global projected yield mean harvest reductions (Asseng et al., 2015) with differences in the regional pattern of climate change impacts on yield (Asseng et al., 2015; Li et al., 2022). Not only projected harvests are likely to decline, but also

impact on crop and yield (Asseng et al., 2015; Li et al. 2022). Not only projected regional spatial but also temporal variability of the climate change impact appears larger and accelerated, motivating intensified efforts on seasonal and multi-annual predictions of plant development and yield (Baez-Gonzalez et al., 2005; Jin et al., 2022) using crop models. These simulations' results significance was analyzed suggesting. Analysis of these simulations emphasized also the need to include crop uncertainty in climate scenarios assessments (Meehl et al., 2007, Rosenzweig et al., 2013, Basso Bruno et al., 2019; Chapagain et al., 2022). In addition

Meanwhile, model simulations proved to be a highly emerged as useful tool in plant breeding analysis (Bernardo, 2002; Hoogenboom et al., 2004; Cooper and Messina et al., 2023) considered a support in developing ; Mamassi et al., 2023), supporting the development of superior genotypes and plant breeding methods for maximizing crop effectiveness. Demonstrations of model simulations' potential as a valuable tool for breeders were reported in finding paths for optimal performance. These simulations have proven effective in guiding cultivar using

selection through techniques such as parental selection, and breeding by design, etc. (Peleman and van der Voort, 2003; Qiao et al., 2022).

In most recent years developments climate-crop modelingmodelling extended from deterministic crop models (Boogaard et al. 2013; Morell et al., 2016) to data-driven techniques or hybrid approaches for assessing crop response to weather and climate change (Zhuang, 2024; Schwalbert et al., 2020; Meroni et al., 2021; Morales and Villalobos, 2023; Meroni et al., 2021; Schwalbert et al., 2020; Zhang; Chang et al., 2021-2023; Zhuang et al., 2024). Statistical methods as well as machine learning (ML) used for crop forecast and modelingmodelling were however shown to bring for now, limited benefits (Paudel et al., 2021), pointing to possibly hybrid techniques that include physical process in the modelingmodelling as a key approach for this challenging issue.

On the other hand, deterministic-breeding optimization techniques using fully deterministic model simulations require a huge number of simulations, analysis and inter-comparisons of predicted crosscrop performance (Wang and Pfeiffer, et al., 2007; Wang et al., 2023).

Formatted: Normal, Left

135 Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“preparing” for Climate Change climate change”) project in which we solve plant phenology development using deterministic modelingmodelling and merge this technique with an on-line ML-genetic algorithms (GA) iteratively selecting along simulations in order to iteratively select a the cross-range of optimal genotypecrop cultivar parameters, according to a pre-set user-defined criteria of the optimum. Genetic algorithms (GA) simulate for optimal target. The GA simulates the evolution of a 140 population by iteratively applying in iterations, genetic operators, such as (selection, crossover, and mutation) to a set of candidate solutions (chromosomes). The chromosomes represent potential solutions to the problem and are encoded as strings of binary or symbolic values, with their fitness assessed by a problem-specific evaluation function here, user-requested based. GA was successfully used with GAs have demonstrated success for optimizing agricultural practices using models like DSSAT for optimizing irrigation and fertilizer applications (Bai -et al., 2021; Wang et al., 2023).

Formatted: Normal, Left

145 The hybrid approach implemented herein this work focused on ideotype identification presents the advantage of physically treating the crop -complex process involved each time along optimizing iterations, sothus allowing analysisspecific inclusion and understanding of physical causes of the responses to and of optimal paths in various climate or / and management scenarios, meanwhile enhancing. Furthermore, it enhances the ability of choosing optimum conditions from a-continuous interval, not a multi-dimensional intervals for gene parameters, as opposed to discrete one, of gene

Formatted: Normal, Left

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

parameter values, sets. The continuum values approach is an important feature mainly for isolated extremes, extreme yield detection, or broad parameters' range and high non-linearity, both aspects of increasing interest, as we show in this work the a tendency toward narrower relevance in the context of climate change. Our findings suggest a narrowing of agro-management adaptation opportunity windows opportunities under warmer climates, further emphasizing the importance of this hybrid genotype-agro-management approach to support finding solutions for the future.

Formatted: Font color: Custom Color(RGB(31,31,31)), Not Raised by / Lowered by

Formatted: Font color: Custom Color(RGB(31,31,31))

We present the system. The developed and system aims to provide efficient and operational support for farmers and stakeholders. It leverages the state-of-the art DSSAT model, a widely used and extensively validated platform for agricultural modelling across diverse applications. The DSSAT model, incorporating complex parameterizations for soil processes, surface-atmosphere exchange, plant development stages, and their interactions with climate and management practices, undergoes continuous refinement through ongoing research and regional calibrations. For this study, the model was specifically adapted to the unique soil characteristics of the pilot region, including parameters such as porosity, composition per soil layers, and thermal properties. The developed system exhibits portability to other regions with available soil and management data. Its functionality and user-friendliness are expected to improve through widespread adoption and the incorporation of advanced user requests and management options.

Formatted: Normal, Left

Section 2 presents the developed system and its data flow in section 2. The, Section 3a provides the motivation of its for system development, linked to focusing on projected climate change impacts for the target region are shown in section 3a. We show, Section 3b presents results obtained using the system used to estimate simulate projected changes in plant phenology and crop parameters for the target region, under various climate change and management scenarios and for different management scenarios, for the actual current control genotype in section 3b. Then we discuss in section, Section 3c, discusses results obtained using the system's genotype optimization package of the system. Perspectives along agro-management scenarios. Finally, Section 4 presents perspectives and conclusions are discussed in section 4.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

2. Data and methods

Formatted: Heading 1, Left

180

Projected changes in agro-climate indicators over climatic parameters for Romania were assessed under two Representative Concentration Pathways (RCPs): RCP4.5 and RCP8.5. These changes were computed for two climate scenarios: RCP4.5 and RCP8.5 as anomalies reported relative to historical simulations (Hist) using an ensemble of three CMIP5-CORDEX models (Benestad et al., 2021). Then, projected changes in phenological and yield parameters are simulated using (Karl et al., 2011) high resolution (11 km) climate models, based on the CNRM, EC-EARTH, and MPI global models coupled to the regional climate model RCA4. Subsequently, the DSSAT crop model (Jones et al., 2003; Hoogenboom et al., 2019; Jones et al., 2003) forced with the was employed to simulate projected changes in phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions from the CORDEX models (from GFDL, HadGEM, MIROC, IPSL, NorESM), for derived from each model of the ensemble for the historical period and for each of the two RCP scenarios.

Formatted: Normal, Left

185

A software package was developed for the DSSAT model that performs identification of optimal model parameters set up according to user-defined criteria, user chosen for optimum, climate-management scenario, region, and time-horizon. The user criteria for optimisation includes maximum yield, Optimization goals include maximizing harvest, ensuring stable yield, across years, yields over time, and minimizing the amount of leached nitrogen below the maximum level of leaching beyond the root frontzone (reducing the risk of water pollution), etc. risk. Management scenarios include allow users to explore optimal cross-options for combinations of sowing dates, fertilization amount, genotype (six parameters defining the genotype). By default, twelve agro-management simulations are performed, for four planting dates (separated by 5 days interval) and three fertilization amounts with Nitrogen (zero, a mean value of the region and the double of the mean value), and genotypes.

190

Six main cultivar-specific parameters (P1 to P6) characterizing the maize genotype were analysed across wide ranges of physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents the thermal time from seedling emergence to the end of the juvenile phase (ranging in these simulations from 100 to 500-degree days above 8°C). It significantly influences crop flowering times (Liu et al., 2020), water availability, and ultimately, yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1) can lead to increased harvest in humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

P2, the photoperiod-development delay parameter (ranging in simulations here from 0.1 to 2.6 days) shows the extent to which development is delayed for each hour of photoperiod increase above the longest photoperiod of maximum development rate (considered 12.5 hours). P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant development, with long-day plants exhibiting faster development under longer day lengths (Angus et al., 1981). Related to these, studies have

210 demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer climates (Liu et al., 2023).

P3, the thermal time from silking to physiological maturity (tested here for values from 500 to 1500-degree days above 8°C), significantly influences maturity dates. It also has a main role in plant stress levels (longer-maturity hybrids increase harvest but under water stress it may provide lower yield (Su et al., 2021; Grewer et al., 2024)) and grain moisture at maturity (Tsimba et al., 2013). P4, representing the maximum number of kernels per plant, exhibits a relatively predictable numerical response

215 and is therefore held constant at the control value of 797.5 estimated for the region, in this analysis. P5, the kernel filling rate parameter (ranging from 6 to 12 mg/day), influences grain filling duration, desiccation, moisture at maturity and harvest (Chazarreta et al., 2021). P6, the phyllochron interval or the thermal time between successive leaves (ranging from 3 to 70 °C) is a critical parameter for estimating the duration of vegetative development (Birch et al., 1998; Xu et al., 2023). P5 and P6 are important parameters of optimal plant adaptation to climate conditions, since they are drivers of the phenological response and

220 yield formation, in conjunction with the temperature, radiation, humidity, water stress. These genotype (or cultivar specific) parameters are the primary ones considered in DSSAT model parameterizations for plant development processes (Hoogenboom et al., 2019).

The parameter ranges were rigorously tested in simulations to ensure their representatives for the target region, including an analysis of extreme values. The control values for these cultivar-specific parameters P_i in the region are: $P_1=200$, $P_2=0.7$,

225 $P_3=800$, $P_4=797.5$, $P_5=8.60$, and $P_6=38.90$. All the simulations for combinations of parameters values (cross- P_i simulations) were performed under Hist, RCP4.5, and RCP8.5 emission scenarios. For each scenario, simulations were conducted for twelve agro-management scenarios consisting of sowing date changes and fertilization treatments, for each model of the ensemble.

By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three fertilization levels (zero, then a regional average and its double). For each agro-management scenario, genotype optimization by

230 selection (finding the optimal set of the P_i values for under the cultivar related coefficients (named further G-parameters given climate -agro-management and optimum criteria) was performed through using two methods: a fixed-discretisation 1) discretized parameter-space runs and with subsequent post-processing ordering, and a 2) continuum parameter-space search with iterative selection along during simulations, by employing genetic algorithms methods (GA).

The proposed GA-based method employs an iterative approach. It commences with an initial population of randomly generated

235 solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is performed to choose the fittest chromosomes to reproduce for reproduction, based on their fitness scores. Subsequently, crossover

Formatted: Normal, Left

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness of the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by

240 balancing exploration (searching the ~~problem~~ problem's space for diverse solutions exploiting promising regions) and exploitation (refining the best solutions found so far). Here GA ~~have even has~~ been newly applied to develop an innovative crop selection algorithm ~~to optimize genotype along, optimizing genotypes across various~~ agro-management scenarios. Steps along the algorithms are ~~show~~ndescribed in Schema from Annex1Annex.

Formatted: Normal, Left

245 The ~~overall~~system generates output ~~information from the system (climate, data~~ (agro-climate and optimal paths) ~~which is directed disseminated~~ on two ~~platform components (platforms~~ (Fig.1). One is a platform (Info-Platform, Fig. 1a) providing one-way interactive (static) agro-climate information at local scale (NUTS3 level, aligned with the European Union's Nomenclature of Territorial Units for Statistics) over the region, ~~delivering~~. It delivers pre-computed climate ~~-agro-climate~~ indicators, ~~agro-climate, and~~ and indices of agro-climate extremes ~~indices computed from based on~~ observations
250 ~~and, re-analysis for the actual climate and from~~ climate scenarios (anomalies relative to historical runs) for future projections for the region.

Formatted: Font color: Custom Color(RGB(1,1,1)),Not Raised by / Lowered by

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component, where user requests are placed, treated, submitted, processed as input to the modelling chain and results sent delivered back to the user (User-Platform, Fig. 1b) for a new, refined request.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

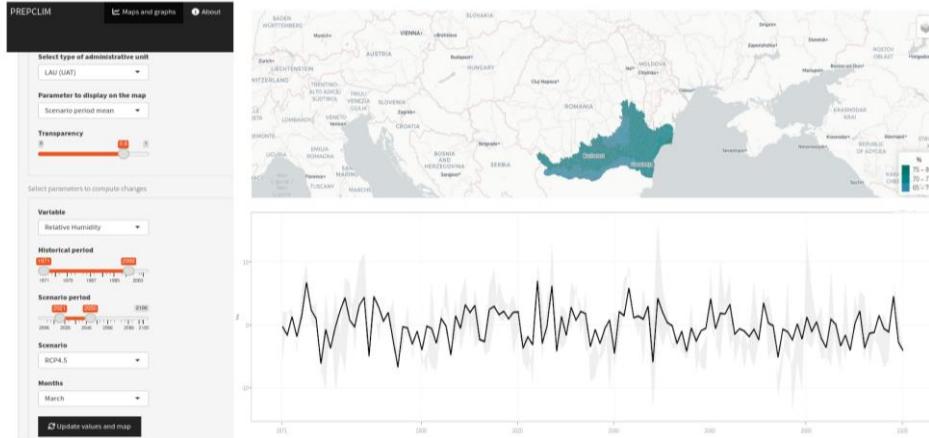
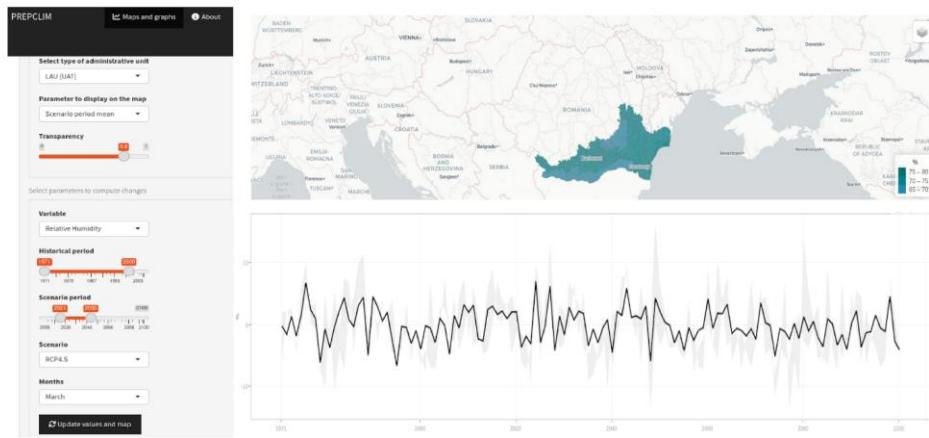


Fig. 1a: The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate models (Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include the ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-management practices and genotype selections along simulations.



Formatted: Font color: Auto

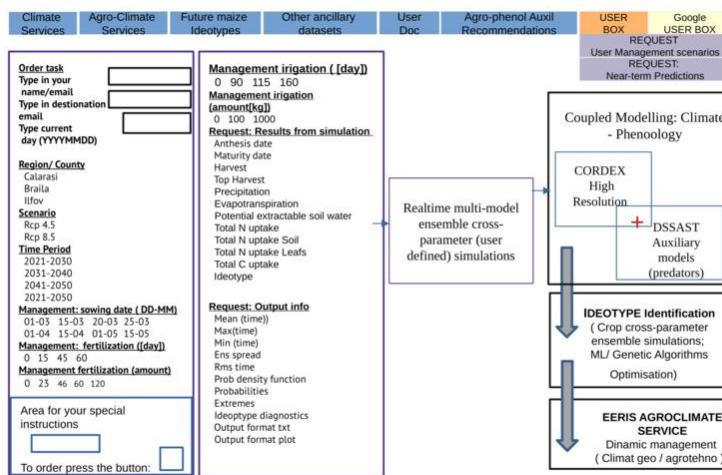
Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Fig.1 a): Info-Platform for information at: Provides local-regional scale; information derived from regional climate high-resolution regional climate models (CORDEX, presenting climate, agro), e.g. climate, agro-climate data and indicators, indices of agro-climate extremes indices at the NUTS3 level.

Formatted: Normal, Left, Indent: Hanging: 0 cm, Border Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Formatted: Font color: Black

265 b)



Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

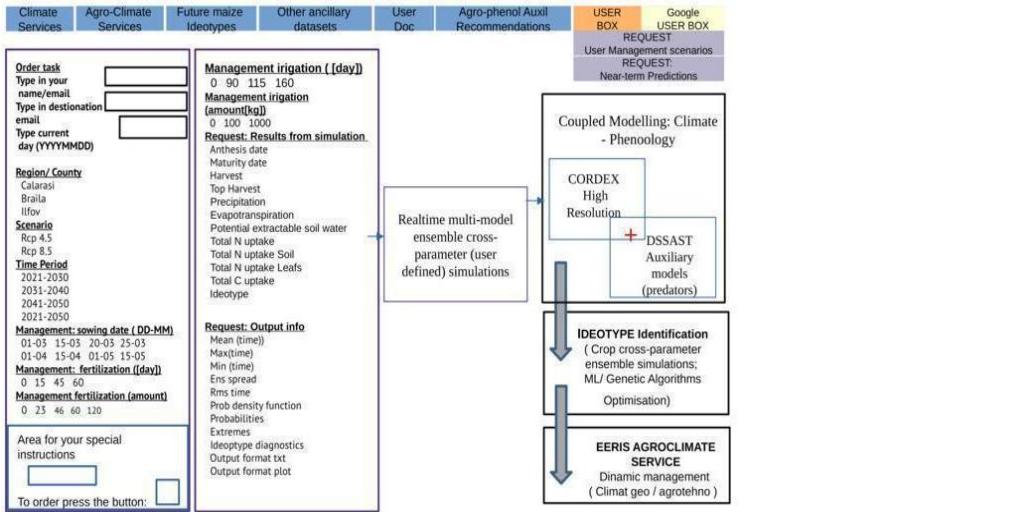
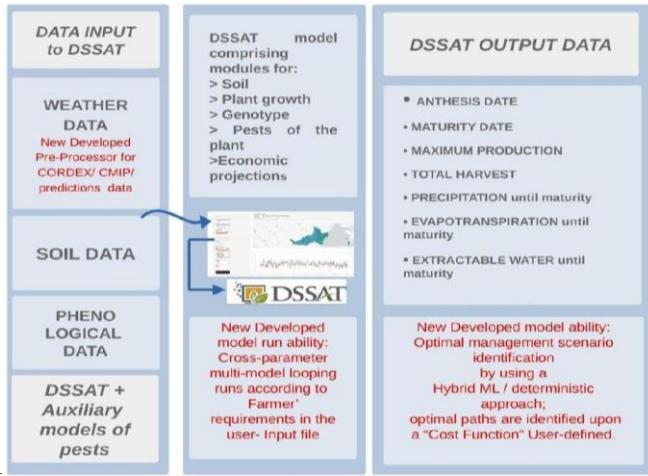


Fig. 1b; 1b: User-Platform: the user interactive component to specify requests on for adaptation management simulations. User request support: Processes in real time specific user requests, and simulates management scenarios, identifying optimal paths: Users input parameters (left) on: the, e.g. region, time slice period (present or future climate scenarios, choices for) management options (e.g. sowing date, fertilization/-irrigation (time, and amount), genotype and output requests); System Output (right) on results: yields, e.g. harvest, projected phenology dates, evapo-transpiration, Nprecipitation/evapotranspiration, Nitrogen and C balance carbon balances, optimal management paths (dates, and management actions), optimal genotype) estimated from ensemble simulations.

