Preprints
https://doi.org/10.5194/gmd-2023-99
https://doi.org/10.5194/gmd-2023-99
Submitted as: model evaluation paper
 | 
09 Aug 2023
Submitted as: model evaluation paper |  | 09 Aug 2023
Status: this preprint is currently under review for the journal GMD.

A high-resolution physical-biogeochemical model for marine resource applications in the Northwest Atlantic (MOM6-COBALT-NWA12 v1.0)

Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins

Abstract. We present the development and evaluation of MOM6-COBALT-NWA12 version 1.0, a 1/12° model of ocean dynamics and biogeochemistry in the Northwest Atlantic Ocean. This model is built using the new regional capabilities in the MOM6 ocean model and is coupled with the COBALT biogeochemical model and SIS2 sea ice model. Our goal was to develop a model to provide information to support living marine resource applications across management time horizons from seasons to decades. To do this, we struck a balance between a broad, coastwide domain to simulate basin-scale variability and capture cross-boundary issues expected under climate change, high enough spatial resolution accurately simulate features like the Gulf Stream separation and advection of water masses through finer-scale coastal features, and the computational economy required to run the long simulations of multiple ensemble members that are needed to quantify prediction uncertainties and produce actionable information. We assess whether MOM6-COBALT-NWA12 is capable of supporting the intended applications by evaluating the model with three categories of metrics: basin-wide indicators of the model's performance, indicators of coastal ecosystem variability and the regional ocean features that drive it, and model run times and computational efficiency. Overall, both the basin-wide and regional ecosystem-relevant indicators are simulated well by the model. Where notable model biases and errors are present in both types of indicators, they are mainly consistent with the challenges of accurately simulating the Gulf Stream separation, path, and variability: for example, the coastal ocean and shelf north of Cape Hatteras is too warm and salty and has minor biogeochemical biases. During model development, we identified a few model parameters that exerted a notable influence on the model solution, including the horizontal viscosity, mixed layer restratification, and tidal self-attraction and loading, which we discuss briefly. The computational performance of the model is adequate to support running numerous long simulations, even with the inclusion of coupled biogeochemistry with 40 additional tracers. Overall, these results show that this first version of a regional MOM6 model for the Northwest Atlantic Ocean is capable of efficiently and accurately simulating historical basin-wide and regional mean conditions and variability, laying the groundwork for future studies to analyze this variability in detail, develop and improve parameterizations and model components to better capture local ocean features, and develop predictions and projections of future conditions to support living marine resource applications across time scales.

Andrew C. Ross et al.

Status: open (until 04 Oct 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gmd-2023-99', Anonymous Referee #1, 14 Sep 2023 reply
  • RC2: 'Comment on gmd-2023-99', Anonymous Referee #2, 18 Sep 2023 reply

Andrew C. Ross et al.

Data sets

Model input for "A high-resolution physical-biogeochemical model for marine resource applications in the Northwest Atlantic (MOM6-COBALT-NWA12)" Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins https://doi.org/10.5281/zenodo.7893727

Model output for "A high-resolution physical-biogeochemical model for marine resource applications in the Northwest Atlantic (MOM6-COBALT-NWA12)" Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins https://doi.org/10.5281/zenodo.7893387

Model code and software

Model source code for "A high-resolution physical-biogeochemical model for marine resource applications in the Northwest Atlantic (MOM6-COBALT-NWA12)" Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins https://doi.org/10.5281/zenodo.7893349

Andrew C. Ross et al.

Viewed

Total article views: 609 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
364 229 16 609 5 6
  • HTML: 364
  • PDF: 229
  • XML: 16
  • Total: 609
  • BibTeX: 5
  • EndNote: 6
Views and downloads (calculated since 09 Aug 2023)
Cumulative views and downloads (calculated since 09 Aug 2023)

Viewed (geographical distribution)

Total article views: 550 (including HTML, PDF, and XML) Thereof 550 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Oct 2023
Download
Short summary
We evaluate a model for Northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model’s ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living marine resource applications.