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Abstract. The poor treatment, or complete omission, of water vapor transport has been identified as a major limitation suffered

by currently available snowpack models. Vapor and heat fluxes being closely intertwined, their mathematical representation

amounts to a system of non-linear and tightly-coupled partial differential equations, which is particularly challenging to solve

numerically. The choice of the numerical scheme and the representation of couplings between processes is crucial to ensure

an accurate and robust solution that guarantees mass and energy conservation, while allowing time steps in the order of 155

minutes. To explore the numerical treatments fulfilling these requirements, we have developed a highly-modular finite-element

program. The code is written in python. Every step of the numerical formulation and solution is coded internally, except for

the inversion of the linearized system of equations. We illustrate the capabilities of our approach to tackle the coupled problem

of heat conduction, vapor diffusion and settlement within a dry snowpack by running our model on several test cases proposed

in recently published literature. We underline specific improvements regarding energy and mass conservation, as well as time10

step requirements. In particular, we show that a fully-coupled and fully-implicit time stepping approach enables accurate and

stable solutions with little restriction on the time step.

Copyright statement. TEXT

1 Introduction

Over the last decades, snow models of various complexity have been developed for a myriad of applications, including15

avalanche forecasting (Morin et al., 2020), water resources management (Magnusson et al., 2015), glacier mass balance as-

sessment (e.g., van Pelt et al., 2012; Sauter et al., 2020), or projections of future climate evolution (Krinner et al., 2018). They

range from single-layer snow schemes to detailed snowpack models providing an explicit description of the vertical distribu-

tion of physical properties, such as the models Crocus (Brun et al., 1989, 1992) and SNOWPACK (Bartelt and Lehning, 2002).

However, even the most detailed snow models suffer from major weaknesses (Menard et al., 2021). Their inability to reproduce20

1



inverted density gradients as observed in Arctic snowpacks (Domine et al., 2016; Barrere et al., 2017), where strong tempera-

ture gradients induce significant water vapor flux redistributing ice mass from basal to upper layers, has been pinpointed as one

of those (Domine et al., 2019). More generally, vapor transport is involved in many processes, such as redistribution of water

vapor isotopes in polar firn (Touzeau et al., 2018) or snow metamorphism (e.g., Sturm and Benson, 1997), with implications

on snowpack stability (e.g., Pfeffer and Mrugala, 2002). To address this need, efforts have been made in two directions: (i) the25

implementation of ad hoc water vapor transfer modules in existing models (e.g., Touzeau et al., 2018; Jafari et al., 2020), and

(ii) the development of stand-alone models to explore the numerical treatment of the coupled heat and water vapor transfer

problem (e.g., Simson et al., 2021; Schürholt et al., 2022).

Heat conduction and water vapor diffusion are two-way coupled: temperature gradients within the snowpack drive water

vapor fluxes; vapor fluxes transport latent heat which redistributes energy within the snowpack and feeds back on temperature30

gradients whenever sublimation/deposition occurs (Yosida et al., 1955; Sturm and Johnson, 1992; Albert and McGilvary, 1992;

Pinzer et al., 2012). Furthermore, the microstructure evolves as water vapor deposits on or sublimates from the ice phase. This

affects the effective thermal conductivity and effective vapor diffusion coefficient, which in turns feeds back on the energy and

vapor fluxes (Yosida et al., 1955; Jaafar and Picot, 1970; Sturm and Johnson, 1992; Calonne et al., 2011; Riche and Schneebeli,

2013). Two mathematical descriptions of the macroscopic heat and water vapor budget in dry snow have been proposed. The35

first one was derived by Calonne et al. (2014) using the two-scale expansion method. The second one was introduced by Hansen

and Foslien (2015) using mixture theory. Both models account for the interactions between energy and vapor fluxes through

phase change. However, both models were derived on an invariant microstructure, thus neglecting the feedback of phase change

on the distribution of the ice volume fraction, i.e. the fraction of the volume occupied by ice for a given volume of snow.

While the heat equation is at the core of any snowpack model, and was therefore implemented at the very early stage of40

their decades-long developments (e.g., Brun et al., 1989; Bartelt and Lehning, 2002), efforts to include water vapor transfer

are recent. Because it avoids in-depth modification of the code which is cumbersome and prone to bug dissemination (Menard

et al., 2021), first order operator splitting is the most natural way to couple newly developed sub-processes to processes

already incorporated in previous versions of a model. Basically, this method consists in solving all sub-processes of a coupled

process sequentially. Variants of this method have been used by Touzeau et al. (2018) and Jafari et al. (2020) to implement45

water vapor diffusion in, respectively, Crocus and SNOWPACK. However, this approach may require shorter time step than

the main time step of the model. In the present case, the deposition/sublimation rate is controlled by the magnitude of the

over/under-saturation of vapor which is highly temperature sensitive, and is modulated by the kinetics of absorption/desorption

of water molecules on the ice surfaces (Fourteau et al., 2021). It follows that solving the vapor mass balance and heat equations

sequentially is prone to instabilities whenever the time step is too large relative to the considered kinetics. Both Touzeau et al.50

(2018) and Jafari et al. (2020) have thus reported constraining time step requirements of, respectively, 1 s and 1 min. This is

considerably shorter than the time step of 15 min used in Crocus and SNOWPACK for operational avalanche forecasting for

example. Furthermore, some important feedback were not accounted for: (i) Touzeau et al. (2018) did not include any phase

change-related latent heat effects in the heat equation, and (ii) neither of the two studies considered the evolution of effective

parameters (including viscosity) due to deposition/sublimation.55
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An alternative approach is to treat the heat conduction and water vapor diffusion as a single monolithic process. In two

companion papers, Schürholt et al. (2022) and Simson et al. (2021) have developed their own stand-alone models to explore

this path. More specifically, Schürholt et al. (2022) used the python-based finite element computing platform FEniCS in order to

solve both the models of Hansen and Foslien (2015) and of Calonne et al. (2014), while accounting for deposition/sublimation

feedback on the ice volume fraction field. However, because remeshing was not supported in FEniCS at the time of the study,60

they did not include snow settlement. In contrast, Simson et al. (2021) have proposed a numerical approach which combines

a deforming mesh procedure based on a Lagrangian method to solve for settlement, and a classical finite difference method

applied on the deformed mesh to solve the model of Hansen and Foslien (2015) only. Both of these works constitute extremely

valuable contributions for the understanding of non-linear feedback. Yet, a number of limitations are left to be addressed:

requirements regarding the time step are still not clearly established, and a careful assessment of mass and energy conservation65

is lacking.

Snowpack models are always said to be based on mass and energy conservation (e.g., Jordan, 1991; Bader and Weilenmann,

1992; Brun et al., 1989, 1992; Bartelt and Lehning, 2002; Sauter et al., 2020). While this is usually true for their mathematical

formulation, any numerical implementation might cause violations of mass and energy conservation. Commonly, these numer-

ical details do not receive sufficient attention. This is e.g. reflected by the fact that none of the previous snow intercomparison70

projects (Slater et al., 2001; Etchevers et al., 2004; Essery et al., 2009; Krinner et al., 2018) contains an assessment of the accu-

racy of mass and energy conservation in the numerical implementation. This contrasts with dedicated numerical experiments

conducted in other intercomparison projects, for example in the climate modelling community (Irving et al., 2021). Numerical

errors are frequently argued to be small. But since snowpack model runs must cover seasons or centuries, even small numerical

inconsistencies can cause drifts or lead to significant problems on these time scales. As we will show in this paper, achieving75

strict mass and energy conservation is particularly subtle in the highly coupled, non-linear situations outlined above.

In this study, we aim at pinpointing the most suitable numerical treatments based on criteria of time step requirements,

conservation of energy, and conservation of mass. To this end, we unify previous model developments within a comprehensive,

stand-alone, finite-element core written in python. Contrary to Schürholt et al. (2022), each step of the numerical formulation

and solution is coded internally, except for the inversion of the linearized system of equations which relies on the standard80

numpy linear algebra library. In this way, we have a complete control on every detail of the numerical recipe, and can thus

explore various solving strategies. We demonstrate the improvements within established benchmark scenarios and carve out

the origin of errors in the numerical solution of the conservation laws. We also discuss the treatment of boundary conditions

(BCs) on vapor.

The paper is organised as follows. In Sect. 2, we introduce the mathematical models derived by Calonne et al. (2014) and85

Hansen and Foslien (2015), and underline specific issues. In Sect. 3, we go through the details of our numerical implemen-

tation, specifying main differences compared to previous work. In Sect. 4, our model is tested on numerical benchmarks and

appropriate numerical approaches are highlighted. Sect. 5 summarises our work and is an opening on implications of our

findings for future work.
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2 Mathematical models90

In this section, we present the mathematical models derived by Calonne et al. (2014) and Hansen and Foslien (2015), and point

out relevant issues.