270



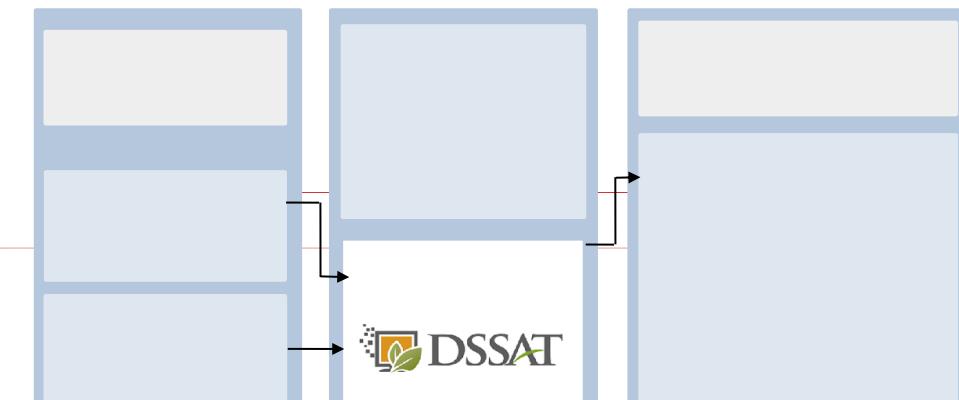
275 The pilot area where the
 Fig.2: The PREPCLIM-v1 work schema: DSSAT-core and modelling components (middle), and data flow: input data (left), output information (right). Red modules were developed in PREPCLIM-v1.

276 The system was implemented and validated ~~is over~~ Southern Romania, ~~target agricultural area~~, for maize. The potential beneficiaries of this system are ~~users, include~~ researchers, farmers, ~~policymakers~~, and ~~policy~~ makers. Maize ~~maize~~ breeders. The system can also ~~can adapt using the system~~ assist maize breeders in adapting to climate change by enabling them to ~~the climate conditions by accommodating or testing~~ evaluate and select genotypes ~~that are~~ more resistant to challenging ~~climate~~. ~~Accelerated~~ climatic conditions. Given the accelerating pace of climate change ~~makes~~, such a system ~~a useful~~ may provide valuable support in ~~many respects~~ numerous ways.

Formatted: Normal, Left

280 285 The core of the modeling system relies on coupled modeling by DSSAT crop model (Linux OS) interfaced with regional climate models (Fig.2), with new feature allowing multiple cross-parameter simulations under iterative loops (parameter perturbations) and new features for optimal agro-management x genotype identification (parameter' value selection).

290



Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

295

300

205

1

315

320 Fig. 2: DSSAT core and the Optimal-Crop modeling system. Data flow: Input data (left), output information (right); model components and set up (middle). Red modules were developed within the project.

Table 1: Treatment description in terms of the sowing date and fertilization amount, N [kg/ha].

Table 1: The agro-management treatments (TR): each treatment is described in terms of the sowing date and fertilization amount, Nitrogen [kg/ha]. We denote two experiments: exper “1N” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent on the experiment: Fx0 is no fertilisation, Fx1 is the unit fertilisation of the experiment and Fx2 is the double unit fertilisation of the experiment. We define the unit fertilisation of the exper “1N” equal to 23 N/kg and the unit fertilisation of the exper “3N” as 60 kg/ha. Sowing date format is “DD.MM”.

330

335 3. Results

a) 3.1 Agro-climate changes in the region

a_____3.1) Changes.1 Climate changes in agro-climate indicators

340

Agro-climate climatic Indicators (provided on Info-Platform) are computed, derived from CORDEX models, and available on the Info-Platform, provide derived parameters information as time-slices-series data for ensemble or individual model metrics from country to NUT3 at the NUTS3 level over Southacross Romania. At the country region Fig.3 shows Figure 3 illustrates projected changes in main key agro-climatological climatic characteristics.

345 ~~Region's~~

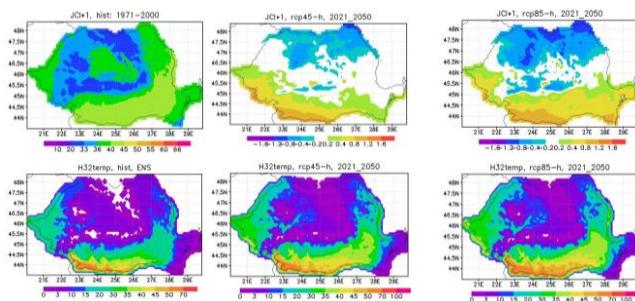
The anticipated climate is expected to shift as shown (Fig. 3a) in the region is evidenced by changes in the Johansson continentality index (Baltas, E. 2007; Floeas, 1994) defined as:

350 Continentality Index (JCI=, Fig.3a), calculated as $JCI = 1.7 * dT / \sin(\rho\phi) - (\phi) - 20.4$

(where dT is the annual maximal thermal range of monthly mean temperatures and ϕ is the latitude; (Flocas, 1994; Baltas, 2007)). Changes in JCI show an increase in the entire Southern part up to 5.5% of the interval required to switch to “extreme continental” from “continental” class already in the first 10 years (2021–2030) in the ensemble mean (and up to 10% change per model). Changes are towards “maritime” in the Northern half, this zonal differentiation creating strong thermal wind gradients and being stronger in RCP85. For agriculture, an often used JCI generally reveal robust evidence of large-scale changes influences on the regional indicator is the scorching days number (SC), computed over the

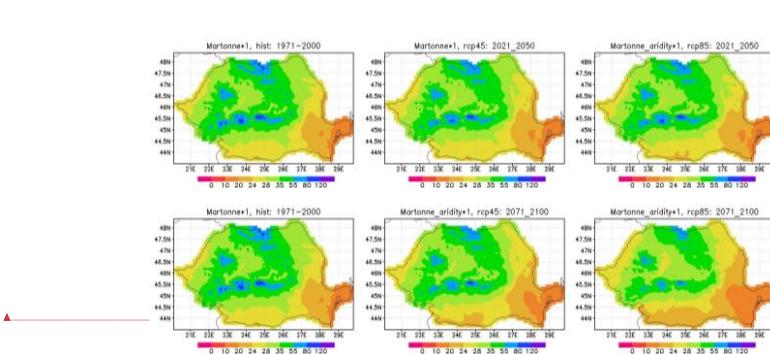
360 region as the number of degrees in summer days (JJA) over the temperature of 34°C. SC is constantly increasing (Fig. 3a) in the overall country, with a stronger increase in RCP85 both, in the first decade and until 2050 than in RCP45, emphasizing as well, the enhancement of the north-south climate. For this domain it shows a Southwards meridional gradient. Relevant for composed temperature and precipitation, the deMartonne aridity index (IM) computed as the ratio between of the intra-annual total precipitation (fmm) and variability (Arctic amplification remote impacts on Europe). Hence enhanced intra-annual 365 mean temperature ([C] +10) shows in Fig. 3b significant changes in its classes as well, decreasing (towards aridity) mainly in the South, SE and SW, variability (JCI) with much warmer summers than winters over the main agricultural areas discussed here. Identification of projected changes in aridity was shown to be a key issue for adaptation in semiarid environments (Ignacio Lorite, et al, 2018).

370 We summarize that changes are accelerating in the South in RCP85 (differences 2071-2100 versus Hist are higher than those over 2021-2050).



375 Fig. 3a: Historical (left) and in South (and the opposite in the North), information useful for farmers to estimate changes 380 relative to it under RCP45 (middle) and RCP85 (right) along 2021-2050, for: the Johansson conventionality index JCI (top): the JCI climate is marine for $0 < k < 33$, continental for $33 < k < 66$ and exceptionally continental for $67 < k < 100$; the Searching index SC (bottom) - in the sowing time.

Formatted: Normal, Left



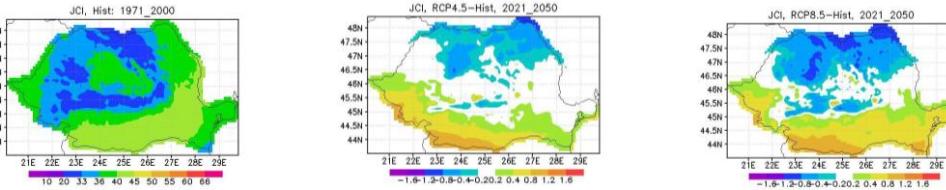
390 Formatted: Font color: Auto

395 Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

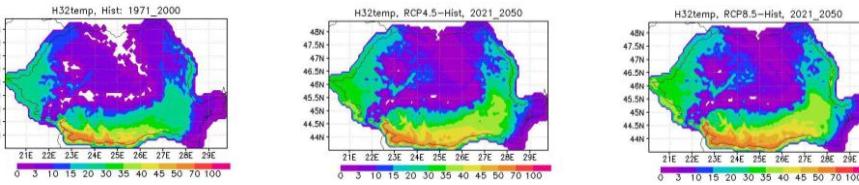
Fig. 3b: Historical (left) and changes relative to it under RCP45 (middle) and RCP85 (right) alongIn
 405 agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding 32°C),
 used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought
 conditions (H32temp \geq 51), about doubling the Hist values and expanding significantly across the southern regions in RCP8.5
 with already high-level drought conditions (31 < H32temp \leq 51) occurring in RCP4.5 (Fig.3b).

410 Accounting also for precipitation changes, the de Martonne Aridity Index (IM, the ratio of annual precipitation to a translation
 function (+10C) of the annual mean temperature), exhibits also significant projected changes. It shows particularly increased
 aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an accelerating change up to
 2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050).

a)



b)



415 Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and changes (2021-2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are: marine for $0 < k \leq 33$, continental
 420 for $33 < k \leq 66$ and exceptionally continental for $66 < k \leq 100$. b) The Scorching index H32temp classes are: reduced intensity drought for $H32temp \in [0, 10]$, moderate intensity for $H32temp \in (10, 30]$, high intensity for $H32temp \in (30, 50]$ and severe drought conditions for $H32temp > 50$.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

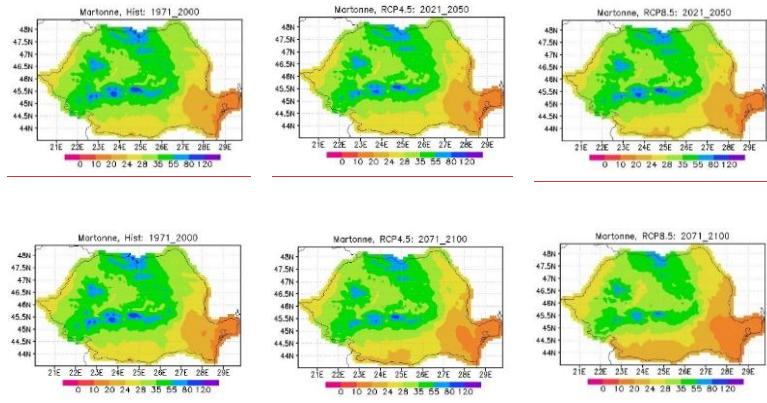


Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top) and 2071-2100 (bottom) for the Martonne aridity. IM index. $(0 < IM < 10$ classes are: arid; $10 \leq IM < 20$ arid, semi-arid; $20 \leq IM < 24$ Mediterranean; $24 \leq IM < 28$ semi-humid; for $24 \leq IM \leq 28$, wet for $28 \leq IM \leq 36$, very wet; for $36 \leq IM \leq 55$ very wet; **IM > 55 extreme wet; (all indices are time mean 30 years, ensemble mean).**

Formatted: Caption, Left

Formatted: Highlight

a3.1.2) Changes in agro-climate extremes

430 Projected changes in extremes are analyzed for the ensemble models in Fig. 4 that for temperature and precipitation, highly useful information for agriculture, show important features in the region. A main aspect of interest is related to late-spring freezing days that may drastically affect the whole crop of the year. Fig.5a shows for South Romania (Călărași target subregion changes) that in RCP85 versus Hist, in spite of the decreasing trend (5% p-level significance) of the total number of freezing days (FD), total precipitation (RR), severe precipitation (RR10 the number of days with daily accumulated > 10 mm) and total precipitation (RR), for each of the three decades (10 days) of April (the main sowing month for maize). We note a decreasing tendency in FD for both decades, but in spring, we still may have severe events with interestingly intervals with, a number of freezing days in late-spring that is even higher numbers of FD in scenarios than in Hist, late-spring being one of the most vulnerable period to freezing for the plant

Formatted: Heading 3 Char, Font: Not Raised by / Lowered by

Formatted: Heading 3 Char, Font: Not Raised by / Lowered by

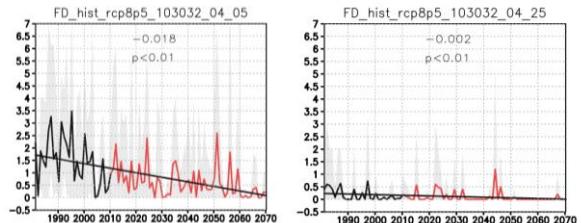
Formatted: Heading 3 Char

Formatted: Heading 3, Left

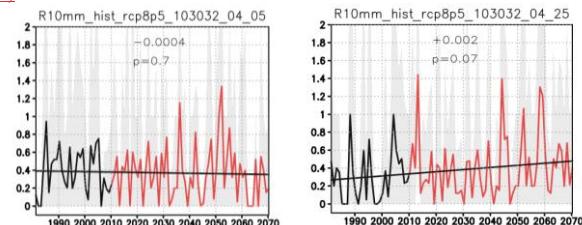
already under development. Also note that successive extreme freezing years in late spring may occur in RCP85 scenario

440 compared to Hist in the third decade-.

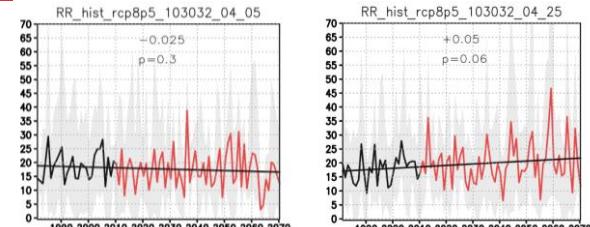
a)



b)



c)



445 Fig.5: Extreme climate parameters (NUTS region 103032, representative for the target region), along historical (Hist) and RCP8.5 scenarios; a): FD, the number of frost days (minimum temperature < 0°C in a 10-day period); b): RR10, the number of days with heavy precipitation (>10 mm per day) in a 10-day period; c): RR, total precipitation (mm) per 10-day period; (left): the 10-day period is centred on April 5th; (right): the 10-day period is centred on April 25th. Values indicate the slope of the linear trend (black line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).

450 This late spring blizzard feature over the region, important for plant evolution, was shown was analysed in a previous work; and shown to be related to the combined context of Polar Jet instability meanwhile with warmer sea surface temperature in the Eastern Mediterranean (Caian and Andrei, 2019). Both these features are projected to enhance in a warmer climate

Formatted: Normal, Left

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.57 cm

455 (Lelieveld et al., 2012; Shaw and Miyawaki, 2024;), which for the region indicates a), indicating higher potential for severe late-spring blizzard, affecting crops and the year's yield under warmer climate blizzards in the region.

Formatted: Font color: Black

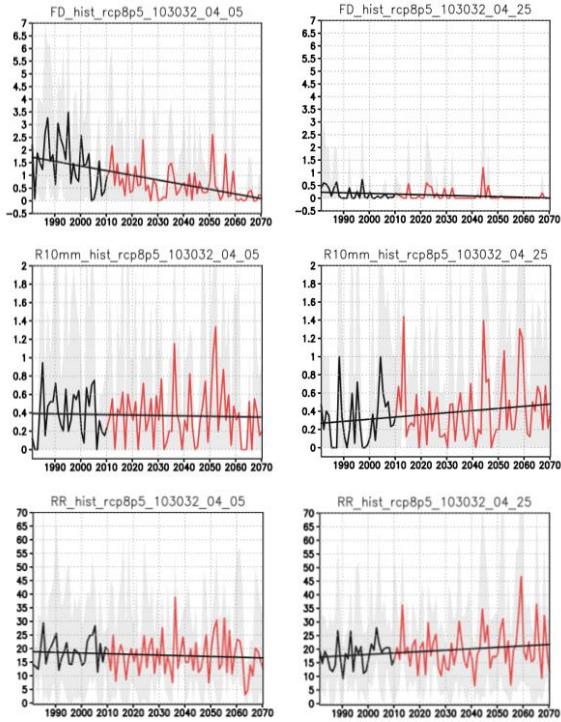


Fig. 4: Time evolution ([years], Ox axis) in Hist and RCP85 (1981–2070) of extreme climate parameters: number of frost days (minimum temperature $<0^{\circ}\text{C}$, per 10 days slice, top), number of days total per 10 days slice with heavyFor precipitation ($>10\text{mm}$) (middle); , analysis of extreme precipitation sum (10 days, [mm] bottom); 10 days slices are centered: 5 April (left), 25 April (right). Boxes indicate the slope of the linear trend (black line) and the p-value of significance ($p\text{-value} < 0.05 \rightarrow$ significant at 5% level of falsely rejecting the null hypothesis of linear regression coefficient = 0).

