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Abstract 

 

The impact of climate. Climate change on cropssignificantly threatens crop yields levels and agricultural yield is an 

actual threat while being a challenging issue due to the high complexitystability. The complex interplay of 20 

factors that intervene at the local scale of the crop. Assessing it, requires the use ofmakes assessing these impacts 

difficult, requiring coupled models climate-phenology, meanwhile methods to identify management  models, which 

integrate climate data and genotypescrop information. Identifying suitable for local management practices and crop varieties 

under future conditions, in order to sustain becomes essential for developing effective adaptation strategies.  

We presentThis study presents the implementation and useapplication of a newan integrated climate-phenology adaptation 25 

support modelingmodelling system. This is based on regional CORDEX climate models and the CERES Maize model from 

the DSSAT platform, with new. Novel modules for optimal management and genotype identification usingunder climate 

change have been developed in the system, employing a hybrid method:approach that combines deterministic modeling 

and -modelling with machine learning (ML/) techniques and genetic algorithms. ItThis system was run as a regional pilot 

over Romania, operating in real-time in interaction with users, performing agro-climate projections (combination of 30 

fertilization, sowing date, soilgenotype) and providing best crop management simulated under climate change projections. 

Multi-model ensemble simulations were conducted for two climateradiative forcing scenarios RCP4.5 and RCP8.5 and 

twelve management scenarios show new, yielding novel results for the region. Results indicate a projected decrease in maize 
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yields for the current genotype across all tested scenarios, primarily attributed to a shortened grain-filling period and reduced 

fertilization efficiency under warmer conditions. Soil initial conditions were found to significantly influence yield responses. 35 

For the actual genotype we find The analysis warns about a projected mean decrease in yield in both climate scenarios 

for all sowing dates and fertilization levels tested, response shown to be sensitive to initial soil parameters. This response was 

linked to two factors: a shorter growing season by up to 10% and a loss of fertilization efficiency in a warmer climate. A 

warning points to results showing a narrowing of the agro-management opportunitiesoptions for cropmaintaining a high yield 

but in opposite it is shown a significant rolelevel. However, we find an added value from the impact of optimal genotype-range 40 

identification that may provide crop solutions under selection in mitigating climate change impacts, even in extreme years. 

Identifying best genotype under warmer climate along sets ofGenotype optimisation across six cross-parameter simulations 

show systematic lower values of the maximalcrossed cultivar dependent parameters revealed that while maximum yields, but 

emphasizes declines, specific genotype windows of increases in theexhibit increased intermediate yield values in 

scenariosyields under future climates compared to actual climate. The highest harvest sensitivity to genotype is shown to be 45 

to changes incurrent conditions. Sensitivity analysis identified the thermal time to juvenil respectively to requirements during 

juvenile and maturity stagestages as the most critical factors influencing genotype performance under warmer climate. The 

results sustain using aclimates. 

This research demonstrates the added value of combining deterministic coupled modeling system combined with and 

data-driven modeling for identifying optimalmodelling approaches within a coupled climate-crop system for developing 50 

effective adaptation strategies, including optimised fertilization pathspathways that contribute to climate change mitigation. 

  

 
 

 55 

1. Introduction 

 

According to the IPCC reports (IPCC, (2022)), climate change is evidentunequivocal, and the prospects its impacts 

appear more worrying today than a few decadesdekades ago. Although progress is being made in studying the 

impacts While research on the effects of climate change on cropscrop yields and agricultural yieldharvests has advanced 60 

(Arnell and Freeman, 2021; Hatfield atet al,., 2021,; Rezaei et al., 2024), translating these are rarely directly applicable 

to providefindings into actionable solutions and scales remains a challenge. This is primarily due to the extremely high 

complexity of factors that intervene at the local scale of the crop (Malhi et al., 2021, Eyring et al., 2021). These factors 

include culture-scale) including sensitivities toof the interactingexchanges to variations in climate sub-components as 
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atmosphere / soil/ phenological processes/biosphere’s ecosystems, to under climate change, to natural causes orand 65 

human activities (Wheeler and Braun, 2013,; Xie et al, 2023). 

 

Taking into account scientific research estimating thatGiven the world projected global population will 

continueincrease estimated in scientific reports to grow, and it is expected to arrive to over 9,1 milliards until the 

year  billions by 2050 (Godfray and Charles, 2010), the totalglobal food yield willproduction would have to growincrease 70 

by 70-100% to meet the growing demand (Smil, 2005; World Development Report, 2008; SelvarjuSelvaraju et al,., 2011). 

Meanwhile This challenge is further compounded by the agro-climatic conditions are expected to become vulnerable and 

gradually, more deficient in the context of  decline due to climate change and its impact on, particularly impacting 

water availability (Stehr and von Storch, 2009; Villalobos et al., 2012; van Ittersum et al., 2013; Roccuzzo et al., 2014; 

Stehr and von Storch, 2009). ). 75 

Another facechallenge of the problem comes from the need that approaches, and sustainable solutions should both: merge 

user must not only address the needs, and be in line of agricultural producers but also align with neutral climate 

adaptation stringencyclimate change mitigation goals for 2050, aiming for climate neutrality (Semenov etand 

Stratonovitch, 2015; Dainelli et al., 2022; Mitchell et al., 2022). 

 
80 

Early studies on investigating the impact of climate change impact on crops have pointed toon crop yields emphasized 

the neednecessity of very high -resolution modeling, capable of representingmodelling approaches. These models 

should accurately represent management practices and the local scale impacteffects of climate on plantvariables, such as 

temperature and precipitation (McKee et al., 1993; Trnka et al, 2015., 1995; Adams et al., 1998; Mkee et al, 1993) 

affecting ). These affect thermal and water stress (e.g. the stomatal opening, and plant physiological processes like stem 85 

water potential, stomatal opening, leaf transpiration efficiency (Espadafor et al,., 2017)). Further at ). At the regional scale, 

the relationship between crop yield and water and thermal availability relation to yield indicated a may exhibit strong 

dependencedependencies on the crop, region, time- type, geographical location, temporal scale, and plant 

physiologicaldevelopmental stage (Webber et al., 2018, 2020; Webber et al. 2018; Marcinkowski and Piniewski, 2018; 

Berti et al., 2019; Ceglar et al,,., 2020; Wu et al, 2021; Berti et al.  2019; Marcinkowski and Piniewski 2018). In 90 

this regard, under ., 2021). For instance, simulations conducted by Kothari et al. (2022) in regions with arid climates, 
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indicated for future climate changes, perspectives for corn yield riseschange a significant (~30%) decrease without 

adaptation, but a potential increase (15%) in corn yields under irrigated conditions were identified by simulations for 

areas currently more arid than the geographical region of interest considered in this paper (Kothari et al., 

2022). This points out the need for continuation of the or under radiation-based genotype efficient use. These 95 

findings underscore the critical need for regional simulations taking in consideration soil humidity accuracy and that 

incorporate phenological characteristics with accurate soil moisture estimates to evaluate the effectiveness of various irrigation 

strategies under future climate scenarios. 

Apart from In addition to atmospheric conditions, soil changesproperties significantly affectinfluence plant growth. These 

influences occur through physics-based interactions with climate and through changesalterations in soil chemical 100 

compositions. Increasing air temperature wascomposition. Rising air temperatures have been shown to affectimpact 

the soil carbon budget, its decrease with a decline in soil carbon potentially affecting plant and root level processes, 

biochemical cycles, and species composition (Abhik Patra et al,., 2021).  

 

ModelingCrop modelling at local, regional and also global scale reported significant advances inhas significantly 105 

advanced, enhancing our understanding, simulating and projecting future crop ( of crop systems and enabling the 

simulation and projection of future yields. Studies (Tsvetsinskaya et al, 2001; Tao et al., 2009; Ganguly et al., 2010; Cock et 

al., 2021; Chen and Tao, 20222013; Schauberger et al., 2020). These emphasize; Chen and Tao, 2022) consistently project 

global projected yield mean harvest reductions (Asseng et al., 2015) with differences in the regional pattern of climate change 

impact on crop and yield (harvest (Asseng et al., 2015; Li et al. 2022). Not only projected regionalspatial but also timetemporal 110 

variability of the climate change impact appears larger and accelerated, motivating intensified efforts on seasonal and multi-

annual predictions of plant development and yieldharvest (Baez-Gonzalez et al., 2005; Jin et al., 2022) using crop models. 

These simulations’ results significance was analyzed suggesting). Analysis of these simulations emphasized also the need to 

include crop uncertainty in climate scenarios assessments (Meehl et al., 2007, Rosenzweig et al.,. 2013, Basso Bruno et al., 

2019; Chapagain et al., 2022). In addition 115 

Meanwhile, model simulations proved to be a highlyemerged as useful tool in plant breeding analysis (Bernardo, 2002; 

HoogenboomBanterng et al.,, 2004; Cooper and Messina et al., 2023) considered a support in developing ; Mamassi 

et al., 2023), supporting the development of superior genotypes and plant-breeding methods for maximizing crop 

effectiveness. Demonstrations of model simulations’ potential as a valuable tool for breeders were 

reported in finding paths for optimalperformance. These simulations have proven effective in guiding cultivar using 120 
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selection through techniques such as parental selection, and breeding by design, etc. (Peleman and van der Voort, 2003,; Qiao 

et al., 2022).  

In most recent years developments climate-crop modelingmodelling extended from deterministic crop 

models (Boogaard et al. 2013; Morell et al., 2016) to data-driven techniques or hybrid approaches for 

assessing crop response to weather and climate change (Zhuang, 2024; Schwalbert et al., 2020; Meroni 
125 

et al., 2021; Morales and Villalobos, 2023,  Meroni et al., 2021; Schwalbert et al., 2020; Zhang; Chang 

et al., 2021).2023; Zhuang et al., 2024). Statistical methods as well as machine learning (ML) used for 

crop forecast and modelingmodelling were however shown to bring for now, limited benefits (Paudel et 

al.., 2021), pointing to possibly hybrid techniques that include physical process in the modelingmodelling 

as a key approach for this challenging issue.  
130 

On the other hand, deterministic breeding optimization techniques using fully deterministic model simulations require a 

huge number of simulations, analysis and inter-comparisons of predicted crosscrop performance (Wang and Pfeiffer, et al., 

2007; Wang et al., 2023). 

