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Abstract

factors t—ha{—lﬂteweﬂ%at the local scale ef—%h%efep—:%ssess—iﬂg—i—t—%quifes—th%&s%eﬁnakes assessing these impacts ‘\
difficult, requiring coupled sredels-climate-phenologys eanwhile-methods-to-identify-manaserment models, which || ‘
integrate climate data and genetypescrop information. Identifying suitable for-Jocal management practices and crop varieties \
under future conditions;-i-order-to-sustain becomes essential for developing effective adaptation strategies. ,

We-presentThis study presents the implementation and #seapplication of a-rewa
support modelingmodelling system. This is based on regional CORDEX climate models and the CERES Maize model from
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integrated climate-phenology adaptation

the DSSAT platform;—with-new. Novel modules for optimal management and genotype identification tisirrgunder climate

change have been developed in the system, employing a hybrid saethed:approach that combines deterministic odeling

and-—-modelling with machine learning (ML#) techniques and, genetic algorithms. HThis system, was run as a regional pilot Formatted: Affiliation, Left

over Romania, operating in real-time in interaction with users, performing agro-climate projections (combination of
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fertilization, sowing date, seilgenotype) and providing best crop management simulated under climate change projections. Formatted
Multi-model ensemble simulations were conducted for two elimateradiative forcing scenarios RCP4.5 and RCP8.5 and [Formatted
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twelve management scenarios-show-new, yielding novel results for the region. Results indicate a projected decrease in maize
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yields for the current genotype across all tested scenarios, primarily attributed to a shortened grain-filling period and reduced

fertilization efficiency under warmer conditions. Soil initial conditions were found to significantly influence yield responses, Formatted: Font color: Black
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According to the IPCC reperts{HPCC(2022)), climate change is evidentunequivocal, and the-prospeets-its impacts*
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appear more worrying today than a-few-decadesdekades ago. Although progress-is-being made-in-studying the |
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to-providefindings into actionable solutions and scales remains a challenge. This is primarily due to the-extremely high
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atmosphere / soil/ phenolegical-proeesses/biosphere’s ecosystems;—+6 under, climate change, t6-natural causes 6fand Formatted

human activities (Wheeler and Braun, 20135, Xie et al, 2023),
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Faking—into—aceount—seientifieresearch—estimating—thatGiven the wetrld—projected global population Wil
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eontintieincrease estimated in scientific reports to grow’-and-it-is-expeected-to-arrive-to-over 9; - milliards-until- the

sreat- billions by 2050 (Godfray and Charles, 2010), the-totalglobal food yietd-willproduction would have to grevincrease,

by 70-100% to meet the growing demand (Smil, 2005; World Development Report, 2008; SebvarjuSelvarajy et als., 2011).

Meanwhile-This challenge is further compounded by the agro-climatic conditions are-expected to become vulnerable and
gradually;mere-deficientin-the-context-of decline due to climate change-and-its-impaet-on, particularly impacting,
water availability (Stehr and von Storch, 2009: Villalobos et al., 2012; van Ittersum et al., 2013; Roeceuzzo-et-al; 2014
Steheand-von-Storeh. 2009).-).

Another faeechallenge of the problem comes from the need that approaches, and sustainable solutions sheuld-beth-merge Formatted

user-must not only address the peeds;—and-be—intne_of agricultural producers but also align with neutral-elimate

Jastati .

Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022).

climate change mitigation goals for 2050, aiming for climate neutralit

(Semenov etand

Early studies of-investigating the impact of climate change impaet-on-erops-have-peinted-toon crop yields emphasized+ ( Formatted: Normal, Left

the neednecessity of high—resolution modeling—ecapable-of representinemodelling approaches. These models
y &5 P

should accurately represent management practices and the local seate-impaeteffects of climate en-plantvariables, such as

temperature and precipitation (McKee et al., 1993; Trnka et al;2045., 1995; Adams et al., 1998;:-Mkee—et-al,—1993) Formatted

affeeting-). These affect thermal and water stress {e-g-—the-stomatal-epening;and plant physiological processes like stem
water potential, stomatal opening, Jeaf transpiration efficiency (Espadafor et ak., 2017)—Furtherat). At the regional scale,
the relationship between crop yield and water and thermal availability fel-&&eﬂ—te—y—ie}d—'md-iea%ed—a—may exhibit strong
dependeneedependencies on the crop,—region,—time-_type, geographical location, temporal gscale, and plant
phystelegiealdevelopmental stage (Webber et al., 2018, 2020; Webber-et-al—20148:-Marcinkowski and Piniewski, 2018;

Berti et al., 2019; Ceglar et als;., 2020; Wu et al,- 202+ Berti-et-al—2019 Mareinkewski-and Pintewski 204:81n

this—regard;—ander—., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates [Formatted: Font color Auto
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indicated for future climate changes;—perspeetivesfor-corn-yield-riseschange a significant (~30%) decrease without
adaptation, but a potential increase (15%) in corn yields under irrigated conditions-were-identified-by-simulationsfor

2022y Thispeints—out-the-needforcontinuation—of theor under radiation-based genotype efficient use. These

findings underscore the critical need for regional simulations taking-in-consideration-soil humidity-aceuraey-and-that

incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various irrigation

strategies_under future climate scenarios, Formatted: Font color: Black
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influences occur, through physics-based jnteractions with climate and through eh-aﬂgeSalterations in soil chemical

compeositions—Inereasing air temperatire-wascomposition. Rising air temperatures have been,shown to affeetimpact, }
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the soil carbon budget, its—deerease-with a decline in soil carbon potentially affecting plant and root tevel-processes, Formatted: Font color: Auto, Not Raised by / Lowered by
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biochemical cycles, and species composition (Abhik Patra et als., 2021).
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MeodelingCrop modelling at local, regional and alse-global scale reported-significant-advanees—inhas significantly
advanced, enhancing our understanding;—stmulating-and-projectingfutare-erop— of crop systems and enabling the
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al;2021-Chen-and-Fae;20222013; Schauberger et al., 2020).—Fhese-emphasize; Chen and Tao, 2022) consistently project
global-prejected-yield mean harvest reductions {Asseng-et-al;2015)-with differences in the regional pattern of climate change
impact on crop and yield-tharvest (Asseng et al., 2015: Li et al. 2022). Not only projected regionalspatial but also timetemporal
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variability of the climate change impact appears larger and accelerated, motivating intensified efforts on seasonal and multi-

annual predictions of plant development and yieldharvest (Baez-Gonzalez et al., 2005; Jin et al., 2022)-usingerop-models:
TFhese-simtlations™resultssignificance-was-analyzed suggesting). Analysis of these simulations emphasized also the need to

include crop uncertainty in climate scenarios assessments (Meehl et al., 2007, Rosenzweig gt al-. 2013, Basso Bruno et al.,

2019; Chapagain et al., 2022). In-addition
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Meanwhile, model simulations proved-to-be-a-highlyemerged as useful tool in plant breeding analysis (Bernardo, 2002;+

HeogenbeomBanterng gt al;, 2004; Cooper and Messina et al., 2023)-considered-a-suppertin-developing; Mamassi

et al., 2023). supporting the development of superior genotypes and plant-breeding methods for maximizing crop
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selection through techniques such as parental selection; and breeding by design;-ete: (Peleman and van der Voort, 2003;; Qiao
et al., 2022).