2.1 The Calonne model

Starting from the physical phenomena occurring at the pore scale - specifically (i) the heat conduction through air and ice,

(ii) the water vapor diffusion in the pore space, and (iii) the sublimation and deposition of vapor at the ice-pore interface -95

Calonne et al. (2014) used the two-scale expansion method in order to derive a closed system of equations governing the heat

and water vapor budget at the macroscopic scale. The main advantage of this approach is that the exact expression of the

effective properties (such as the snow thermal conductivity) and of the source terms naturally arises as the macroscopic system

of equations is derived. Yet, it must be stressed that Calonne et al. (2014) do not include any equation governing the evolution

of the pore space at the micro-scale related to water molecules depositing on or sublimating from the ice-pore interface. As100

a consequence, this macroscopic model implicitly assumes an invariant microstructure, i.e. the ice volume fraction does not

evolve over time. In addition, the two-scale expansions method is unsuited for high reaction rates (Bourbatache et al., 2021),

that is to say when vapor deposits easily on the ice. In other words, the domain of applicability of the macroscopic model

proposed by Calonne et al. (2014) is bounded to cases for which the crystal growth velocity due to deposition (or sublimation)

of water vapor molecules at the ice-pore interface is limited by the characteristic time of reaction rather than by the diffusion one105

(i.e. a low Damköhler number; Bourbatache et al., 2021). Under these two assumptions, the macroscopic system of equations

is:(ρCp)
eff
∂tT −∇ ·

(
keff∇T

)
= Lmc

(1−Φi)∂tρv−∇ ·
(
Deff∇ρv

)
=−c

, (1)

where T is the temperature, ρv the water vapor density, Φi the ice volume fraction, Lm the specific latent heat of sublimation,

(ρCp)
eff the effective heat capacity, keff the effective heat conductivity, and Deff the effective vapor diffusion coefficient. The110

deposition rate c is given by

c= sαvkin(ρv− ρeq
v ), (2)

with s the surface area density per unit volume, which is assumed to be constant consistently with the implicit invariant-

microstructure assumption, vkin =
√

(kBT )/(2πmH2O) the kinetic velocity related to the velocity of water molecules in the

pore space (kB being Boltzmann’s constant and mH2O the mass of a water molecule), ρeq
v the saturation vapor density, and α115

the sticking coefficient of water molecules on the ice surface. Referring back to the considerations raised above regarding the

domain of applicability of this macroscopic model, it appears that the latter is valid provided that α≈ 10−3 or less (Fourteau

et al., 2021).

The saturation water vapor density ρeq
v being a non-linear function of T , the macroscopic model proposed by Calonne et al.

(2014) amounts to a system of two two-way coupled non-linear diffusion-reaction equations which must be solved for T and120
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ρv. Because we use parameterizations that neglect the dependency of the effective parameters to T (Appendix A), the only

non-linearity of the system arises from the source terms through ρeq
v and vkin. In what follows, we refer to this model as the

Calonne model.

2.2 The Hansen model

Using mixture theory, Hansen and Foslien (2015) derived another macroscopic heat and water vapor conservation model.125

Contrary to Calonne et al. (2014), they assumed the deposition/sublimation of water vapor to be fast enough so that small over-

saturations/under-saturations in the pore space are corrected almost instantaneously by the deposition/sublimation of water

molecules. Mathematically, such a situation arises when the product αvkin becomes very large. In this case, the deposition

rate corresponds to the rate at which this deposition/sublimation of molecules must occur so that the water vapor density is

permanently and instantaneously restored to its saturated value, i.e. so that ρv(T ) = ρeq
v (T ) at any time. As for the Calonne130

model, the equations of Hansen and Foslien (2015) are derived at constant microstructure. Based on these two assumptions,

the macroscopic energy conservation and water vapor mass balance can be written, respectively:(ρCp)
eff
∂tT −∇ ·

(
keff∇T

)
= Lmc

(1−Φi)
dρeqv
dT ∂tT −∇ ·

(
Deff dρ

eq
v

dT ∇T
)

=−c
, (3)

with the underlying assumption that

ρv = ρeq
v . (4)135

In Hansen and Foslien (2015), the effective parameters keff and Deff are intuited from synthetic microstructures and are not

a direct by-product of the mixture theory. The system of Eqs. (3) can be casted into a single one:(
(ρCp)

eff
+ (1−Φi)Lm

dρeq
v

dT

)
∂tT −∇ ·

[(
DeffLm

dρeq
v

dT
+ keff

)
∇T
]

= 0. (5)

In the end, the model of Hansen and Foslien (2015) consists of a single prognostic equation for T which has the form of a

non-linear diffusion equation. The non-linearity comes from the dependence to temperature of the derivative of the saturation140

water vapor density that appears in the apparent heat capacity and apparent thermal conductivity. The deposition/sublimation

rate c can then be diagnosed from one of the Eqs (3). In what follows, we refer to this model as the Hansen model.

2.3 General form of the equations governing the heat and vapor budgets in evolving pore space

Despite being derived under different assumptions, the Calonne and Hansen models comprise similarities. In both of these

works, the total energy budget accounts for the contribution of vapor transport and of the latent heat that is released or absorbed145

whenever water vapor deposits or sublimates, which affects the water vapor mass balance in return. As noted by Schürholt et al.

(2022), if the differences regarding the parameterizations of the effective parameters are put aside, the system of Eqs (3) can

be derived from the system of Eqs (1) under the assumption that ρv = ρeq
v . Fundamentally, both systems of equations consist
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of an equation for the conservation of heat including a source term proportional to the deposition rate and an equation for the

conservation of vapor including the same deposition rate as a sink term. However, the systems of equations differ in how they150

are closed: the Calonne model is closed by computing the deposition rate c as a first order reaction, and the Hansen model is

closed by assuming water vapor saturation.

Both models have been derived assuming an invariant microstructure. This restriction can be lifted by realising that the first

terms of both the heat and vapor conservation equations correspond to the time derivatives of the total heat and total vapor

content, respectively. These terms can then simply be rewritten to include the effect of an evolving ice volume fraction on the155

temporal evolution of these two quantities. A more subtle issue lies in the fact that both works neglected the settlement of the

snowpack, and the resulting advection of material quantities. This problem is usually circumvented by solving the settlement

and heat/vapor budget problems separately. This corresponds to the Eulerian-Lagrangian framework described by Simson

et al. (2021): (i) the settlement of the snowpack is inferred adopting a Lagrangian point of view, (ii) the computed settlement is

used to deform the numerical mesh, and (iii) the heat and vapor equations are solved on the obtained mesh using an Eulerian160

approach. With this procedure, the contribution of advection in the evolution of the temperature, vapor and deposition rate

fields is accounted for during the mesh deformation step, and thus vanishes from the heat/vapor conservation equations. In

view of all these considerations, the general form of the equations governing the heat, vapor, and ice budgets in snow in an

Eulerian framework can be written:
∂thice−∇ ·

(
keff∇T

)
= Lmc

∂t [(1−Φi)ρv]−∇ ·
(
Deff∇ρv

)
=−c

∂tΦi = c
ρi

, (6)165

where hice is the heat content of snow and ρi the density of ice. We stress that, contrary to Eqs. (1) or (3), the accumulation

term of the heat equation is written in terms of heat content and not in terms of temperature. This heat content is related to

temperature through:

∂hice
∂T

= (ρCp)
eff
. (7)170

One might be tempted to express ∂thice as (ρCp)
eff
∂tT by means of the chain rule. As thoroughly explained in, e.g., Tubini

et al. (2021), while this is valid in the continuous partial differential equation (PDE), this is not necessarily the case for the

discrete domain. Specifically, application of the chain rule if (ρCp)
eff is not constant during the discrete solution of the equation

will result in the non-conservation of energy (e.g. Celia et al., 1990; Casulli and Zanolli, 2010; Tubini et al., 2021). Therefore,

we choose to explicitly keep the heat content hice in the heat budget, and thus to express this equation in its so-called "mixed-175

form" (similarly to Celia et al., 1990).

The system of Eqs (6)-(7) contains five unknowns (hice, T , ρv, Φi, and c) and can be closed either with Eq. (2) from the

Calonne model, or with Eq. (4) from the Hansen model. We stress that this system of equations alone is not sufficient to

compute the evolution of the ice volume fraction. The contribution of mechanical settlement of snow on the latter must also be
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accounted for (Simson et al., 2021). Although this process could be described in an Eulerian framework through the use of an180

advection term (i.e. ∂tΦi +∇ · (vΦi) = 0, where v is the settling velocity), as mentioned above, adopting a Lagrangian point

of view to describe the deformation of the snowpack provides a more natural framework to compute the inherent ice volume

fraction increase. In the absence of phase change, the evolution of Φi is only due to settlement. If additionally, the dependence

of the settling rate on temperature through viscosity is neglected, then the equations governing heat and vapor on the one hand,

and the equations governing ice volume fraction on the other hand, become partly independent and can be solved sequentially.185

Finally, the compaction of snow leads to a reduction of the pore space. Since, the air is free to escape during the settlement

of the snowpack, this decrease in porosity results in a net loss of dry air and vapor. If the effective heat capacity of snow

(ρCp)
eff is computed taking into account the heat carried by dry air, then this loss of dry air leads to a net loss of energy. While

physically relevant, this loss of energy though air ejection can be overlooked by considering that only the ice phase carries

energy in snow (Appendix A3). This assumption is justified by the small volumetric heat capacity of dry air compared to that190

of ice. In contrast, the net loss of vapor is fully part of the considered problem, and should therefore be kept in mind when

closing the vapor budget from one time step to the next.

3 Numerical implementation

In this Section, we go through the most important features of our numerical implementation, and underline the main differences

compared to the published approaches of Simson et al. (2021) and Schürholt et al. (2022). All variables, parameters, and195

constants used in our model are summarised in Table 1.

3.1 Numerical strategy

The spatial discretization of the PDEs of the model is based on the FEM. For the temporal discretization, we use a standard first-

order implicit Euler method. Generalities about the FEM and the temporal discretization scheme are presented in Appendix B.

This includes the description of the implementation of BCs as well as the calculation of residuals which is necessary to close200

the energy budget.

Coupling scheme

One of the main goals of our work is to highlight the importance of a coupled numerical solution of the heat and vapor transport

processes. Details of the various approaches that have been implemented and compared to reach this conclusion are given in

Sect. 3.2. In contrast, the ice mass conservation is systematically solved in a separated step following the same first-order oper-205

ator splitting approach as Simson et al. (2021) and Schürholt et al. (2022). Yet, as demonstrated in Sect. 2, heat/vapor transfer

and deposition are two-way coupled: a perturbation of the T and/or ρv fields affects the deposition rate field, which in turns

changes the distribution of Φi, which feeds back on the distributions of the Φi-dependent parameters (ρCp)
eff , keff and Deff ,

which impacts the fields of T and ρv, and so on. Therefore, one has to be aware that solving these two processes sequentially

will necessarily introduce some error. Specifically, as the energy and vapor mass budget are solved assuming a constant mi-210
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Table 1. List of variables, parameters and constants used in our model.