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

495 Extreme (RR10events (RR10mm) and total precipitation (RR-show the following;) reveals a negative trend-notable shift in their temporal distribution within April. While a decreasing trend is observed in the first decade of the month turns in opposite to dekad, a positive trend emerges in the third (and second) month's decade, that indicate a time-shift towards end April-May of accumulated precipitation peak along April month. We note that this feature of precipitation shift is present systematically in each model of the five member CMIP5 ensemble
500 (Karl et al. 2011). RR10 (and RR20, not shown) extremes enhance even more towards 2070. Also, RR10 and RR show higher variability with significantly higher isolated extremes in the third decade of the month in scenario compared to Hist.dekades (Fig.5b). These suggest a time-shift tendency towards the end of April and into early May for the occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level, this shift is consistently observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme values
505 of RR and RR10 are projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b,c), more often during late spring. Extreme daily precipitation is, in most cases detrimental for the crop, causing soil erosion and surface runoff mainly after drought periods.

Formatted: Normal, Left

510 b)3.2 Phenology and Yield projected changes Harvest Projections for the control genotype Control Genotype
Projected changes in phenology for the control genotype (Pioneer 375) were simulated with using the DSSAT forced by model under historical (Hist) and multi-model Hist and climate projections of CRP4.5 and RCP8.5 scenarios RCP45 and RCP85, using first the control genotype G0 (Pioneer 375*) of the region. The implemented system. Further, multi-genotype simulations are discussed in Section 3.c.
515 Model validation was done in conducted using Control simulations that used (Ctrl) driven by ERA5 reanalysis climate data from ERA5 (Simmons, et al., 2021) over for each treatment outlined in Table 1 (experiment "3N").

Formatted: Heading 2, Left

These simulations, spanning the period 1976-2005. These show a good time, demonstrate the model's ability to capture inter-annual variability of the simulated Yield against available measured values for the region, and that the 520 modeling system is able to capture years of in harvest yields, including both high and low yield (Fig.5). The years, when compared to the measured available data for the region (suppl. S1). They also allowed model set-up

Formatted: Normal, Left

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

involved improvements through sensitivity simulations and model calibration including soil parameters calibration, that was performed along sensitivity experiments for (suppl. S2) as soil water, nitrogen, and Nitrogen and Carbon organic carbon content.

525

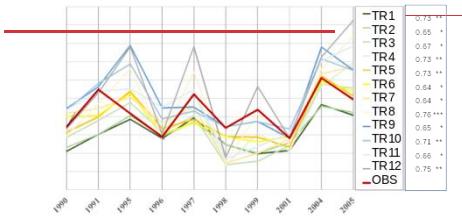


Fig. 5: Harvest simulated under twelve default management scenarios (Table 1, 3N) and measured (red thick line), for the S-Romania. Blue box shows the Pearson correlation between treatments and measured Harvest with statistical significance (** p=0.01; ** p=0.02; * p=0.05).

530

However, further improvements in model accuracy are to be achieved if incorporating factors such as inter-annual soil variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing dates. For example, simulations with fertilization specifications closer to the year's management practices (e.g. approximately 80-120 kg N/ha and sowing around April 15th for 1995) resulted in more accurate (reduced bias) predictions (TR6, TR10). These, together with the well simulated inter-annual variability, demonstrate the model's ability to capture the combined influence of climate and management practices on crop performance.

540

3.2.1) Phenology dates - projected changes

Ensemble model simulations over 30 year scenarios up to 2050, compared against historical runs (for RCP 4.5 and RCP 8.5) indicate provide projected changes in the anthesis and maturity days in Fig. 6phenology, for the control genotype G0, fertilization 3N (Table 1, (G0), under different fertilization levels (0, 60, 120 kg/ha, Table 1, experiment "3N") and sowing dates, averaged over 30-years, in scenarios (2021-2050, RCP4.5 and RCP8.5), versus Hist (experiment set up "E_3N_G0"). These show that the). Figure 6a,b illustrates the ensemble model changes, demonstrating an earlier anthesis date is projected to occur earlier by up to ~6 days while an earlier maturity date by up to ~10 days across

Formatted: Font: 12 pt, Font color: Black, Not Raised by / Lowered by

Formatted: Font: 12 pt, Font color: Black, Not Raised by / Lowered by

Formatted: Font color: Black

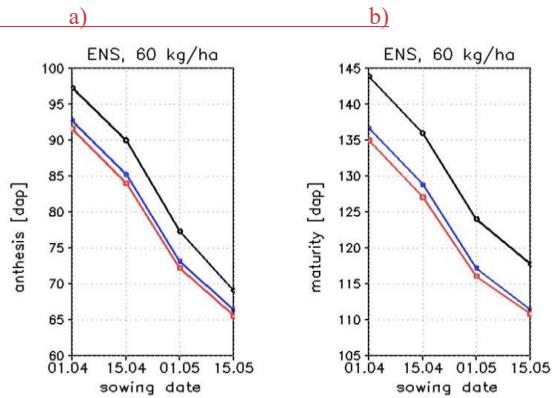
Formatted: Normal, Left, Indent: Hanging: 0 cm, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.57 cm

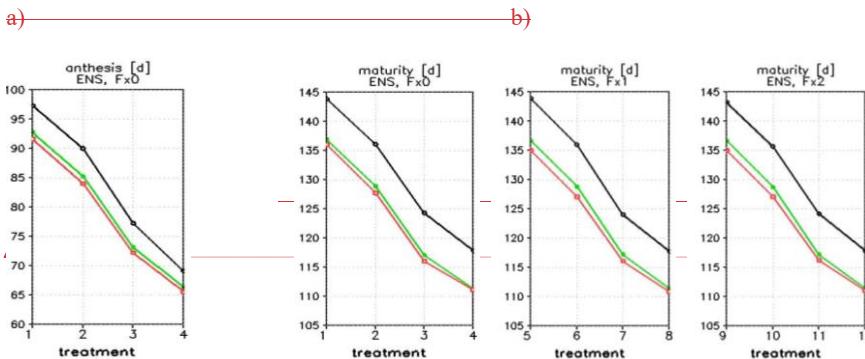
all scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a
550 consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in anthesis
under warming scenarios, a response even more pronounced under RCP8.5.

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential
crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and
temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures potentially
555 inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more frequently in
treatments with higher nitrogen fertilization, leading in average only small changes in maturity days. This may
favour leaves development, enhanced transpiration and earlier depletion of the soil moisture leading later to about
10 water stress.



560
Fig.6: Simulated a): anthesis dates (dap), days (ensemble mean, time mean), regardless of the planting date and after sowing) and b): maturity dates (dap), under historical conditions (black), RCP4.5 (blue), and RCP8.5 (red) scenarios, experiment setup E 3N G0. Results are shown for the four sowing dates and nitrogen fertilization level. The two shifts together lead to a shortening of the growing season by up to 10%. The average maturity date may show small variations with the fertilization level, due to occurrence of slowed grain filling (Fig. 6).
565 of 60 kg/ha (Table 1, exper "3N").

Formatted: Caption, Left



Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

575

580

Fig.6: a) Anthesis dates ([dap], day after planting) simulated for the historical period (black), RCP45

585 scenario (green) and RCP85 scenario (red) for treatments 1 to 4; b) the same for the maturity date, for

treatments 1 to 12. On the Ox axis there are the treatments (1-12, Table 1, 3N, experiment E_3N_G0).

b3.2) Yield, Harvest - projected changes

Formatted: Heading 3, Left

590 Same multi-model For harvest, the ensemble simulations experiment(along E_3N_G0 show) project an overall decrease, in the ensemble mean, of the yield in under both climate RCP4.5 and RCP8.5 scenarios, for and across all tested (Table 1) management scenarios with perturbed sowing dates and fertilization levels (Fig. 7a,b,e).7, compared to the historical period.

Formatted: Normal, Left

595 This decrease was related to several factors: a decrease in the accumulated rainfall in the growing period (Fig. 8a,b,c) in scenarios compared to Hist in both climate scenarios and for all managements scenarios; a systematic earlier flowering date and date of reaching physiological maturity, the two leading a shortening of the crop season (Fig. 6); a decrease of fertilization efficiency with increasing warming: the decrease in Harvest in scenario compared to Hist is higher for later sowing dates and for higher emission in RCP8.5 than in RCP4.5 (Fig. 7e).

600 In the non-fertilized (Fig. 7a) case, we note a Harvest increase with delaying sowing, for Hist and for scenarios, indicating in the lack of nutrients, a stronger relation with precipitation: more accumulated precipitation (Fig. 8a) for later dates (season's length increases for later sowing, for all treatments). Also, RCP85 shows higher H values than RCP45 due to precipitation time shift (Fig. 4), more appropriate for the plant development phase. This is no more valid when fertilization occurs (Harvest decreases are obtained for later sowing dates in this case) pointing to nonlinear relation climate-fertilization and to a decay of fertilization efficiency with warming.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 c

The robustness of these is further analyzed in sensitivity simulations with enriched soil nutrients.

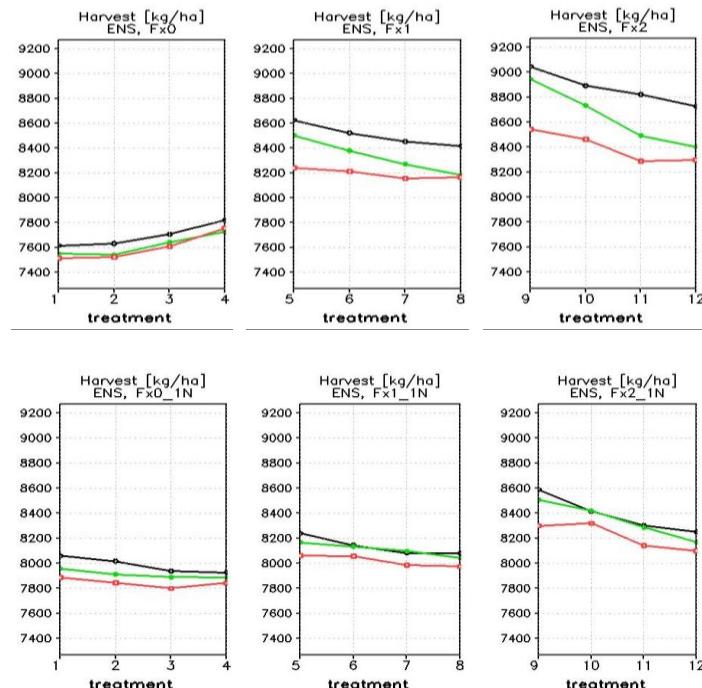
610

b.3) Sensitivity of changes to nutrients

In a second experiment we use the same fertilization levels but change in addition the initial soil content in Carbon and Nitrogen (increased). The aim is to understand if less fertilization (less pollution) could be compensated by better soil characteristics choice. Achieving best Harvest in warmer climate versus actual climate enhancing the support towards a neutral climate, is a crucial point.

The sensitivity ensemble simulations increase soil Carbon and Nitrogen at the initial time by 20%, for the same control genotype (Experiment E_IN_G0_soil+CN).

620



645 Fig. 7: Same as Fig.6b, for harvest (kg/ha). Harvest decline in climate scenarios is attributed to several factors:
1) reduced rainfall during the growing season (Fig.8), as evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

August, over 30 years) found between harvest (H) and accumulated precipitation in the Ctrl and in model simulations; 2) a shortened grain-filling period due to a projected earlier flowering and an even earlier maturity across all the models (Fig.6), potentially limiting biomass accumulation; and 3) decreased fertilization efficiency under warming conditions, in the sense that H difference Hist minus scenario, increases (non-linearly) with enhanced fertilisation (Fig.7). Hence for a same climate, the same increase in fertilisation brings less benefit in a warmer climate. This benefit for H is of about 10% in Hist versus 7.6% in RCP8.5 for early sowing and about 8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of nitrogen (Fig.7b,c). This efficiency decay feature underscores the primacy of reduced accumulated precipitation (Fig.8) and of higher temperature, that lead to a non-linear H response to fertilization (Huang et al, 2024). Their influence is noticed as well in the absence of fertilization (Fig.7a), when H still declines in warmer climates, with a dominant control from precipitation. The correlation along sowing dates between H and accumulated precipitation until maturity (Pmat, Fig.8), is $r(H, Pmat) > 0.96$ in both scenarios.

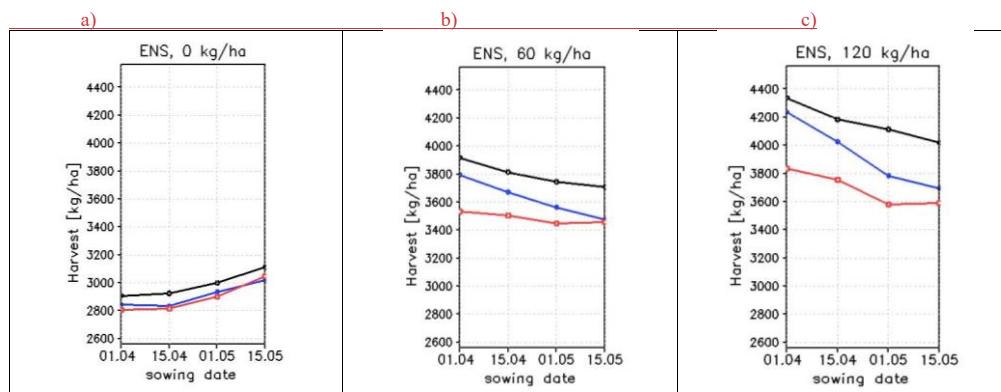


Fig.7: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E_3N_G0.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

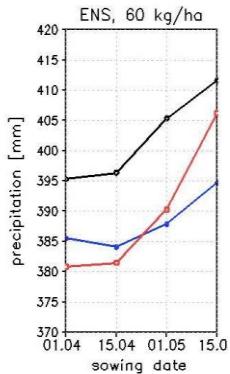


Fig.8: Precipitation accumulated until maturity (mm) in experiment E_3N_G0 (top) and for experiment E_1N_G0_soil+CN (bottom). legend as in Fig. 7.

Formatted: Caption, Left

665 The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a shorter accumulation season (Fig.6) but having projected a precipitation increase towards late spring (Fig.5), that may significantly favour critical growth stages.

670 3.3 Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig. 7) shows that the Harvest is reduced by only up to 7% for about 60% reduction in fertilization when the soil nutrients content is increased by 20%. In addition, we note two interesting features also for adaptation-decisional support. One is that there are still options even under warmer climate to overestimate the historical Harvest under appropriate initial soil composition (e.g. in RCP45 TR6 and TR7, Fig. 7e) and even under RCP85 (TR10 and TR11, Fig. 7f). The mechanism behind appears to be linked to richer soil (N, C) leading to a slower maturity (Fig. 8b) with consequent more precipitation accumulated along the growing season (Fig. 8e). This slower maturity is stronger for early sowing (Fig. 8b) hence better date option (Fig. 7d, differences diminishing at later sowing due to precipitation shift).

Formatted: Font color: Black

Formatted: Normal, Left, Indent: Hanging: 0 cm, Borders: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

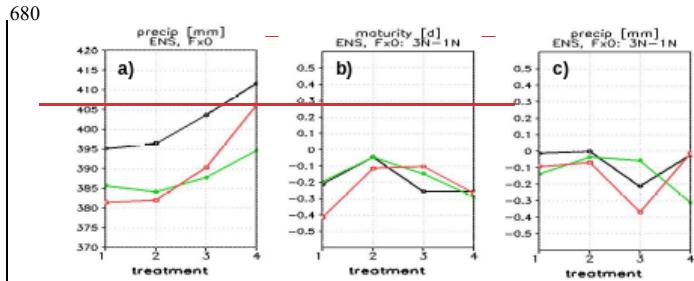


Fig.8: a): Accumulated precipitation from the initial time of the simulation until the maturity date ([mm]), for scenarios as in Fig.7, for E_3N_G0; in b) are shown differences [dap] in the maturity date and in 685 precipitation for (E_3N_G0) minus (E_1N_G0_soil+CN); c) same differences as in b for the precipitation accumulated along growing season ([mm]).

In summary for the control genotype, in both climate scenarios, and for all the management scenarios 690 tested for sowing date and fertilization level but keeping the same genotype, it is projected a shortening of the growing season (and earlier development phases) with mean decrease of the projected yield. Meanwhile, it is shown that one can get comparable outcomes if astutely using soil richness, elongating the growing season, instead of enhancing fertilization levels and pollution.

695 e) Optimal genotype identification Genotype Identification

Formatted: Heading 2, Left

The system was further developed to extend the management scenarios for multi-genotype simulations and algorithms for 700 optimal identification under each agro-climate scenario. Best options are searched that lead to optimal (user-defined) yield: highest harvest, stable yield, less pollutant. implement methods to identify ideotypes under each agro-climate scenario. The aim is to search for management scenarios that yield optimal outcomes defined by user-criteria such as maximizing harvest yield, stabilizing yield, or minimizing pollutant emissions. Two optimization methods are implemented: a discrete-parameter, purely deterministic technique, and a hybrid approach that combines deterministic modelling with continuous-parameter Machine Learning-based Genetic Algorithms for iterative genotype selection.