In most recent years develepments-climate-crop medelingmodelling extended from deterministic crop
models (Boogaard et al. 2013; Morell et al., 2016) to data-driven techniques er-hybrid-approaches for

assessing crop response to weather and climate change (Zhuang,2024:-Schwalbert et al., 2020; Meroni

et al., 2021; Morales and Villalobos, 2023, Meroni-et-al;2021:-Sehwalbert-et-al. 2020 Zhang; Chang

et al., 202H.2023; Zhuang et al., 2024). Statistical methods as well as machine learning (ML) used for

crop forecast and medelingmodelling were however shown to bring for now, limited benefits (Paudel et
-., 2021), pointing to possibly hybrid techniques that include physical process in the medelingmodelling

as a key approach for this challenging issue.

On the other hand, deterministie-breeding optimization techniques using_fully deterministic model simulations require a<

huge number of simulations, analysis and inter-comparisons of predicted €rosscrop performance (Wang-and-Pfeiffer; et al.,

2007; Wang et al., 2023).

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“preparingPreparing for Elirnate<
Changeclimate change”) project in which we solve plant phenology developmentusing deterministic rodelingmodelling
and merge this technique with an on-line ML-genetic algorithms (GA) iteratively selecting along simulations in-erder—te
iteratively-seleet-a-the cross-range of optimal geretypecrop cultivar parameters, according to a-pre-set-user-defined
criteria of the-optimum-—Genetie-algorithms(GA)-simulatefor optimal target. The GA simulates the evolution of a

population by Heratively-applying in iterations, genetic operators;—stieh-as- (selection, crossover, aé-mutation;) to a set

of candidate solutions (chromosomes). The chromosomes represent potential solutions to the problem and are encoded as

strings of binary or symbolic values, with their fitness assessed by a problem-specific evaluation function here, user-
reguestrequired based. GA—was—sueeessfullyused—withGAs have demonstrated success for optimizing agricultural
practices using models like DSSAT for epﬁmi%iﬂgirrigation and fertilizer applications (Bai -et al;.. 2021;; Wang et als.,
2023).

The hybrid approach implemented herein this work focused on ideotype identification presents the advantage of physically<

treating the crop —complex process involved each—time—along optimizing iterations, sothus allowing anabysisspecific

inclusion and understanding of physical causes of the-responses t0—and of optimal paths in various climate ©f/and

management scenarios; eanwhile-enhaneing, Furthermore, it enhances the ability of choosing optimum conditions from
a—continuous iterval—not-a-multi-dimensional intervals for gene parameters, as opposed to discrete eﬂ%ef—geﬂe
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parameter-valaes:sets. The continuum values approach is an important feature mainly for isolated extremesextreme yield
detection, or breadbroader parameters’ range and high non-linearity, both aspects of increasing ifterest—as—we-show-in

this-werk-the-a-tendeney-toward-narrewerrelevance in the context of climate change. Our findings suggest a narrowing

of agro-management adaptation eppertanity-windewsopportunities under warmer elimpateclimates, further emphasizing

the importance of this hybrid genotype-agro-management approach to support finding solutions for the future,

We-present-the-systemThe developed and-system aims to provide efficient and operational support for farmers and

stakeholders. It leverages the state-of-the art DSSAT model, a widely used and extensively validated platform for agricultural

modelling across diverse applications. The DSSAT model, incorporating complex parameterizations for soil processes

surface-atmosphere exchange, plant development stages, and their interactions with climate and management practices

undergoes continuous refinement through ongoing research and regional calibrations. For this study, the model was specifically

adapted to the unique soil characteristics of the pilot region, including parameters such as porosity, composition per soil layers

and thermal properties. The developed system exhibits portability to other regions with available soil and management data.

Its functionality and user-friendliness are expected to improve through widespread adoption and the incorporation of advanced

user requests and management options.

Section 2 presents the developed system and its data flow-i-seetion—2—TFhe-. Section 3a provides the motivation of-itsfor

system development, Hitked-tofocusing on projected climate change Himpacts for the target region-are-shown-in-seetion
3a-—We-show. Section 3b presents results ©fobtained using the system tised-to estimatesimulate projected changes in plant
phenology and crop parameters for the target region, under various climate ehangeand management scenarios—ane—for
different-management seenarios, for the aetaalcurrent control genotype—in—section—3b—Then—we—diseuss—in

seetion. Section 3c;_discusses results obtained using the system's genotype optimization package of-the—system:
Perspeetivesalong agro-management scenarios. Finally, Section 4 presents perspectives and conclusions-are-diseussed-in
seetion4.
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2. Data and methods b

Projected changes in agro-climate—indicators—over—climatic parameters for Romania arewere assessed under two<

( Formatted: Heading 1, Left

( Formatted: Normal, Left

Representative Concentration Pathways (RCPs): RCP4.5 and RCPS8.5. These changes were computed for-two—elimate
seenarios: REP4A5-and RCPE5-as anomalies reportedrelative to historical simulations; (Hist) using an ensemble of three
CMIP5-CORDEX models-(Benestad et al., 20215

are-simulatedasing—, Karl et al., 2011) high resolution (11 km) climate models, based on the CNRM, EC-EARTH, and
MPI global models coupled to the regional climate model RCA4. Subsequently, the DSSAT crop model (Jones et al., 2003;
Hoogenboom et al., 2019:Jones—et-al;—2003)forced—with—the—) was employed to simulate projected changes in
phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions from-the- CORDEX

models(from-GEDL HadGEM, MHROCHPSE, NorESM),forderived from each model of the ensemble for the
historical period and for each-ef-the two elimateRCP emission scenarios.