Symbol Name Equation/Value Unit

Nodal variables

c Deposition rate Eqs. (2), (3) kg m−3 s−1

H Enthalpy content Eq. (13) J m−3

T Temperature Eqs. (1), (5), (13) K

ρv Vapor density Eqs. (1), (4) kg m−3

σ Stress Eq. (16) Pa

Element-wise variables

E Energy per element Eq. (12) J m−2

Φi Ice volume fraction Eq. (19) −

Parameters

Deff Effective vapor diffusion coefficient Eqs. (A1), (A2) m2 s−1

keff Effective heat conductivity Eqs. (A3), (A4) W m−1 K−1

vkin Kinetic velocity Eq. (2) m s−1

s Surface area density per unit volume 3770 m−1

α Sticking coefficient (value by default) 5× 10−3 −

η Effective viscosity Eq. (A7) Pa s−1

(ρCp)eff Effective heat capacity Eq. (A5) J m−3 K−1

ρeqv Saturation water vapor density Eq. (A6) kg m−3

Constants

Ca Air heat capacity 1005 J m−3 K−1

Ci Ice heat capacity 2000 J m−3 K−1

D0 Vapor diffusion coefficient in air 2× 10−5 m2 s−1

g Gravitational constant 9.81 m s−2

ka Air heat conductivity 0.024 W m−1 K−1

ki Ice heat conductivity 2.3 W m−1 K−1

kB Boltzmann constant 1.38× 10−23 J K−1

Lm Specific latent heat of sublimation 2835333 J kg−1

mH20 Mass of a water molecule 2.991507× 10−26 kg

ρi Ice density 917 kg m−3

crostructure, the consecutive modification of the latter through deposition/sublimation breaks the previously computed energy

and vapor mass budgets. This results in non-physical energy and vapor mass sources/sinks, that we referred to as energy/mass

leakage. However, in most of the natural configurations, the variation of the ice mass related to deposition within targeted time

steps of the order of 15 min is expected to remain negligible compared to the total ice mass of the simulated domain. It follows
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that the energy leakage remains limited, and its associated error in the global energy budget is well identified. Note also that,215

because our settlement scheme is designed to conserve the ice mass perfectly in the absence of phase change (see Sect. 3.3),

there is no such problem of energy leakage for the settlement-induced evolution of Φi. For all these reasons, we consider that

the operator-splitting approach is acceptable for what regards the ice mass conservation equation.

Figure 1a summarises the general structure of the model. Within one time step, we solve first the heat and vapor transfer220

process, which can be modelled either through the system of Calonne or through the one of Hansen (Fig. 1b). Independently

of the considered system, this is done with the distribution of Φi from the previous time step. Next, the nodal field of stress

is updated from the weight contained in all overlying elements, the latter being calculated from the distribution of Φi from

the previous time step. Then, the settlement solver is executed in order to consistently update the mesh node positions and the

element-wise field of Φi. Finally, a solver is executed to diagnose the amount of energy contained in the domain from the nodal225

fields of T and ρv (for the system of Calonne and the system of Hansen in its T-form, i.e. when using T as the prognostic

variable) or from the nodal field of enthalpy (for the system of Hansen in its mixed form). At the very end of the time step, the

global ice mass and energy budgets are evaluated to check for conservation. Note that any of the solvers can be activated or

de-activated depending on the processes of interest. In particular, the settlement-related and deposition-related evolution of Φi

can easily and independently be switched on or off.230

Computational domain and notation

As illustrated in Fig. 2, the snowpack is vertically discretized on a one dimensional finite-element grid. The z axis is oriented

upward, with z = 0 corresponding to the soil/snow interface. The initial position of nodes are based on the user-prescribed

initial snowpack height so that the mesh is initially uniform. In the presence of mechanical settlement, the mesh will deform

non-uniformly. Note that the application of the FEM to non-uniform mesh is straightforward. In this work, the problem of235

remeshing has not been investigated but is discussed in Sect. 5. We distinguish between variables defined at nodes and variables

defined element-wise (Table 1). In what follows, the former are identified with the subscripts k which corresponds to the node

number, while the latter are identified with the subscripts k+ 1/2 which corresponds to the element number. The element

k+ 1/2 is comprised between nodes k and k+ 1. The total number of nodes is denoted Nz .

3.2 Numerical solution of heat and water vapor transfer240

Resolution of the system of Calonne

As illustrated in Fig. 1b, there are two possible approaches to solve the system of Eqs (1)-(2): either the whole system can be

solved in a coupled way (green boxes in Fig. 1b); or the three equations can be solved sequentially (red boxes in Fig. 1b). Two

strategies are investigated for the coupled approach. The first strategy, denoted CC_3DOF, consists in solving the whole system

(1)-(2) at once for the solution vector u = (T,ρv, c). This strategy corresponds to the one adopted by Schürholt et al. (2022)245

to treat the Calonne system. The second strategy, denoted CC_2DOF, consists in injecting Eq. (2) in the r.h.s. terms of Eqs.

9



Init.

OPTION 1 
Calonne coupled

Energy diagnostic
Stress solver

Settlement solver

AND

Update Фi

Update 
mesh

Heat/Vapor
Solver

CC_3DOF

CC_2DOF

OR

Heat/Vapor/Deposition rate solver

Heat/Vapor solver

Deposition rate diagnostic

CD_FD

CD_PC

Heat solver

Heat/Vapor solver

Vapor solver

Deposition rate diagnostic

Heat solver

Vapor solver

Deposition rate diagnostic

OPTION 2 
Calonne decoupled

OR OR

Heat solver - mixed form

Deposition rate diagnostic

H_MF

Heat solver - T-form

Deposition rate diagnostic

H_TF

OPTION 3 
Hansen

,

,

,

, ,

,

, ,

,

(b)

 
mass/energy
conservation

check 

(a)

Figure 1. Panel (a) shows the general structure of the model. Panel (b) illustrates the three approaches implemented to compute the fields

of temperature, water vapor and deposition rate: the coupled solution of the Calonne system, the decoupled solution of the Calonne system,

and the solution of the Hansen system. For each of these approaches, two strategies have been considered that are described in the text and

Appendix C.

(1), and solve the latter system for the solution vector u = (T,ρv). The c-field is then diagnosed from the obtained ρv-field

through the water vapor mass balance equation. Two strategies are also considered for the sequential treatment of the system.

In the strategy denoted CD_PC, the heat equation is solved first with a source term that is fixed from the c-field computed at the

previous time step. Then, the water vapor mass balance is solved under its diffusion-reaction form: the r.h.s. of the equation is250

replaced by its form (2), which introduces a reaction term on ρv while the previously evaluated T -field is used to compute the

source term stricto sensu, i.e. sαvkin(T )ρeq
v (T ). Finally, the c-field is updated as the closure of the water vapor mass balance

from the computed ρv-field. The second strategy, denoted CD_FD, is similar to the CD_PC strategy, except that both the heat

and water vapor mass balance equations have their r.h.s. fixed from the c-field computed at the previous time step. The latter

is updated in a third step from Eq. (2) using the obtained T and ρv-fields. The resulting matrix systems are summarised in255

Appendix C.
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Figure 2. Illustration of the computational domain. The nature of the various model variables is summarised in Tab. 1.

In order to manipulate standard mass matrices in which all non-zero terms correspond to the product of test and shape func-

tions, FEM softwares are prone to deal with a particular form of the heat equation in which the thermal diffusivity keff/(ρCp)
eff

is assigned to the flux divergence operator, rather than keeping the heat capacity (ρCp)
eff as a factor of the accumulation term.

Similarly, it can be tempting to divide the water vapor mass balance equation by the factor (1−Φi) assigned to the accumu-260

lation term in order to deal with the generic form of a diffusion-reaction equation. These operations are performed in, e.g.,

the FEniCS code as published by Schürholt et al. (2022). Practically, this corresponds to assigning the inverse of these factors

to the stiffness matrix and force vector rather than keeping them in the mass matrix. However, as soon as these factors are

non-uniform, which is the case for snow in general as Φi = f(z) and (ρCp)
eff

= f(Φi), the conservative forms of Eqs (1) are

not equivalent to these reformulations. Therefore, in order to preserve the conservative properties (at given microstructure) of265

the system of Calonne in the discrete domain, we assign the factors (ρCp)
eff and (1−Φi) directly to the mass matrix (Appendix

C). In the following, we refer to this as the proper form of the mass matrix.

By nature, the system of Eqs. (1) respect the maximum principle in the continuous domain. From a physical perspective, the

maximum principle states that, in the absence of phase change, the maximum value of T (resp. ρv) is reached either at initial

time or at the boundaries (Protter and Weinberger, 2012). In order to get a uniform convergence of the numerical solution270

to the exact one and avoid non-physical extrema in the interior of the domain, it can be shown that a discrete counterpart of

this principle, the so-called discrete maximum principle (DMP), must be fulfilled (Ciarlet, 1973). Yet, in some situations the
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FEM is inclined to violate the DMP due to, among others, the treatment of time derivatives (e.g., Celia et al., 1990), and/or

of reaction terms (e.g., John and Schmeyer, 2008). A sufficient condition for the DMP to be respected is that the matrix A of

the system (B2) has the following properties: (i) all diagonal terms are positive, (ii) all off-diagonal terms are negative or zero,275

and (iii) the row sums are positive (John and Schmeyer, 2008). Thus, a commonly-used method to enforce the matrix system

to satisfy the DMP without adding further constraints on the time step is to lump the mass matrix and/or the reactive part of

the stiffness matrix. This operation consists in replacing the diagonal term of each row of the considered matrix by the sum of

all terms of the row, while all off-diagonal terms are forced to zero (e.g., Milly, 1985; Celia et al., 1990; John and Schmeyer,

2008; Thomée, 2015). In the present work, this method is adopted whenever spurious oscillations show up. As we will show,280

although the obtained solution fields are very slightly modified, this method enables removing spurious oscillations without

affecting energy conservation.