Formatted: Normal, Left

Two optimization methods are implemented: a discrete-value pure The deterministic technique and a hybrid optimization technique combining deterministic modeling with ML Genetic Algorithms for iterative selection.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 c

710 Deterministic method ~~performs~~ involves conducting multiple simulations (and optimisation is part of the post-processing), for pre-established limits and discretisation intervals for each of the genotype parameters considered (here six) crop model simulations, with optimization performed as a post-processing step. Genotype parameters P_i are defined within pre-established limits and discretization. Multi-model simulations in which are then performed, where each parameter is individually varied while the others have fixed values are performed, resulting in a number of simulations depending on the discretisation. An example for the criteria of "maximum yield" is illustrated in Fig.9a, for six genotype ~~per remaining~~ parameters: P1 the thermal time from seedling emergence to the end of the juvenile phase; P2 a photoperiod-development delay parameter; P3: the thermal time from silking to physiological maturity; P4 linked to maximum kernels per plant, P5 linked to kernel filling rate and P6 the phyllochron interval), for Hist, RCP45 and RCP85, each for the twelve default sowing date-fertilization treatments and each model of the ensemble. We discuss here the results of genotype optimization (experiments E_IN_Gn+w) that are based on the setup of E_IN_G0 but in which we increased the initial soil water content by 5% as indicated by the projected maximum change over the pilot area (Fig.1S, Suppl). Parameter P4 was ~~kept~~ held constant as having known impact.

725 i) Optimal Harvest under climate change

730 Fig. 9 shows, for the ordered genotype upon Harvest (H), a projected average decrease of the Harvest (H) in maximum values' genotype. The total number of simulations in this case is determined by the chosen discretization level. In contrast, in the hybrid technique the P_i values are selected from a continuous range (top 2.5% cases), for RCP45 and emphasized also in RCP85 for earlier sowing. This response is not systematic among models (Fig. 2S, Suppl). Among models, we note a strong link between H differences and models' projected precipitation (a parameter with high intra-model variability and regional scale uncertainty) mainly for unfertilized case. In opposite, the warming trend is a parameter in models' consensus for this region, leading to systematic responses as earlier anthesis and maturity dates with a season shortening in RCP45 and even more in RCP85 affecting mainly in the range of highest H (Fig. 3S, Suppl).

735 We further analyze robust features of the projected yield that are systematically seen among model-simulations. Important climate-adaptation information appears from these diagrams.

740 One is the different response obtained for maximum H (GX) and for intermediate H (GI). Any ("n") ordered simulations has a harvest, and a genotype associated, that we call "H-range" and respectively "G-range" (of the top "n" th value of H). We call GX the ranges of highest H of values, GI of intermediate H values and GN of lowest H values.

745 The large ensemble of genotype-treatment simulations indicate a decrease that is projected for the highest yield (GX, Fig.9b) that is projected in RCP45 and RCP85 (except late sowing, low fertilization, potentially linked to precipitation shift towards later in April mainly in RCP85). In opposite, a H increase

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

is projected for the intermediate yield genotype ranges (GI) for almost all treatments (Fig. 9e). The explanation comes from the fact that we test a broad range of parameter P3 (the thermal interval to maturity) and H increases significantly with P3 increase, in scenarios relative to Hist, a cause being the fact that at highest values of P3 the plant maturity comes earlier in scenario compared to Hist with an overall shortening of the season (with increasing P3, allowing stage accomplishment). These two tendencies become systematic for all models in RCP85. Tendency towards H overestimations in scenarios is not excluded neither for the Control genotype under conditions of higher soil water as it was already noticed in Fig. 7 e,f for the control Genotype. Here its G-parameters are located in the intermediate range (400-1400) and have a central P3 value, but a lower initial soil moisture.

750 P3 value appears a key parameter on managing H. However care should be taken as extreme P3 increase leads to a too slow grain filling, and crop failure, more often in scenarios than in Hist (Fig. 3S), when P3 is above a threshold (that is P1 and P2 dependent, not shown).

755 The second feature is the fact that while for the highest H (GX) range it is systematic that earlier sowing conditions are better options in E_IN_Gn+w (as P1 is small in maximal H), this is no more valid for intermediate H genotype ranges (GI, Fig. 9a zooms, more days with precipitation identifying and iteratively improving mainly the unfertilised cases). We note ranges with e.g. TR2 worse than TR3 (at GI ranges) and better than TR1 (at GX ranges) mainly in RCP85. At mid low H (ranges 1400-1890, GI, GN), there are intervals of cross-parameter (sowing-fertilization) critical cases under unfertilized early sowing, 760 rather than fertilized (top zoom in Fig. 9a, e.g. for RCP85).

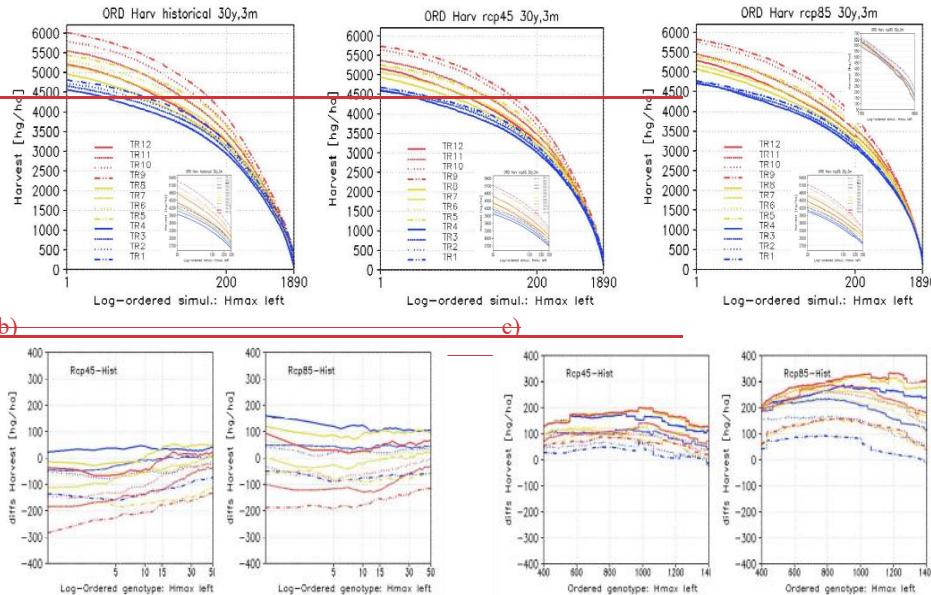
765 How one can use the PREPCLIM v1 system output to assess a the best management under climate scenarios? For a given genotype one can identify in these diagrams, either the optimal sowing fertilization for a given scenario (on the vertical Ox=constant on Fig. 9a), or, for a given H one can identify the genotype ranges (per each sowing-fertilization) allowing this solution (line Oy=constant on Fig. 9a). These may propose variate options to improve yield, using the modeling system.

770 Third, we note a systematic narrowing of the spread among treatments (all models, all scenarios, as shown in Fig. 9a) all along genotype spectra (G-range belts), indicating a reduction of response options in future.

775 a)

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm



780

Fig.9 a): Ordered simulation results for Harvest (O_y , model ensemble mean, time mean over 30 years). The simulations are for: Hist (left), Rep45 (middle) and Rep85 (right); a logarithmic scale was used for the simulations index in order to emphasize high H values. On O_x is the simulation rank (logarithmic scale) increasing for decreasing H (set up E_IN_Gn+w with cross-genotype changes in six P_i parameters resulting 1890 experiments); each panel has a small zoom over intermediate H genotype ranges [20-320] at bottom and over [1700-1890] for RCP85, top corner; b) differences of H over two genotype range windows indicating a mean change for: the window of highest H in (b); c) same as b) for the window of intermediate H values. Colors in b) and c) have the same meaning as in a).

785

790

795

The third feature to be noticed is the role of the initial soil moisture. We note that the control genotype in $E_IN_G0+soil$ (Fig. 7d,e,f) falls in the intermediate H values of E_IN_Gn+w here (Fig. 9) with higher yield in scenarios than Hist, feature already but marginally reached in Fig 7e,f, mainly due to enhanced initial soil moisture in $E_IN_G0_soil+w$. In this regard, Fig.1Sa indicates a projected overall decrease in soil moisture over the main agricultural area in the target region, with stronger decrease in the Eastern and SE parts.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

ii) Optimal Genotype under climate change

800 We saw a response of optimal H to the genotype choice in climate scenarios, and a different one for the highest H (highest 0–2.5% H), intermediate (interval 21%–75% of genotype range) and then lowest H values. For practical applications the crop projected response should be discriminated per genotype parameter (P1–P6) to provide efficient support in adaptation decisions.

Formatted: Normal, Left

805 We analyze the role of each P1–P6 genotype sub-parameter related to crop performance under climate scenarios versus Hist.domains. This section presents the results of genotype optimization experiments (E_1N_Gn+w), built upon the E_1N_G0 and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting near-term (2035 as centre of interval 2021–2050).

810 Management genotype scenarios show that main drivers of increasing H in Hist runs are: decreasing P1 the thermal interval seedling juvenile phase and decreasing the photoperiod delay parameter P2 (their increases are associated with lower H). Contributions come then from a longer thermal time to maturity (increasing P3), increasing the kernel filling rate P5, and decreasing the phyllochron interval P6. The slopes of P_i variation as a function of G-ranged index (the index increasing from maximal H to minimal H) are positive for P1 and P2, negative for P3 and for P5 and P6 positive only in the GX range of highest Harvest.

815 At lowest H we mention a particular sensitivity behavior of mainly P3 and P5 under increased fertilization and sowing date. In this case, both small and high P values may lead to H decreases (Fig. 10a). This is related to critical situations of too slow grain filling that occur at high P3. We raise warning for careful consideration when perturbing parameters as P3, P5 to perform genotype adaptation, requiring additional modelling: finer discretisation of genotype parameters intervals, highly accurate soil conditions set-up, close analysis of warming thresholds and phenology interactions implied).

820 How one can use the PREPCLIM v1 system output to assess a best genotype range under climate scenarios? We compare scenarios against Hist first for the different P_i in Fig. 10. Simulations show for all P_i a slope increase (P_i are functions of the G-ranged index) in the GX interval. Compensating the slopes decrease in GI and GN (the variation limits for P_i being kept the same) in scenarios relative to Hist. Relating these to H , we obtain estimates of projected impact of G-parameter perturbations, under climate change.

830 For GX, the slope decrease found for positive slopes (P1, P2, P5, P6, Fig. 10a) means that a G-range in GX will be obtained up to higher P_i values than in Hist (Fig. 10b) hence an enlargement of actually possible values (lower P_i values correspond to higher H in positive slopes). For GX, the slope increase found for the negative slope of P3 means that higher H values than a given H range here will require higher P3 values (seen Fig. 10b, as high values are giving best H in negative slopes), so constraining its variation interval in GX to a narrower interval. This can be understood as a constraint on using P3 for enhancing

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

835

~~H and an enhanced efficiency on using P1,P2,P5,P6 options for enhancing H under warmer climate, for maximal H (GX range).~~

840

~~For GI, a same analysis, links the slope increase for positive slopes (P1, P2, P5, P6, Fig. 10a) to constraints on these parameters as options for increasing H, while the slope decrease of negative slope for P3 represents an enhanced efficiency on using this parameter for improving H in the intermediate range values.~~

845

~~For GN as discussed above, the response present bifurcations in the relation (Pi,H) and careful simulations are required. These are however very important in the critical years, when yield is estimated to be very low and we are searching for solutions. Note that over GN P6 has a third slope change (otherwise main, non-bifurcated slopes and changes are as in GI), becoming positive (Fig.10a), with enhanced efficiency.~~

850

~~We finally note the interesting aspect of differences between the two scenarios, in which important changes of response (reversal) occur in P5 and P6 in RCP85 compared to RCP45, with consequent impact on measure efficiency / constraint, that should be accounted for in adaptation.~~

855

~~In summary of the tis analysis, it is revealed that the main impact on H of genotype parameters' changes are from P1, P2 and P3. It is shown that using shorter thermal time to flowering P1 values or species with a shorter photoperiod-development delay P2 (for ensuring intermediate H range values) and higher P3 values (longer thermal time to maturity) for getting maximal H range values are constraints for Pi under warmer climate compared to Hist, emphasized for the pilot region.~~

860

~~Equally important, we note that changes in sign of responses (scenarios minus Hist) occur in Fig. 10b in the GI range [400-1500], that is about the actual Control genotype range (Fig. 4S). This points definitely to necessity for model simulations in order to identify which slight changes in Pi would lead better or worse H in a warmer climate.~~

Regarding now3.3.1 Optimal genotype under climate change

i) harvest as a function of the genotype H(G) in scenarios versus current climate

865

~~We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and denote the genotypes corresponding to this ordering "H-ordered genotypes", chain which is simulation (model, scenario) dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the ensemble-model PDF (probability density function) of H under warmer climate.~~

870

~~A first outcome demonstrates in Fig.9a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H) occurs within the range of maximum H values (genotypes in the upper H-percentile, interval GX (0%, 2.5%) of the H-ordered genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9b). Across models of the ensemble, we note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios. Precipitation exhibits high~~

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

inter-model variability and significant regional-scale uncertainty, pointing to the need of ensemble modelling for reducing it. In contrast, the warming trend is a consistent feature across models in the region, contributing other model-systematic responses such as earlier anthesis and maturity dates and shortening of the grain filling season.

The second note regards a different response projected in the intermediate H values (Fig.9a, c). Genotypes corresponding to 875 the intermediate H values (genotypes of middle H-percentile, the interval GI (25%, 70%) of the H-ordered genotypes) show projected higher H values in GI in climate scenarios than in Hist (Fig.9c), affecting less the earlier sowing (Fig.9c).

These together lead to a narrowing of the H-values range of responses, in GX and GI, to the same managements applied, in scenarios compared to Hist. Same management spread would lead to closer H-responses, with enhancing the expectancy for occurrence of intermediate values and decreasing the expectancy for highest H values (a third feature of projected changes).

880 Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9a), improving by up to 2-(4) % in scenarios (respectively Hist) unfertilized case and up to 8-(12) % in fertilised case (Fig.9a), with the lowest percentage for RCP8.5. Earlier sowing was reported in other recent studies as optimal for spring maize harvest (Djaman et al, 2022).

ii) options for adaptation and mitigation using genotype analysis

885 These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for early sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in GX and GI with higher/lower expectancy of intermediate/ high values occurrence, have practical adaptation outcomes.

The first two points are equivalent to slopes' change of H as a function of the ordered genotype, as shown in (Supl. S3) in 890 climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the result in scenario compared to Hist, for a given agro management. Alternatively, for a given genotype one could find how a change in management practice could optimize the result. In this last case for example, one could choose a small shift in the sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher H, as shown for example in TR5 versus TR11 in Fig.9a, RCP4.5 (Fig.9).

895

a)

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

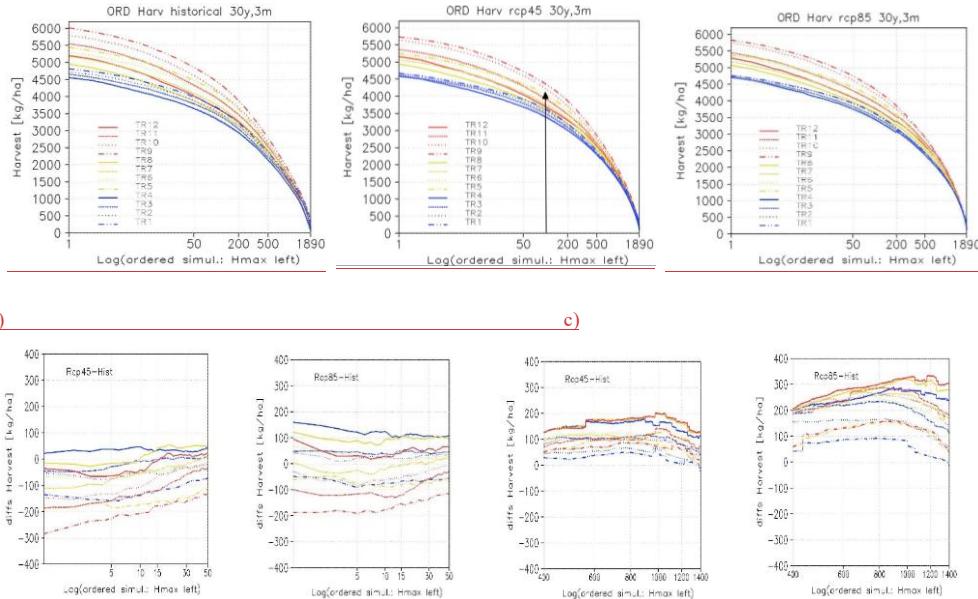


Fig.9 a) Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale). The simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right), experiment setup E 1N Gn+w, for cross-genotype changes in six Pi parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist (left) and RCP8.5 minus Hist (right), for the upper H percentile (the first 50 values, 1-50 on x axis) and intermediate in c), range [400-1400] on x-axis. ("Hmax left" indicates that increasing values of H are on leftward direction of the axis).

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9b).

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct weather favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting (Dewitte et al., 2021).