A software package was developed for the DSSAT model that -performs identification of optimal model parameters set-up
aeeefd—'mg—te—based on user-defined: criteria;-tiser-ehesen for optimum, climate-management scenario, region, and time-
horizon. The—user-eriteria—for—optimisation—ineludes—maximum—yield;Optimization goals include maximizing
harvest, ensuring stable yield;-across-years;yields over time, and minimizing the-ameunt-of leachednitrogen below
the-maximumlevel-ofleaching beyond the root frontzone (reducing therisk-ofwater pollution);-ete- risk). Management
scenarios irrehade-allow users to explore optimal cross-eptiens-forcombinations of sowing éatedates, fertilization ameunt;

Six main cultivar-specific parameters (P1 to P6) characterizing the maize genotype were analysed across wide ranges of

physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents

the thermal time from seedling emergence to the end of the juvenile phase (ranging in these simulations from 100 to 500-

degree days above 8°C). It significantly influences crop flowering times (Liu et al., 2020), water availability, and ultimately.

yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1) can lead to increased harvest in

humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).
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P2, the photoperiod-development delay parameter (ranging in simulations here from 0.1 to 2.6 days) shows the extent to which

development is delayed for each hour of photoperiod increase above the longest photoperiod of maximum development rate

considered 12.5 hours). P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant development, with

long-day plants exhibiting faster development under longer day lengths (Angus et al., 1981). Related to these, studies have

210 demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer climates (Liu et al., 2023).

P3, the thermal time from silking to physiological maturity (tested here for values from 500 to 1500-degree days above 8°C)

significantly influences maturity dates. It also has a main role in plant stress levels (longer-maturity hybrids increase harvest

but under water stress it may provide lower yield (Su et al., 2021; Grewer et al, 2024)) and grain moisture at maturity (Tsimba

et al., 2013). P4, representing the maximum number of kernels per plant, exhibits a relatively predictable numerical response

215 and is therefore held constant at the control value of 797.5 estimated for the region, in this analysis. PS5, the kernel filling rate

parameter (ranging from 6 to 12 mg/day), influences grain filling duration, desiccation, moisture at maturity and harvest

(Chazarreta et al., 2021). P6, the phyllochron interval or the thermal time between successive leaves (ranging from 3 to 70 °C)

is a critical parameter for estimating the duration of vegetative development (Birch et al., 1998; Xu et al., 2023). PS5 and P6 are

important parameters of optimal plant adaptation to climate conditions, since they are drivers of the phenological response and

220 yield formation, in conjunction with the temperature, radiation, humidity, water stress. These genotype (or cultivar specific)

parameters are the primary ones considered in DSSAT model parameterizations for plant development processes

(Hoogenboom et al., 2019).

The parameter ranges were rigorously tested in simulations to ensure their representatives for the target region, including an

analysis of extreme values. The control values for these cultivar-specific parameters Pi in the region are: P1=200, P2=0.7,

225 P3=800, P4=797.5, P5=8.60, and P6=38.90. All the simulations for combinations of parameters values (cross-Pi simulations)

were performed under Hist, RCP4.5, and RCP8.5 emission scenarios. For each scenario, simulations were conducted for twelve

agro-management scenarios consisting of sowing date changes and fertilization treatments, for each model of the ensemble.

By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three fertilization

levels (zero, then a regional average and its double). For each agro-management scenario, genotype optimization b¥

230 seleetion(finding the optimal set of thePi values forunder the eultivarrelated-coefficients{(namedfurther G-
parametersgiven climate -agro-management and optimum criteria) was performed thretghusing two methods: afixed-

diseretisation]) discretized parameter-space runs anée-with subsequent post-processing ordering, and @2) continuum

parameter-space- search with iterative selection alongduring simulations, byemploying genetic algorithms srethods-(GA).

The proposed GA-based method employs an iterative approach. It commences with an initial population of randomly generated< f Formatted: Normal, Left

235 solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is performed to
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(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from
their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness of

the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by

balancing exploration (searching the problemproblem’s space for diverse solutions_exploiting promising regions) and

exploitation (refining the best solutions found so far). Here GA have-evenhas been newly applied to develop an innovative

crop selection algorithm-to-eptimize-genotype-alens, optimizing genotypes across various agro-management scenarios.
Steps along the algorithms are shewsdescribed in Sehemafrom-AnnextAnnex.

The overallsystem generates output information—from-the-system—{(elimate;data (agro-climate and optimal paths)<

which is direeteddisseminated on two platferm-components{platforms (Fig.1). One is a platform (Info-Platform, Fig.
1a) providing one-way interactive (static) agro-climate information at local scale (NUTS3 level, aligned with the European

Union's Nomenclature of Territorial Units for Statistics) over the region;-éelivering. It delivers pre-computed climate -agro-

climate indicators, agro-elimate;-and-indices of agro-climate extremes indices-computed-from-based on observations
and, re-analysis for-the-actual-elimate-and from-climate scenarios (anemaliesrelative-to-historical runs)for future

projections for the region.

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component,

where user requests are pl-&eed,—tFe&ted—submitted processed as input to the modelling chain and results sentdelivered back

to the user (User-Platform; Fig—Hb)-for a new. refined request.
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Fig—ta:The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate

models (Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include

the ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-

management practices and genotype selections along simulations.
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Fig.1 a): Info-Platform-for-infermatien—at: Provides local-regional scale; information derived from regional-elimate<
high—resolution regional climate models (CORDEX;—presenting—ehmate;—agro-), e.g. climate, agro-climate data and

indicators, indices of agro-climate extremes idices-at the NUTS3 level.,
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The system was implemented and validated iSover Southern Romania, target agricultural arca, for maize. The<
petentialPotential beneficiaries ofthis—system—are—users;include researchers, farmers, policymakers, and peliey
makers—Maizemaize breeders-. The system can also ean-adapt-using-the-systertassist maize breeders in adapting to
climate change by enabling them to the—elimate——conditions—byaccommodating—or—testingevaluate and select

genotypes that-are-more resistant to challenging ehimate—Aeeeleratedclimatic conditions. Given the accelerating pace of

climate change-makes, such a system a-tsefitmay provide valuable support in Hany-respeetsnumerous ways.
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Table 1: The agro-management treatments
Nitrogen [kg/ha]. We denote two experiments: exper “IN” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent
on the experiment: Fx0 is no fertilisation, Fx1 is the unit fertilisation of the experiment and Fx2 is the double unit fertilisation of the
experiment. We define the unit fertilisation of the exper “IN” equal to 23 N/kg and the unit fertilisation of the exper “3N” as 60
kg/ha. Sowing date format is “DD.MM”.