  

Here we present a novel hybrid approach developed in the frame of the PREPCLIM (“preparingPreparing for Climate 135 

Changeclimate change”) project in which we solve plant phenology development using deterministic modelingmodelling 

and merge this technique with an on-line ML-genetic algorithms (GA) iteratively selecting along simulations in order to 

iteratively select a the cross-range of optimal genotypecrop cultivar parameters, according to a pre-set user-defined 

criteria of the optimum. Genetic algorithms (GA) simulatefor optimal target. The GA simulates the evolution of a 

population by iteratively applying in iterations, genetic operators, such as  (selection, crossover, and mutation,) to a set 140 

of candidate solutions (chromosomes). The chromosomes represent potential solutions to the problem and are encoded as 

strings of binary or symbolic values, with their fitness assessed by a problem-specific evaluation function here, user-

requestrequired based. GA was successfully used withGAs have demonstrated success for optimizing agricultural 

practices using models like DSSAT for optimizing irrigation and fertilizer applications (Bai  et al,., 2021,; Wang et al,., 

2023). 145 

 

The hybrid approach implemented herein this work focused on ideotype identification presents the advantage of physically 

treating the crop  complex process involved each time along optimizing iterations, sothus allowing analysisspecific 

inclusion and understanding of physical causes of the responses to and of optimal paths in various climate or /and 

management scenarios, meanwhile enhancing. Furthermore, it enhances the ability of choosing optimum conditions from 150 

a continuous interval, not a multi-dimensional intervals for gene parameters, as opposed to discrete one, of gene 
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parameter values.sets. The continuum values approach is an important feature mainly for isolated extremesextreme yield 

detection, or broadbroader parameters’ range and high non-linearity, both aspects of increasing interest, as we show in 

this work the a tendency toward narrower relevance in the context of climate change. Our findings suggest a narrowing 

of agro-management adaptation opportunity windowsopportunities under warmer climateclimates, further emphasizing 155 

the importance of this hybrid genotype-agro-management approach to support finding solutions for the future. 

 

We present the system The developed and system aims to provide efficient and operational support for farmers and 

stakeholders. It leverages the state-of-the art DSSAT model, a widely used and extensively validated platform for agricultural 

modelling across diverse applications. The DSSAT model, incorporating complex parameterizations for soil processes, 160 

surface-atmosphere exchange, plant development stages, and their interactions with climate and management practices, 

undergoes continuous refinement through ongoing research and regional calibrations. For this study, the model was specifically 

adapted to the unique soil characteristics of the pilot region, including parameters such as porosity, composition per soil layers, 

and thermal properties. The developed system exhibits portability to other regions with available soil and management data. 

Its functionality and user-friendliness are expected to improve through widespread adoption and the incorporation of advanced 165 

user requests and management options. 

Section 2 presents the developed system and its data flow in section 2. The . Section 3a provides the motivation of itsfor 

system development, linked tofocusing on projected climate change inimpacts for the target region are shown in section 

3a. We show. Section 3b presents results ofobtained using the system used to estimatesimulate projected changes in plant 

phenology and crop parameters for the target region, under various climate changeand management scenarios and for 170 

different management scenarios, for the actualcurrent control genotype in section 3b. Then we discuss in 

section. Section 3c, discusses results obtained using the system's genotype optimization package of the system. 

Perspectivesalong agro-management scenarios. Finally, Section 4 presents perspectives and conclusions are discussed in 

section 4. 

 
175 
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2. Data and methods 

 
180 

Projected changes in agro-climate indicators over climatic parameters for Romania arewere assessed under two 

Representative Concentration Pathways (RCPs): RCP4.5 and RCP8.5. These changes were computed for two climate 

scenarios: RCP45 and RCP85 as anomalies reportedrelative to historical simulations, (Hist) using an ensemble of three 

CMIP5-CORDEX models (Benestad et al., 2021). Then, projected changes in phenological and yield parameters 

are simulated using , Karl et al., 2011) high resolution (11 km) climate models, based on the CNRM, EC-EARTH, and 185 

MPI global models coupled to the regional climate model RCA4. Subsequently, the DSSAT crop model (Jones et al., 2003; 

Hoogenboom et al., 2019; Jones et al., 2003) forced with the ) was employed to simulate projected changes in 

phenological and harvest parameters. The DSSAT model was driven by atmospheric conditions from the CORDEX 

models (from GFDL, HadGEM, MiIROC, IPSL, NorESM), forderived from each model of the ensemble for the 

historical period and for each of the two climateRCP emission scenarios.  190 

A software package was developed for the DSSAT model that  performs identification of optimal model parameters set-up 

according to based on user-defined: criteria, user chosen for optimum, climate-management scenario, region, and time- 

horizon. The user-criteria for optimisation includes maximum yield,Optimization goals include maximizing 

harvest, ensuring stable yield, across years, yields over time, and minimizing the amount of leached nitrogen below 

the maximum level ofleaching beyond the root frontzone (reducing the risk of water pollution), etc. risk). Management 195 

scenarios include allow users to explore optimal cross-options forcombinations of sowing datedates, fertilization amount, 

genotype (six parameters defining the genotype). By default, twelve agro-management simulations are 

performed, for four planting dates (separated by 5 days interval) and three fertilization amounts with 

Nitrogen (zero, a mean value of the region and the double of the mean value)., and genotypes. 

Six main cultivar-specific parameters (P1 to P6) characterizing the maize genotype were analysed across wide ranges of 200 

physically realistic values, considering both current and extreme future climate projections for the target area. P1 represents 

the thermal time from seedling emergence to the end of the juvenile phase (ranging in these simulations from 100 to 500-

degree days above 8°C). It significantly influences crop flowering times (Liu et al., 2020), water availability, and ultimately, 

yield. Studies have shown that utilizing longer-season maize cultivars (dependent also on P1) can lead to increased harvest in 

humid regions but decreased harvest in semi-humid regions (Mi et al., 2021).  205 
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P2, the photoperiod-development delay parameter (ranging in simulations here from 0.1 to 2.6 days) shows the extent to which 

development is delayed for each hour of photoperiod increase above the longest photoperiod of maximum development rate 

(considered 12.5 hours). P2 influences the flowering time (Langworthy et al. 2018) and the rate of plant development, with 

long-day plants exhibiting faster development under longer day lengths (Angus et al., 1981). Related to these, studies have 

demonstrated the significant role of P2 in mitigating the negative impacts of waterlogging in warmer climates (Liu et al., 2023). 210 

P3, the thermal time from silking to physiological maturity (tested here for values from 500 to 1500-degree days above 8°C), 

significantly influences maturity dates. It also has a main role in plant stress levels (longer-maturity hybrids increase harvest 

but under water stress it may provide lower yield (Su et al., 2021; Grewer et al, 2024)) and grain moisture at maturity (Tsimba 

et al., 2013). P4, representing the maximum number of kernels per plant, exhibits a relatively predictable numerical response 

and is therefore held constant at the control value of 797.5 estimated for the region, in this analysis. P5, the kernel filling rate 215 

parameter (ranging from 6 to 12 mg/day), influences grain filling duration, desiccation, moisture at maturity and harvest 

(Chazarreta et al., 2021). P6, the phyllochron interval or the thermal time between successive leaves (ranging from 3 to 70 °C) 

is a critical parameter for estimating the duration of vegetative development (Birch et al., 1998; Xu et al., 2023). P5 and P6 are 

important parameters of optimal plant adaptation to climate conditions, since they are drivers of the phenological response and 

yield formation, in conjunction with the temperature, radiation, humidity, water stress. These genotype (or cultivar specific) 220 

parameters are the primary ones considered in DSSAT model parameterizations for plant development processes 

(Hoogenboom et al., 2019). 

The parameter ranges were rigorously tested in simulations to ensure their representatives for the target region, including an 

analysis of extreme values. The control values for these cultivar-specific parameters Pi in the region are: P1=200, P2=0.7, 

P3=800, P4=797.5, P5=8.60, and P6=38.90. All the simulations for combinations of parameters values (cross-Pi simulations) 225 

were performed under Hist, RCP4.5, and RCP8.5 emission scenarios. For each scenario, simulations were conducted for twelve 

agro-management scenarios consisting of sowing date changes and fertilization treatments, for each model of the ensemble. 

By default, the twelve agro-management scenarios encompass four sowing dates (spaced five days apart) and three fertilization 

levels (zero, then a regional average and its double). For each agro-management scenario, genotype optimization by 

selection(finding the optimal set of thePi values forunder the cultivar related coefficients (named further G-230 

parametersgiven climate -agro-management and optimum criteria) was performed throughusing two methods: a fixed-

discretisation1) discretized parameter-space runs and with subsequent post-processing ordering, and a2) continuum 

parameter-space- search with iterative selection alongduring simulations, byemploying genetic algorithms methods (GA).  

The proposed GA-based method employs an iterative approach. It commences with an initial population of randomly generated 

solutions (chromosomes) and undergoes iterative cycles (generations). In each generation, a selection process is performed to 235 

choose the fittest chromosomes to reproducefor reproduction, based on their fitness scores. Subsequently, crossover 
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(recombination) and mutation operators are applied to the selected chromosomes, generating offspring that inherit traits from 

their parents. The new offspring replace some of the least fit individuals in the population, ensuring that the average fitness of 

the population improves over time. The convergence of the GA toward an optimal or near-optimal solution is achieved by 

balancing exploration (searching the problemproblem’s space for diverse solutions exploiting promising regions) and 240 

exploitation (refining the best solutions found so far). Here GA have evenhas been newly applied to develop an innovative 

crop selection algorithm to optimize genotype along, optimizing genotypes across various agro-management scenarios. 

Steps along the algorithms are showndescribed in Schema from Annex1Annex.  

 

The overallsystem generates output information from the system (climate, data (agro-climate and optimal paths) 245 

which is directeddisseminated on two platform-components (platforms (Fig.1). One is a platform (Info-Platform, Fig. 

1a) providing one-way interactive (static) agro-climate information at local scale (NUTS3 level, aligned with the European 

Union's Nomenclature of Territorial Units for Statistics) over the region, delivering. It delivers pre-computed climate -agro-

climate indicators, agro-climate, and indices of agro-climate extremes indices computed from based on observations 

and, re-analysis for the actual climate and from climate scenarios (anomalies relative to historical runs) for future 250 

projections for the region. 

The second platform (User-Platform, Fig.1b) is an operational, online, user-interactive (two-way) in real-time component, 

where user requests are placed, treated,submitted, processed as input to the modelling chain and results sentdelivered back 

to the user (User-Platform, Fig. 1b).for a new, refined request. 
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255 

Fig. 1a:The core of the modelling system integrates the DSSAT crop model (running on Linux OS) with regional climate 

models (Fig.2), with a pre-processing pack developed for coupling. This coupled system incorporates new features, that include 

the ability of conducting parameter-varying cross-simulations and advanced algorithms for identifying optimal agro-

management practices and genotype selections along simulations. 

 260 
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Fig.1 a): Info-Platform for information at : Provides local-regional scale, information derived from regional climate 

high -resolution regional climate models (CORDEX, presenting climate, agro-), e.g. climate, agro-climate data and 

indicators, indices of agro-climate extremes indices at the NUTS3 level. 

 
b) 265 
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Fig. 1b:1 b): User-Platform: the user-interactive component to specify requests on  for adaptation management 

simulations. User requestsupport: Processes in real time specific user requests, and simulates management scenarios, 

identifying optimal paths: Users input parameters (left) on: the, e.g: region, time slice period (present or/ future climate 

scenarios, choices for:), management options (e.g. sowing date, fertilization/ irrigation (time, and amount),, genotype and 270 

output requests); System Output (right) on results: yields,, e.g: harvest, projected phenology dates, evapo-transpiration, 

Nprecipitation/evapotranspiration, Nitrogen and C balancecarbon balances, optimal management pathpaths (dates, and 

management actions), optimal genotype) estimated from ensemble simulations. 
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The pilot area where the  275 
Fig.2: The PREPCLIM-v1 work schema: DSSAT-core and modelling components (middle), and data flow: input data (left), output 

information (right). Red modules were developed in PREPCLIM-v1. 