3.3.2 Optimal Genotype parameters Pi under climate change

910 i) optimal genotype parameters

We further discriminate H response per genotype parameters (P1-P6), to understand the source of the changes in Fig.9 and the possible adaptation paths under climate and management scenarios.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Parameters' analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.10b), slightly shorter thermal time between successive leaves appearance (phyllotrichon, P6, Fig. 10 e) in GI and longer in GX, but longer thermal time to maturity (P3, Fig.10c) and higher grain filling rate (P5, Fig. 10d). These results are in coherence with findings along recent works. Shorter P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-humid areas, (the current class of this region, with semi-arid trends projected, Fig. 4), and the same for P2, while slower maturity (P3) and enhanced filling rate (P5) being linked to higher kernel weight and harvest in agreement with recent studies (Grewer et al., 2024).

ii) changes in optimal genotype parameters in climate scenarios

Comparing Pi in climate scenarios against Hist, reveals the new plant strategy put in place in the new climatic conditions, for maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached with genotypes that ensure a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in scenarios compared to Hist. To a smaller extent this is also achieved by a longer photoperiod delay, higher grain filling rate and longer phyllochron interval, in scenarios, than for a same percentile of the Harvest in Hist. These show that under warmer climate it is essentially important to avoid too fast growth on main stages of the development.

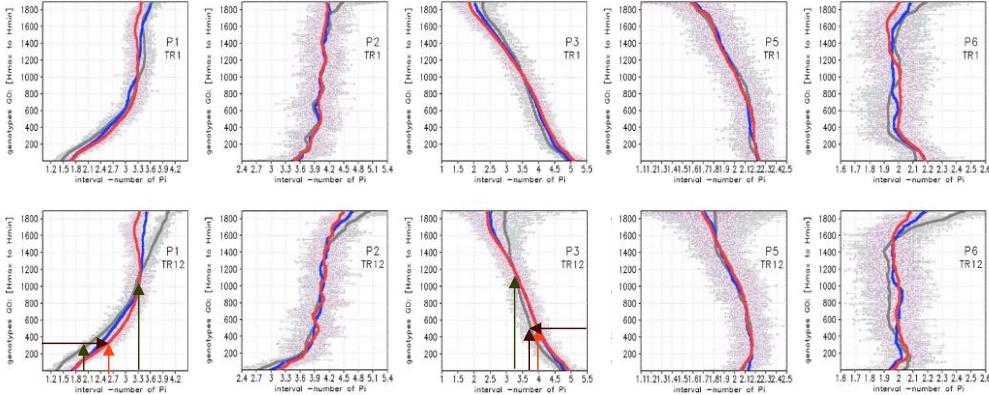
Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10a, b) and related to these, under longer photoperiod (P2 increases, Fig.10b). Other contributions come from ensuring a slower rate of appearance of successive leaves (P5 increase), while a higher grain filling rate (P6 increase) appears to partly compensate for the negative effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the harvest.

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate (Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the Pi changes in scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving.

a) b) c) d) e)

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm



940 **Fig.10: Pi values corresponding to ordered, decreasing harvest (on y axis, the number of the ordered simulation, v=1 is the highest harvest simulation). X-axis shows the Pi interval-number of discretization, increasing with increased values. Discretization here have used 5x7x6x1x3x3 intervals for P1xP2xP3xP4xP5xP6 (total 1890). Simulations are shown for two treatments (TR1 at top and TR12 at bottom), for: Hist (black), RCP4.5 (blue, only shown for the running mean) and RCP8.5 (red, ensemble time-mean; full lines show running means over 100 values window. The short arrows in a) and c) indicate, for a same harvest percentile (v=constant) the corresponding Pi intervals for Hist (black) and RCP8.5 (red); long arrows indicate the P0i values of the intersection of running-mean Pi for Hist with RCP8.5.**

iii) optimal genotype parameters in management and climate scenarios

945 Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires gradually decreasing Pi in order to maximize H (Fig.11, also in Fig.10), for both Hist and climate scenarios. For P1-P3 this decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too late (autumn) maturity stage that is slowing the grain filling and leading crop failure.

950 However, Fig. 11 also shows that these Pi decreases cease or even reverse under extreme delay of sowing. For highest delays the development stage is getting too short under P1's too strong decrease while daily temperatures becoming higher, hampering the development. The same is seen for the maturity, with P3' too strong decrease favouring a too quick grain filling. Hence the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its adaptation to warmer climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease or even increases of Pi parameters along with gradual increasing delays in the sowing date.

955 This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi. This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced

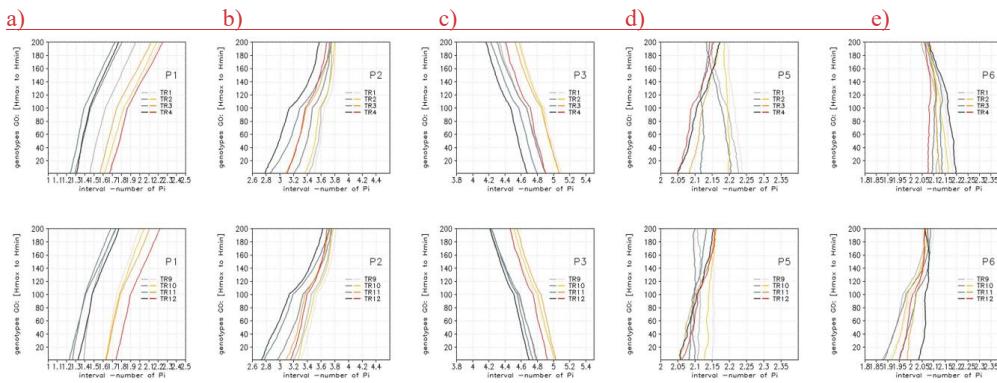
Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the development to the key issue of avoiding a too fast growth leading crop failure.

This gradual switch in the mechanism of P_i performing high harvest, with sowing delay appears quite systematic for all P_i .

960 This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the development to the key issue of avoiding a too fast growth leading crop failure.



965 Fig.11 As in Fig.10 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom). Parameters P_i are shown for the top 200 highest harvest (y from 1 to 400). Grey colours are for Hist and yellow-red for RCP8.5 (light to dark from earlier to latest sowing).

iv) optimal genotype parameters in adaptation and mitigation strategy

970 For each agro-management and climate scenario one can identify threshold values of P_i (P_{0i}) that depend on the P_i , the sowing date and the fertilization level, shown in Fig.10) of intersection between scenario and Hist. At this value, for the genotype the two have the same H percentile. So P_{0i} shows if we get an enhanced percentile or decreased from genotypes with higher or lower P_i in the scenario compared to Hist (Fig.10, shown by arrows).

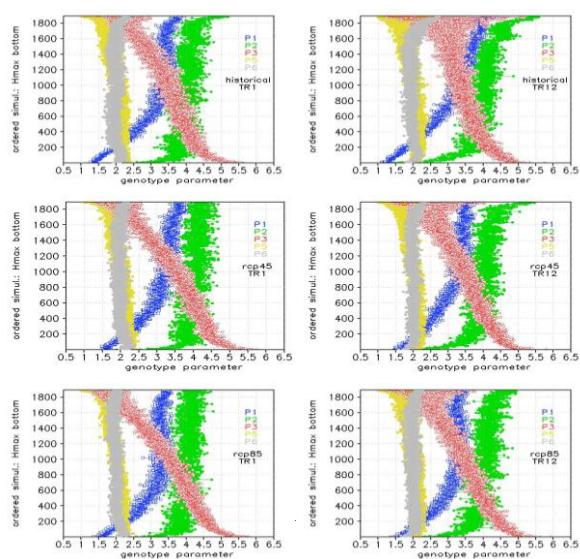
975 Second remark is on the expectancy of an outcome. Since all the slopes of P_i , each as a function of H ordered-values are lower than in Hist (suppl. S3), there is a narrower P_i interval for all those P_i decreasing with H (e.g. P1) and a border one for those P_i increasing with H (P3, Fig.10c), in climate scenarios. P3 increases are broadening the interval for H-highest percentile, potentially presenting, in this sense, more expectancy (than P1, Fig.10a) on highest values outcome.

The genotyping results were found both in simulations involving deterministic and the hybrid method, deterministic-ML, this involves methods. The hybrid method involved the same cross-simulations, but this time the selection of P_i values

Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Normal, Left
Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Font color: Auto, Not Raised by / Lowered by
Formatted: Font color: Auto
Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

for parameters is H optimization and ordering was no more following a pre-defined discretisation and but instead it is a random picking up over a continuous interval of values and with successively retrieving the best generation, applying. It applies for optimization, classic Genetic Algorithms methods in which selection of pairs is based on the user-criteria (e.g. maximum yield harvest, stable yield harvest, etc.). Our results show that for the same physical intervals of the genotype parameters, the ML hybrid technique only after 20 generations shows at least 50% chances to get a better result than the deterministic model, while after 100 generations, it already increases at 80% chances to get better results. A better result means here, identifying an optimal configuration that has not been able to be emphasized by deterministic simulations with also computational efficiency. CPU time is reduced in this case by more than 30% using the hybrid technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better solution since it can identify improved optimums at lower computational prices.

995 In each of 4. Discussions the two techniques used for optimal genotype identification, we note that in climate scenarios versus historical climate, it is projected a significant narrowing of the management options range leading, for a given genotype, to high yields (Fig. 8b), that is a severe warning for future decision planning. Also there is a lower maxima potentially reachable under scenarios managements under warmer climate (including genotype, sowing, fertilization).



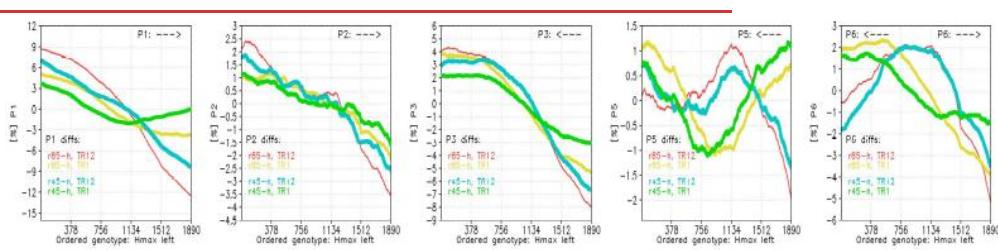
Formatted: Font: Not Bold

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1020 Fig.10a : Indices of the Genotype' six parameters (O_x) that correspond to Harvest ordered from max Harvest (Oy bottom) to min Harvest (Oy top). Here are 1890 genotypes ($5 \times 7 \times 6 \times 1 \times 3 \times 3$ simulations with parameters, per model in [1,7]), shown as ensemble mean for two treatments (TR1 left column and TR12 right column). Indices are time-averaged (30 years) for simulations along Hist (top row), Rep45 (middle row) and Rep85 (bottom row) scenarios.

1025



1030 Fig. 10b: Percent changes in Genotype parameters P_i as a function of the ordered Harvest from highest (left, O_x) to lowest (right, O_x). Differences (running means over 378– $P_2 \times P_3 \times P_4 \times P_5 \times P_6$ values) are shown for TR1 (yellow for RCP45 minus Hist) and green (RCP45 minus Hist) and for TR12 (red (yellow for RCP85 minus Hist) and blue (for RCP45 minus Hist). Differences in indices are expressed in percent relative to the parameter's range. Arrows indicate the (P_i, G -ranged index) overall linear trend from Fig.10a. (on O_x : the G -ranged index; on O_y the values of P_i).

1035

1040 The complex interactions for cross-parameters choice regarding sowing-fertilization-soil composition, shown before, would make it difficult for assessing an optimal path, in the absence of a modeling system. Even more, when it comes to choosing an optimal genotype with fixed or cross-optimal sowing-fertilization-soil configuration the added value of such a modeling for optimum identification becomes obvious and necessary, under warmer climate when traditional genotypes might no longer be suitable.

1045

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

The results found are in line with other results in recent studies, using different approaches and observational data, and offer an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For the plant response under management treatment delaying sowing date, limiting elongations of the development phase was also found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10, 1050 11). Also fertilization lowering P6 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for warmer climates (Hokmalipour et al., 2011; Sardans et al., 2017; dos Santos et al., 2021) was recently put in relation to P2 decrease mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration maximizing 1055 the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10f, 11f), limitations in the expansion of new leaves (increase of P6, Fig.10) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions (Fahad et al., 2017).

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P5, Fig.11d) under reduced P1, P2 and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated crop 1060 (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11d). This increase for P5 under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress, allowing plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber et al., 2022).

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows 1065 the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small perturbations may lead the system response into different states (threshold sowing-delays, or P0i for genotypes). Without an integrated modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since these are 1070 simulation (climate-management scenario) dependent.

5. Discussions and Conclusions

Formatted: Heading 1, Left

The main conclusion of this study is that an agroclimate real-time Interactive Service 1075 was developed that goes beyond interrogation platforms for agro-climate information, stepping forwards and implemented towards adaptation support, that allows performing in real-time, under user request

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 c

requested, agro-management modelling scenarios for the region. These allow crop simulations for time-slice of interest, specified climate scenario, and user-specified management scenarios.

A main, under current and future climate. A novel feature of the system is the ability for identifying optimal management paths for the user's request, along with multiple cross-cultivar management parameters and climate scenarios, such as 1080 e.g. cross-optimal sowing date, genotype parameters, amount and date of fertilization.

The system provides solutions and estimates the associated uncertainty associated by using multi-model ensemble ensembles for each agro-climate and management scenario. The optimisation crop optimization criteria are user-defined and can relate to high yield, harvest, stable yield harvest, low pollution. The 1085 optimization module implemented uses a hybrid deterministic and ML methodology. It performs multi-model simulations using physical models of climate and plant phenology and optimisation optimization is done either through simulating discrete cross-parameters intervals pre-defined discretizing the parameters' space and optimisation post-processing, either or using the advantage of continuous parameter space investigation by using hybrid physical-ML Genetic algorithms along multiple model 1090 simulations. Algorithms methods. ML is methods are spanning continuous parameter's space and interactively iteratively selecting along the simulations the best fit parameters, allowing to identify unprecedented optimal configurations, (H maxims), not reachable under the discrete deterministic method.

The overall system output information is layered and accessed from two interfaces. One: one static, contains high 1095 resolution agro-climate for information purpose (phenology, yield harvest, climate, extremes) at high resolution NUTS3 level that is useful for user analysis, management and adaptation and research. The a second interface is real-time interactive online, through which the system receives user places requests and performs required receives the system-performed management simulations providing the results. The user request refers to regional management scenarios or on required (including uncertainty along multi-models) and identified optimal management 1100 identification under climate change paths for adaptation. These platforms are operational for two emission scenarios RCP4.5 and were tested for two climate scenarios RCP45 and RCP85 RCP8.5 and twelve management scenarios (sowing dates and fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these tests are were discussed herein this work for the pilot region South Romania.

Formatted: Normal, Left

1105 For the control current genotype, in both climate emission scenarios it is projected a mean decrease (14% in ensemble mean, with higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and fertilization) tested. This was linked to a projected shortening of the growing grain filling season (and 10% quicker with an

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.57 cm

earlier shift of both anthesis (5 day) and maturity (10 day) phases and a mean decrease of the projected yield, for all the management scenarios, sowing date and fertilization level tested. We show that the to a mean decrease is also linked to a lower of the fertilisation efficiency of fertilization under warmer climatic scenarios, stronger in RCP 8.5 emissions.

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal harvest? How do these differ under projected climate. Compared with the previous observed unirrigated yields, here the shown reduction change and/ or under agro-management options and can these enhance our understanding to guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the region?

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then increase in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to reach the historical values in this range through agro-management and breeding. These indicate a narrowing of the responses range to same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of Hist, in climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-management choice will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less pollutant.

For effective support in adaptation applications, individual genotype parameters P_i were analysed in climate scenarios versus Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile range. This range is identified through critical values of the parameters (P01), determined for each treatment and climate scenario. There is significant (around 50%) in simulated yields of rainfed corn cultivated in South-eastern Romania under the new climatic conditions variability of P_{0i} under agro-management treatments. Moderate delayed sowing and enhanced fertilisation may diminish the shifts in P_i in scenarios compared to Hist for a same H-percentile, in contrast to extreme managements.

Formatted: Normal, Left

However, we show that this response is highly sensitive to initial soil parameters as soil water content, Nitrogen, Carbon. One could get an improved outcome if using richer soil (by 15%) but lower fertilization (by 60%), elongating the growing season. This solution prevents a detrimental increase of pollution that would otherwise enhance climate. These results show that Genetic approaches offer adaptation strategy support in helping plants to resist drought stress under warming. It is shown the importance of precipitation projections in relation with the sowing date: a time shift towards end April was identified in climate scenarios for the region with an important link to planting date's Harvest.

Formatted: Highlight

Formatted: Font color: Custom Color(RGB(31,31,31))

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 c

1140 The results for optimal genotype identification show, for the pilot area, under warmer climate two main
1145 features. One is a mean decrease of maximal reachable H (in the genotype G range of highest harvest
values) linked to a reduction of the agro-season length in the same genotype range (and earlier anthesis
and maturity dates). This response becomes systematic for all models in RCP85. Another is for the
1150 genotypes range of intermediate H values, under climate scenarios, where rising tendencies are found.
These are linked on one hand to the broader range allowed for the P3 parameter (thermal time to maturity),
higher P3 values leading higher H-range even against season' length decrease as shown further in the G-
parameter analysis. To note here that caution is required and additional modeling of P3 extreme increases
that give uncontrolled (bifurcation) of the H response as climate. Moreover, it leads, above a threshold
(P1 and P2-dependent) to crop failure due to a too slow grain filling, at a higher rate in scenarios than in
Hist. On the other hand, another contribution to higher intermediate-range harvest comes from the mean
precipitation decade shift, mainly in RCP85 projections.

Formatted: Font color: Custom Color(RGB(31,31,31))

1155 When discriminating the results upon genotype parameters we obtain that the main H changes are linked
to changes in P1 and P3 the thermal times to juvenil/ maturity phases. We show that there is a stronger
constraint to their decrease respectively increase.

1160 Using shorter thermal time to flowering P1 values or species with a shorter photoperiod development
delay P2 (for a same intermediate Harvest range) and longer thermal time to maturity P3 for maximal H-
range values are constraints emphasized for Pi under warmer climate compared to Hist.