TR4
15.05

TR6,
15.05
04,

TIRS8
15.05,

IRY,
1.04

TR10,
15.05
04,

IR1
1.05,

TRI12 4
15.05, <

TR3
1.05,

TIRS,
1.04

IR7,
1.05,

Treatment, IR], T
Sowing date, 15.050

Fertilization, Ex2  FxO, Fxl1= Fxl Fxl= Fxl= Fx2 Fx2 Fx2

Fx2 <f
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Fertilization Fx0 Ex1=2 Ex2 FxO Fxl=

(exper “INY") =0 3Ex0 =46 23

Fx0,
3. Results “
a)3.1 Agro-climate changes in the region b
—=a 3.1)-Changes.1 Climate changes in agro-climate indicators ‘

Agro-elimateclimatic Indicators-{provided-ontnfo-Platform)-are-computed-, derived from CORDEX models; and
available on the Info-Platform, provide derivedparameters—information—as—time—shees-series data for ensemble or
individual model metrics from—eountry—to-NUTF3at the NUTS3 level over—Setthacross Romania. At-the—country
region—Fig3-shows Figure 3 illustrates projected changes in mainkey agro-elimnatolegiealclimatic characteristics.
Region’s

The anticipated climate is-expeeted-to-shift as-shewn-(Fig—3a)in the region is evidenced by changes in the
Johansson continentality-index-(Baltas, - 2007: Flocas, 1994) delined-as:

Continentality Index (JCI=, Fig.3a), calculated as JCI = 1.7 * dT / sin-{ph—(0) - 20.4

(where dT is the annual maximal-thermalmaximum range of monthly mean temperatures and p#i is the
latltude (Flocas, 1994; Baltas 2007)) Changes in %Pshewmaﬂ&%s&m%h&enﬂ%eu&hemﬂeﬁ%&p%e

[T i)

bemg—streﬂgeﬁm—R—GPSé—FeF&gﬂeb&t&ereﬁeﬂ—used—JCI ;.,enerally reveal robust eVldence of large-

scale changes influences on the regional-indicator-is-the-seorching days-number (SC);computed-over-the

| Formatted

| Formatted

Formatted

| Formatted

| Formatted

‘ Formatted

| Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

| Formatted

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
[ Formatted
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Formatted




360

365

370

375

380

385

390

395

of the intra-annual %et-&l—pfeap%&eﬂ

(—Emm]%anekvarlablhtv ( AI‘CtIC amphﬁcatlon remote 1mpacts on Eurone) Hence enhanced 1ntra-annua1

%Wd&aﬂéﬁy}+ﬁamlyﬂmﬂa&8%&h—8%aﬂér8%

Fig3a:Histerieal-Jeft)-andin South (and the opposite in the North), information useful for farmers to estimate changes+

UG, hist: 19712000

JEI1, repd8-h, 20212050

W

WA B W T IR
oS 008 I

H32temp, repdB=h, 2021_20%0

JCe1, repBS=h, 2021_2080

W o
CEEETE

Martoanes1, hist: 19712000

T W
7630 1 28 3

Martonne_ariditys1, rpd8: 2071_2100

T B N W WD
T

Martonne_ariditys1, rcp88: 2071_2100

T W W
b T T o

I
b T T

T W Wk
b T

JCI Wlth much warmer summers

var1ab111ty 1 ) than
winters over the maln agrlcultural areas daseussedher%}detmﬁeaﬂe&eﬁprejeeteérehange&meﬁdﬁy%s

fFormatted: Normal, Left

{ Formatted: Font color: Auto

Formatted: Footer, Tab stops: Notat 8.79cm + 17.59c¢




400

405

410

415

420

agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding 32°C).

used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought

conditions (H32temp > 51), about doubling the Hist values and expanding significantly across the southern regions in RCP8.5

with already high-level drought conditions (31<H32temp<51) occurring in RCP4.5 (Fig.3b).

Accounting also for precipitation changes, the de Martonne Aridity Index (IM, the ratio of annual precipitation to a translation

function (+10C) of the annual mean temperature), exhibits also significant projected changes. It shows particularly increased

aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an accelerating change up to

2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050).

a

JCI, Hist: 1971_2000

JCI, RCP4.5-Hist, 2021_2050

JCI, RCP8.5-Hist, 2021_2050

20E 22 23€ 24€ 25€ 26E 27E 2BE 29E

10 20 33 36 40 45 50 55 60 66 =1.6-1.2-0.8-04-0.20.2 0.4 0.8 1.2 1.6 e T 050002020408 1278

H32temp, Hist: 1971_2000

H32temp, RCP4.5-Hist, 2021_2050

H32temp, RCPB.5-Hist, 2021_2050

—— L ——
0 3 10 15 20 30 35 40 45 50 70 100

0 3 10 15 20 30 35 40 45 50 70 100

Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and changes (2021-
2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are: marine for 0<k<33, continental

for 33<k<66 and exceptionally continental for 66<k<100). b) The Scorching index H32temp classes are: reduced intensity drought
for H32tempe[0,10], moderate intensity for H32tempe(10,30], high intensity for H32tempe(30,50] and severe drought conditions for

H32temp > 50.
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Martonne, Hist: 1971_2000

Nartonne, RCP4.5: 2021_2050 Mortonne, RCP8.5: 2021_2050
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Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top)<« fFormathed: Caption, Left

and 2071-2100 (bottom)-for-the-Martonne-aridity). IM index—(0<HVI<10 classes are: arid;10 for 0<IM<20<10 arid,

semi-arid;—20 for 10<IM<24<20, Mediterranean;—24 for 20<IM<28<24, semi-humids; for 24<IM<28. wet for 28<IM<<36, very

wet;_for 36<IM<<55 very wet; D and extreme wet for IM>55-extreme-wet; (all indices are time mean 30 years, ensemble
mean).

A f Formatted: Highlight

a3.1,2), Changes in agro-climate extremes,

Projected changes in extremes are-analyzed for the-ensemble-medels-inFig—4-thatfor temperature and precipitation

highly useful information for agriculture, show important features in the region. A main aspect of interest is related to late-

by
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spring freezing days that may drastically affect the whole crop of the year. Fig.5a shows for South Romania (Calarasi target [ Formatted: Heading 3, Left

subregion-changes) that in ist—i-spite of the decreasing trend (5% p-level significance) of the total

we still may have severe events with interestingly—tntervals—with—, a number of freezing days in late-spring that is even

higher ntimbers-of FDin scenarios than in Hist, late-spring being one of the most vulnerable period to freezing for the plant
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already under development. Also note that successive extreme freezing years in late spring may occur-it- REP85-seenario

440 compared to Hist in the third decade. .
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Fig.5: Extreme climate parameters (NUTS region 103032, representative for the target region), along historical (Hist) and RCP8.5
scenarios; a): FD, the number of frost days (minimum temperature < 0°C in a 10-day period); b): RR10, the number of days with

heavy precipitation (>10 mm per day) in a 10-day period; ¢): RR, total precipitation (mm) per 10-day period; (left): the 10-da

450 eriod is centred on April 5; (right): the 10-day period is centred on April 25™. Values indicate the slope of the linear trend (black

line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level).