The system was implemented and validated isover Southern Romania, target agricultural area, for maize. The 

potentialPotential beneficiaries of this system are users,include researchers, farmers, policymakers, and policy 

makers. Maizemaize breeders . The system can also can adapt using the systemassist maize breeders in adapting to 280 

climate change by enabling them to the climate conditions by accommodating or testingevaluate and select 

genotypes that are more resistant to challenging climate. Acceleratedclimatic conditions. Given the accelerating pace of 

climate change makes, such a system a usefulmay provide valuable support in many respectsnumerous ways. 

 

The core of the modeling system relies on coupled modeling by DSSAT crop model (Linux OS) interfaced 
285 

with regional climate models (Fig.2), with new feature allowing multiple cross-parameter simulations 

under iterative loops (parameter perturbations) and new features for optimal agro-management x genotype 

identification (parameter’ value selection).  
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310 

 

 

 

 

 
315 

 

 

 

Fig. 2: DSSAT-core and the Optimal-Crop modeling system. Data flow: Input data (left), output 

information (right); model components and set-up (middle). Red modules were developed within the 
320 

project. 

 

 

Table 1: Treatment description in terms of the sowing date and fertilization amount, N [kg/ha]. 
Table 1: The agro-management treatments (TR): each treatment is described in terms of the sowing date and fertilization amount, 325 
Nitrogen [kg/ha]. We denote two experiments: exper “1N” and exper “3N”, and fertilisations Fx0, Fx1, Fx2 have values dependent 

on the experiment: Fx0 is no fertilisation, Fx1 is the unit fertilisation of the experiment and Fx2 is the double unit fertilisation of the 

experiment. We define the unit fertilisation of the exper “1N” equal to 23 N/kg and the unit fertilisation of the exper “3N” as 60 

kg/ha. Sowing date format is “DD.MM”. 

Treatment TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 

Sowing date 1.04 15.050

4 

1.05 15.05 1.04 15.05
04 

1.05 15.05 1.04 15.05
04 

1.05 15.05 

Fertilization 

(exper “3N)”) 

Fx0 
=0 

Fx1=6

0Fx0 

Fx2
Fx0=

120 

Fx0 Fx1=
60 

Fx1 
=60 

Fx1=
60 

Fx1=
60 

Fx2 
=120 

Fx2 
=120 

Fx2 
=120 

Fx2 
=120 
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Fertilization 

(exper “1N)”) 

Fx0 
=0 

Fx1=2

3Fx0 

Fx2

=46
Fx0 

Fx0 Fx1=

23 

Fx1 
=23 

Fx1=

23 

Fx1=

23 

Fx2 
=46 

Fx2 
=46 

Fx2 
=46 

Fx2 
=46 

 
330 

 

 

 

 

3. Results 335 

 

a)3.1 Agro-climate changes in the region 

 

 a 3.1) Changes.1 Climate changes in agro-climate indicators 

  
340 

Agro-climateclimatic Indicators (provided on Info-Platform) are computed , derived from CORDEX models, and 

available on the Info-Platform, provide derived parameters information as time slices-series data for ensemble or 

individual model metrics from country to NUT3at the NUTS3 level over Southacross Romania. At the country 

region Fig.3 shows Figure 3 illustrates projected changes in mainkey agro-climatologicalclimatic characteristics. 

Region’s 345 

The anticipated climate is expected to shift as shown (Fig. 3a)in the region is evidenced by changes in the 

Johansson continentality index (Baltas, E. 2007; Flocas, 1994) defined as:   

 

Continentality Index (JCI=, Fig.3a), calculated as JCI = 1.7 * dT / sin (phi) -(φ) - 20.4 

 
350 

 (where dT is the annual maximal thermalmaximum range of monthly mean temperatures and phiφ is the 

latitude.; (Flocas, 1994; Baltas, 2007)). Changes in JCI show an increase in the entire Southern part up to 

5.5% of the interval required to switch to “extreme continental” from “continental” class already in the 

first 10 years (2021-2030) in the ensemble mean (and up to 10% change per model). Changes are towards 

“maritime” in the Northern half, this zonal differentiation creating strong thermal wind gradients and 
355 

being stronger in RCP85. For agriculture, an often-used JCI generally reveal robust evidence of large-

scale changes influences on the regional-indicator is the scorching days number (SC), computed over the 
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region as the number of degrees in summer days (JJA) over the temperature of 34ºC. SC is constantly 

increasing (Fig. 3a) in the overall country, with a stronger increase in RCP85 both, in the first decade and 

until 2050 than in RCP45, emphasizing as well, the enhancement of the north- south climate. For this 
360 

domain it shows a Southwards meridional gradient. Relevant for composed temperature and precipitation, 

the deMartonne aridity index (IM) computed as the ratio between  of the intra-annual total precipitation 

([mm]) and variability (Arctic amplification remote impacts on Europe). Hence enhanced intra-annual 

mean temperature ([C] +10) shows in Fig. 3b significant changes in its classes as well, decreasing 

(towards aridity) mainly in the South, SE and SW, variability (JCI) with much warmer summers than 
365 

winters over the main agricultural areas discussed here. Identification of projected changes in aridity was 

shown to be a key issue for adaptation in semiarid environments (Ignacio Lorite, et al, 2018).  

We summarize that changes are accelerating in the South in RCP85 (differences 2071-2100 versus Hist 

are higher than those over 2021-2050).  

 
370 

 

 

 

 

 
375 

 

 

 

 

 
380 

 

 

 

Fig. 3a: Historical (left) andin South (and the opposite in the North), information useful for farmers to estimate changes 

relative to it under RCP45 (middle) and RCP85 (right) along 2021-2050, for: the Johansson 385 

conventionality index JCI (top): the JCI climate is marine for 0<k<33, continental for 33<k<66 and 

exceptionally continental for 67<k<100; the Scorching index SC (bottom). in the sowing time. 
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400 

 

 

Fig. 3b: Historical (left) and changes relative to it under RCP45 (middle) and RCP85 (right) alongIn 

agreement with this, the Scorching Index (H32temp, Fig.3b, computed as the total degrees in summer days exceeding 32°C), 

used by farmers and agro-meteorologists to characterize the sub-regional drought conditions, projects severe drought 405 

conditions (H32temp ≥ 51), about doubling the Hist values and expanding significantly across the southern regions in RCP8.5 

with already high-level drought conditions (31<H32temp<51) occurring in RCP4.5 (Fig.3b). 

Accounting also for precipitation changes, the de Martonne Aridity Index (IM, the ratio of annual precipitation to a translation 

function (+10C) of the annual mean temperature), exhibits also significant projected changes. It shows particularly increased 

aridity (low IM) in the south, southeast, and southwest regions, the major agricultural areas with an accelerating change up to 410 

2100 (Fig.4, comparing projected differences to Hist for 2071-2100 versus 2021-2050). 

  a) 

     

   b) 

 415 
Fig.3: The JCI and the Scorching index H32temp indices. For each: (left): the index over Hist period 1971-2000 and changes (2021-

2050) relative to it, under RCP4.5 (middle) and RCP8.5 (right). a) The JCI climate index classes are: marine for 0<k≤33, continental 

for 33<k≤66 and exceptionally continental for 66<k≤100). b) The Scorching index H32temp classes are: reduced intensity drought 

for H32temp∊[0,10], moderate intensity for H32temp∊(10,30], high intensity for H32temp∊(30,50] and severe drought conditions for 

H32temp > 50. 420 
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Fig.4: The de Martonne aridity index (IM) for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for two horizons: 2021-2050 (top) 

and 2071-2100 (bottom) for the Martonne aridity). IM index. (0<IM<10 classes are: arid; 10 for 0<IM<20≤10 arid, 

semi-arid; 20 for 10<IM<24≤20, Mediterranean; 24 for 20<IM<28≤24, semi-humid; for 24<IM≤28, wet for 28<IM<≤36, very 

wet; for 36<IM<≤55 very wet; ID and extreme wet for IM>55 extreme wet; (all indices are time mean 30 years, ensemble 425 
mean). 

 

 

a3.1.2) Changes in agro-climate extremes 

Projected changes in extremes are analyzed for the ensemble models in Fig. 4 that for temperature and precipitation, 430 

highly useful information for agriculture, show important features in the region. A main aspect of interest is related to late-

spring freezing days that may drastically affect the whole crop of the year. Fig.5a shows for South Romania (Călăraşi target 

subregion changes) that in RCP85 versus Hist, in spite of the decreasing trend (5% p-level significance) of the total 

number of freezing days (FD), total precipitation (RR),  severe precipitation (RR10 the number of days with 

daily accumulated > 10 mm) and total precipitation (RR), for each of the three decades (10 days) of April 435 

(the main sowing month for maize). We note a decreasing tendency in FD for both decades, butin spring, 

we still may have severe events with interestingly intervals with , a number of freezing days in late-spring that is even 

higher numbers of FDin scenarios than in Hist, late-spring being one of the most vulnerable period to freezing for the plant 
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already under development. Also note that successive extreme freezing years in late spring may occur in RCP85 scenario 

compared to Hist in the third decade. . 440 

a) 

 

b) 

 

c) 445 

 
Fig.5: Extreme climate parameters (NUTS region 103032, representative for the target region), along historical (Hist) and RCP8.5 

scenarios; a): FD, the number of frost days (minimum temperature < 0°C in a 10-day period); b): RR10, the number of days with 

heavy precipitation (>10 mm per day) in a 10-day period; c): RR, total precipitation (mm) per 10-day period; (left): the 10-day 

period is centred on April 5th;; (right): the 10-day period is centred on April 25th. Values indicate the slope of the linear trend (black 450 
line) and the p-value of significance (p-values < 0.05 are statistically significant at the 5% level). 

This late spring blizzard feature over the region, important for plant evolution, was shownwas analysed in a previous 

work, and shown to be related to the combined context of Polar Jet instability meanwhile with warmer sea surface temperature 

in the Eastern Mediterranean (Caian and Andrei, 2019). Both these features are projected to enhance in a warmer climate 
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(Lelieveld et al., 2012; Shaw and Miyawaki, 2024; ), which for the region indicates a), indicating higher potential for 455 

severe late-spring blizzard, affecting crops and the year’s yield under warmer climateblizzards in the region. 