1165 These could be exploited in adaptation strategies for enhancing yield optimization in scenarios. We
showed that the actual Control genotype falls in the broader range of most sensitive H response to these
changes for the region.

1170 It was shown that the optimisation search optimization is improved by using a hybrid ML genetic
algorithm method coupled to the deterministic model-output, leading to detecting better optimal solutions.
Of equal perspective interest would be using the, under a continuous-parameter space search. The system
can be further used for managing critical levels under periods of prolonged or searching paths along
extreme drought, as emphasized in climate projections. As shown here, extreme events changes under
warmer climate (frost, precipitation shift, heat stress and soil moisture deficit, etc) are projected to occur
at different crop stages. In addition we showed that sink source relationships (fertilization efficiency—
harvest, initial soil humidity) are projected to change, all leading to changes in yield parameters. Hence,
targeted understanding, validation and identification of optimal configurations (genotype management)
for extreme cases or dynamics of their physical links, appropriate to alleviate the impact, are a perspective
of near future exploitation of the system.

1175 The main outcome of this work is the implementation and demonstration of the ability of
deterministic coupled modeling system combined with data-driven modeling for identifying optimal crop
solutions. This can be extended for other regions, scenarios, crops as a performant tool for adaptation

Formatted: Normal, Left, Indent: First line: 1.27 cm

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

support and agro-climate research. Futures perspectives are opened to use the system for more complex issues as rainfed yield level and stability in the new climatic conditions, where combination of cultivar 180 dependent coefficients that control the phenology of maize could help identify in the same way, phenological evolutions that are more performant in certain patterns of water and heat stress distribution along the year. Also, the improvement of the forecasts for the 6-12 months range may increase chances to use this methods years, along with irrigation options investigation. Coupled with weather prediction data in order 185 to early select the most suitable combination of hybrids for the current agro-season. Automatisation of these processes already done, further supports extending the system towards a pilot regional agro-climate digital twin fed with actualized data/extended predictions (seasonal, year-decadal) this could provide near real-time adaptation support.

Formatted: Font color: Custom Color(RGB(40,40,40)),
Highlight

Formatted: Normal, Left

Formatted: Font: Times New Roman

Formatted: Default Paragraph Font, Font: Times New Roman
Font color: Auto

Formatted: Default Paragraph Font, Font: Times New Roman
Font color: Auto

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Times New Roman

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Normal, Left

Formatted: Font color: Auto

1190 **Code and data availability:** The code is available in the Github repository at: <https://github.com/pneague/Genetic-Algorithm-for-Corn-Genotype-Planting-sowing-Date-Optimization> under a BSD 2-Clause Simplified License.

1195 **Author contribution:** MC: model implementation, code for optimal adaptation tool, pre and post-processing, model simulations, results analysis, development of the User-Platform, paper writing; LC: DSSAT model set-up, simulations, results analysis, paper review; PN: ML method implementation and runs, results analysis, paper writing; AD: model validation; VA: development of the Info-Platform; ZC and AI: platforms upload and update; AP: agro-meteorological station data providing; GC: DSSAT model input for the target region.

1200 **Competing interests:** The contact author has declared that none of the authors has any competing interests

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

1205 **Publisher's note:** Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Acknowledgments: The authors are grateful to UEFISCDI who provided the financial support of this work under the Project

1210 Grant PREPCLIM-PN-III-P2-2.1-PED-2019-5302.

References:

1. Adams, R. M., Hurd, B. H., Lenhart, S, Malhi, G.S., Kaur, M. and Kaushik, P., 2021. Impact of & Leary, N. (1998): Effects of global climate change on agriculture: an interpretative review. **Climate Research**, 11(1), 19–30.

Formatted: Normal

2. Angus, J.F., Mackenzie, D.H., Morton, R., & Schafer, C.A. (1981): Phasic development in field crops II. Thermal and photoperiodic responses of spring wheat. **Field Crops Research**, 4, 269-283, ISSN 0378-4290, [https://doi.org/10.1016/0378-4290\(81\)90078-2](https://doi.org/10.1016/0378-4290(81)90078-2).

Formatted: Highlight

3. Arnell, N.W., & Freeman, A. (2021): The effect of climate change on agro-climatic indicators in the UK. **Climatic Change**, 165, 40, <https://doi.org/10.1007/s10584-021-03054-8>.

Formatted: Font: Not Bold

4. Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D., Cammarano, D., Kimball, B., et al. (2015): Rising temperatures reduce global wheat production. **Nature Climate Change**, 5.

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

5. Baez-Gonzalez, A. D., Kiniry, J., Maas, S., et al. (2005): Large-Area Maize harvest Forecasting Using Leaf Area Index Based harvest Model. **Agronomy Journal**, 97, [10.2134/agronj2005.0418](https://doi.org/10.2134/agronj2005.0418).

Formatted: Not Raised by / Lowered by , Not Highlight

6. Bai, Y., Yue, W., & Ding, C. (2021): Optimize the Irrigation and Fertilizer Schedules by Combining DSSAT and GA.

Formatted: Not Highlight

7. Baltas, E. (2007) Spatial Distribution of Climatic Indices in Northern Greece. **Meteorological Applications**, 14, 69-78. www.interscience.wiley.com <http://dx.doi.org/10.1002/met.7>

Formatted: Font color: Auto

8. Banterng, P., A. Patanothai, K. Pannangpetch, S. Jogloy, and G. Hoogenboom. 2004. Determination of genetic coefficients of peanut lines for breeding applications, *European Journal of Agronomy* 21(3):297-310.

Formatted: Not Highlight

9. Basso, B., Shuai, G., Zhang, J., et al. (2019): harvest stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. **Sci Rep**, 9, 5774, <https://doi.org/10.1038/s41598-019-42271-1>.

Formatted: Not Highlight

10. Benestad, R., Buonomo, E., Gutiérrez, J.M., et al. (2021): Guidance for EURO-CORDEX climate projections data use, Version 1.1.

Formatted: Not Highlight

11. Bernardo, R. its mitigation strategies: A review. *Sustainability*, (2002): **Breeding for Quantitative Traits in Plants**. Stemma Press, 9780972072403, <https://books.google.ro/books?id=3T2FQgAACAAJ>.

Formatted: Not Highlight

12. Berti, A., Maucieri, C., Bonamano, A., & Borin, M. (2019): Short-term climate change effects on maize phenological phases in northeast Italy. **Italian Journal of Agronomy**, DOI: 10.4081/ija.2019.1362.

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

13(3), p.1318. Birch, C.J., Vos, J., Kiniry, J., Bos, H.J., & Elings, A. (1998): Phyllochron responds to acclimation to temperature and irradiance in maize. **Field Crops Research**, 59(3), 187-200, ISSN 0378-4290, [https://doi.org/10.1016/S0378-4290\(98\)00120-8](https://doi.org/10.1016/S0378-4290(98)00120-8)

1240 14. Boogaard, H., Wolf, J., Supit, I., Niemeyer, S., & van Ittersum, M. (2013): A regional implementation of WOFOST for calculating harvest gaps of autumn-sown wheat across the European Union. **Field Crops Research**, 143, 130-142, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2012.11.005>.

1245 15. Caian, M., Georgescu, F., Pietrisi, M., & Catrina, O. (2021): Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability. **Atmosphere**, 12(10):1362. <https://doi.org/10.3390/atmos12101362>

16. Caian, M.; Andrei, M.D. Late-Spring Severe Blizzard Events over Eastern Romania: A Conceptual Model of Development. **Atmosphere** 2019, ***10***, 770. <https://doi.org/10.3390/atmos10120770>

17. Ceglar, A., Zampieri, M., Gonzalez-Reviriego, N., et al. (n.d.): Time-varying impact of climate on maize and wheat harvests in France since 1900. **Environmental Research Letters**, 15(9), <https://doi.org/10.1088/1748-9326/aba1be>.

1250 18. Chang, Y., Latham, J., Licht, M. et al. A data-driven crop model for maize yield prediction. **Commun Biol** 6, 439 (2023). <https://doi.org/10.1038/s42003-023-04833-y>

19. Chapagain, R., Remenyi, T. A., Huth, N., Mohammed, C. L., & Ojeda, J. J. (2023): Investigating the effects of APSIM model configuration on model outputs across different environments. **Frontiers in Agronomy**, <https://www.frontiersin.org/articles/10.3389/fagro.2023.1213074>

1255 20. Chazarreta, Y. D., Amas, J. I., & Otegui, M. E. (2021): Kernel filling and desiccation in temperate maize: Breeding and environmental effects. **Field Crops Research**, 271, 108243, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2021.108243>.

21. Chen, Y., & Tao, F. (2022): Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area. **Field Crops Research**, 276, 108398, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2021.108398>.

1260 22. Cooper, M., & Messina, C. D. (2023): Breeding crops for drought-affected environments and improved climate resilience, **The Plant Cell**, 35(1), 162–186, <https://doi.org/10.1093/plcell/koac321>.

23. Dainelli, R., Calmanti, S., Pasqui, M., et al. (2022): Machine learning for regional crop harvest forecasting in Europe, **Field Crops Research**, 276, 108377, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2021.108377>.

1265 24. Djaman K., Samuel Allen, Dorlote S. Djaman, Komlan Koudahe, Suat Irmak, Naveen Puppala, Murali K. Darapuneni, Sangamesh V. Angadi, Planting date and plant density effects on maize growth, yield and water use efficiency, **Environmental Challenges**, 6, 2022, 100417, ISSN 2667-0100, <https://doi.org/10.1016/j.envc.2021.100417>

25. dos Santos, C. L., et al. (2022): Maize Leaf Appearance Rates: A Synthesis From the United States Corn Belt. *Frontiers in Plant Science*, 13, <https://doi.org/10.3389/fpls.2022.872738>.

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

26. Espadafor, M., Orgaz, F., Testi, L., et al. (2017): Responses of transpiration and transpiration efficiency of almond trees to moderate water deficits. *Scientia Horticulturae*, 225, 6-14, ISSN 0304-4238, <https://doi.org/10.1016/j.scienta.2017.06.028>.

1270
27. Eyring, V., Mishra, V., Griffith, G.P., Chen, et al. (2021): Keenan, T., Turetsky, M.R., Brown, S., Jetze, F., Moore, F.C. and Van der Linden, S., 2021. Reflections and projections on a decade of climate science. *Nature Climate Change*, 11(4), pp. 279-285.

1275
28. Wheeler, T., Joachim von Braun. Climate change impacts on global food security. *Science*. 2013 Aug 2;341(6145):508-13. doi: 10.1126/science.1239402. DOI: 10.1126/science.1239402
Fahad, et al. (2017): Crop Production under Drought and Heat Stress: Plant Responses and Management Options. *Frontiers in Plant Science*, 8, <https://doi.org/10.3389/fpls.2017.01147>.

29. Flocas, A. A. *Courses of meteorology and climatology*. Ziti Publications: Thessaloniki (1994)

30. Ganguly, 2013: Post harvest losses of agricultural produce. *International Journal of Agricultural Sciences*, 9(2), June, 2013
1280 , 818-820

31. Godfray, H., Charles, J., et al. (2010): Food Security: The Challenge of Feeding 9 Billion People. *Science*, 327, 812-818.

32. Grewer, U., Kim, D.-H., & Waha, K. (2024): Too much, too soon? Early-maturing maize varieties as drought escape strategy in Malawi, *Food Policy*, 129, 102766, ISSN 0306-9192, <https://doi.org/10.1016/j.foodpol.2024.102766>.

33. Hatfield, J.L., et al. (2020): Indicators of climate change in agricultural systems. *Climatic Change*, 163, 1719–1732.

1285
34. Hoogenboom, G., Porter, C.H., Sheila, V., Boote, K. J., Singh, U., White, J. W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P. and Jones, J. W. 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7. DSSAT Foundation

35. Hokmalipour, S. (2011): The Study of Phyllochron and Leaf Appearance Rate in Three Cultivar of Maize (*Zea mays* L.) At Nitrogen Fertilizer Levels. *Agricultural and Food Sciences*.

1290
36. Huang, M., et al. (2020): *Environmental Research Letters*, 15, 024015; DOI 10.1088/1748-9326/ab66ca

37. Huang N, Xiaomao Lin, Fei Lun, Ruiyun Zeng, Gretchen F. Sassenrath, Zhihua Pan, Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas, *Agricultural Systems*, Volume 220, 2024, 104079, ISSN 0308-521X, <https://doi.org/10.1016/j.agsy.2024.104079>

1295
38. Hu, H., et al. (2023): The effects of photoperiod and temperature-related factors on maize leaf number and leaf positional distribution in the field. *Frontiers in Plant Science*, 14, <https://doi.org/10.3389/fpls.2023.1006245>.

39. IPCC, 2022 *Climate Change 2022: Impacts, Adaptation and Vulnerability*. IPCC Sixth Assessment Report

40. Jin, X., Jin, Y., Zhai, J., et al. (2022): Identification and prediction of crop Waterlogging Risk Areas under the impact of climate change. *Water*, 14, 1-21, 10.3390/w14121956.

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Font: Italic, Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Font: Italic, Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

41. Jones, J., Hoogenboom, G., Porter, C., et al. (2003): The DSSAT cropping system model. *European Journal of Agronomy*, 18, 235-265, [https://doi.org/10.1016/S1161-0301\(02\)00107-7](https://doi.org/10.1016/S1161-0301(02)00107-7).

1300 42. Kakar, K.M., Khan, A., Khan, I., et al. (2014): Growth and yield response of maize (*Zea mays L.*) to foliar NPK-fertilizers under moisture stress condition. *Soil and Environment*, 33(2).

43. Khan, F., Khan, S., Fahad, S., Faisal, S., Hussain, S., Ali, S. and Ali, A. (2014) Effect of Different Levels of Nitrogen and Phosphorus on the Phenology and Yield of Maize Varieties. *American Journal of Plant Sciences*, 5, 2582-2590. doi: 1305 [10.4236/ajps.2014.517272](https://doi.org/10.4236/ajps.2014.517272).

44. Karl E. Taylor, Ronald J. Stouffer, Gerald A. Meehl, A summary of the CMIP5 Experiment Design, 2011

45. Kothari, K., Ale, S., Marek, G.W., Munster, C.L., Singh, V.P., Chen, Y., Marek, T.H., & Xue, Q. (2022): Simulating the climate change impacts and evaluating potential adaptation strategies for irrigated corn production in Northern High Plains of Texas. *Climate Risk Management*, 37, 100446, ISSN 2212-0963, <https://doi.org/10.1016/j.crm.2022.100446>

1310 46. Langworthy, A., D., et al. (2018): Potential of summer-active temperate (C 3) perennial forages to mitigate the detrimental effects of supraoptimal temperatures on summer home-grown feed production in south-eastern Australian dairy regions. *Crop Pasture Sci.*, 69, 808-820.

47. Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., et al. (2012): Climate change and impacts in the Eastern Mediterranean and the Middle East. *Climatic Change*, 114, 667-687, <https://doi.org/10.1007/s10584-012-0418-4>.

1315 48. Li, M., & Tang, Y. (2022): Climate warming causes changes in wheat phenological development that benefit yield in the Sichuan Basin of China. *European Journal of Agronomy*, 139, 126574, ISSN 1161-0301, <https://doi.org/10.1016/j.eja.2022.126574>

49. Liu, K., Harrison, M.T., Yan, H., et al. (2023): Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. *Nature Communications*, 14(1), 765, [10.1038/s41467-023-36129-4](https://doi.org/10.1038/s41467-023-36129-4).

1320 50. Liu, K., et al. (2020): Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. *Agric. For. Meteorol.*, 282-283, 107871.

51. Lu, J., Stomph, T.J., Mi, G., et al. (2024): Identifying and quantifying the contribution of maize plant traits to nitrogen uptake and use through plant modelling, *in silico Plants*, 6(2), diae018, <https://doi.org/10.1093/insilicoplants/diae018>.

52. Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. *Sustainability* 2021, 13, 1318. <https://doi.org/10.3390/su13031318>

1325 53. Mamassi, A., Balaghi, R., Devkota, K.P., et al. (2023): Modelling genotype \times environment \times management interactions for a sustainable intensification under rainfed wheat cropping system in Morocco. *Agriculture and Food Security*.

54. Marcinkowski, P., & Piniewski, M. (2018): Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. *International Agrophysics*, 32(2), 265-27

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font: (Default) Liberation Serif, 12 pt, Font color: Auto, (Asian) Chinese (Simplified, Mainland China), (Other) English (United States)

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Auto, Not Highlight

Formatted: Font: Italic, Not Highlight

Formatted: Not Highlight

Formatted: Italian (Italy), Not Highlight

Formatted: Font: Not Italic

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1330

55. Meehl, G.A., Stocker, T.F., Collins, W.D., et al. (2007): Global Climate Projections. In: Solomon, S., Qin, D., Manning, M., et al. (Eds.), *World Development Report 2008: Agriculture for Development*, World Bank

Formatted: Not Highlight

Vaclav Smil. Vaclav Population and Development Review , pp. 605-643 (39 pages) Published By: Wiley

1335

Villalobos, Francisco & Pérez-Priego, Oscar & Testi, Luca & Morales, Alejandro & Orgaz, Francisco. (2012). Effects of water supply on carbon and water exchange of olive trees. *European Journal of Agronomy*. 40. 1-7. 10.1016/j.eja.2012.02.004.

Roeuzzo G, Zanotelli D, Allegra M et al (2012) Assessing nutrient uptake by field-grown orange trees. *Eur J Agron* 41:73–80. doi:10.1016/j.eja.2012.03.011

Semenov, Mikhail & Strattonovitch, Pierre. (2015). Adapting wheat ideotypes for climate change:

1340

Accounting for uncertainties in CMIP5 climate projections. *Climate Research*. Cambridge University Press.