This late spring blizzard feature over the region, impertantforplant-evolution,was-shewnwas analysed in a previous< ( Formatted: Normal, Left

work; and shown to be related to the combined context of Polar Jet instability meanwhile with warmer sea surface temperature
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in the Eastern Mediterranean (Caian and Andrei, 2019). Both these features are projected to enhance in a warmer climate




455 (Lelieveld et al., 2012; Shaw and Miyawaki, 2024:);-whichfor-the region-indieates-a), indicating higher potential for
severe late-spring blizzard;-affeeting-erops-and-the-year’s-yield-under-warmer-elimateblizzards in the region,
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Extreme-(RR1Oevents (RR10mm) and total precipitation (RR-shew-thefollowing:) reveals a negative-trend-notable*
shift in their temporal distribution within April. While a decreasing trend is observed in the first decade-of the-month-turns

in-oppeostte-to-dekad. a positive trendstrend emerges in the third (and second)-menth’s-decadethatindicate-a-time-

meﬂ%h—}n—seeﬂafie—eem-pafed—te—H'tsEdekades (Fig.5b). These suggest a time-shift tendency towards the end of April and

into early May for the occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level

this shift is consistently observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme values

of RR and RR10 are projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b.c), more often during

late spring. Extreme daily precipitation is, in most cases detrimental for the crop, causing soil erosion and surface runoff mainly

after drought periods.

b)3.2 Phenology and Yield-projected-changesHarvest Projections for the eontrol-genotypeControl Genotype <«

Projected changes in phenology for the control genotype (Pioneer 375) were simulated withusing the DSSAT foreed-by
model under historical (Hist) and multi-model Hist-and-climate projections of CRP4.5 and RCP8.5 scenarios-REP45-and

em. Further,

multi-genotype simulations are discussed in Section 3.c.

Model validation was dene-i-conducted using Control simulations that-tsed-(Ctrl) driven by ERAS reanalysis elimate

data fromERAS-(Simmons; et al., 2021) ©verfor each treatment outlined in Table 1 (experiment "3N").

These simulations, spanning the period 1976-2005—TFhese-show-a-good-time, demonstrate the model's ability to capture*

inter-annual variability ©

modeling systenis-able-to-eapture-years-ofin harvest yields. including both high and low yield (Fig-5)—The-years

when compared to the measured available data for the region (suppl. S1). They also allowed model set-up

21

f Formatted: Normal, Left

f Formatted: Heading 2, Left

f Formatted: Normal, Left

{ Formatted: Font color: Auto

/ [ Formatted: Footer, Tab stops: Notat 8.79cm + 17.59c¢



involvedimprovements through sensitivity simulations and model calibration including soil parameters calibration;-that

was-performed-along-sensitivity-experimentsfor-(suppl. S2) as soil water, nitrogen, and Nitrogen-and-Carben

organic carbon content.

525

530

bHowever, further improvements in model accuracy are to be achieved if incorporating factors such as inter-annual soil

535 variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing dates.

For example, simulations with fertilization specifications closer to the year’s management practices (e.g. approximately 80-

120 kg N/ha and sowing around April 15" for 1995) resulted in more accurate (reduced bias) predictions (TR6, TR10). These

together with the well simulated inter-annual variability, demonstrate the model's ability to capture the combined influence of

climate and management practices on crop performance.

540

3.2.1), Phenology dates - projected changes Formatted: Font: 12 pt, Font color: Black, Not Raised by /

Lowered by

| Formatted: Font: 12 pt, Font color: Black, Not Raised by /
Lowered by

and-REP-8&-5)-indieateprovide projected changes in the-anthesis-and-matarity-days—inFig—6phenology, for the { Formatted: Font color: Black
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545  control genotype GO fertitization 3N{TFable+-(G0), under different fertilization levels (0, 60, 120 kg/ha, Table 1, exper Top: (No border), Bottom: (No border)?Le?’t: (No border),
"3N") and sowing dates, averaged over 30-years, in scenarios (2021-2050, RCP4.5 and RCP8.5), versus Hist (experiment set-

Right: (No border), Between : (No border)
up “E 3N_G0)—Fhese-show-that-the-). Figure 6a.b illustrates the ensemble model changes, demonstrating an earlier
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all scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a

consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in anthesis

under warming scenarios, a response even more pronounced under RCP8.5.

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential

crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and

temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures potentially

inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more frequently in

treatments with higher nitrogen fertilization, leading in average only small changes in maturity days-come-alse-. This may

favour leaves development, enhanced transpiration and earlier by—u-pdepletion of the soil moisture leading later to abeut

+Owater stress.
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Fig.6: Simulated a): anthesis dates (dap], days st 5 i <

and-after sowing) and b): maturity dates ([da under historical conditions (black), RCP4.5 (blue), and RCP8.5 (red) scenarios,

experiment setup E 3N GO. Results are shown for the_four sowing dates and nitrogen fertilization level.- The-two-shifts
ing ing )0/

of 60 kg/ha (Table 1, exper “3N”).
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590 in-the-ensemble-mean,—of the-yieldin under both elimateRCP4.5 and RCP8.5 scenarios;foF and across all tested

(Fable H-management-seenarios-with-pertarbed-sowing dates and fertilization levels (Fig.—7a;b;€)7). compared to
the historical period.
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600 emission in RCP8.5 than in RCP4.5 (Fig. 7¢).
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‘Harvest decline i climate scenarios 1s attributed to several factors:

1) reduced rainfall during the growing season (Fig.8), as evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-
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August, over 30 years) found between harvest (H) and accumulated precipitation in the Ctrl and in model simulations; 2) a

shortened grain-filling period due to a projected earlier flowering and an even earlier maturity across all the models (Fig.6)

potentially limiting biomass accumulation; and 3) decreased fertilization efficiency under warming conditions, in the sense

650 that H difference Hist minus scenario, increases (non-linearly) with enhanced fertilisation (Fig.7). Hence for a same climate

the same increase in fertilisation brings less benefit in a warmer climate. This benefit for H is of about 10% in Hist versus

7.6% in RCP8.5 for early sowing and about 8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of

nitrogen (Fig.7b,c). This efficiency decay feature underscores the primacy of reduced accumulated precipitation (Fig.8) and

of higher temperature, that lead to a non-linear H response to fertilization (Huang et al, 2024). Their influence is noticed as

655 well in the absence of fertilization (Fig.7a), when H still declines in warmer climates, with a dominant control from

precipitation. The correlation along sowing dates between H and accumulated precipitation until maturity (Pmat, Fig.8). is r(H