As mentioned in Sect. 2.1, the non-linearity of the system of Calonne is related to the dependence of the source terms,

through parameters ρeq
v and vkin, to temperature (Appendix A4). As a consequence, this non-linearity vanishes whenever these

parameters are computed from a T -field obtained in a separated step. This is the case for both strategies based on the decoupled285

solution of the system. In contrast, as soon as a coupled solution of the system is considered, a linearization procedure is

required. For both strategies of the coupled approach, we implement a linearization algorithm which mixes a Picard method

for vkin, and a Newton method for ρeq
v . Practically, when solving the system (B2) at iteration k+ 1 for iterate uk+1, the value

of vk+1
kin is fixed using the temperature field obtained at previous iteration, i.e. vk+1

kin = vkin(T k). Within the same iteration step,

the value of ρeq,k+1
v is evaluated as:290

ρeq,k+1
v =

dρeq
v

dT

∣∣∣∣
T=Tk

(T k+1−T k) + ρeq
v (T k). (8)

The first iterate corresponds to the solution vector obtained at the previous time step Tn. The convergence criterion of the

linearization algorithm reads:

2

∣∣|uk+1| − |uk|
∣∣

|uk+1|+ |uk|
< ε, (9)

where the tolerance criterion is set to ε= 10−5 by default. This convergence criterion corresponds to the one adopted by295

default in the open source multi-physics finite element code Elmer (https://www.csc.fi/web/elmer, last access: 2023-09-25).

Among many other applications, Elmer is one of the most popular code for numerical simulations in the field of glaciology

(Gagliardini et al., 2013). A number of other measures of the change of the solution between two consecutive iterations could

be used instead of (9). We stress that the convergence criterion being used only to stop the non-linear iterations, it has no impact

on the intermediate iterates. In all simulations that are presented in Sect. 4, the systems at stake are not strongly non-linear and300

only 1 to 3 non-linear iterations are needed to satisfy the convergence criterion. Most importantly, the convergence is smooth,

and the solution is already very close to its final (converged) value after the first non-linear iteration (i.e., the change of the

solution between, e.g., iterations 1 and 2 is very small compared to the change between first guess and iteration 1). It follows

that obtained solution fields are unlikely to show significant sensitivity to the formulation of the convergence criterion for the
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numerical experiments presented in this study. This point has been confirmed by dedicated sensitivity tests (not shown in this305

paper).

Once the linearization algorithm has converged, the residuals of the system are evaluated to assess the sensible heat ∆tF ∂Γ
T

and water vapor mass ∆tF ∂Γ
P that have entered or left the domain over the time step. The energy budget is evaluated at the

very end of the time step by comparing the evolution of the energy contained in the domain since the previous time step ∆EΩ

to the aforementioned boundary fluxes. In practise, we compute:310

Eleak = ∆EΩ−∆t(F ∂Γ
T +LmF

∂Γ
P )−∆tLmF

∂Γ
P,set., (10)

where Eleak is the energy leakage, which is zero if energy is conserved. As mentioned in Sect. 2, because the contribution of

dry air in the effective heat capacity of snow is neglected, the dry air expelled from the snowpack in response to settlement does

not affect the energy budget. On the contrary, the latent energy loss due to water vapor leaving the domain as the snowpack

settles must be accounted for through the term ∆tLmF
∂Γ
P,set.. The water vapor mass leaving the snowpack over ∆t is diagnosed315

in the settlement solver as:

∆tF ∂Γ
P,set. =

Nz−1∑
k=1

 znk+1∫
ζ=znk

ρn+1
v dζ −

zn+1
k+1∫

ζ=zn+1
k

ρn+1
v dζ

 . (11)

The total energy contained in the domain EΩ is diagnosed as the sum of the energies contained in each element in the last

executed solver (Fig. 1a). The energy contained in the element k+ 1/2 is calculated as:

Ek+1/2 =

zn+1
k+1∫

ζ=zn+1
k

[
(ρC)n+1

eff (Tn+1−T0) +Lm(1−Φn+1
i )ρn+1

v

]
dζ, (12)320

where T0 is an arbitrary reference temperature, which we set to T0 = 273 K.

Resolution of the system of Hansen

For the system of Hansen, also two implementation strategies are investigated (yellow boxes in Fig. 1b). In the first strategy,

denoted H_MF, the prognostic equation on T is treated under its mixed-form. Concretely, this consists in solving the following

system for the solution vector u = (H,T ):325 ∂tH − ∂z
[(
DeffLm

dρeqv
dT + keff

)
∂zT

]
= 0

H = (ρCp)
eff

(T −T0) + (1−Φi)Lmρ
eq
v

(13)

where H is the enthalpy content defined as a nodal variable. Because H is a Φi-dependent prognostic variable, it must be

updated within the settlement solver after Φi has been updated. In order to illustrate the problem of violation of energy conser-

vation when a chain rule is performed in the discrete domain (Sect. 2.2), we consider a second strategy, denoted H_TF, which

consists in solving the prognostic equation of the Hansen system under its usual T-form (5). The resulting matrix systems are330
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summarised in Appendix C. The H_TF strategy is the one adopted by, e.g., Simson et al. (2021) and Schürholt et al. (2022).

Independently of the chosen strategy, the field of ρv is deduced from the obtained T -field assuming that water vapor density is

saturated everywhere. Then, the second Eq. of (3) is solved for the field of c.

For the T-form of the prognostic equation, we are careful to assign the apparent heat capacity directly to the mass matrix

(proper form of the mass matrix). Note that ambiguities do not arise for the mixed-form of the equation as it does not include335

any multiplying factor in the accumulation term. Furthermore, as for the Calonne system, spurious oscillations related to the

violation of the DMP can occur. Again, this difficulty is overcome by lumping the mass matrices of both the prognostic equation

on T (orH for the mixed-form) and the diagnostic equation on cwhen necessary. As mentioned in Sect. 2.2, both the mixed and

T-form of the prognostic equation are non-linear due to the dependence of dρeqv /dT to T (Appendix A4). This non-linearity is

treated through the implementation of a Picard linearization loop. As for the coupled Calonne system, the tolerance criterion is340

set to ε= 10−5 by default. Note that the approach of Simson et al. (2021), which consists in linearizing the equation by fixing

the value of dρeqv /dT from the T -field obtained at the previous time step, is equivalent to performing a single Picard iteration.

In this case, the obtained solution does not correspond to the implicit solution of the problem and thus does not necessarily

possess its stability features.

As for the Calonne system, the residuals are evaluated immediately after the convergence of the linearization algorithm.345

Note that, because the Hansen system contains only one prognostic equation that mixes up the contributions of latent and

sensible heat to the energy budget, the obtained residuals correspond to the total enthalpy fluxes at boundaries, without any

reference to how these fluxes are split between sensible and latent heat fluxes. Again, these boundary fluxes are used to close

the energy budget. The total energy contained in the domain is directly obtained through integration of the nodal enthalpy over

the elements for the mixed-form case. For the T-form case, it is evaluated from T based on Eq. (12) using the assumption of350

saturated water vapor density. As for the Calonne system, the energy budget accounts for energy loss related to the water vapor

mass leaving the snowpack when settlement is activated through Eq. (11).

Although the c-field is diagnosed a posteriori from the obtained T -field based on the second Eq. of (3), this solution is also

based on the FEM, and a boundary flux term naturally appears in the force vector through integration by parts of the divergence

operator. In the absence of any prescription from the user, the natural BC applies and this term is forced to be zero. Yet, the355

existence of a boundary flux strongly affects the deposition rate at the corresponding boundary node, as the local over/under-

saturation governs the magnitude of the deposition/sublimation that is necessary to maintain vapor saturation. It follows that

the prescription of proper vapor fluxes at boundaries is an integral part of the physical problem and should ideally arise from

a vapor budget at interfaces, similarly to the standard surface energy budget. On the other hand, fixing c to an arbitrary value

at boundaries (Dirichlet type BCs), as done by Simson et al. (2021), implicitly implies the prescription of a water vapor mass360

flux that adjusts itself so that saturation is maintained with a fixed contribution of deposition/sublimation. This boundary vapor

flux then corresponds to the residuals of the vapor mass budget equation. This topic is further explored in Sect. 4.6.
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3.3 A mass-conservative Lagrangian settlement scheme

General considerations

Our settlement scheme is based on the method of characteristics as presented in Simson et al. (2021) with some corrections365

to guarantee ice mass conservation, as well as a more explicit formulation of the element-wise nature of this conservation.

The general idea of this approach is that the mesh nodes should move at the velocity of the ice matrix as the latter settles so

that all ice mass fluxes related to settlement wipe out in the working frame, thus resorting to a Lagrangian coordinate system.

Concretely, this allows eliminating the advection term v · ∇Φi from the continuity equation, which is then in 1D:

∂tΦi + Φi∂zvz =
c

ρi
, (14)370

where ∂zvz is the divergence of the settling velocity which, in 1D, directly corresponds to the vertical strain rate ε̇zz . The

vertical strain rate relates to the vertical stress σzz through the constitutive law of snow, which we take as a simple linear

viscous law:

ε̇zz =
1

η
σzz, (15)

where η is the effective viscosity of snow and σzz is the vertical stress. The effective viscosity is an important and poorly375

constrained snow property that depends, among others, on microstructure and temperature (e.g., Wiese and Schneebeli, 2017).

Here, we use the viscosity parameterization of Vionnet et al. (2012) where the viscosity increases exponentially with density

and decreases exponentially with temperature according to Eq. (A7). Note that Simson et al. (2021) have also considered the

case of a non-linear Glen’s flow law, as well as the case of a constant viscosity. As the goal of this study is not an assessment

of the model sensitivity to parameterization choices but to the details of the numerical treatment of the equations, we do not380

consider these cases here. Neglecting the contribution of air in the effective density of snow, the momentum conservation

equation relates the distribution of the vertical stress to the one of the ice volume fraction as follows:

∂zσzz = ρigΦi(z), (16)

where g is gravity.