 

 

 

 
460 

 

 

 

 

 
465 
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475 

 

 

 

 

 
480 

 

 

 

 

 
485 

Fig. 4: Time evolution ([years], Ox axis) in Hist and RCP85 (1981-2070) of extreme climate parameters: 

number of frost days (minimum temperature <0ºC, per 10 days slice, top), number of days total per 10days 

slice with heavyFor precipitation (>10mm) (middle); , analysis of extreme precipitation sum (10 days, 

[mm] bottom); 10 days slices are centered: 5 April (left), 25 April (right). Boxes indicate the slope of the 

linear trend (black line) and the p-value of significance (p-value <0.05 -> significant at 5% level of falsely 
490 

rejecting the null hypothesis of linear regression coefficient =0).  
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Extreme (RR10events (RR10mm) and total precipitation (RR show the following:) reveals a negative trend notable 495 

shift in their temporal distribution within April. While a decreasing trend is observed in the first decade of the month turns 

in opposite to dekad, a positive trendstrend emerges in the third (and second) month’s decade, that indicate a time-

shift towards end-April -May of accumulated precipitation peack along April month. We note that this 

feature of precipitation shift is present systematically in each model of the five-member CMIP5 ensemble 

(Karl et al. 2011). RR10 (and RR20, not shown) extremes enhance even more towards 2070. Also, RR10 500 

and RR show higher variability with significantly higher isolated extremes in the third decade of the 

month in scenario compared to Hist.dekades (Fig.5b). These suggest a time-shift tendency towards the end of April and 

into early May for the occurrence of intense and accumulated precipitation. Although statistically insignificant at the 5% level, 

this shift is consistently observed across all models within the CMIP5 ensemble. As for FD we note that higher extreme values 

of RR and RR10 are projected to occur under emission scenarios than Hist, mainly in RCP8.5 (Fig.5b,c), more often during 505 

late spring. Extreme daily precipitation is, in most cases detrimental for the crop, causing soil erosion and surface runoff mainly 

after drought periods.  

 

 

b)3.2 Phenology and Yield projected changesHarvest Projections for the control genotypeControl Genotype 510 

 

Projected changes in phenology for the control genotype (Pioneer 375) were simulated withusing the DSSAT forced by 

model under historical (Hist) and multi-model Hist and climate projections of CRP4.5 and RCP8.5 scenarios RCP45 and 

RCP85, using first the control genotype G0 (Pioneer 375*) of the region. The implemented system. Further, 

multi-genotype simulations are discussed in Section 3.c. 515 

Model validation was done in conducted using Control simulations that used (Ctrl) driven by ERA5 reanalysis climate 

data from ERA5 (Simmons, et al., 2021) over for each treatment outlined in Table 1 (experiment "3N").  

These simulations, spanning the period 1976-2005. These show a good time, demonstrate the model's ability to capture 

inter-annual variability of the simulated Yield against available measured values for the region, and that the 

modeling system is able to capture years of in harvest yields, including both high and low yield (Fig.5). The years, 520 

when compared to the measured available data for the region (suppl. S1). They also allowed model set-up 
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involvedimprovements through sensitivity simulations and model calibration including soil parameters calibration, that 

was performed along sensitivity experiments for (suppl. S2) as soil water, nitrogen, and Nitrogen and Carbon 

organic carbon content.  

 
525 

 

 

Fig. 5: Harvest simulated under twelve default management scenarios (Table 1, 3N) and measured (red 

thick line), for the S-Romania. Blue box shows the Pearson correlation between treatments and measured 

Harvest with statistical significance (*** p=0.01; ** p=0.02; * p=0.05). 
530 

 

 

 

bHowever, further improvements in model accuracy are to be achieved if incorporating factors such as inter-annual soil 

variability, the yearly impact of pests and diseases or the year-to-year variations in practices of fertilization and sowing dates. 535 

For example, simulations with fertilization specifications closer to the year’s management practices (e.g. approximately 80-

120 kg N/ha and sowing around April 15th for 1995) resulted in more accurate (reduced bias) predictions (TR6, TR10). These, 

together with the well simulated inter-annual variability, demonstrate the model's ability to capture the combined influence of 

climate and management practices on crop performance.  

 540 

3.2.1)  Phenology dates - projected changes  

 

Ensemble model simulations over 30 year scenarios up to 2050, compared against historical runs (for RCP 4.5 

and RCP 8.5) indicateprovide projected changes in the anthesis and maturity days in Fig. 6phenology, for the 

control genotype G0, fertilization 3N (Table 1, (G0), under different fertilization levels (0, 60, 120 kg/ha, Table 1, exper 545 

"3N") and sowing dates, averaged over 30-years, in scenarios (2021-2050, RCP4.5 and RCP8.5), versus Hist (experiment set-

up “E_3N_G0). These show that the ”). Figure 6a,b illustrates the ensemble model changes, demonstrating an earlier 

anthesis date is projected to occur earlier by up to ~6 days while and an earlier maturity date by up to ~10 days across 

Formatted: Normal, Left, Indent: Hanging:  0 cm, Border:
Top: (No border), Bottom: (No border), Left: (No border),
Right: (No border), Between : (No border)

Formatted: Font: 12 pt, Font color: Black, Not Raised by /
Lowered by 

Formatted: Font: 12 pt, Font color: Black, Not Raised by /
Lowered by 

Formatted: Font color: Black



 

 

 
 23 

23 
 

Formatted: Font color: Auto

Formatted: Footer, Tab stops: Not at  8.79 cm +  17.59 cm

all scenarios. These time-shifts result in a shortening of the grain-filling period by up to 10% across the ensemble, and are a 

consistent response observed in each individual model. Early sowing dates exhibit a more pronounced earlier shift in anthesis 550 

under warming scenarios, a response even more pronounced under RCP8.5.  

Under warmer climates we note more frequent occurrences of critical situations with suboptimal grain filling and potential 

crop failure, under fertilization. These were linked in previous studies to non-linear interactions between fertilization and 

temperature (Huang et al., 2024) with excessive fertilization during reproductive stages under elevated temperatures potentially 

inducing higher stress conditions. In our study premature ending of simulated vegetation season occurred more frequently in 555 

treatments with higher nitrogen fertilization, leading in average only small changes in maturity days come also . This may 

favour leaves development, enhanced transpiration and earlier by updepletion of the soil moisture leading later to about 

10water stress. 

  a)       b) 

 560 

Fig.6: Simulated a): anthesis dates ([dap], days (ensemble mean, time mean), regardless of the planting date 

and after sowing) and b): maturity dates ([dap]), under historical conditions (black), RCP4.5 (blue), and RCP8.5 (red) scenarios, 

experiment setup E_3N_G0. Results are shown for the four sowing dates and nitrogen fertilization level. The two shifts 

together lead to a shortening of the growing season  by up to 10%. The average maturity date may 

show small variations with the fertilization level, due to occurrence of slowed grain feeling (Fig. 6).  565 
of 60 kg/ha (Table 1, exper “3N”). 

 

a)       b) 
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580 

 

Fig.6:  a) Anthesis dates ([dap], day after planting) simulated for the historical period (black), RCP45 

scenario (green) and RCP85 scenario (red) for treatments  1 to 4; b) the same for the maturity date, for 

treatments 1 to 12. On the Ox axis there are the treatments (1-12, Table 1, 3N, experiment E_3N_G0).  

 
585 

 

b3.2)  Yield.2 Harvest - projected changes 

 

Same multi-modelFor harvest, the ensemble simulations experiment(along E_3N_G0 show) project an overall decrease, 

in the ensemble mean, of the yield in  under both climateRCP4.5 and RCP8.5 scenarios, for and across all tested 590 

(Table 1) management scenarios with perturbed sowing dates and fertilization levels (Fig. 7a,b,c).7), compared to 

the historical period.  

 

This decrease was related to several factors: - a decrease in the accumulated rainfall in the growing period 

(Fig. 8a,b,c) in scenarios compared to Hist in both climate scenarios and for all managements scenarios; 
595 

- a systematic earlier flowering date and date of reaching physiological maturity, the two leading a 

shortening of the crop season (Fig. 6); - a decrease of fertilization efficiency with increasing warming: 

the decrease in Harvest in scenario compared to Hist is higher for later sowing dates and for higher 

emission in RCP8.5 than in RCP4.5 (Fig. 7c).  

 
600 

In the non-fertilized (Fig. 7a) case, we note is a Harvest increase with delaying sowing, for Hist and for 

scenarios, indicating in the lack of nutrients, a stronger relation with precipitation: more accumulated 

precipitation (Fig. 8a) for later dates (season’s length increases for later sowing, for all treatments). Also, 

RCP85 shows higher H values than RCP45 due to precipitation time shift (Fig. 4), more appropriate for 

the plant development phase. This is no more valid when fertilization occurs (Harvest decreases are 
605 

obtained for later sowing dates in this case) pointing to nonlinear relation climate-fertilization and to a 

decay of fertilization efficiency with warming.  
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The robustness of these is further analyzed in sensitivity simulations with enriched soil nutrients.  

 

 
610 

b.3)  Sensitivity of changes to nutrients 

 

In a second experiment we use the same fertilization levels but change in addition the initial soil content 

in Carbon and Nitrogen (increased). The aim is to understand if less fertilization (less pollution) could be 

compensated by better soil characteristics choice. Achieving best Harvest in warmer climate versus actual 
615 

climate enhancing the support towards a neutral climate, is a crucial point. 

The sensitivity ensemble simulations increase soil Carbon and Nitrogen at the initial time by 20%, for the 

same control genotype (Experiment E_1N_G0_soil+CN). 
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640 

 

 

 

 

Fig. 7:  Same as Fig.6b, for Harvest ([kg/ha]) forHarvest decline in climate scenarios is attributed to several factors: 645 

1) reduced rainfall during the growing season (Fig.8), as evidenced by a strong correlation (0.5 in April to 0.8-0.9 in July-
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August, over 30 years) found between harvest (H) and accumulated precipitation in the Ctrl and in model simulations; 2) a 

shortened grain-filling period due to a projected earlier flowering and an even earlier maturity across all the models (Fig.6), 

potentially limiting biomass accumulation; and 3) decreased fertilization efficiency under warming conditions, in the sense 

that H difference Hist minus scenario, increases (non-linearly) with enhanced fertilisation (Fig.7). Hence for a same climate, 650 

the same increase in fertilisation brings less benefit in a warmer climate. This benefit for H is of about 10% in Hist versus 

7.6% in RCP8.5 for early sowing and about 8% in Hist versus 4.3% in RCP8.5 for later sowing for doubling the N amount of 

nitrogen (Fig.7b,c). This efficiency decay feature underscores the primacy of reduced accumulated precipitation (Fig.8) and 

of higher temperature, that lead to a non-linear H response to fertilization (Huang et al, 2024). Their influence is noticed as 

well in the absence of fertilization (Fig.7a), when H still declines in warmer climates, with a dominant control from 655 

precipitation. The correlation along sowing dates between H and accumulated precipitation until maturity (Pmat, Fig.8), is r(H, 

Pmat) >0.96 in both scenarios.  

 a)     b)     c) 

   
Fig.7: Simulated Harvest (kg/ha) under Hist (black), RCP4.5 (blue) and RCP8.5 (red) scenarios, for four sowing dates across three 

fertilization levels (Table 1, exper “3N”): 0 (a), 60 (b), and 120 (c) kg N/ha (from left to right), experiment setup E_3N_G0.  660 
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Fig.8: Precipitation accumulated until maturity (mm) in experiment E_3N_G0 (top) and for experiment 

E_1N_G0_soil+CN (bottom). legend as in Fig. 7). 

 

The role of the precipitation timing is emphasised: for late sowing, RCP8.5 shows more accumulated Pmat (and H) despite a 665 

shorter accumulation season (Fig.6) but having projected a precipitation increase towards late spring (Fig.5), that may 

significantly favour critical growth stages. 