Pmat) >0.96 in both scenarios.
a) b) c)
ENS, 0 kg/ha ENS, 60 kg/ha ENS, 120 kg/ha
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Fig.7: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three
660 fertilization levels (Table 1, exper “3N*): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E 3N GO.
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Fig.8: Precipitation accumulated until maturity (mm) in experiment E_3N_G0 (top)—and—fer—experiment< fFormatted: Caption, Left
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665 The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a

shorter accumulation season (Fig.6) but having projected a precipitation increase towards late spring (Fig.5), that may

significantly favour critical growth stages.
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€) Optimal genotype-identification-Genotype Identification <

The system was further developed to extend the management scenarios for multi-genotype simulations and algerithmsfor<

(aser-defined)yield:-hishest-harveststable-yieldless-peHutant—implement methods to identify ideotypes under

each agro-climate scenario. The aim is to search for management scenarios that yield optimal outcomes defined by user-criteria

such as maximizing harvest yield, stabilizing yield, or minimizing pollutant emissions. Two optimization methods are

implemented: a discrete-parameter, purely deterministic technique, and a hybrid approach that combines deterministic

modelling with continuous-parameter Machine Learning-based Genetic Algorithms for iterative genotype selection.
i : i The deterministic technique-and-a
a1th N\ Genetd Alsorithm o
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: he—-genotype
parameters—eeﬂsrdered—(her%see} rop model 51mulat10ns= w1th optlmlzatron performed as_a post-
processing step. Genotype parameters Pi are defined within pre-established limits and discretization.
Multi-model simulations #-which-are then performed Where each parameter is ndrv1dually Var1ed while

Parameter—P4—w&s—keptheld constant—as—ha%mg—knewn—&npaet—

m—ma*nmﬂm—va-l-&es—genet-ype— The total number of srmulatrons in thls case is determlned bV the chosen

discretization level. In contrast, in the hybrid technlque the Pi values are selected from a contlnuous range
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805 secenarios—versus—Histdomains. This section presents the results of genotype optimization experiments (E_IN_Gn+w),

built upon the E_IN_GO and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting

near-term (2035 as centre of interval 2021-2050).
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Regarding new3.3.1 Optimal genotype under climate change

i) harvest as a function of the genotype H(G) in scenarios versus current climate

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and

denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario)

dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the

ensemble-model PDF (probability density function) of H under warmer climate.

A first outcome demonstrates in Fig.9a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H) occurs

within the range of maximum H values (genotypes in the upper H-percentile, interval GX (0%, 2.5%) of the H-ordered

genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9b). Across models of the ensemble, we

note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios. Precipitation exhibits high
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inter-model variability and significant regional-scale uncertainty, pointing to the need of ensemble modelling for reducing it.

In contrast, the warming trend is a consistent feature across models in the region, contributing other model-systematic

responses such as earlier anthesis and maturity dates and shortening of the grain filling season.

The second note regards a different response projected in the intermediate H values (Fig.9a, ¢). Genotypes corresponding to

the intermediate H values (genotypes of middle H-percentile, the interval GI (25%, 70%) of the H-ordered genotypes) show

projected higher H values in GI in climate scenarios than in Hist (Fig.9¢c), affecting less the earlier sowing (Fig.9¢).

These together lead to a narrowing of the H-values range of responses, in GX and GI, to the same managements applied, in

scenarios compared to Hist. Same management spread would lead to closer H-responses, with enhancing the expectancy for

occurrence of intermediate values and decreasing the expectancy for highest H values (a third feature of projected changes).

Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9a), improving

by up to 2-(4) % in scenarios (respectively Hist) unfertilized case and up to 8-(12) % in fertilised case (Fig.9a), with the lowest
percentage for RCP8.5. Earlier sowing was reported in other recent studies as optimal for spring maize harvest (Djaman et al.
2022).

ii) options for adaptation and mitigation using genotype analysis

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for early

sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in GX and GI with higher/

lower expectancy of intermediate/ high values occurrence, have practical adaptation outcomes.

The first two points are equivalent to slopes’ change of H as a function of the ordered genotype, as shown in (Supl. S3) in

climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the

result in scenario compared to Hist, for a given agro management. Alternatively, for a given genotype one could find how a

change in management practice could optimize the result. In this last case for example, one could choose a small shift in the

sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher H, as shown for example in TR5

versus TR11 in Fig.9a, RCP4.5 (Fig.9).

a)
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Fig.9 a): Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale). The

900 simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right), experiment setup E_1N_Gn+w, for cross-genotype changes in

six Pi parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist (left) and RCP8.5
minus Hist (right), for the upper H percentile (the first S0 values, [1-50] on x axis) and intermediate in ¢), range [400-1400] on x-

axis. (“Hmax left” indicates that increasing values of H are on leftward direction of the axis).

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with

905 high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9b).

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct weather

favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting (Dewitte et al.

2021).

3.3.2 Optimal Genotype parameters Pi under climate change

910 i) optimal genotype parameters

We further discriminate H response per genotype parameters (P1-P6), to understand the source of the changes in Fig.9 and the

possible adaptation paths under climate and management scenarios.
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Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from

seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.10b), slightly shorter thermal time between

successive leaves appearance (phyllochron, P6, Fig. 10 e) in GI and longer in GX, but longer thermal time to maturity (P3,

Fig.10c) and hi Fi

her grain filling rate (P5 . 10d). These results are in coherence with findings along recent works. Shorter

P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-

humid areas, (the current class of this region, with semi-arid trends projected, Fig. 4), and the same for P2, while slower

maturity (P3) and enhanced filling rate (P5) being linked to higher kernel weight and harvest in agreement with recent studies

(Grewer et al., 2024).

ii) changes in optimal genotype parameters in climate scenarios

Comparing Pi in climate scenarios against Hist, reveals the new plant strategy put in place in the new climatic conditions, for

maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached with genotypes that ensure

a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in scenarios compared to Hist. To a

smaller extent this is also achieved by a longer photoperiod delay, higher grain filling rate and longer phyllochron interval, in

scenarios, than for a same percentile of the Harvest in Hist. These show that under warmer climate it is essentially important

to avoid too fast growth on main stages of the development.

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10a, b) and related to these

under longer photoperiod (P2 increases, Fig.10b). Other contributions come from ensuring a slower rate of appearance of

successive leaves (P5 increase), while a higher grain filling rate (P6 increase) appears to partly compensate for the negative

effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the harvest.