As underlined by Simson et al. (2021), Eq. (14) and its Lagrangian perspective corresponds to the strategy employed in385

all available detailed snowpack models to represent settlement, although it is usually not explicitly stated. Concretely, the

constitutive law of snow is used to relate the stress supported by a layer, calculated as the cumulative weight of all overlying

layers, to its total deformation. This total deformation is then used either to update directly the layer thickness defined as a state

variable (e.g., Jordan, 1991; Vionnet et al., 2012), or to update the mesh coordinates using the fact that the node at the soil/snow

interface does not move (e.g., Bader and Weilenmann, 1992; Bartelt and Lehning, 2002). The effective density, defined as a390

layer property, is then simply updated so that, in the absence of phase change, the mass contained within each layer remains

the same before and after settlement. The layer-based nature of this scheme is obvious, in that conservation is not fulfilled

locally but on average over finite space intervals referred to as control volumes (e.g., Jordan, 1991), elements (e.g., this study,
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Bartelt and Lehning, 2002), or layers (e.g., Bader and Weilenmann, 1992; Bartelt and Lehning, 2002; Vionnet et al., 2012),

depending on the numerical method chosen to solve the other PDEs of the model. In contrast, as Eq. (14) expresses the local395

ice mass conservation, one may assume that its actual solution would enable switching from this traditional layer-based vision

to a more continuous description of the snowpack. We stress that this impression relies on a confusion between numerical

and physical layers. Indeed, although all physical quantities involved in Eqs. (14)-(16) are continuous functions of z and can

be calculated anywhere in the continuous domain, as soon as we go through the necessary numerical discretization step, the

continuous vision breaks and we step back to a discrete description in which the ice phase is conserved on average over finite400

space intervals that can be seen as numerical layers. The settlement scheme then consists of two numerical operations that must

be done in parallel and in a consistent way to ensure that conservative properties of Eq. (14) are preserved: (i) the update of

the mesh node positions so that the variation of the mass contained in each element over one time step is entirely due to phase

change and not at all to settlement, and (ii) the update of the ice volume fraction defined as an element-wise state variable

accounting for the possible source term due to phase change.405

Update of mesh node positions

The displacement ∆zk+1 of node k+1 between t and t+∆t corresponds to the displacement ∆zk of the underlying node k to

which the total deformation of the space interval between k and k+ 1 over ∆t must be added. This condition can be written:

∆zk+1 = ∆zk +

znk+1∫
znk

ε̇n+1
zz (z)dz∆t, (17)

where ε̇n+1
zz is the vertical strain rate that, in 1D, directly corresponds to the divergence of the vertical velocity field ∂zvz . By410

exploiting the fact that the node located at the soil/snow interface is immobile, we can trace the displacement of all nodes

of the domain through Eq. (17). A difficulty arises in the numerical treatment of the integral term of Eq. (17) after spatial

discretization. Indeed, the numerical integration requires an assumption on the spatial variation of the integrand in between

nodes. While this assumption is made a priori through the choice of the shape functions in the FEM, only the nodal values of the

fields are considered to constitute the solution in the finite-difference method employed by Simson et al. (2021), without any415

explicit reference to how these fields should vary between nodes (Patankar, 1980). In their mesh deformation procedure, Simson

et al. (2021) do not directly use the strain rate ε̇zz to evaluate the total deformation of the space intervals in between nodes, but

perform a numerical integration to recover the settling velocity vz and use the latter to move the nodes. A careful inspection of

Eq. (17) of Simson et al. (2021) reveals that this numerical integration implicitly assumes that the strain rate calculated at node

k from the stress and viscosity evaluated at node k actually applies to the whole space interval between the node k and the420

node k− 1 (assuming that the ∆znj = znj+1− znj stated in Eq. (17) of Simson et al. (2021) actually means ∆znj = znj − znj−1,

which makes more sense and is in accordance with their published code). Similarly, the numerical integration of the momentum

conservation equation yielding the nodal stresses from the distribution of Φi as expressed in Eq. (18) of Simson et al. (2021)

implicitly assumes that the value of Φi stored at node k actually applies to the whole space interval between nodes k and k+1.

In other words, in the approach of Simson et al. (2021), the distribution of Φi is piece-wise constant over numerical layers but425
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the information is only assigned to the bottom node of the considered numerical layer. As detailed in Appendix D1, the fact

that Φi at node k relates to the snow mass contained between nodes k and k+ 1, whereas the strain rate calculated at node k is

used to deform the space interval between nodes k and k− 1, leads to an inconsistency that hampers mass conservation.

In contrast, in our approach, Φi is defined element-wise whereas the stress is a nodal variable. The latter is calculated at each

node k as the cumulative weight of all overlying elements:430

σn+1
zz,k =

Nz−1∑
j=k

gΦni,j+1/2ρi(z
n
j+1− znj ). (18)

This equation is formally equivalent to Eq. (18) of Simson et al. (2021) except that Φi,j+1/2 explicitly corresponds to an

averaged quantity applying to the whole element j+ 1/2 between nodes j and j+ 1. The motion of all nodes can then be

determined directly by solving Eq. (17) where the integral term is treated through the Gaussian quadratures.

Update of ice volume fraction435

It can be shown that conservation of the ice mass is guaranteed only if the temporal discretization of Eq. (14) is based on

an implicit numerical scheme (Appendix E). Therefore, in our approach we replace the first-order Euler explicit temporal

discretization given in Eq. (15) of Simson et al. (2021) by the following:

Φn+1
i,k+1/2 =

Φni,k+1/2 + ∆t
cn+1
k+1/2

ρi

1 + ∆tε̇n+1
zz,k+1/2

, (19)

where the mean strain rate ε̇n+1
zz,k+1/2 and mean deposition rate cn+1

k+1/2 of element k+ 1/2 are calculated as the integral of440

the corresponding field over the element using Gaussian quadratures divided by the length of the considered element before

deformation.

4 Numerical simulations

In this Section, we compare the capabilities of the various numerical treatments introduced above to provide solutions to the

coupled problem of heat transport, vapor transport, and settlement in snow that are stable, accurate, and respect energy and445

mass conservation. To this end, we use some of the experiments proposed by Schürholt et al. (2022) and Simson et al. (2021) as

numerical benchmarks. The main features of the numerical set-up and model configurations of all experiments described in the

following are summarised in Table 2. All simulations are run with the parameterization (A6) for the saturation vapor density,

and with the Calonne parameterizations of effective parameters given by Eqs. (A1)-(A3), unless stated otherwise. Note that

the Hansen parameterizations of effective parameters given by Eqs. (A2)-(A4) have also been implemented. In what follows,450

we use the absolute root-mean-square deviations (RMSDs) as a metric when comparing two solution fields produced with two

different implementations. For interpretation, it is important to relate these RMSDs to the typical orders of magnitude of the

considered fields shown in respective figures.
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Table 2. Summary of numerical set-ups and model configurations. Scenario 2 and 3 are taken from Schürholt et al. (2022). Case 6 and 7

are taken from Simson et al. (2021). Dirichlet BCs on T are T0 = 273 K and Th = 253 K. Dirichlet BCs on ρv are ρv,0 = ρeqv (T0) and

ρv,h = ρeqv (Th).

Sect. Set-up Nz ∆t (min) BC on T BC on ρv Configuration Mass matrixa α Dep.b Settl.c

4.1 Scenario 2 201 15 Dirichlet Dirichlet

FEniCSd I. / N.L.

5× 10−3 On Off
CC_3DOF I./ N. L.

CC_3DOF P./ N. L.

CC_3DOF P./ L.

4.2 Scenario 2 201

15
&
5

Dirichlet Dirichlet CC_2DOF P./ L. 5× 10−3

On Off

Dirichlet Dirichlet CC_3DOF P./ L. 5× 10−3

Dirichlet Dirichlet CD_PC P./ L. 5× 10−3

Dirichlet Dirichlet CD_FD P./ L. 5× 10−3

Dirichlet No Flux H_MF - / L. -

Dirichlet No Flux H_TF P./ L. -

4.3 Scenario 2 201 15
Dirichlet No Flux CC_3DOF P./ L. 0→ 1

On Off
Dirichlet No Flux H_MF -/L. -

4.4 Scenario 2 201

15
&
5

No Flux No Flux

CC_3DOF P./ L. 5× 10−3

On
&

Off
Off

CD_PC P./ L. 5× 10−3

H_MF -/ L. -

H_TF P./ L. -

4.5 Case 6
11 & 51
& 101 15 - -

Simson codee

- - Off On
Our code

4.6 Case 7 101

Adaptive Dirichlet c= 0 Simson codee P./ - -

On On
15 Dirichlet c= 0 H_MF -/ L. -

15 Dirichlet No Flux H_MF -/ L. -

4.7 Scenario 3 1001 1 Dirichlet Dirichlet

FEniCSd I./ N.L.

5× 10−3 On OffCC_3DOF I./ N. L.

CC_3DOF P./ L.

4.8 Scenario 3 1001 1 Dirichlet Dirichlet CC_3DOF P. L. 5× 10−3 On
On

Off

a I.: Improper, P.: Proper, N.L.: Not Lumped, L.: Lumped (Sect. 3.2). b Deposition. c Settlement. d Schürholt et al. (2022).
e Simson et al. (2021).