56. Meroni M, François Waldner, Lorenzo Seguini, Hervé Kerdiles, Felix Rembold, Yield forecasting with machine learning and small data: What gains for grains?, *Agricultural and Forest Meteorology*, Volumes 308–309, 2021, 108555, ISSN 0168-1923, <https://doi.org/10.1016/j.agrformet.2021.108555>

57. Mi, N.; Cai, F.; Zhang, S.; et al. (2021): Thermal Time Requirements for Maize Growth in Northeast China and Their Effects on Yield and Water Supply under Climate Change Conditions. *Water*, 13, 2612. <https://doi.org/10.3390/w13192612>
58. [10.3354/er01297](https://doi.org/10.3354/er01297)

Formatted: Not Raised by / Lowered by , Not Highlight
Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Mitchell, R.J., Paul E., Bellamy, Alice P.E., Broome, Chris J. Ellis, Richard L. Hewison, Glenn R. Jason, Nick A. Littlewood, Scott Newey, Gabor Pozsgai, Duncan Ray, Jenni A. Stockan, Victoria Stokes, Andy F. S. Taylor, et al.: Cumulative impact assessments of multiple host species loss from plant diseases show disproportionate

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

reductions in associated biodiversity. *Journal of ecology*. <https://doi.org/10.1111/1365-2745.13798>*Journal of Ecology*, <https://doi.org/10.1111/1365-2745.13798>.

Formatted: Not Raised by / Lowered by , Not Highlight

59. McKay, J. K., Richards, J. H., & Mitchell, T. (2003). Genetics of drought adaptation in *Arabidopsis thaliana*: I. Pleiotropy contributes to genetic correlations among ecological traits. *Molecular ecology*, 2003

Formatted: Pattern: Clear

Formatted: Font: Not Italic, Pattern: Clear

Formatted: Pattern: Clear

60. McKee, T.B.; Doesken, N.J.; Kleist, J. (1993): The Relationship of Drought Frequency and Duration to Time Scales. In *Proceedings of the Eighth Conference on Applied Climatology*, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. Espadafor M., Francisco Orgaz, Luca Testi, Ignacio Jesús Lorite, Victoria González-Dugo, Elías Fereres, Responses of transpiration and transpiration efficiency of almond trees to moderate water deficits, *Scientia Horticulturae*, Volume 225, 2017, Pages 6–14, ISSN 0304-4238, <https://doi.org/10.1016/j.scienta.2017.06.028>.

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1360 Dainelli Riccardo & Calmanti, Sandro & Pasqui, Massimiliano & Roechi, Leandro & Di Giuseppe, Edmondo & Monotti, Chiara & Quaresima, Sara & Matese, Alessandro & Di Gennaro, Salvatore & Toscano, Piero. (2022). Moving climate seasonal forecasts information from useful to usable for early within-season predictions of durum wheat yield. *Climate Services*.

61. Morales, A., & Villalobos, F. (2023): Using machine learning for crop harvest prediction in the past or the future. *Frontiers in Plant Science*, 14, 1128388, 10.3389/fpls.2023.1128388.

1365 62. Morell, F-J., Yang, H.S., Cassman, K.G., et al. (2016): Can crop simulation models be used to predict local to regional maize harvests and total production in the U.S. Corn Belt? *Field Crops Research*, 192, 1-12, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2016.04.004>.

63. 28-100324. 10.1016/j.eliser.2022.100324.

1370 Abhik Patra Abhik, Vinod Kumar Sharma, Dhruba Jyoti Nath, Asik Dutta, Tapan Jyoti Purakayastha, Sarvendra Kumar, Mandira Barman, Kapil Atmaram Chobhe, Chaitanya Prasad Nath & Chiranjeev Kumawat (2022): Long-term impact of integrated nutrient management on sustainable yield harvest index of rice and soil quality under acidic inceptisol, *Archives of Agronomy and Soil Science,* DOI: 10.1080/03650340.2022.2056597.

64. Paudel, Allard de Wit, Hendrik Boogaard, Diego Marcos, Sjoukje Ozinga, Ioannis N. Athanasiadis, Interpretability of deep learning models for crop yield forecasting, *Computers and Electronics in Agriculture*, Volume 206, 2023, 107663, ISSN 0168-1699, <https://doi.org/10.1016/j.compag.2023.107663>

65. Peleman, J-D., & Rouppe van der Voort, J. (2003): Breeding by Design, *Trends in Plant Science*, 8(7), 330-334, ISSN 1360-1385, [https://doi.org/10.1016/S1360-1385\(03\)00134-1](https://doi.org/10.1016/S1360-1385(03)00134-1).

66. Pfeiffer, W., & McClafferty, B. (2007): HarvestPlus: Breeding Crops for Better Nutrition. *Crop Science*, 47, 10.2135/cropsci2007.09.0020IPBS.

1380 67. Qiao, L., Xiaojun, Z., Li, X., et al. (2022): Genetic incorporation of genes for the optimal plant architecture in common wheat. *Molecular Breeding*, 42, 10.1007/s11032-022-01336-2.

68. Rezaei, E.E., Webber, H., Asseng, S., et al. (2023): Climate change impacts on crop harvests. *Nature Reviews Earth and Environment*.

1385 68. Roeber, V., Schmulling T, Cortleven A., (2022): The Photoperiod: Handling and Causing Stress in Plants *Frontiers in Plant Science*, 12, [https://doi.org/10.3389/fpls.2021.781988]https://doi.org/10.3389/fpls.2021.781988

69. Rosenzweig, C., Jones, J.W., Hatfield, J.L., et al. (2013): The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. *Agricultural and Forest Meteorology*, 170, 166-182, <https://doi.org/10.1016/j.agrformet.2012.09.011>.

Formatted: Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Italian (Italy), Not Raised by / Lowered by , Not Highlight

Formatted: Italian (Italy)

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1390 70. Sardans, J., Grau, O., Chen, H.Y.H., et al.: Changes in nutrient concentrations of leaves and roots in response to global change factors. *Global Change Biology*, <https://doi.org/10.1111/gcb.13721>.

71. Schauberger, B., Jägermeyr, J., & Gornott, C. (2020): A systematic review of local to regional harvest forecasting approaches and frequently used data resources. *European Journal of Agronomy*, 120, 126153, <https://doi.org/10.1016/j.eja.2020.126153>.

1395 72. Schwalbert, R., Amado, T., Nieto, L. et al. (2020). Mid-season county-level corn yield forecast for US Corn Belt integrating satellite imagery and weather variables. *Crop Sci.* 60 : 739 – 750

73. Selvaraju, R., et al. (2011): Climate science in support of sustainable agriculture and food security. *Climatic Research*, 47, 95–110.

74. Semenov, M., & Stratonovitch, P. (2015): Adapting wheat ideotypes for climate change: Accounting for uncertainties in CMIP5 climate projections. *Climate Research*, 65, [10.3354/cr01297](https://doi.org/10.3354/cr01297).

75. Shaw, T.A., & Miyawaki, O. (2024): Fast upper-level jet stream winds get faster under climate change. *Nature Climate Change*, 14, 61–67. <https://doi.org/10.1038/s41558-023-01884-1>

76. Simmons, A. (2021): The ERA-Interim archive Version 2.0, ERA Report Series.

77. Singh R.P, P. V. Vara Prasad, K. Raja Reddy, Chapter Two - Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry, Editor(s): Donald L. Sparks, *Advances in Agronomy*, Academic Press, Volume 118, 2013, Pages 49-110, ISSN 0065-2113, ISBN 9780124059429, <https://doi.org/10.1016/B978-0-12-405942-9.00002-5>

78. Smil, V. 2005. The next 50 years: Unfolding trends. *Population and Development Review* 31: 605-643.

79. Stehr, N., & von Storch, H. (2000): Climate and society: climate as resource, climate as risk. *World Scientific*.

80. Su, Z., Liu, Z., Bai, F., et al. (2021): Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China. *Journal of Integrative Agriculture*, 20(2): 371–382.

81. Tao Fulu, F., Zhao Zhang, Jiyuan, Z., Liu, Masayuki J., & Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. *Agricultural and Forest Meteorology*, Volume 149, Issue 8, 2009, Pages 1266–1278, ISSN 0168-1923, <https://doi.org/10.1016/j.agrformet.2009.02.015>.

1415 Ganguly Sangram, Mark A. Friedl, Bin Tan, Xiaoyang Zhang, Manish Verma, Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product, *Remote Sensing of Environment*, Volume 114, Issue 8, 2010, Pages 1805–1816, ISSN 0034-4257, <https://doi.org/10.1016/j.rse.2010.04.005>.

Formatted: Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Font color: Auto

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1420 Asseng, Senthil & Ewert, Frank & Martre, Pierre & Rötter, Reimund P. & Lobell, D. & Cammarano, Davide & Kimball, B. & others, and. (2015). Rising temperatures reduce global wheat production. *Nature Climate Change*. 5.

1425 Kholová J., Milan Oldřich Urban, James Cock, Jairo Arcos, Elizabeth Arnaud, Destan Aytelkin, Vania Azevedo, Andrew P Barnes, Salvatore Ceccarelli, Paul Chavarriaga, Joshua N Cobb, David Connor, Cooper Mark, Peter Craufurd, Daniel Debouck, Robert Fungo, Stefania Grande, Graeme L Hammer, Carlos E Jara, Charlie Messina, Gloria Mosquera, Eileen Nehanji, Eng Hwa Ng, Steven Prager, Sindhuja Sankaran, Michael Selvaraj, François Tardieu, Philip Thornton, Sandra P Valdes-Gutierrez, Jacob van Etten, Peter Wenzl, Yunbi Xu, In pursuit of a better world: crop improvement and the CGIAR, *Journal of Experimental Botany*, Volume 72, Issue 14, 10 July 2021, Pages 5158–5179, <https://doi.org/10.1093/jxb/erab226>

1430 Yi Chen, Fulu Tao, Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early season crop yield forecasting over a large area, *Field Crops Research*, Volume 276, 2022, 108398, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2021.108398>.

82. Tsvetinskaya, E.A., Mearns, L.O., & Easterling, W.E. (2002): Investigating the Effect of Seasonal Plant Growth and Development in Three-Dimensional Atmospheric Simulations. Part I: Simulation of Surface Fluxes over the Growing Season. [\[https://doi.org/10.1175/1520-0442\(2001\)014\]](https://doi.org/10.1175/1520-0442(2001)014)

83. Tsimba R, Gregory O. Edmeades, James P. Millner, & Peter D. Kemp (2013): The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate, *Field Crops Research*, 150, 145-155, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2013.05.021>.

84. Trnka, M., et al. (2014): Adverse weather conditions for European wheat production will become more frequent with climate change. *Nature Climate Change*, 4, 637–643.

85. Villalobos, F., Pérez-Priego, O., Testi, L., et al. (2012): Effects of water supply on carbon and water exchange of olive trees. *European Journal of Agronomy*, 40, 1-7. [10.1016/j.eja.2012.02.004](https://doi.org/10.1016/j.eja.2012.02.004).

86. van Schauberg, B., J. Jägermeyr, and C. Gornott, 2020: A systematic review of local to regional yield forecasting approaches and frequently used data resources. *Eur. J. Agron.*, 120, 126153, doi:10.1016/j.eja.2020.126153.

Baez-Gonzalez, Alma Delia & Kiniry, James & Maas, Stephan & L, M. & C, J. & Mendoza, Jose & Richardson, Clarence & Salinas, & Manjarrez, Juan. (2005). Large-Area Maize Yield Forecasting Using Leaf Area Index Based Yield Model. *Agronomy Journal*. 97. [10.2134/agronj2005.0418](https://doi.org/10.2134/agronj2005.0418).

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1450 Jin X., Jin Y., Zhai J., Fu D., Mao X. Identification and prediction of crop Waterlogging Risk Areas under the impact of climate change. *Water*, 14 (2022), pp. 1-21, 10.3390/w14121956

Formatted: Not Highlight

Meehl G.A., T.F. Stocker, W.D. Collins, A.J. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, J.G. Watterson, A.J. Weaver, Z. Zhao. Global Climate Projections. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.). Cambridge University Press, Cambridge, U.K. and New York, NY (2007)

1455 Rosenzweig, C., J.W. Jones, J.L. Hatfield, A.C. Ruane, K.J. Boote, P. Thorburn, J.M. Antle, G.C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J.M. Winter, 2013: The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. *Agric. Forest Meteorol.*, 170, 166-182, doi:10.1016/j.agrformet.2012.09.011.

Formatted: Not Highlight

1460 Basso, B., Shuai, G., Zhang, J. et al. Yield stability analysis reveals sources of large scale nitrogen loss from the US Midwest. *Sci Rep* 9, 5774 (2019). <https://doi.org/10.1038/s41598-019-42271-1>

Formatted: Font: Italic, Not Highlight

Formatted: Not Highlight

1465 Chapagain Ranju, Remenyi Tomas, A., Huth Neil, Mohammed Caroline L., Ojeda Jonathan J. Investigating the effects of APSIM model configuration on model outputs across different environments. *Frontiers in Agronomy*. <https://www.frontiersin.org/articles/10.3389/fagro.2023.1213074>. DOI=10.3389/fagro.2023.1213074, ISSN=2673-3218

Formatted: Not Highlight

Bernardo, R. Breeding for Quantitative Traits in Plants. 9780972072403. <https://books.google.ro/books?id=3T2FQgAACAAJ> 2002. Stemma Press

Formatted: Not Highlight

1470 Hoogenboom G., Porter, Cheryl & Boote, Kenneth & Shelia, Vakhtang & Wilkens, Paul & Singh, Upendra & White, Jeffrey & Asseng, Senthil & Lizaso, Jon & Moreno Cadena, Patricia & Pavan, Willingthon & Ogoshi, Richard & Hunt, L. & Tsuji, Gordon & Jones, James. (2019). The DSSAT crop modeling ecosystem. 10.19103/AS.2019.0061.10.

1475 Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L. and Ritehie, J., 2003. The DSSAT cropping system model. *European Journal of Agronomy*, 18:235-265 ([https://doi.org/10.1016/S1161-0301\(02\)00107-7](https://doi.org/10.1016/S1161-0301(02)00107-7))

Cooper Mark, Carlos D Messina, Breeding crops for drought-affected environments and improved climate resilience, *The Plant Cell*, Volume 35, Issue 1, January 2023, Pages 162-186, <https://doi.org/10.1093/plcell/koac321>

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1480 Qiao, Linyi & Xiaojun, Zhang & Li, Xin & Yang, Zujun & Li, Rui & Jia, Juqing & Yan, Liuling & Chang, Zhijian. (2022). Genetic incorporation of genes for the optimal plant architecture in common wheat. *Molecular Breeding*, 42, 10.1007/s11032-022-01336-2

Formatted: Not Highlight

Ming Li, Yonglu Tang, Chaosu Li, Xiaoli Wu, Xiong Tao, Miao Liu, Climate warming causes changes in wheat phenological development that benefit yield in the Sichuan Basin of China;

European Journal of Agronomy, Volume 139, 2022, 126574, ISSN 1161-0301, <https://doi.org/10.1016/j.eja.2022.126574>.

1485 Morell F-J, Haishun S. Yang, Kenneth G. Cassman, Justin Van Wart, Roger W. Elmore, Mark Licht, Jeffrey A. Coulter, Ignacio A. Ciampitti, Cameron M. Pittelkow, Sylvie M. Brouder, Peter Thomison, Joe Lauer, Christopher Graham, Raymond Massey, Patricio Grassini, Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?, *Field Crops Research*, Volume 192, 2016, Pages 1-12, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2016.04.004>.

Formatted: Not Highlight

1490 Morales, Alejandro & Villalobos, Francisco. (2023). Using machine learning for crop yield prediction in the past or the future. *Frontiers in plant science*, 14, 1128388, 10.3389/fpls.2023.1128388.

van Ittersum Martin K. M, Kenneth G. Cassman, Patricio Grassini, Joost Wolf, Pablo Tittonell, Zvi Hochman, Yield gap analysis with local to global relevance—A review, *Field Crops Research*, Volume 143, 2013, Pages 4-17, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2012.09.009>, <https://doi.org/10.1016/j.fcr.2012.09.009>

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight

1495 Boogaard Hendrik, Joost Wolf, Iwan Supit, Stefan Niemeyer, Martin van Ittersum, A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union, *Field Crops Research*, Volume 143, 2013, Pages 130-142, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2012.11.005>, <https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/crop-simulation-model>

1500 87. Yang Y., Jiabo Yin, Shengyu Kang, Louise J. Slater, Xihui Gu, Aliaksandr Volchak, Quantifying the drivers of terrestrial drought and water stress impacts on carbon uptake in China, *Agricultural and Forest Meteorology*, Volume 344, 2024, 109817, ISSN 0168-1923, <https://doi.org/10.1016/j.agrformet.2023.109817>

88. Xie, W., Zhu, A., Ali, T. et al. Crop switching can enhance environmental sustainability and farmer incomes in China. *Nature* 616, 300–305 (2023). <https://doi.org/10.1038/s41586-023-05799-x>

Formatted: Italian (Italy), Not Highlight

1505 Asseng A, Y. Zhu, B. Basso, T. Wilson, D. Cammarano, Simulation Modeling: Applications in Cropping Systems <https://doi.org/10.1016/B978-0-444-52512-3.00233-3a>, Encyclopedia of Agriculture and Food Systems 2014, Pages 102-112

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1510 Zhuang, H., Zhang, Z., Cheng, F., (...), Xu, J., Tao, F., Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain ,2024. Agricultural and Forest Meteorology

Formatted: Not Highlight

Wimalasiri, E.M., Sirishantha, D., Karunadhipathi, U.L., (...), Muttil, N., Rathnayake, U. Climate Change and Soil Dynamics: A Crop Modelling Approach 2023 Soil Systems

Formatted: Not Highlight

Rezaei, E.E., Webber, H., Asseng, S., (...), Martre, P., MacCarthy, D.S. Climate change impacts on crop yields 2023, Nature Reviews Earth and Environment

1515 Mamassi, A., Balaghi, R., Devkota, K.P., (...), El-Gharous, M., Tychon, B. Modeling genotype × environment × management interactions for a sustainable intensification under rainfed wheat cropping system in Morocco 2023 Agriculture and Food Security

Formatted: Italian (Italy), Not Highlight

1520 Alsafadi, K., Bi, S., Abdo, H.G., (...), Chandran, M.A.S., Mohammed, S. Modeling the impacts of projected climate change on wheat crop suitability in semi-arid regions using the AHP-based weighted climatic suitability index and CMIP6 2023 Geoscience Letters

Paudel Dilli, Hendrik Boogaard, Allard de Wit, Marijn van der Velde, Martin Claverie, Luigi Nisini, Sander Janssen, Sjoukje Osinga, Ioannis N. Athanasiadis, Machine learning for regional crop yield forecasting in Europe, Field Crops Research, Volume 276, 2022, 108377, ISSN 0378-4290, <https://doi.org/10.1016/j.fcr.2021.108377>.