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate

(Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the Pi changes in

scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving.

a) b) c) d) e)
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harvest simulation). X-axis shows the Pi interval-number of discretization, increasing with increased values. Discretization here have
used 5x7x6x1x3x3 intervals for P1xP2xP3xP4xPSxP6 (total 1890). Simulations are shown for two treatments (TR1 at top and TR12
at bottom), for: Hist (black), RCP4.5 (blue, only shown for the running mean) and RCP8.5 (red), ensemble time-mean; full lines

show running means over 100 values window. The short arrows in a) and c) indicate, for a same harvest percentile (y=constant) the

corresponding Pi intervals for Hist (black) and RCP8.5 (red); long arrows indicate the P0i values of the intersection of running-
mean Pi for Hist with RCP8.5.

iii) optimal genotype parameters in management and climate scenarios

Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires

gradually decreasing Pi in order to maximize H (Fig.11, also in Fig.10), for both Hist and climate scenarios. For P1-P3 this

decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too late

(autumn) maturity stage that is slowing the grain filling and leading crop failure.

However, Fig. 11 also shows that these Pi decreases cease or even reverse under extreme delay of sowing. For highest delays

the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming higher, hampering

the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick grain filling. Hence

the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its adaptation to warmer

climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease or even increases of Pi

parameters along with gradual increasing delays in the sowing date.

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi.

This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced
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warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the

development to the key issue of avoiding a too fast growth leading crop failure.

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi.

960 This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced

warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the

development to the key issue of avoiding a too fast growth leading crop failure.
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965 Fig.11 As in Fig.10 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom). Parameters
Pi are shown for the top 200 highest harvest (v from 1 to 400). Grey colours are for Hist and yellow-red for RCP8.5 (light to dark
from earlier to latest sowing).

iv) optimal genotype parameters in adaptation and mitigation strategy

970 For each agro-management and climate scenario one can identify threshold values of Pi (POi that depend on the Pi, the sowing

date and the fertilization level, shown in Fig.10) of intersection between scenario and Hist. At this value, for the genotype the

two have the same H percentile. So POi shows if we get an enhanced percentile or decreased from genotypes with higher or

lower Pi in the scenario compared to Hist (Fig.10, shown by arrows). | Formatted: Font color: Auto, Not Raised by / Lowered by
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Second remark is on the expectancy of an outcome. Since all the slopes of Pi, each as a function of H ordered-values are lower

975 than in Hist (suppl. S3), there is a narrower Pi interval for all those Pi decreasing with H (e.g. P1) and a border one for those
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Pi increasing with H (P3, Fig.10c), in climate scenarios. P3 increases are broadening the interval for H-highest percentile

potentially presenting, in this sense, more expectancy (than P1, Fig.10a) on highest values outcome.
The genotyping results were found both in simulations involving deterministic and, the hybrid metheod-deterministic-ML;*
this-invelves- methods. The hybrid method involved the same cross-simulations, but this-time the selection of Pj values
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random picking up over a continuous interval of values andwith, successively retrieving the best generation;-applying. It -
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The results found are in line with other results in recent studies, using different approaches and observational data, and offer

an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For

the plant response under management treatment delaying sowing date, limiting elongations of the development phase was also

050 found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation

decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10

11). Also fertilization lowering P6 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for warmer

climates (Hokmalipour et al., 2011; Sardans et al., 2017; dos Santos et al., 2021) was recently put in relation to P2 decrease

mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration maximizing

055 the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10f, 11f), limitations in the expansion of new leaves

(increase of P6, Fig.10) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions (Fahad et al.

2017).

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P5, Fig.11d) under reduced P1, P2

and P3. controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated crop

060 (Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11d). This increase for P5

under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress, allowing

plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber at al., 2022).

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise

some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows

065 the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management

scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only

offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small perturbations

may lead the system response into different states (threshold sowing-delays, or POi for genotypes). Without an integrated

modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since these are

070 simulation (climate-management scenario) dependent.
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eguested agro-management modellmg scenarlos for the reglon#hes%al—lewem&sam&ﬂaﬁeﬂs#eﬁﬁme—

A-—main, under current and future climate. A novel feature of the system is the ab111ty for 1dent1fymg optimal management

paths for the user’s request. along with multiple cross-cultivar fRanagement-parameters-and-climate-seenarios;, such as

e-g-cross-optimal sowing date, genotype parameters, amount and date of fertilization.

The system provides solutions and estimates the associated uncertainty asseeiated-by using multi-model
ensembleensembles for each agro-climate and management scenario. The eptimisationcrop optimization
criteria are user-defined and can relate to high yield;-harvest, stable yieldharvest, low pollution. The
optimization module implemented uses a hybrid deterministic ard- ML methodology. It performs multi-
model simulations using physical models of climate and plant penology and eptimisatienoptimization is

done ecither through simulating—diserete—eross-parameters—intervals—pre-definied—discretizing the
parameters’ space and 0pt1m1sat10n post-processing;—either _or using the—advantage—of continuous
hybrid physical-ML Genetic algerithms—along-multiple-medel

simulations:Algorithms methods. ML ismethods are spanning continuous parameter’s space and
interactivelyiteratively selecting along the simulations the best fit parameters, allowing to identify
unprecedented optimal configurations; (H maxims), not- reachable under the discrete deterministic
method.

_The overall system output information is layered and accessed from two interfaces—One: one static, eeﬂi—aiﬂs—h—igh‘
reselution-agro-elimate-for information purpose (phenology, yeldharvest. climate, extremes) at high resolution NUTS3
level-thatisuseful foruser-analysis; management) and adaptation-and-researeh—Thea second interfaeeis real-
time interactive online, through which the system-reeeives—user places requests and performs—reguired-receives the
system-performed management simulations providing—the—results—Fhe—user—request—refers—to—regional
management-seenarios-or-onrequired (including uncertainty along multi-models) and identified optimal management
identification-under-—climate-change-paths for adaptation. These platforms are operational for two emission scenarios
RCP4.5 and were-tested-for-two-climate-seenarios REP45-and RCP8SRCPS.5 and twelve management scenarios

(sowing dates and fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these

tests-arewere discussed herein this work for the pilot region South Romania.

For the eontrolcurrent genotype, in both elimrateemission scenarios it is projected —8-a mean decrease (14% in

ensemble mean, with higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and

fertilization) tested. This was linked to a projected shortening of the growinggrain filling season (aned-10% quicker with an
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earlier shift of both anthesis (5 day) and maturity (10 day) phases) and a-mean-deerease-of the projected-yield;forall
he-to a mean decrease
is-also-linked-to-alower-of the fertilisation efficiency of fertiization-under warmerclimatic scenarios, stronger in
RCP 8.5 emissions.

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-

management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal

harvest? How do these differ under projected climate—Compared-with-the-previeus-ebserved-unirrigated-yields;

here-the-shown-reduetion_change and/ or under agro-management options and can these enhance our understanding to

guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the region?