4.1 On the form of the mass matrices

In this part, we reproduce the scenario 2 presented in Schürholt et al. (2022) to illustrate the importance of dealing with proper455

mass matrices. Concretely, we consider a 1 m-thick snowpack with a piece-wise linear initial density profile mimicking a
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stratified snowpack containing a crust, as well as an ice layer at the bottom (Eq. (16) of Schürholt et al., 2022). All BCs

are of Dirichlet type and constant over time: the bottom and top temperatures are fixed to, respectively, T0 = 273 K and

Th = 253 K, while the bottom and top water vapor densities are set assuming saturation at boundaries, i.e. ρv,0 = ρeqv (T0) and

ρv,h = ρeqv (Th). The initial temperature profile is linear between boundary values, and the initial water vapor density profile460

is deduced from the latter assuming that water vapor density is initially saturated (solid black lines in Fig. 3). To facilitate

a comparison with results presented by Schürholt et al. (2022), all simulations described in this part are run with settlement

de-activated and deposition feedback on Φi activated. The time step is set to ∆t= 15 min. The mesh is uniform and contains

200 elements. For the simulations with the Calonne model, the sticking coefficient is set to a default value of α= 5× 10−3 so

that our sαvkin is comparable to the ρis/βρ
eq
v adopted by Schürholt et al. (2022).465

Figure 3 shows the vertical profiles of temperature, vapor density, and deposition rate produced after 38h of simulation

by FEniCS on the one hand, and different versions of CC_3DOF on the other hand. The FEniCS run is based on the code

published by Schürholt et al. (2022), with slight adaptations. In particular, the original Crank-Nicholson time scheme adopted

by Schürholt et al. (2022) is replaced by a fully-implicit scheme. Despite slight differences in the numerical implementation

(e.g., Φi is a nodal variable in FEniCS and an element-wise variable in our model, variable-dependent parameters are evaluated470

at nodes in FEniCS and directly at Gaussian points in our model, the expression of the source terms are not strictly equivalent

in FEniCS and in our model), the solution fields produced by FEniCS are very close to those obtained with CC_3DOF when

the mass matrix has the improper form and no lumping is performed (superimposed green solid and red dotted lines). This can

be quantified by calculating the RMSDs between the solutions obtained with the two approaches: it is of 3.7× 10−4 K for T ,

and of 4.4×10−8 kg m−3 for ρv. A more noticeable difference regards the amplitude of the oscillations occurring on the field475

of c at the top boundary of the domain. Note that oscillations are also observed at the bottom boundary of the domain, as well

as at the boundaries of the deposition/sublimation peaks, but they are of similar amplitude in both approaches, except at the

very bottom node. Thus, the RMSD between the fields of c produced by the two approaches is of 3.7×10−6 kg m−3 s−1 when

the whole domain is considered, and is reduced to 2.4× 10−8 kg m−3 s−1 when the first bottom node and four top nodes are

omitted.480

In contrast, adopting the proper form of the mass matrix changes significantly the T and ρv fields in places where peaks

of sublimation/deposition are observed (blue dashed lines on top and middle panels hidden below orange solid lines): the

RMSDs between the solution fields of T and ρv obtained with CC_3DOF using the improper mass matrix and the ones

obtained with CC_3DOF using the proper mass matrix are increased to, respectively, 0.42 K and 6.5× 10−5 kg m−3. The

sublimation/deposition peaks also become sharper (blue dashed line on bottom panel). The oscillations are mostly reproduced,485

with larger amplitudes at deposition/sublimation peaks and smaller amplitudes at domain boundaries, especially at the bottom

boundary. These spurious oscillations are related to the violation of the DMP. Note that oscillations of the same nature also

occur when FEniCS is run with a Crank-Nicholson time scheme (not shown). As expected, these oscillations vanish when the

mass matrix is lumped (orange solid line in Fig. 3).
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Figure 3. Comparison of temperature (top), water vapor density (middle) and deposition rate (bottom) fields produced by FEniCS, CC_3DOF

without lumping and with the improper mass matrix, CC_3DOF without lumping but with the proper mass matrix, and CC_3DOF with

lumping and proper mass matrix after 38h of simulation for the scenario 2 of Schürholt et al. (2022). The blue dashed and orange solid lines

are superimposed in the top and middle panels. The solid black lines correspond to the initial conditions.
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Figure 4. Comparison of temperature (top), water vapor density (middle) and deposition rate (bottom) fields produced by CC_3DOF and

CD_PC with ∆t= 5 min and ∆t= 15 min. Solutions are shown after 2 h, 4 h, and 24 h of simulation. Zoom-in over the deposition peaks

are included in the bottom panel. Note that green and blue lines are almost superimposed in all panels.
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4.2 On the different solver options490

Here, we use the same numerical set-up as above in order to compare the relative performances of the various numerical

treatments of the Calonne system that are summarised in Fig. 1b. All simulations are run with the proper form of the mass

matrices and with lumping activated. In addition to the time step of ∆t= 15 min, all simulations are also run with a time

step reduced to ∆t= 5 min. A first important result is that the boundary values taken by the field of c depart strongly from

their distribution in the interior of the domain, and that they are highly sensitive to the chosen numerical approach (bottom495

panel of Fig. 4). This topic is treated in detail in Sect. 4.6. Secondly, it turns out that the two strategies investigated for the

coupled solution of the Calonne system, i.e. CC_2DOF and CC_3DOF, produce solution fields that are very close. After

24 h of simulation with ∆t= 15 min, the RMSDs on the T , ρv, and c fields produced with the two methods amount to,

respectively, 1.8× 10−4 K, 1.6× 10−8 kg m−3, and 1.2× 10−6 kg m−3 s−1. The higher (relative) deviation in c is mostly

due to the values obtained at the two boundary nodes which are slightly sensitive to the chosen strategy: if the very top and500

bottom nodes are omitted, the RMSD on the c-field is reduced to 3.7× 10−9 kg m−3 s−1. In addition, the solution fields

produced by CC_2DOF and CC_3DOF show very little sensitivity to the time step size (superimposed green and blue lines

in Fig. 4, and similar RMSDs as above for all three fields when ∆t= 5 min). In contrast, the decoupled solution of the

Calonne system leads to significantly different behaviours. First, the CD_FD approach is highly unstable with the ρv and T

fields rapidly diverging towards unrealistic values. This continues to be the case even when the time step size is decreased505

down to ∆t= 1 s. In contrast, the CD_PC approach gives steady solutions that are mostly independent of the time step. These

steady solutions are not very different from those obtained with the coupled approaches (solid red and orange lines in Fig. 4).

Concretely, after 24 h, the RMSDs between the solution fields produced with CC_3DOF and CD_PC are of 4.2× 10−2 K,

4.8× 10−6 kg m−3, and 4.3× 10−5 kg m−3 s−1 (2.4× 10−6 kg m−3 s−1 when top and bottom nodes are omitted) for the

fields T , ρv, and c, respectively. Yet, the transient solution fields produced by CD_PC show oscillations (even when the mass510

matrices are lumped) and high sensitivity to the time step size (dotted and dashed red and orange lines in Fig. 4). For example,

after 2 h of simulation, RMSDs between CD_PC solutions obtained with ∆t= 15 min on the one hand, and with ∆t= 5 min

on the other hand, amount to 1.3 K, 1.7× 10−4 kg m−3, and 7.2× 10−4 kg m−3 s−1 (2.4× 10−5 kg m−3 s−1 when top and

bottom nodes are omitted) for, respectively, the fields T , ρv, and c. This behaviour has to be compared to the transient solutions

produced by CC_3DOF/CC_2DOF (blue lines in Fig. 4) that are smooth and smoothly converge to the steady solutions.515

The much higher stability of CD_PC compared to CD_FD is due to the proper treatment of the reaction term in the water

vapor mass balance equation, which acts as an attractor of ρv toward ρeqv . Nevertheless, the results presented in this paragraph

underline the major importance of having a coupled solution of the coupled heat and water vapor diffusion equations. Although

the CD_PC approach gives steady solutions that are close to the ones obtained with the coupled approaches, accuracy of the

transient responses is essential as the external forcings are constantly evolving in time for the vast majority of real-world520

configurations.

The same experiment has been run with the configurations H_MF and H_TF (not shown). The two strategies turn out to

produce solution fields of T (and consequently of ρv and c as both fields are diagnosed from the obtained T -field) that are
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Table 3. RMSDs between solutions obtained with H_MF on the one hand, and with CC_3DOF for the various values of α on the other hand

RMSD on: T (K) ρv (kg m−3) c (kg m−3 s−1)

α= 0 4.3× 10−2 1.1× 10−3 1.5× 10−6

α= 10−8 2.1× 10−2 6.8× 10−5 1.4× 10−6

α= 10−6 8.1× 10−3 1.6× 10−6 9.3× 10−7

α= 10−4 1.1× 10−2 1.0× 10−6 6.7× 10−8

α= 10−1 1.1× 10−2 1.0× 10−6 9.4× 10−9

α= 1 1.1× 10−2 1.0× 10−6 9.4× 10−9

very close to each other, and that show very little sensitivity to the time step size: the RMSD between both strategies after

24 h of simulation with ∆t= 5 min (resp. ∆t= 15 min) is of 6.2× 10−3 K (resp. 6.2× 10−3 K), 5.6× 10−7 kg m−3 (resp.525

5.5× 10−7 kg m−3), and 7.3× 10−9 kg m−3 s−1 (resp. 7.3× 10−9 kg m−3 s−1) for the fields T , ρv, and c, respectively. As

we shall see in Sect. 4.4, only the H_MF approach is perfectly energy conservative.

4.3 Comparing the Hansen and Calonne systems for high α

Figure 5 shows the solutions produced after 38h with our model in the configurations H_MF on the one hand, and CC_3DOF

for various values of the sticking coefficient α on the other hand. All simulations are run with the proper form of the mass530

matrices from the numerical set-up introduced above, except for the BCs on ρv which are forced to no flux in all cases (Table

2) so that both configurations are easily comparable (see Sect. 4.6). For both configurations, effective parameters are computed

from the Calonne parameterizations (Appendix A). We recall that the Calonne system has been derived through the two-scale

expansion method which is valid for low reaction rates only, i.e. α∼ 10−3 or less (Sect. 2.1). Therefore, neither the Calonne

system nor the Calonne parameterization of effective parameters are expected to be valid for higher values of α. Yet, our goal535

here is simply to compare the mathematical behaviours of the Hansen and Calonne systems when they are run with the same

parameterizations as done by Schürholt et al. (2022), independently of the physical soundness of obtained results.