3.3 

Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig.7) shows that the Harvest is reduced by only 

up to 7% for about 60% reduction in fertilization when the soil nutrients content is increased by 20%. In 
670 

addition, we note two interesting features also for adaptation decisional support. One is that there are still 

options even under warmer climate to overestimate the historical Harvest under appropriate initial soil 

composition (e.g. in RCP45 TR6 and TR7, Fig. 7e) and even under RCP85 (TR10 and TR11, Fig.7f). The 

mechanism behind appears to be linked to richer soil (N, C) leading to a slower maturity (Fig. 8b)  with 

consequent more precipitation accumulated along the growing season (Fig. 8c). This slower maturity is 
675 

stronger for early sowing (Fig. 8b) hence better date option (Fig. 7d, differences diminishing at later 

sowing due to precipitation shift). 
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680 

 

Fig.8:  a): Accumulated precipitation from the initial time of the simulation until the maturity date ([mm]), 

for scenarios as in Fig.7, for  E_3N_G0;  in b) are shown differences [dap] in the maturity date and in 

precipitation for (E_3N_G0) minus  (E_1N_G0_soil+CN); c) same differences as in b for the precipitation 

accumulated along growing season ([mm]).  
685 

 

 

In summary for the control genotype, in both climate scenarios, and for all the management scenarios 

tested for sowing-date and fertilization level but keeping the same genotype, it is projected  a shortening 

of the growing season (and earlier development phases) with mean decrease of the projected yield. 
690 

Meanwhile, it is shown that one can get comparable outcomes if astuciously using soil richness, 

elongating the growing season, instead of enhancing fertilization levels and pollution.  

 

 

c) Optimal genotype identification Genotype Identification 695 

 

The system was further developed to extend the management scenarios for multi-genotype simulations and algorithms for 

optimal identification under each agro-climate scenario. Best options are searched that lead to optimal 

(user-defined) yield: highest harvest, stable yield, less pollutant. implement methods to identify ideotypes under 

each agro-climate scenario. The aim is to search for management scenarios that yield optimal outcomes defined by user-criteria 700 

such as maximizing harvest yield, stabilizing yield, or minimizing pollutant emissions. Two optimization methods are 

implemented: a discrete-parameter, purely deterministic technique, and a hybrid approach that combines deterministic 

modelling with continuous-parameter Machine Learning-based Genetic Algorithms for iterative genotype selection. 

Two optimization methods are implemented: a discrete-value pure The deterministic technique and a 

hybrid optimization technique combining deterministic modeling with ML Genetic Algorithms for 
705 

iterative selection. 
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Deterministic method performsinvolves conducting multiple simulations (and optimisation is part of the 

the post-processing), for pre-established limits and discretisation intervals for each of the -genotype 

parameters considered (here six).crop model simulations, with optimization performed as a post-

processing step. Genotype parameters Pi are defined within pre-established limits and discretization. 
710 

Multi-model simulations in which are then performed, where each parameter is individually varied while 

the others have fixed values are performed, resulting in a number of simulations depending on the 

discretisation. An example for the criteria of “maximum yield” is illustrated in Fig.9a, for six 

genotyperemaining parameters: P1 the thermal time from seedling emergence to the end of the juvenile 

phase; P2 a photoperiod-development delay parameter; P3: the thermal time from silking to physiological 
715 

maturity; P4 linked to maximum kernels per plant, P5 linked to kernel filling rate and P6 the phyllochron 

interval), for Hist, RCP45 and RCP85, each for the twelve default sowing date- fertilization treatments 

and each model of the ensemble. We discuss here the results of genotype optimization (experiments 

E_1N_Gn+w) that  are based on the setup of E_1N_G0 but in which we increased the initial soil water 

content by 5% as indicated by the projected maximum change over the pilot area (Fig. 1S, Suppl). 
720 

Parameter P4 was keptheld constant as having known impact. 

 

 

i) Optimal Harvest under climate change 

 
725 

Fig. 9 shows, for the ordered genotype upon Harvest (H), a projected average decrease of the Harvest (H) 

in maximum values’ genotype-. The total number of simulations in this case is determined by the chosen 

discretization level. In contrast, in the hybrid technique the Pi values are selected from a continuous range 

range (top 2.5% cases), for RCP45 and emphasized also in RCP85 for earlier sowing. This response is 

not systematic among models (Fig. 2S, Suppl). Among models, we note a strong link between H 
730 

differences and  models’ projected precipitation (a parameter with high intra-model variability and 

regional-scale uncertainty) mainly for unfertilized case. In opposite, the warming trend is a parameter in 

models’ consensus for this region, leading to systematic responses as earlier anthesis and maturity dates 

with a season shortening in RCP45 and even more in RCP85 affecting mainly in the range of highest H 

(Fig. 3S, Suppl).  
735 

We further analyze robust features of the projected yield that are systematically seen among model-

simulations. Important climate-adaptation information appears from these diagrams.  

 

One is the different response obtained for maximum H (GX) and for intermediate H (GI). Any (“n”) 

ordered simulations has a harvest, and a genotype associated, that we call “H-range” and respectively “G-
740 

range” (of the top “n”-th value of H). We call GX the ranges of highest H of values, GI of intermediate 

H values and GN of lowest H values. 

The large ensemble of genotype-treatment simulations indicate a decrease that is projected for the highest 

yield (GX, Fig.9b) that is projected in RCP45 and RCP85 (except late sowing, low fertilization, 

potentially linked to precipitation shift towards later in April mainly in RCP85). In opposite, a H increase 
745 
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is projected for the intermediate yield genotype ranges (GI) for almost all treatments (Fig. 9c). The 

explanation comes from the fact that we test a broad range of parameter P3 (the thermal interval to 

maturity) and H increases significantly with P3 increase, in scenarios relative to Hist, a cause being the 

fact that at highest values of P3 the plant maturity comes earlier in scenario compared to Hist with an 

overall shortening of the season (with increasing P3, allowing stage accomplishment). These two 
750 

tendencies become systematic for all models in RCP85. Tendency towards H overestimations in scenarios 

is not excluded neither for the Control genotype under conditions of higher soil water as it was already 

noticed in Fig.7 e,f for the control Genotype. Here its G-parameters are located in the intermediate range 

(400-1400) and have a central P3 value, but a lower initial soil moisture.  

P3 value appears a key parameter on managing H. However care should be taken as extreme P3 increase 
755 

leads to a too slow grain filling, and crop failure, more often in scenarios than in Hist (Fig. 3S), when P3 

is above a threshold (that is P1 and P2 dependent, not shown).   

The second feature is the fact that while for the highest H (GX) range it is systematic that earlier sowing 

conditions are better options in E_1N_Gn+w (as P1 is small in maximal H), this is no more valid for 

intermediate H genotype ranges (GI, Fig. 9a zooms, more days with precipitationidentifying and 
760 

iteratively improving mainly the unfertilised cases). We note ranges with e.g. TR2 worse than TR3 (at GI 

ranges) and better than TR1 (at GX ranges) mainly in RCP85. At mid-low H (ranges 1400-1890, GI, GN), 

there are intervals of cross-parameter (sowing-fertilization) critical cases under unfertilized early sowing, 

rather than fertilized (top zoom in Fig. 9a, e.g. for RCP85).  

 
765 

How one can use the PREPCLIM-v1 system output to assess a the best management under climate 

scenarios? For a given genotype one can identify in these diagrams, either the optimal sowing-fertilization 

for a given scenario (on the vertical Ox=constant on Fig. 9a), or, for a given H one can identify the 

genotype ranges (per each sowing-fertilization) allowing this solution (line Oy=constant on Fig. 9a). 

These may propose variate options to improve yield, using the modeling system. 
770 

 

Third, we note a systematic narrowing of the spread among treatments (all models, all  scenarios, as 

shown in Fig. 9a) all along genotype spectra (G-range belts), indicating a reduction of response options 

in future. 

 
775 

a)  
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b)       c) 

 

 
780 

Fig.9 a): Ordered simulation results for Harvest (Oy, model ensemble mean, time mean over 30 years). 

The simulations are for: Hist (left), Rcp45 (middle) and Rcp85 (right); a logarithmic scale was used for 

the simulations index in order to emphasize high H values. On Ox is the simulation rank (logarithmic 

scale) increasing for decreasing H (set-up E_1N_Gn+w with cross-genotype changes in six Pi parameters 

resulting 1890 experiments); each panel has a small zoom over intermediate H genotype ranges [20-320] 
785 

at bottom and over [1700-1890] for RCP85, top corner; b) differences of H over two genotype range 

windows indicating a mean change for: the window of highest H in (b) ; c) same aș b) for the window of 

intermediate H values. Colors în b) and c) have the same meaning as in a). 

 

The third feature to be noticed is the role of the initial soil moisture. We note that the control genotype in 
790 

E_1N_G0+soil (Fig. 7d,e,f) falls in the intermediate H values of E_1N_Gn+w here (Fig. 9) with higher 

yield in scenarios than Hist, feature already but marginally reached in Fig 7e,f, mainly due to enhanced 

initial soil moisture in E_1N_G0_soil+w. In this regard, Fig.1Sa indicates a projected overall decrease in 

soil moisture over the main agricultural area in the target region, with stronger decrease în the Eastern 

and SE parts.  
795 
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ii) Optimal Genotype under climate change 

 

We saw a response of optimal H to the genotype choice in climate scenarios, and a different one for the 
800 

highest H (highest 0-2.5% H), intermediate (interval 21%-75% of genotype range) and then lowest H 

values. For practical applications the crop projected response should be discriminated per genotype 

parameter (P1-P6) to provide efficient support in adaptation decisions.  

We analyze the role of each P1-P6 genotype sub-parameter related to crop performance under climate 

scenarios versus Hist.domains. This section presents the results of genotype optimization experiments (E_1N_Gn+w), 805 

built upon the E_1N_G0 and sets up initial (1st of January, yearly) soil moisture as best agreement with projections targeting 

near-term (2035 as centre of interval 2021-2050). 

 

Management-genotype scenarios show that main drivers of increasing H in Hist runs are: decreasing P1 

the thermal interval seedling-juvenile phase and decreasing the photoperiod delay parameter P2 (their 
810 

increases are associated with lower H). Contributions come then from a longer thermal time to maturity 

(increasing P3), increasing the kernel-filling rate P5, and decreasing the phyllochron interval P6. The 

slopes of Pi variation as a function of G-ranged index (the index increasing from maximal H to minimal 

H) are positive for P1 and P2, negative for P3 and for P5 and P6 positive only in the GX range of highest 

Harvest.  
815 

At lowest H we mention a particular sensitivity behavior of mainly P3 and P5 under increased fertilization 

and sowing date. In this case, both small and high P values may lead to H decreases (Fig.10a). This is 

related to critical situations of too slow grain filling that occur at high P3. We raise warning for careful 

consideration when perturbing parameters as P3, P5 to perform genotype adaptation, requiring additional 

modelling: finer discretisation of genotype parameters intervals, highly accurate soil conditions set-up, 
820 

close analysis of warming thresholds and phenology interactions implied).  