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

1525 Peleman J-D, Jeroen Rouppe van der Voort, Breeding by Design, Trends in Plant Science, Volume 8, Issue 7, 2003, Pages 330-334, ISSN 1360-1385, [https://doi.org/10.1016/S1360-1385\(03\)00134-1](https://doi.org/10.1016/S1360-1385(03)00134-1).

Formatted: Not Raised by / Lowered by , Not Highlight

Pfeiffer, Wolfgang & McClafferty, Bonnie. (2007). HarvestPlus: Breeding Crops for Better Nutrition.

Formatted: Italian (Italy), Not Raised by / Lowered by , Not Highlight

Crop Science - CROP SCI 47, 10.2135/cropsci2007.09.0020IPBS.

Formatted: Italian (Italy)

Formatted: Not Highlight

1530 Bai, Y., Yue, W. and Ding, C., 2021. Optimize the Irrigation and Fertilizer Schedules by Combining DSSAT and GA.

Formatted: German (Germany), Not Raised by / Lowered Not Highlight

Wang, Y., Jiang, K., Shen, H., Wang, N., Liu, R., Wu, J. and Ma, X., 2023, et al. (2023). Decision-making method for maize irrigation in supplementary irrigation areas based on the DSSAT model and a genetic algorithm. Agricultural Water Management, 280, P.108231.

Formatted: Not Raised by / Lowered by , Not Highlight

1535 89. Webber, H., Ewert, F., Olesen, J.E., et al. (2018a). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9(1), 1-11, 10.1038/s41467-018-06525-2.

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Not Highlight

Formatted: Not Raised by / Lowered by , Pattern: Clear

Formatted: Not Raised by / Lowered by , Pattern: Clear

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Shaw, T.A., Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. *Nat. Clim. Chang.* 14, 61–67 (2024). <https://doi.org/10.1038/s41558-023-01884-1>

1540 90. Webber, H., et al. (2020). Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E. et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. *Climatic Change* 114, 667–687 (2012). <https://doi.org/10.1007/s10584-012-0418-4>

Formatted: Font color: Auto, Not Highlight

Arnell, N.W., Freeman, A. The effect of climate change on agro-climatic indicators in the UK. *Climatic Change* 165, 40 (2021). <https://doi.org/10.1007/s10584-021-03054-8>.

Formatted: Font color: Auto

1545 Trnka M et al (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. *Nat Clim Chang* 4:637–643

Hatfield JL et al (2020) Indicators of climate change in agricultural systems. *Clim Chang* 163:1719–1732

Selvaraju R et al (2011) Climate science in support of sustainable agriculture and food security. *Clim Res* 47:95–110

1550 Stehr N, von Storch H (2009) Climate and society: climate as resource, climate as risk. World Scientific Pub Co Inc, Hackensack

R. Benestad, E. Buonomo, J.M. Gutiérrez, A. Haensler, B. Hennemuth, T. Illy, D. Jacob, E.K. Thiel, E. Katragkou, S. Kotlarski, G. Nikulin, J. Otto, D. Wretched, T. Remke, K. Sieck, S. Sobolowski, P. Szabó, G. Szépszó, C. Teichmann, R. Vautard, T. Weber, *Guidance for EURO-CORDEX climate projections data use, Version 1.1*, 2021

Formatted: Font color: Auto

1555 Simmons, A., *The ERA-Interim archive Version 2.0, ERA Report Series*, 2021

Formatted: Font color: Auto

Karl E. Taylor, Ronald J. Stouffer, Gerald A. Meehl, *A summary of the CMIP5 Experiment Design*, 2011

Formatted: Font: Not Italic, Font color: Auto

1560 Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. *Climate Research*, 11(1), 19–30. <http://www.jstor.org/stable/24865973>

Formatted: Font color: Auto

MKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In *Proceedings of the Eighth Conference on Applied Climatology*, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184.

Formatted: Pattern: Clear

Formatted: Font: Not Italic, Pattern: Clear

Formatted: Pattern: Clear

Formatted: Font color: Auto

1565 Marcinkowski, P., Piniewski, M. (2018): Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. *International Agrophysics*, 32, 2, 265-271. <https://doi.org/10.1515/intag-2017-0015>

Formatted: Font: Not Italic

1565 Antonio Berti, Carmelo Maucieri, Alessandra Bonamano, Maurizio Borin, *Short-term climate change effects on maize phenological phases in northeast Italy*, Nov 2019, *Italian Journal of Agronomy* DOI: [10.4081/ija.2019.1362](https://doi.org/10.4081/ija.2019.1362)

1570 Andrej Ceglar, Matteo Zampieri, Nube Gonzalez-Reviriego, Philippe Ciais, Bernhard Schauberger and Marijn Van der Velde, *Time-varying impact of climate on maize and wheat yields in France since 1900*, *Environmental Research Letters*, Volume 15, Number 9. <https://doi.org/10.1088/1748-9326/aba1be>
1570 Webber et al. 2020, Pan-European multi-crop model ensemble simulations of wheat and grain maize under climate change scenarios, *Open Data Journal for Agricultural Research*, vol. 6, p. 21-27.

1575 Webber, H., 91. Wheeler, T., & von Braun, J. (2013): Climate change impacts on global food security. *Science*, 341(6145), 508-13. [10.1126/science.1239402](https://doi.org/10.1126/science.1239402).

Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Font: Not Italic, Not Raised by / Lowered by , Pattern: Clear

1575 92. *World Development Report 2008: Agriculture for Development*.

1580 93. Ewert, F., Olesen, J.E., Müller, C., Fronzek, S., Ruane, A.C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fedor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K.-C., Lizaso, J. I., Lorite, I.J., Manceau, L., Moriondo, M., Nendel, C., Rodríguez, A., Ruiz-Ramos, M., Semenov, M.A., Siebert, S., Stella, T., Stratonovitch, P., Trombi, G. and Wallach, D., 2018a. “Diverging importance of drought stress for maize and winter wheat in Europe”. *Nature Communications* 9(1): 1-11. doi: [10.1038/s41467-018-06525-2](https://doi.org/10.1038/s41467-018-06525-2).

Formatted: Normal, Left, Space Before: 0 pt, Line spacing single
Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Normal, Left, Space Before: 0 pt, Line spacing single

1585 Jian-zhai Wu J-Z, Jing ZHANG, Zhang-ming GE, Li-wei XING, Shu-qing HAN, Chen SHEN, Fan-tao KONG, et al. (2021): Impact of climate change on maize *yield* *harvest* in China from 1979 to 2016, *Journal of Integrative Agriculture*, Volume 20, Issue 1, 2021, Pages 20(1), 289-299, ISSN 2095-3119, [https://doi.org/10.1016/S2095-3119\(20\)63244-0](https://doi.org/10.1016/S2095-3119(20)63244-0).

Formatted: Not Raised by / Lowered by , Pattern: Clear
Formatted: Font: Not Italic, Not Raised by / Lowered by
Formatted: Font: Not Italic, Not Raised by / Lowered by

94. Xie, W., Zhu, A.,

Formatted: Italian (Italy), Not Highlight

1590 Ali, T., et al. (2023): Crop switching can enhance environmental sustainability and farmer incomes in China. *Nature*, 616, 300-305. <https://doi.org/10.1038/s>.

Formatted: Font color: Auto
Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

95. Xu Honggen, Bo Ming, Keru Wang, et al. (2023): Quantitative analysis of maize leaf collar appearance rates, *Plant Physiology and Biochemistry*, 196, 454-462, ISSN 0981-9428, <https://doi.org/10.1016/j.plaphy.2023.01.016>.

96. Zhuang H, Zhao Zhang, Fei Cheng, Jichong Han, Yuchuan Luo, Liangliang Zhang, Juan Cao, Jing Zhang, Bangke He, Jialu Xu, Fulu Tao, Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain, *Agricultural and Forest Meteorology*, Volume 347, 2024, 109909, ISSN 0168-1923, <https://doi.org/10.1016/j.agrformet.2024.109909>

1595

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Annex 4: Data and Methods: Steps in ML algorithm

1600 Schema of steps in work-flow of ML algorithms for optimal genotype identification:

- Start with 10 randomly chosen solutions within the bounds of P1-P6;
- Calculate the mean and std of harvest of each solution for the 30 years 1976-2005;
- Calculate fitness = (Mean of harvest) – (Standard-deviation of Harvest/4);
- Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;
- For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of P’s to be subjected to crossover, called x;
- For each child, modify Px as follows:
 - ⊖ $P_{xa} = \text{round}(B * P_{xa} + (1 - B) * P_{xb})$
 - ⊖ $P_{xb} = \text{round}((1 - B) * P_{xa} + B * P_{xb})$

1610 Where P_{xa} is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor, set in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued traits from both parents while exploring the search space between the parents’ positions. The blending crossover promotes a smoother and more gradual search for optimal solutions in continuous domains⁵².

- Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting one of the P’s to a random value between its allowed minimum and maximum⁵².
- At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute them with the children⁵².
- Repeat.

Formatted: Heading 1, Left

Formatted: Normal, Left

Formatted: Normal, Left, Space Before: 0 pt, No bullets or numbering

Formatted: Normal, Left, No bullets or numbering

Formatted: Normal, Left, Space After: 0 pt, No bullets or numbering

Formatted: Normal, Left, Indent: Left: 0 cm, Space Before: 0 pt, After: 0 pt

Formatted: Normal, Left, Space Before: 0 pt, No bullets or numbering

Formatted: Normal, Left, No bullets or numbering

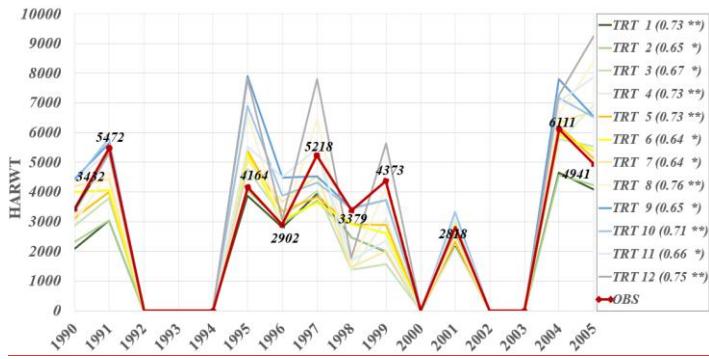
Formatted: Normal, Left, Space After: 0 pt, No bullets or numbering

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

Supplementary material:

1620 **S1: Simulated (ERA5 control runs) versus measured harvest**



S2: Sensitivity to changes in nutrients

Replicability for system portability on other pilot regions requires estimates of sensitivity to new local forcing. Sensitivity ensemble simulations were performed, with increasing soil Carbon and Nitrogen at the initial time by 20%, for a same control genotype (experiment setup E_1N_G0_soil+CN).

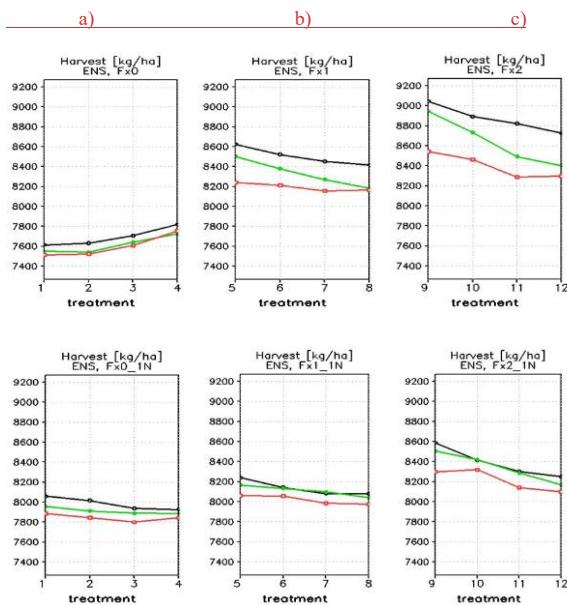


Fig.S2.1: Harvest (kg/ha) comparison between the experiment setup E_3N_G0 (top, same as Fig.7) and the experiment setup E_1N_G0_soil+CN (bottom). Panels are as in Fig.7, for Fx0(a), Fx1 (b), Fx2 (c), ensemble time mean for Hist (black), RCP4.5 (green) and RCP8.5 (red), on Ox there is the treatment (1 to 12, Table 1).

Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig.7) shows that

Harvest loss is only up to 7% for about 60% reduction in fertilization (exper “1N” versus “3N”, Table 1), when the soil nutrients content is increased by 20%. Also, the comparison shows that there are still options even under warmer climate to

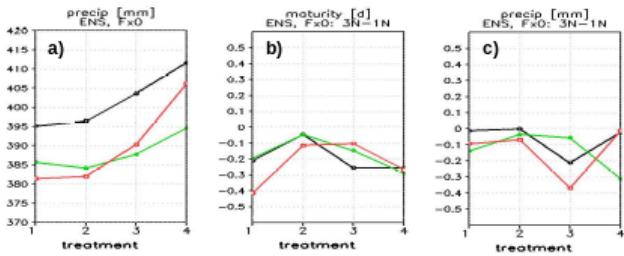
Formatted: Font color: Black

Formatted: Normal, Left, Indent: Hanging: 0 cm, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Formatted: Font color: Auto

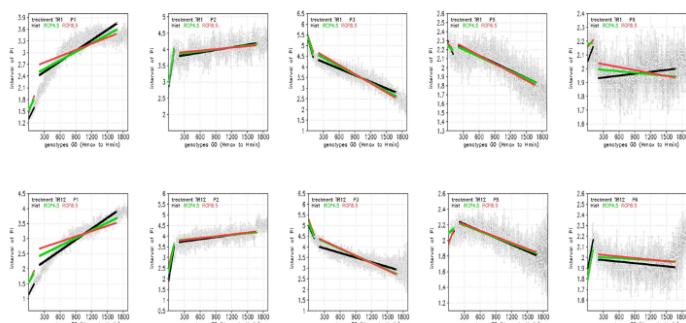
Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

equal or exceed the historical Harvest if there is an appropriate soil composition (e.g. in RCP4.5 TR6 and TR7, Fig.S2.1b-bottom), also under RCP8.5 (TR10 and TR11, Fig.S2.1c-bottom), and even at lower fertilization levels (exp “1N”, Table 1).
 1645 A possible mechanism in this case involves delayed maturity (Fig.S2.2b), and consequent more precipitation accumulated (Fig.S2.2a, c). In practice this slower maturity could be due to soil C/N composition influencing soil water holding capacity, moisture and temperature, slowing germination or plant growth. Previous research (Kakar et al. 2014; Khan et al., 2014) also reported delayed silking and maturity in the case of enhanced soil nitrogen when compared to control case, showing also a stronger response for early sowing.



1650 Fig.S2.2: Precipitation (mm) accumulated from the initial time of the simulation for experiment setup E 3N G0 (a), (same as Fig.7); differences [dap] in the maturity date (b) and in precipitation accumulated until maturity (c) for the experiment setup E 3N G0 minus the experiment setup E 1N G0 soil+CN, (mm). Lines are for Hist (black), RCP4.5 (green) and RCP8.5 (red).

S3: Slopes of Pi genotype parameters in Hist and climate scenarios

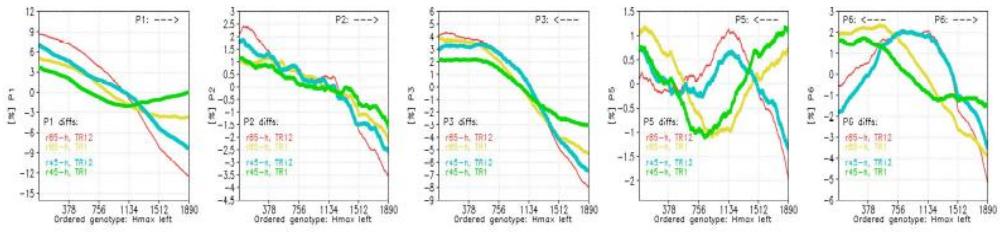


1655 Fig.S3 The slopes (thick lines) of Pi genotype parameters (y-axis) as a function of decreasing ordered harvest (x-axis) for Hist (black), RCP4.5 (green and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of harvest and over the rest of decreasing ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean, TR12 (as in Fig.10 bottom, grey).

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.59 cm

1660 **S4: Percent changes in Pi in climate scenarios relative to Hist**



1665 **Fig.S4: Percent changes of Pi genotype parameters (y-axis) as a function of the ordered Harvest from highest (left, x-axis) to lowest (right, x-axis). Differences (running means over 378=P2xP3xP4xP5xP6 the product of discretization intervals for P1-P6) are shown for TR1 (yellow for RCP4.5 minus Hist) and green (RCP4.5 minus Hist) and for TR12 (red for RCP8.5 minus Hist) and blue (for RCP4.5 minus Hist). Percent changes are expressed as differences relative to Hist. Arrows indicate the monotony of Pi values that correspond to the ordered decreasing harvest (shown in Fig.10).**

1670 Formatted: Normal, Left

64 Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at 8.79 cm + 17.57 cm