The solution fields produced by CC_3DOF progressively converge to the ones produced by H_MF as α increases and a

higher reaction rate forces the vapor to saturation. This behaviour was expected. Indeed, if effective parameters are calculated

the same way and BCs are identical, then both systems are formally equivalent when water vapor density is assumed to always540

be at saturation (Sect. 2.3). To quantify this behaviour, Table 3 gathers all RMSDs between solutions produced at the end of

the simulation by H_MF on the one hand, and CC_DOF for all tested values of α on the other hand. The difference in ρv and c

between H_MF and CC_3DOF becomes less than 1% when α becomes higher than 10−6 and 10−3, respectively. Below these

values of α, the difference varies from a few percent to ∼ 100% as α tends to 0. In contrast, T is less affected by the value

of α. Even for the lowest values tested, the differences between the fields of T produced by H_MF and CC_3DOF are below545

0.1% (all lines are superimposed on top panel of Fig. 5).

All together, these results seem to contradict the ones presented in Fig. 2 of Schürholt et al. (2022): in their case, the solution

fields (especially c) produced by the Hansen and Calonne models differ significantly, even when both models rely on the
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Figure 5. Comparison of temperature (top), water vapor density (middle) and deposition rate (bottom) fields produced after 38h of simulation

with H_MF on the one hand, and CC_3DOF for various values of α on the other hand. Note that the case α= 1 is not represented as it would

not be distinguishable from the case α= 10−1.

Calonne parameterizations for effective parameters. We think that this is due to the improper treatment of the mass matrices

in their FEniCS implementation. This conclusion is supported by the fact that "existing continuum-mechanical models derived550
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CALONNE HANSEN 

Figure 6. Energy leakage as a function of simulation time for the Calonne (left panel) and Hansen (right panel) systems, with and without

deposition. For the Calonne system, we test the strategies CC_3DOF and CD_PC. For the Hansen system, we test the strategies H_MF and

H_TF. Each simulation is run with ∆t= 5 min and ∆t= 15 min. Note that on right panel, orange and red lines are almost superimposed.

Both panels contain a zoom-in for the region around ∆EΩ = 0 J m−2.

through homogenisation (i.e., Calonne) or mixture theory (i.e. Hansen) yield similar results for homogeneous snowpacks

of constant density" (Schürholt et al., 2022), as demonstrated from their scenario 1. Indeed, when density is uniform, the

multiplying factors of the accumulation terms are independent of space and can be arbitrarily affected directly to the mass

matrix or their inverses to the stiffness matrix and force vector.

4.4 On energy conservation555

In order to evaluate how the different numerical strategies considered behaves for what regards energy conservation, we run

a slightly modified version of the numerical set-up introduced in Sect. 4.1: the original Dirichlet BCs are replaced by no flux

BCs for both heat and vapor. Because settlement is de-activated (no vapor expelled from the snowpack to the atmosphere), the

system is thus closed and all recorded energy leakage should be considered as numerical artefacts. We run the experiment for 5

days, testing all strategies of the three options presented in Sect. 3.2 and summarised in Fig. 1b, except the CD_FD which yields560

unrealistic results even for time step as low as ∆t= 1 s. All experiments are run twice, once with ∆t= 15 min and another time

with ∆t= 5 min. Then, the feedback of deposition on Φi is de-activated and the procedure is repeated. The obtained energy

leakage are represented as a function of time in Fig. 6. Again, results produced with CC_3DOF are very close to those obtained

with CC_2DOF, and only the former are reported. The total energy leakage at the end of the simulation are summarised in
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Table 4. Total energy leakage (J m−2) after 5 days of simulation.

Deposition: off on

∆t= 5 min 15 min 5 min 15 min

CC_3DOF 0 0 -296.3 -295.0

CC_PC -2.8 -6.4 -299.1 -301.4

H_MF 0 0 -296.3 -295.0

H_TF 0.14 0.02 -296.2 -295.0

Table 4. As expected, decoupling the deposition-related evolution of Φi (source term of the ice mass conservation equation)565

from the heat/vapor transfer equation induces an artificial energy loss which amounts to ∼ 300 J m−2 for all considered cases

at the end of the simulation. This energy loss remains very limited compared to the total energy contained in the system but

could become noticeable for simulations on seasonal timescales and/or in configurations associated with stronger deposition

rates. On the contrary, when deposition is omitted, energy leakage become negligible. Nevertheless, we stress that, contrary to

the strategies CC_2DOF, CC_3DOF and H_MF that are rigorously conservative, the strategies CD_PC and H_TF induce tiny570

but non-zero energy leakage, in line with the demonstration of Tubini et al. (2021). This illustrates that a rigorously energy-

conservative solution of the problem of heat conduction and water vapor diffusion in snow implies solving the heat diffusion,

water vapor diffusion and ice mass conservation equations in a coupled way for the Calonne system, and to opt for the mixed

form of the heat equation for the Hansen system.

4.5 On mass conservation575

In this part, we reproduce the numerical set-up corresponding to the case 6 designed by Simson et al. (2021): we consider a

snowpack with an initial thickness of 50 cm split into two equally thick snow layers of uniform initial densities, i.e. 150 kg m−3

for the lower one and 75 kg m−3 for the top one. All simulations are run considering only the settlement process. Our goal

is to illustrate how the modifications made to the settlement scheme of Simson et al. (2021) affect the mass conservation

and settlement rates. For this, we run the code published by Simson et al. (2021) with three bug fixes that are described in580

Apppendix D. In particular, the strain rate governing the deformation of the whole space interval comprised between nodes

k and k+ 1 is calculated from the stress and viscosity evaluated at node k (and not at node k+ 1 as in the published version

of the code, Appendix D1). Simulations are run for 20 days, with ∆t= 15 min, and with three initially uniform meshes

containing, respectively, 11, 51, and 101 nodes. For all runs, viscosity is calculated from Eq. (A7) with a fixed temperature set

to T = 263 K.585

We first run the simulations using the original explicit time discretization scheme implemented by Simson et al. (2021) to

update Φi. As illustrated in Fig. 7a, mass is not conserved in this case: there is an artificial mass loss that gets higher for

coarser meshes. In the present case, this mass loss is of the order of 20 g after 20 days of simulation for a total initial mass of

56.25 kg. Although this mass loss tends to stabilise after a few days as viscosity increases exponentially with increasing Φi,
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(a) (b)

Figure 7. Panel (a) shows the evolution of the total mass over time when Φi is updated using the original explicit time discretization scheme

implemented by Simson et al. (2021) for meshes containing 11, 51, and 101 nodes. As soon as the time discretization scheme becomes

implicit, mass is conserved independently of mesh refinement (green line). Panel (b) shows the absolute settling velocity profile obtained on

the 11-nodes mesh with our model, and with the corrected code of Simson et al. (2021) using an implicit time discretization scheme after 1,

2, 5, and 20 days of simulation.

it will become more significant when integrated over a full season characterised by regular snowfalls of low initial densities.590

As soon as the explicit time integration scheme is replaced by an implicit one, i.e. following Eq. (19) and Appendix D4, mass

is perfectly conserved independently of the mesh size. Note that this is the case when running both a corrected version of the

code published by Simson et al. (2021) in which the explicit settlement scheme has been replaced by an implicit one, and our

model (green line in Fig. 7a). On Fig. 7b, we compare the settlement rates obtained with the code of Simson et al. (2021)

using the implicit time integration scheme to the one obtained with our code for a 11-nodes mesh. In the approach of Simson595

et al. (2021) corrected following Appendix D1 to ensure conservation of mass, the deformation of the whole numerical layer

between k and k+ 1 is implicitly calculated from the stress evaluated at the bottom node of the layer, where it is maximal.

In contrast, we assess the deformation occurring between nodes k and k+ 1 by integrating the ratio between the stress and

viscosity fields along the element k+ 1/2. As a consequence, the former treatment tend to slightly overestimate the settlement

rate compared to ours. This sensitivity is stronger at the beginning of the simulation when settlement rates are higher, and tend600

to decrease over time. As expected, when the mesh resolution is increased, the two approaches converge to the same settlement

rates (not shown).
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Figure 8. Comparison of deposition rate (top) and ice volume fraction (bottom) fields produced after 1, 2, 5, and 10 days of simulation on a

101-nodes mesh running: (i) the corrected version of the code published by Simson et al. (2021); (ii) H_MF with boundary values of c forced

to zero; and (iii) H_MF with no constraint on boundary values of c but with a no flux BC on vapor. Note that Φi being an element-wise

variable in our approach, it is represented as steps for the two H_MF cases.

4.6 On the boundary conditions on water vapor density

In this part, we want to highlight the sensitivity of the solution fields to the treatment of water vapor at boundaries. To this

end, we reproduce the case 7 proposed by Simson et al. (2021). The latter corresponds to the same numerical set-up as for605

the case 6 introduced above, except that the heat and water vapor diffusion processes are included. Furthermore, the feedback

of temperature on viscosity is taken into account through Eq. (A7). Figure 8 shows the c and Φi fields obtained after 1, 2, 5

and 10 days of simulation on a 101-nodes mesh when running the code published by Simson et al. (2021) with an implicit
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settlement scheme and with the bug fixes described in Appendix D (black lines, top panel). The values of c are always zero

at the boundaries because they are forced as such in the model by the authors. Despite slight differences in the numerical610

implementation (e.g., element-wise vs nodal nature of Φi, treatment of strain rate, mixed-form vs T-form for the Hansen

system), running our model in its H_MF configuration gives solution fields that are consistent with the ones produced by the

code of Simson et al. (2021) if we also force the boundary values of c to zero (orange lines, top panel). Concretely, the RMSDs

on c varies between 2.8× 10−8 kg m−3 s−1 and 3.4× 10−8 kg m−3 s−1, which corresponds to differences of the order of

∼ 1%.615

As stated in Sect. 3.2, the deposition rate being derived as the closure of the water vapor mass balance, imposing a vanishing

deposition rate at a boundary is equivalent to imposing a boundary vapor flux that adjusts itself so that local disequilibrium

between ρv and ρeqv are entirely compensated without any requirements for phase change. This choice is arbitrary and cannot

be used as the generic BC for snowpack models. Ideally, the BCs for the vapor mass budget should be derived through a vapor

budget at interfaces (akin to the surface energy budget routinely used as BCs for the energy equation). The importance of the620

BCs on vapor can be illustrated by running the same H_MF simulation as above, but removing all constraint on c and assuming

no vapor fluxes at boundaries. The resulting field of c is then characterised by peak values at the two boundary nodes, that depart

significantly from the distribution of c in the interior of the domain (blue lines, top panel). These high deposition rates at domain

boundaries have direct implications on the field of Φi: a significant part of the ice mass of the bottom element sublimates and

is transported upwards. This leads to a situation in which the bottom element is less dense than the one immediately above,625

a tendency that is exacerbated over time (blue lines, bottom panel). This behaviour creates strong local density gradients that

seem to trigger self-amplifying oscillations at the bottom boundary: a sublimation peak at the bottom node is followed by a

deposition peak at the node right above. This oscillatory pattern propagates inwards over a number of nodes that grows in time.