 

How one can use the PREPCLIM-v1 system output to assess a best genotype range under climate 

scenarios? We compare scenarios against Hist first for the different Pi in Fig. 10. Simulations show for 

all Pi a slope increase (Pi are functions of the G-ranged index) in the GX interval. Compensating the 
825 

slopes decrease in GI and GN (the variation limits for Pi being kept the same) in scenarios relative to Hist. 

Relating these to H, we obtain estimates of projected impact of G-parameter perturbations, under climate 

change. 

For GX, the slope decrease found for positive slopes (P1,P2,P5,P6, Fig.10a) means that a G-range in GX 

will be obtained up to higher Pi values than in Hist (Fig. 10b) hence an enlargement of actually possible 
830 

values (lower Pi values correspond to higher H in positive slopes). For GX, the slope increase found for 

the negative slope of P3 means that higher H values than a given H-range here will require higher P3 

values (seen Fig 10b, as high values are giving best H in negative slopes), so constraining its variation 

interval in GX to a narrower interval. This can be understood as a constraint on using P3 for enhancing 
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H and an enhanced efficiency on using P1,P2,P5,P6 options for enhancing H under warmer climate, for 
835 

maximal H (GX range). 

For GI, a same analysis, links the slope increase for positive slopes (P1, P2, P5, P6, Fig. 10a) to constraints 

on these parameters as options for increasing H, while the slope decrease of negative slope for P3 

represents an enhanced efficiency on using this parameter for improving H in the intermediate range 

values. 
840 

For GN as discussed above, the response present bifurcations in the relation (Pi,H) and careful simulations 

are required. These are however very important in the critical years, when yield is estimated to be very 

low and we are searching for solutions. Note that over GN P6 has a third slope change (otherwise main, 

non-bifurcated slopes and changes are as in GI), becoming positive (Fig.10a), with enhanced efficiency.   

 
845 

We finally note the interesting aspect of differences between the two scenarios, in which important 

changes of response (reversal) occur in P5 and P6 in RCP85 compared to RCP45, with consequent impact 

on measure efficiency / constraint, that should be accounted for in adaptation. 

  

In summary of the tis analysis, it is revealed that the main impact on H of genotype parameters’ changes 
850 

are from P1, P2 and P3. It is shown that using shorter thermal time to flowering P1 values or species with 

a shorter photoperiod-development delay P2 (for ensuring  intermediate H-range values) and higher P3 

values (longer thermal time to maturity) for getting maximal H-range values are constraints for Pi under 

warmer climate compared to Hist, emphasized for the pilot region.  

 
855 

Equally important, we note that changes in sign of responses (scenarios minus Hist) occur in Fig. 10b in 

the GI range [400-1500], that is about the actual Control genotype range (Fig. 4S). This points definitely 

to necessity for model simulations in order to identify which slight changes in Pi would lead better or 

worse H in a warmer climate. 

 
860 

Regarding now3.3.1 Optimal genotype under climate change 

i) harvest as a function of the genotype H(G) in scenarios versus current climate 

We analyse the distribution of H obtained along multi-genotype simulations, ordered from maximum to minimum values and 

denote the genotypes corresponding to this ordering “H-ordered genotypes”, chain which is simulation (model, scenario) 

dependent. Comparing these H distributions for the two climate scenarios against Hist, indicates projected changes in the 865 

ensemble-model PDF (probability density function) of H under warmer climate. 

A first outcome demonstrates in Fig.9a, b that for the H-ordered genotypes, a projected average decrease in Harvest (H) occurs 

within the range of maximum H values (genotypes in the upper H-percentile, interval GX (0%, 2.5%) of the H-ordered 

genotypes), under both scenarios, and mostly affecting the earlier sowing dates (Fig.9b). Across models of the ensemble, we 

note a strong modulation of this behaviour by precipitation, particularly for unfertilized scenarios. Precipitation exhibits high 870 
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inter-model variability and significant regional-scale uncertainty, pointing to the need of ensemble modelling for reducing it. 

In contrast, the warming trend is a consistent feature across models in the region, contributing other model-systematic 

responses such as earlier anthesis and maturity dates and shortening of the grain filling season. 

The second note regards a different response projected in the intermediate H values (Fig.9a, c). Genotypes corresponding to 

the intermediate H values (genotypes of middle H-percentile, the interval GI (25%, 70%) of the H-ordered genotypes) show 875 

projected higher H values in GI in climate scenarios than in Hist (Fig.9c), affecting less the earlier sowing (Fig.9c). 

These together lead to a narrowing of the H-values range of responses, in GX and GI, to the same managements applied, in 

scenarios compared to Hist. Same management spread would lead to closer H-responses, with enhancing the expectancy for 

occurrence of intermediate values and decreasing the expectancy for highest H values (a third feature of projected changes). 

Finally, we note that despite this narrowing, earlier sowings appear systematically as better timing options (Fig.9a), improving 880 

by up to 2-(4) % in scenarios (respectively Hist) unfertilized case and up to 8-(12) % in fertilised case (Fig.9a), with the lowest 

percentage for RCP8.5. Earlier sowing was reported in other recent studies as optimal for spring maize harvest (Djaman et al, 

2022). 

ii) options for adaptation and mitigation using genotype analysis 

These three features of cross genotype-agro-management impact: - projected lower maxims of H in scenarios (mainly for early 885 

sowing), projected higher intermediate H (mainly mid-late sowing); - a narrowing of the range of H in GX and GI with higher/ 

lower expectancy of intermediate/ high values occurrence, have practical adaptation outcomes.  

 

The first two points are equivalent to slopes’ change of H as a function of the ordered genotype, as shown in (Supl. S3) in 

climate scenario versus Hist. Slope change information indicates the percentile (and genotype) threshold for improving the 890 

result in scenario compared to Hist, for a given agro management. Alternatively, for a given genotype one could find how a 

change in management practice could optimize the result. In this last case for example, one could choose a small shift in the 

sowing, but using less fertilisation, less pollutant, meanwhile getting a same or even higher H, as shown for example in TR5 

versus TR11 in Fig.9a, RCP4.5 (Fig.9).  

 895 

a) 
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b)        c) 

    

Fig.9 a): Harvest multi-model time mean, ordered from maximum to minimum value (left to right on x-axis, logarithmic scale). The 

simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right), experiment setup E_1N_Gn+w, for cross-genotype changes in 900 
six Pi parameters (resulting 1890 simulations, x-axis); b) differences in projected harvest for a) RCP4.5 minus Hist (left) and RCP8.5 

minus Hist (right), for the upper H percentile (the first 50 values, [1-50] on x axis) and intermediate in c), range [400-1400] on x-

axis. (“Hmax left” indicates that increasing values of H are on leftward direction of the axis). 

Apart from any comparison with Hist, it is important for long term adaptation, that one may find genetic combinations with 

high yield in specific target percentile under a given climate (e.g. first 50 values, as in Fig.9b).  905 

At yearly level, the interest for some of these genotype parameters combinations may increase, providing that distinct weather 

favourable patterns will be identified, once with progress achieved in seasonal and annual weather forecasting (Dewitte et al., 

2021). 

3.3.2 Optimal Genotype parameters Pi under climate change 

i) optimal genotype parameters  910 

We further discriminate H response per genotype parameters (P1-P6), to understand the source of the changes in Fig.9 and the 

possible adaptation paths under climate and management scenarios. 
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Parameters’ analysis (Fig. 10) shows that in all simulations, higher harvest is obtained under: shorter thermal time from 

seedling to juvenile phase (P1, Fig. 10 a), shorter photoperiod-delay (P2, Fig.10b), slightly shorter thermal time between 

successive leaves appearance (phyllochron, P6, Fig. 10 e) in GI and longer in GX, but longer thermal time to maturity (P3, 915 

Fig.10c) and higher grain filling rate (P5, Fig. 10d). These results are in coherence with findings along recent works. Shorter 

P1 or lowering the seedling-juvenile thermal time for increasing H (Fig. 10a) is in agreement with Mi et al., (2021) for semi-

humid areas, (the current class of this region, with semi-arid trends projected, Fig. 4), and the same for P2, while slower 

maturity (P3) and enhanced filling rate (P5) being linked to higher kernel weight and harvest in agreement with recent studies 

(Grewer et al., 2024). 920 

ii) changes in optimal genotype parameters in climate scenarios 

Comparing Pi in climate scenarios against Hist, reveals the new plant strategy put in place in the new climatic conditions, for 

maximizing the harvest. The ensemble simulations (Fig. 10) shows that highest harvests are reached with genotypes that ensure 

a longer thermal time from seedling to juvenile phase and longer thermal time to maturity in scenarios compared to Hist. To a 

smaller extent this is also achieved by a longer photoperiod delay, higher grain filling rate and longer phyllochron interval, in 925 

scenarios, than for a same percentile of the Harvest in Hist. These show that under warmer climate it is essentially important 

to avoid too fast growth on main stages of the development. 

Indeed, slower development phases are obtained in scenarios mainly by increasing P1 and P3 (Fig.10a, b) and related to these, 

under longer photoperiod (P2 increases, Fig.10b). Other contributions come from ensuring a slower rate of appearance of 

successive leaves (P5 increase), while a higher grain filling rate (P6 increase) appears to partly compensate for the negative 930 

effect of higher temperature that decreases the seed-filling duration and seeds number and size and finally the harvest.  

In other studies, this compensation was shown to be minor compared to the loss of seed-filling duration in warmer climate 

(Singh et al., 2013) that points to P1 and P3 as main drivers for Harvest in climate scenarios. Percentages of the Pi changes in 

scenarios versus Hist for a given percentile of harvest (suppl. S4) confirm this main driving. 

a)   b)       c)         d)   e) 935 
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Fig.10: Pi values corresponding to ordered, decreasing harvest (on y axis, the number of the ordered simulation, y=1 is the highest 

harvest simulation). X-axis shows the Pi interval-number of discretization, increasing with increased values. Discretization here have 

used 5x7x6x1x3x3 intervals for P1xP2xP3xP4xP5xP6 (total 1890). Simulations are shown for two treatments (TR1 at top and TR12 

at bottom), for: Hist (black), RCP4.5 (blue, only shown for the running mean) and RCP8.5 (red), ensemble time-mean; full lines 

show running means over 100 values window. The short arrows in a) and c) indicate, for a same harvest percentile (y=constant) the 940 
corresponding Pi intervals for Hist (black) and RCP8.5 (red); long arrows indicate the P0i values of the intersection of running-

mean Pi for Hist with RCP8.5. 

 

iii) optimal genotype parameters in management and climate scenarios  

Agro-treatments choice may significantly modulate the H response to genotype parameters. Delaying sowing, requires 945 

gradually decreasing Pi in order to maximize H (Fig.11, also in Fig.10), for both Hist and climate scenarios. For P1-P3 this 

decrease reflects the priority in avoiding a too late end of the juvenile stage (and shift in climate conditions) and a too late 

(autumn) maturity stage that is slowing the grain filling and leading crop failure. 