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then increase

in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to reach the

historical values in this range through agro-management and breeding. These indicate a narrowing of the responses range to

same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of Hist, in

climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-management choice

will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less pollutant.

For effective support in adaptation applications, individual genotype parameters Pi were analysed in climate scenarios versus<+

Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest

changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile

range. This range is identified through critical values of the parameters (PO1), determined for each treatment and climate

scenario. There is significant

Remania-under-the-new-climatic-conditionsvariability of POi under agro-management treatments. Moderate delayed

sowing and enhanced fertilisation may diminish the shifts in Pi in scenarios compared to Hist for a same H-percentile, in

contrast to extreme managements.

weu—ld—eﬂtrerwrs%enh&ne%ehma&eThese results show that Genetrc approaches offer adaptatron strategy
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It-was shown that the eptimisation—seareh—optimization is improved by using a hybrid ML genetic
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Of equal perspective-interest-would-be-using-the, under a continuous-parameter space search. The system

can be further used for W%%Wsearchmg paths along

extreme drought
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Annex-1: Data and Methods: Steps in ML algorithm «
Schema of steps in work-flowworkflow of ML algorithms for optimal genotype identification: «
A4 Start with 10 randomly chosen solutions within the bounds of P1-P6; «
® Calculate the mean and std of harvest of each solution for the 30 years 1976-2005; “
® Calculate fitness = (Mean of harvest) — (Standard-deviation of Harvest/4);

® Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness;

® For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of
P’s to be subjected to crossover, called x;

*® For each child, modify Px as follows:

© Pxa = round (B * Pxa+ (1 - B) * Pxb)

© Pxb = round (1 - B) * Pxa + B * Pxb ) -

Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor, set«
in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued traits

from both parents while exploring the search space between the parents' positions. The blending crossover promotes a smoother
and more gradual search for optimal solutions in continuous domainss.

® Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting*
one of the P’s to a random value between its allowed minimum and maximums.

L4 At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute<
them with the children;.

® Repeat. «
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Supplementary material:

S1: Simulated (ERAS control runs) versus measured harvest

T

HARW

10000
—TRT 1(0.73*%)
9000 // TRT 2(0.65 %)
8000 TRT 3 (0.67 *)
73 %%
7000 TRT 4(0.73 **)
TRT 5(0.73 **)
6000 TRT 6(0.64 %)
5000 . TRT 70649
4000 S| TRT 8(0.76*%)
—TRT 9(0.65 *)

3000 TRT 10 (0.71 **)

TRT 11 (0.66 *)
—TRT 12 (0.75 **)
+0BS

2000
1000
0

S F I FP S P&

"3N"). Box: Pearson correlation between simulated treatments and measured Harvest (*** p<0.01, ** p<0.05, * p<0.10; zero are

.S1: Simulated (thin lines) vs. measured (red, thick) harvest in southern Romania for 12 management scenarios (Table 1, e:

missing values).
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S2: Sensitivity to changes in nutrients

Replicability for system portability on other pilot regions requires estimates of sensitivity to new local forcing. Sensitivity

ensemble simulations were performed, with increasing soil Carbon and Nitrogen at the initial time by 20%, for a same control

genotype (experiment setup E_ 1IN GO _so0il+CN).

a) b) c)

Harvest [kg/ha Harvest [kg/ha Harvest [kg/ha]
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7600 =_// 7600 7600
7400 7400 7400
1 2 3 5 6 7 9 10 m 12
treatment treaotment treatment
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__6\0—4

8000 ———o—_ | 8000 8000
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1 2 3 5 6 7 9 10 1" 12
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ig.S2.1: Harvest a]) comparison between the experiment setup E 3N GO (top, same as Fig.

E 1IN GO soil+CN (bottom). Panels are as in Fig7, for Fx0(a), Fx1 (b), Fx2 (c), ensemble time mean for Hist (black), RCP4.5 (green
and RCP8.5 (red), on Ox there is the treatment (1 to 12, Table 1).

‘Experiment E IN GO soil+CN compared to E 3N GO (Fig.7) shows that

——Harvest loss is only up to 7% for about 60% reduction in fertilization (exper “I1N” versus “3N”, Table 1), when the soil

nutrients content is increased by 20%. Also, the comparison shows that there are still options even under warmer climate to
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equal or exceed the historical Harvest if there is an appropriate soil composition (e.g. in RCP4.5 TR6 and TR7, Fig.S2.1b-
bottom), also under RCP8.5 (TR10 and TR11, Fig.S2.1c-bottom), and even at lower fertilization levels (exp “1N”, Table 1).

A possible mechanism in this case involves delayed maturity (Fig.S2.2b), and consequent more precipitation accumulated

(Fig.S2.2a, ¢). In practice this slower maturity could be due to soil C/N composition influencing soil water holding capacity.

moisture and temperature, slowing germination or plant growth. Previous research (Kakar et al. 2014; Khan et al., 2014) also

reported delayed silking and maturity in the case of enhanced soil nitrogen when compared to control case, showing also a

stronger response for early sowing.

precip [mm buri d "
g ! enS sl e R T

wsf a) asi ) as{ )

o

o
oz
a

=01 1=

=3

1 2 3 1 x 5

traatmant [ ——

Fig.S2.2: Precipitation (mm) accumulated from the initial time of the simulation for experiment setup E 3N GO0 (a), (same as Fig.7);
differences [dap] in the maturity date (b) and in precipitation accumulated until maturity (c) for the experiment setup E 3N G0
minus the experiment setup E_ 1N _GO0_soil+CN, (mm). Lines are for Hist (black), RCP4.5 (green) and RCP8.5 (red).

S3: Slopes of Pi genotype parameters in Hist and climate scenarios
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Fig.S3 The slopes (thick lines) of Pi genotype parameters (y-axis) as a function of decreasing ordered harvest (x-axis) for Hist (black

RCP4.5 (green_ and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of harvest and over the rest of decreasin

ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean, TR12 (as in Fig.10 bottom, grey).
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S4: Percent changes in Pi in climate scenarios relative to Hist
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1665 Fig.S4: Percent changes of Pi genotype parameters (y-axis) as a function of the ordered Harvest from highest (left, x-axis) to lowest

(right, x-axis). Differences (running means over 378=P2xP3xP4xP5xP6 the product of discretization intervals for P1-P6) are shown
for TR1 (vellow for RCP4 5 minus Hist) and green (RCP4.5 minus Hist) and for TR12 red for RCP8 5 minus Hist) and b]ue for
Hist). t ch d as diffe lative to Hist. A di t f Pi tha

corresgond to the ordered decreasing harvest (shown in Fig.10).
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