However, Fig. 11 also shows that these Pi decreases cease or even reverse under extreme delay of sowing. For highest delays 

the development stage is getting too short under P1’s too strong decrease while daily temperatures becoming higher, hampering 950 

the development. The same is seen for the maturity, with P3’ too strong decrease favouring a too quick grain filling. Hence 

the plant strategy for adaptation after a threshold of sowing-delay is similar to the one already seen in its adaptation to warmer 

climate, in scenarios. Higher harvest is then reached by gradually switching to only moderate decrease or even increases of Pi 

parameters along with gradual increasing delays in the sowing date.  

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi. 955 

This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced 
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warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the 

development to the key issue of avoiding a too fast growth leading crop failure. 

This gradual switch in the mechanism of Pi performing high harvest, with sowing delay appears quite systematic for all Pi. 

This crop adaptation mechanism, converging to the one projected for climate scenarios, shows that gradually under enhanced 960 

warming, the crucial priority in adaptation transfers, from the key issue of ensuring climatological conditions for the 

development to the key issue of avoiding a too fast growth leading crop failure. 

a)   b)       c)         d)    e) 

 
Fig.11 As in Fig.10 but for all sowing dates, no fertilization Fx0 (TR1-4, top) and with fertilization Fx2 (TR9-12, bottom). Parameters 965 
Pi are shown for the top 200 highest harvest (y from 1 to 400). Grey colours are for Hist and yellow-red for RCP8.5 (light to dark 

from earlier to latest sowing).  

 

iv) optimal genotype parameters in adaptation and mitigation strategy 

For each agro-management and climate scenario one can identify threshold values of Pi (P0i that depend on the Pi, the sowing 970 

date and the fertilization level, shown in Fig.10) of intersection between scenario and Hist. At this value, for the genotype the 

two have the same H percentile. So P0i shows if we get an enhanced percentile or decreased from genotypes with higher or 

lower Pi in the scenario compared to Hist (Fig.10, shown by arrows).  

Second remark is on the expectancy of an outcome. Since all the slopes of Pi, each as a function of H ordered-values are lower 

than in Hist (suppl. S3), there is a narrower Pi interval for all those Pi decreasing with H (e.g. P1) and a border one for those 975 

Pi increasing with H (P3, Fig.10c), in climate scenarios. P3 increases are broadening the interval for H-highest percentile, 

potentially presenting, in this sense, more expectancy (than P1, Fig.10a) on highest values outcome.  

The genotyping results were found both in simulations involving deterministic and the hybrid method deterministic-ML, 

this involves  methods. The hybrid method involved the same cross-simulations, but this time the selection of Pi values 
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for parameters is H optimization and ordering was no more following a pre-defined discretisation andbut instead it is a 980 

random picking up over a continuous interval of values andwith successively retrieving the best generation, applying. It 

applies for optimization, classic Genetic Algorithms methods in which selection of pairs is based on the user-criteria (e.g. 

maximum yieldharvest, stable yieldharvest, etc.). Our results show that for the same physical intervals of the genotype 

parameters, the ML hybrid technique only after 20 generations shows at least 50% chances to get a better result than the 

deterministic model, while after 100 generations, it already increases at 80% chances to get better results. A better result 985 

means here, identifying an optimal configuration that has not been able to be emphasized by deterministic 

simulations with also computational efficiency. CPU time is reduced in this case by more than 30% using the hybrid 

technique compared to the fully deterministic model on a VM Linux platform. Hybrid method emerges as a better solution 

since it can identify improved optimums at lower computational prices. 

 
990 

In each of 4. Discussions the two techniques used for optimal genotype identification, we note that in 

climate scenarios versus historical climate, it is projected a significant narrowing of the management 

options range leading, for a given genotype, to high yields (Fig. 8b), that is a severe warning for future 

decision planning. Also there is a lower maxima potentially reachable under scenarios managements 

under warmer climate (including genotype, sowing, fertilization).   
995 
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Fig.10a : Indices of the Genotype’ six parameters (Ox) that correspond to Harvest ordered from max 
1020 

Harvest (Oy bottom) to min Harvest (Oy top). Here are 1890 genotypes (5x7x6x1x3x3 simulations with 

parameters, per model in [1,7]), shown as ensemble mean for two treatments (TR1 left column and TR12 

right column). Indices are time-averaged (30 years) for simulations along Hist (top row), Rcp45 (middle 

row) and Rcp85 (bottom row) scenarios. 

 
1025 

 

 

 

 

Fig. 10b: Percent changes in Genotype parameters Pi as a function of the ordered Harvest from highest 
1030 

(left, Ox) to lowest (right, Ox). Differences (running means over 378=P2*P3*P4*P5*P6  values) are 

shown for TR1 (yellow for RCP45 minus Hist) and green (RCP45 minus Hist) and for TR12 (red  (yellow 

for RCP85 minus Hist) and blue (for RCP45 minus Hist). Differences in indices are expressed in percent 

relative to the parameter’s range.  Arrows indicate the (Pi,G-ranged index) overall linear trend from 

Fig.10a. (on Ox: the G-ranged index; on Oy the values of Pi). 
1035 

 

 

The complex interactions for cross-parameters choice regarding sowing-fertilization-soil composition, 

shown before, would make it difficult for assessing an optimal path, in the absence of a modeling system. 

Even more, when it comes to choosing an optimal genotype with fixed or cross-optimal sowing-
1040 

fertilization-soil configuration the added value of such a modeling for optimum identification becomes 

obvious and necessary, under warmer climate when traditional genotypes might no longer be suitable. 
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The results found are in line with other results in recent studies, using different approaches and observational data, and offer 

an extended (continuum-parameter) assessment towards a more generalised frame, allowed by the implemented system. For 

the plant response under management treatment delaying sowing date, limiting elongations of the development phase was also 

found in other studies (Huang et al., 2020) to reduce the impact of temperature increase and, in some cases, precipitation 1050 

decrease and water stress. This response was also found stronger under enhanced fertilization and delayed sowing (Fig. 10, 

11). Also fertilization lowering P6 and enhancing leaf appearance rate (Fig. 10f), assessed in earlier studies mainly for warmer 

climates (Hokmalipour et al., 2011; Sardans et al., 2017;  dos Santos et al., 2021) was recently put in relation to P2 decrease 

mainly along sensitive photoperiods (Hu et al., 2023) and to higher harvest, through enhanced evapo-transpiration maximizing 

the high N uptake (Lu et al., 2024). In warmer climate scenarios (Fig.10f, 11f), limitations in the expansion of new leaves 1055 

(increase of P6, Fig.10) was shown to be an adaptive tolerance mechanism to drought and heat stress conditions (Fahad et al., 

2017). 

Further, for moderate sowing delay fertilisation was shown to require slower grain filling (P5, Fig.11d) under reduced P1, P2 

and P3, controlling N stimulated growth under hydric stress conditions of current and projected climate for non-irrigated crop 

(Yang et al., 2024). Under high delay and warmer climate, a higher grain filling is required (Fig.11d). This increase for P5 1060 

under increased warming may reflect an adaptive strategy of plants to accelerate development under drought stress, allowing 

plants to end their life cycle before impact of severe drought stress occurs (McKay et al., 2003; Roeber at al., 2022). 

Simulations here emphasize and compare adaptation paths of gradual plant response to warming climate. These emphasise 

some reduction in the efficiency of adaptation through crop management in warmer climates. Meanwhile, genotyping shows 

the possibility of identifying parameters still able to enhance efficiency of adaptation under climate and agro-management 1065 

scenarios, hence suitable methods for an accelerating change. The ability of exploring continuum-parameter space not only 

offers a general picture of adaptation cross-solutions but identifies critical values of the parameters that for small perturbations 

may lead the system response into different states (threshold sowing-delays, or P0i for genotypes). Without an integrated 

modelling approach, estimating or emphasising these points meaningful for adaptation is hard, moreover since these are 

simulation (climate-management scenario) dependent. 1070 

5. Discussions and Conclusions 

 

The main conclusionoutcome of this study is that an agroclimateagroclimatic real-time Interactive Service 

was developed that goes beyond interrogation platforms for agro-climate information, stepping forwards 

and implemented towards adaptation support, that allows performing in real-time, under  user request-
1075 
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requested, agro-management modelling scenarios for the region. These allow crop simulations for time-

slice of interest, specified climate scenario, and user-specified management scenarios. 

A main, under current and future climate. A novel feature of the system is the ability for identifying optimal management 

paths for the user’s request, along with multiple cross-cultivar management parameters and climate scenarios,, such as 

e.g.cross-optimal sowing date, genotype parameters, amount and date of fertilization.  1080 

The system provides solutions and estimates the associated uncertainty associated by using multi-model 

ensembleensembles for each agro-climate and management scenario. The optimisationcrop optimization 

criteria are user-defined and can relate to high yield, harvest, stable yieldharvest, low pollution. The 

optimization module implemented uses a hybrid deterministic and- ML methodology. It performs multi-

model simulations using physical models of climate and plant penology and optimisationoptimization is 
1085 

done either through simulating discrete cross-parameters intervals pre-definied discretizing the 

parameters’ space and optimisation post-processing, either or using the advantage of continuous 

parameter space investigation by using hybrid physical-ML Genetic algorithms along multiple model 

simulations.Algorithms methods. ML ismethods are spanning continuous parameter’s space and 

interactivelyiteratively selecting along the simulations the best fit parameters, allowing to identify 
1090 

unprecedented optimal configurations, (H maxims), not- reachable under the discrete deterministic 

method. 

 

 The overall system output information is layered and accessed from two interfaces. One: one static, contains high 

resolution agro-climate for information purpose (phenology, yieldharvest, climate, extremes) at high resolution NUTS3 1095 

level that is useful for user-analysis, management ) and adaptation and research. Thea second interface is real-

time interactive online, through which the system receives user places requests and performs required receives the 

system-performed management simulations providing the results. The user request refers to regional 

management scenarios or onrequired (including uncertainty along multi-models) and identified optimal management 

identification under climate change.paths for adaptation. These platforms are operational for two emission scenarios 1100 

RCP4.5 and were tested for two climate scenarios RCP45 and RCP85RCP8.5 and twelve management scenarios 

(sowing dates and fertilization), for the time-horizon up to 2050, with open-source code (EERIS platform). The results of these 

tests arewere discussed herein this work for the pilot region South Romania. 

 

For the controlcurrent genotype, in both climateemission scenarios it is projected  a a mean decrease (14% in 1105 

ensemble mean, with higher values per model) of the projected harvest, for all the management scenarios (sowing-dates and 

fertilization) tested. This was linked to a projected shortening of the growinggrain filling season (and 10% quicker with an 
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earlier shift of both anthesis (5 day) and maturity (10 day) phases) and a mean decrease of the projected yield, for all 

the management scenarios, sowing-date and fertilization level tested. We show that the to a mean decrease 

is also linked to a lower of the fertilisation efficiency of fertilization under warmer climatic scenarios, stronger in 1110 

RCP 8.5 emissions. 

The impact of genotype perturbations on crop parameters is analysed along six cross-genotype parameters, for agro-

management-climate scenarios. The main questions: i) Can we identify optimal genotype parameters that lead to maximal 

harvest? How do these differ under projected climate. Compared with the previous observed unirrigated yields, 

here the shown reduction change and/ or under agro-management options and can these enhance our understanding to 1115 

guide our options? iii) Can be genotyping a (better) solution for adaptation under climate change in the region? 

These simulations showed that the maximal H values are projected to decline for all agro-management and breeding 

simulations performed, in emission scenarios compared to Hist, with a higher decline for earlier sowing. H-values then increase 

in the intermediate-percentile harvest in scenarios versus Hist and there is enhanced expectancy in scenarios to reach the 

historical values in this range through agro-management and breeding. These indicate a narrowing of the responses range to 1120 

same agro-managements, with less / more expectancy of reaching values in the highest / intermediate H-range of Hist, in 

climate scenarios. In practice, these express that we can identify the H-percentile (genotype), where agro-management choice 

will optimize the outcome compared to Hist, including finding solutions with lower fertilisation, less pollutant. 

For effective support in adaptation applications, individual genotype parameters Pi were analysed in climate scenarios versus 

Hist. This showed that the thermal times to juvenile (P1) and maturity (P3) are key genotype parameters driving harvest 1125 

changes in the region, requiring increased values in climate scenarios compared to Hist for a same highest harvest-percentile 

range. This range is identified through critical values of the parameters (P01), determined for each treatment and climate 

scenario. There is significant (around 50%) in simulated yields of rainfed corn cultivated in South-eastern 

Romania under the new climatic conditionsvariability of P0i under agro-management treatments. Moderate delayed 

sowing and enhanced fertilisation may diminish the shifts in Pi in scenarios compared to Hist for a same H-percentile, in 1130 

contrast to extreme managements.  

 

However, we show that this response is highly sensitive to initial soil parameters as soil water content, 

Nitrogen, Carbon. One could get an improved outcome if using richer soil (by 15%) but lower fertilization 

(by 60%), elongating the growing season. This solution prevents a detrimental increase of  pollution that 
1135 

would otherwise enhance climate These results show that Genetic approaches offer adaptation strategy 

support in helping plants to resist drought stress under warming. It is shown the importance of 

precipitation projections in relation with the sowing date: a time-shift towards end-April was identified 

in climate scenarios for the region with an important link to planting date’s Harvest. 
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1140 

The results for optimal genotype identification show, for the pilot area, under warmer climate two main 

features. One is a mean decrease of maximal reachable H (in the genotype G-range of highest harvest 

values) linked to a reduction of the agro-season length in the same genotype range (and earlier anthesis 

and maturity dates). This response becomes systematic for all models in RCP85. Another is for the 

genotypes range of intermediate H values, under climate scenarios, where rising tendencies are found. 
1145 

These are linked on one hand to the broader range allowed for the P3 parameter (thermal time to maturity), 

higher P3 values leading higher H-range even against season’ length decrease as shown further in the G-

parameter analysis. To note here that caution is required and additional modeling of P3 extreme increases 

that give uncontrolled (bifurcation) of the H response as climate. Moreover, it leads, above a threshold 

(P1 and P2 dependent) to crop failure due to a too slow grain filling, at a higher rate in scenarios than in 
1150 

Hist. On the other hand, another contribution to higher intermediate-range harvest comes from the mean 

precipitation decade-shift, mainly in RCP85 projections. 

When discriminating the results upon genotype parameters we obtain that the main H changes are linked 

to changes in P1 and P3 the  thermal times to juvenil/ maturity phases. We show that there is a stronger 

constraint to their decrease respectively increase. 
1155 

Using shorter thermal time to flowering P1 values or species with a shorter photoperiod-development 

delay P2 (for a same intermediate Harvest range) and longer thermal time to maturity P3 for maximal H-

range values are constraints emphasized for Pi under warmer climate compared to Hist.  

These could be exploited in adaptation strategies for enhancing yield optimization in scenarios. We 

showed that the actual Control genotype falls in the broader range of most sensitive H response to these 
1160 

changes for the region. 

 

It was shown that the optimisation search optimization is improved by using a hybrid ML genetic 

algorithm method coupled to the deterministic model-output, leading to detecting better optimal solutions. 

Of equal perspective interest would be using the, under a continuous-parameter space search. The system 
1165 

can be further used for managing critical levels under periods of prolonged orsearching paths along 

extreme drought, as emphasized in climate projections.  As shown here, extreme events changes under 

warmer climate (frost, precipitation shift, heat stress and soil moisture deficit, etc) are projected to occur 

at different crop stages. In addition we showed that sink–source relationships (fertilization efficiency - 

harvest, initial soil humidity) are projected to change, all leading to changes in yield parameters. Hence, 
1170 

targeted understanding, validation and identification of optimal configurations (genotype-management) 

for extreme cases or dynamics of their physical links, appropriate to alleviate the impact, are a perspective 

of near-future exploitation of the system.  

 

The main outcome of this work is the implementation and demonstration of the ability of 1175 

deterministic coupled modeling system combined with data-driven modeling for identifying optimal crop 

solutions. This can be extended for other regions, scenarios, crops as a performant tool for adaptation 
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support and agro-climate research. Futures perspectives are opened to use the system for more complex 

issues as rainfed yield level and stability in the new climatic conditions, where combination of cultivar 

dependent coefficients that control the phenology of maize could help identify in the same way, 1180 

phenological evolutions that are more performant in certain patterns of water and heat stress distribution 

along the year. Also, the improvement of the forecasts for the 6-12 months range may increase chances 

to use this methods years, along with irrigation options investigation. Coupled with weather prediction data in order 

to early select the most suitable combination of hybrids for the current agro-season. Automatisation of 

these processes already done, further supports extending the system towards a pilot regional agro-climate 1185 

digital twin fed with actualized dataextended predictions (seasonal, year -decadal) this could provide near real-time 

adaptation support. 
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Annex 1: Data and Methods: Steps in ML algorithm 

 

Schema of steps in work-flowworkflow of ML algorithms for optimal genotype identification:  1600 

⚫ Start with 10 randomly chosen solutions within the bounds of P1-P6; 

⚫ Calculate the mean and std of harvest of each solution for the 30 years 1976-2005; 

⚫ Calculate fitness = (Mean of harvest) – (Standard-deviation of Harvest/4); 

⚫ Randomly choose 4 pairs of ‘parents’, with the probability being chosen weighted by the fitness; 

⚫ For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose a random number of 1605 

P’s to be subjected to crossover, called x; 

⚫ For each child, modify Px as follows: 

 Pxa = round (B * Pxa + (1 - B) * Pxb ) 

 Pxb = round (1 - B) * Pxa + B * Pxb ) 

Where Pxa is the value of the x parameter of child “a” (initially identical to that of parent A), and B is the blending factor, set 1610 

in this paper to 0.75. This technique is called blending, and it generates offspring chromosomes that inherit real-valued traits 

from both parents while exploring the search space between the parents' positions. The blending crossover promotes a smoother 

and more gradual search for optimal solutions in continuous domains;. 

⚫ Then take each child, and with a probability of 0.5 perform a mutation on one of its chromosomes. This means setting 

one of the P’s to a random value between its allowed minimum and maximum;. 1615 

⚫ At this point the children have been fully constructed. Discard the 8 parents with the lowest fitness and substitute 

them with the children;. 

⚫ Repeat. 
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Supplementary material:  

S1: Simulated (ERA5 control runs) versus measured harvest 1620 

 

Fig.S1: Simulated (thin lines) vs. measured (red, thick) harvest in southern Romania for 12 management scenarios (Table 1, exper 

"3N"). Box: Pearson correlation between simulated treatments and measured Harvest (*** p<0.01, ** p<0.05, * p<0.10; zero are 

missing values). 

  1625 
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S2: Sensitivity to changes in nutrients 

Replicability for system portability on other pilot regions requires estimates of sensitivity to new local forcing. Sensitivity 

ensemble simulations were performed, with increasing soil Carbon and Nitrogen at the initial time by 20%, for a same control 

genotype (experiment setup E_1N_G0_soil+CN).  1630 

 

 a)   b)   c) 

 
Fig.S2.1: Harvest ([kg/ha]) comparison between the experiment setup E_3N_G0 (top, same as Fig.7) and the experiment setup 

E_1N_G0_soil+CN (bottom). Panels are as in Fig7, for Fx0(a), Fx1 (b), Fx2 (c), ensemble time mean for Hist (black), RCP4.5 (green) 1635 
and RCP8.5 (red), on Ox there is the treatment (1 to 12, Table 1). 

 

Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig.7) shows that  

 
      Harvest loss is only up to 7% for about 60% reduction in fertilization (exper “1N” versus “3N”, Table 1), when the soil 1640 

nutrients content is increased by 20%. Also, the comparison shows that there are still options even under warmer climate to 
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equal or exceed the historical Harvest if there is an appropriate soil composition (e.g. in RCP4.5 TR6 and TR7, Fig.S2.1b-

bottom), also under RCP8.5 (TR10 and TR11, Fig.S2.1c-bottom), and even at lower fertilization levels (exp “1N”, Table 1). 

A possible mechanism in this case involves delayed maturity (Fig.S2.2b), and consequent more precipitation accumulated 

(Fig.S2.2a, c). In practice this slower maturity could be due to soil C/N composition influencing soil water holding capacity, 1645 

moisture and temperature, slowing germination or plant growth. Previous research (Kakar et al. 2014; Khan et al., 2014) also 

reported delayed silking and maturity in the case of enhanced soil nitrogen when compared to control case, showing also a 

stronger response for early sowing. 

 

Fig.S2.2: Precipitation (mm) accumulated from the initial time of the simulation for experiment setup E_3N_G0 (a), (same as Fig.7); 1650 
differences [dap] in the maturity date (b) and in precipitation accumulated until maturity (c) for the experiment setup E_3N_G0 

minus the experiment setup E_1N_G0_soil+CN, (mm). Lines are for Hist (black), RCP4.5 (green) and RCP8.5 (red). 

S3: Slopes of Pi genotype parameters in Hist and climate scenarios 

 
Fig.S3 The slopes (thick lines) of Pi genotype parameters (y-axis) as a function of decreasing ordered harvest (x-axis) for Hist (black), 1655 
RCP4.5 (green and RCP8.5 (red) computed over 2 sub-intervals of highest 200 values of harvest and over the rest of decreasing 

ordered values (200-1890). The values (light grey) are plot for Hist, ensemble time mean, TR12 (as in Fig.10 bottom, grey). 
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 1660 

 

 

S4: Percent changes in Pi in climate scenarios relative to Hist 

 

Fig.S4: Percent changes of Pi genotype parameters (y-axis) as a function of the ordered Harvest from highest (left, x-axis) to lowest 1665 
(right, x-axis). Differences (running means over 378=P2xP3xP4xP5xP6 the product of discretization intervals for P1-P6) are shown 

for TR1 (yellow for RCP4.5 minus Hist) and green (RCP4.5 minus Hist) and for TR12 (red for RCP8.5 minus Hist) and blue (for 

RCP4.5 minus Hist). Percent changes are expressed as differences relative to Hist. Arrows indicate the monotony of Pi values that 

correspond to the ordered decreasing harvest (shown in Fig.10). 
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