On the top, strong mass gain occurs associated to a high deposition peak over the top element, but does not trigger oscillations

at this point in time. We stress that the peaks of c at boundaries and oscillations at the bottom boundary are not numerical630

artefacts but are truly part of the solution of Eq. (3) without vapor fluxes at the boundaries. They must be seen as the deposition

rates that are required so that the Hansen system assumption regarding the permanent and instantaneous restoration of the

water vapor density to its saturated value is fulfilled when no contribution can be expected from water vapor mass fluxes at the

domain boundaries to bridge the gap.

4.7 On the formation of density wave instabilities635

In their work, Schürholt et al. (2022) have illustrated on a dedicated numerical set-up, and confirmed through linear stability

analysis, that both the Hansen and Calonne systems are prone to produce self-amplifying spatial oscillations on the c and Φi

fields when regions of very high density gradients are present. These oscillations are true mathematical features related to the

dependence of the effective heat and vapor diffusion coefficients on the ice volume fraction (Schürholt et al., 2022). Here, we

reproduce their experiment to investigate how this instability materialises when Φi is treated as an element-wise variable rather640

than as a nodal variable. The numerical set-up consists on a 2-cm thick snowpack with an initial ice volume fraction mimicking

a Gaussian crust following Eq. (20) of Schürholt et al. (2022) (solid black line in bottom left panel of Fig. 9). The ICs and BCs
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Figure 9. Comparison of deposition rate (top panels) and ice volume fraction (bottom panels) fields produced after 2 days of simulation on

a 1000-nodes mesh by FEniCS, CC_3DOF without lumping and with the improper mass matrix, and CC_3DOF with lumping and proper

mass matrix. The latter is run a second time with constant Deff and keff . Blue boxes on left panels highlight zoomed-in areas depicted on

right panels. The solid black lines correspond to the initial conditions. Note that despite the element-wise nature of Φi in our model, the latter

is represented as lines drawn from elemental values affected to the middle of elements in order to ease comparison with the FEniCS solution.

on T and ρv are the same as those used in Sect. 4.1. For these simulations, the time step is decreased to ∆t= 1 min. Figure 9

shows the c and Φi fields obtained after 48h of simulation on a 1000-nodes mesh. Let’s compare first the solutions produced by

FEniCS with an implicit time scheme (green solid line) and CC_3DOF with the same (improper) form of the mass matrix as645

for the FEniCS run and without lumping (dark red dotted line). Consistently with results already reported in Sect. 4.1, solutions

obtained in both simulations are very close to each other. Concretely, RMSDs on c and Φi are of 1.7× 10−5 kg m−3 s−1 and

4.5×10−4, respectively. In addition, both approaches produce smooth wave patterns - both on c and Φi - encompassing several

nodes at the bottom boundary. A closer look in this area (right panels of Fig. 9) reveals slight differences. In particular, the

amplitude of the oscillations on Φi are larger on the FEniCS solution than on the CC_3DOF one. This is not surprising given650
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the nodal nature of Φi in the FEniCS approach: a deposition/sublimation peak at a given node translates directly into an ice

volume fraction increase/decrease at the same node. In contrast, in our approach the averaging of the nodal c over the elements

when updating Φi (sect. 3.3) tends to limit the amplitude of these oscillations, but does not erase them. We also note that,

contrary to results reported in the previous section, no strong sublimation/deposition peaks are observed at the very bottom/top

nodes. In fact, the deposition rate is very slightly positive at both nodes. This is because the Dirichlet BCs ρv = ρeqv applied655

on the water vapor mass balance equation of the Calonne system imply water vapor fluxes at boundaries that contribute to

maintain the saturation at these nodes, limiting the necessity for deposition/sublimation to bridge the over/under-saturation.

Running the same CC_3DOF simulation with the proper form of the mass matrix (orange solid line in Fig. 9) changes

considerably the profiles of Φi and c obtained after 2 days of simulation. In particular, large oscillations on Φi related to large

peaks of sublimation and deposition are observed on the sublimating (cold) side of the Gaussian crust. In fact, the general660

pattern of formation and propagation of the instability wave is not changed compared to the two previous simulations (as

illustrated in Fig. 5 of Schürholt et al. (2022)), but oscillations set up at a much faster pace in this simulation. Again, this shows

that treating mass matrices in their improper form can dramatically affect the obtained solutions at a given point in time.

We run an additional simulation, which consists again in the CC_3DOF strategy with the proper form of the mass ma-

trix and lumping activated, but using constant values for the effective parameters keff and Deff . More specifically, we set665

keff = 0.2 Wm−1K−1 and Deff = 1.066× 10−5 m2s−1. This corresponds to the Calonne parameterization of these effective

parameters for a Φi fixed to its initial averaged value, i.e. Φi = 0.318. The obtained solution shows a non-uniform deposition

over the whole domain (solid red line, top panels). This is because the water vapor fluxes at boundaries implied by the pre-

viously mentioned Dirichlet BCs on water vapor bring enough water vapor mass from the exterior so that the whole layer is

over-saturated for the implemented values of keff and Deff , which causes deposition. In contrast, when the same simulation is670

run with a no flux condition on vapor at boundaries, we observe a very strong peak of sublimation at the bottom node and a

less pronounced peak of deposition at the top node (not shown). The non-uniform deposition leads to an increase of Φi over

the whole domain, more pronounced on the lower half than on the upper half. Logically, the quasi-advection of the Gaussian

crust towards the warm boundary that is observed in all other simulations and thoroughly analysed by Schürholt et al. (2022)

does not occur here. Indeed, the later is due to continuous deposition on the lower side of the crust associated with continuous675

sublimation on the upper side, which does not happen in this case. Another remarkable feature is the absence of the wave

instability pattern in this case, in line with prediction of Schürholt et al. (2022).

All together, these observations confirm the assertion of Schürholt et al. (2022): the wave patterns on c and Φi are intrinsic

features of the mathematical models rather than due to, e.g., the form of the implemented mass matrix or a violation of the

DMP; they are triggered by strong density gradients and are due to the dependence of keff and Deff on ice volume fraction.680

There are slightly smoothen, but not removed, when the Φi is treated as an element-wise quantity rather than as a nodal quantity.

Note that we have also run the same experiment with the H_MF model using the Hansen parameterization of effective

parameters (not shown). Again our results are in line with those of Schürholt et al. (2022): the wave instability appears much

faster and with much stronger amplitude than for the Calonne model with the Calonne parameterization of effective parameters.
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Figure 10. Comparison of deposition rate (left) and ice volume fraction (right) fields produced after 1 and 2 days of simulation on a 1000-

nodes mesh by CC_3DOF with lumping and proper mass matrix in two configurations: without and with settlement. The solid black lines

correspond to the initial conditions. We opt for the same representation of Φi as for Fig. 9.

4.8 On the effect of settlement on the density wave instabilities685

We take advantage of our developments to run the same experiment as above, but with settlement activated. The considered

domain being only 2 cm-thick and the initial mean density being 291 kg m−3, the stresses are too low and the initial viscosity

too high (viscosity increases exponentially with density) to induce significant settlement in affordable computational time

if the parameterization (A7) of viscosity is taken as such. Therefore, we decide to keep this parameterization, but to divide

the obtained viscosity by a factor 104. Given the linear nature of the implemented constitutive law, the general pattern of690

deformation is expected to be kept, but with a strongly enhanced settlement rate. We limit the simulations to two runs, both

performed with the CC_3DOF strategy with the proper form of the mass matrix, and lumping activated: one is run with

settlement on, the other with settlement off. As illustrated in Fig. 10, including settlement has a stabilising effect on the wave

instability: oscillations on c and Φi are still observed but with strongly reduced amplitudes. For the considered numerical set-

up, the ratio between the maximum amplitudes of the oscillations observed on c (resp. on Φi) when settlement is included695

and when it is omitted, is ∼ 40% (resp. ∼ 30%) after one day, and ∼ 20% (resp. ∼ 25%) after two days. These oscillations

also take longer to set up when considering settlement: after one day of simulation, they are only starting to affect the c-field

at the bottom nodes, and their feedback on the Φi-field in this area is hardly perceptible. In contrast, when settlement is not

included, the oscillatory pattern at the bottom boundary is already well-established on both fields after one day of simulation.

This stabilising effect could be expected from the Φi-dependence of viscosity: the denser the element, the less it deforms,700
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and reciprocally. This tends to homogenise the density of the snowpack, and competes with phase change which, as shown

previously, tends to further densify the denser layers, and to further deplete the hollower layers. Another interesting feature is

that, while only deposition is observed far enough from the Gaussian crust when settlement is off, these areas show sublimation

when settlement is included.

5 Implications for future developments705

The numerical issues that have been highlighted in the present work are relevant beyond the particular processes investigated

here. First of all, it is a very general rule that the discretization of a continuous PDE must preserve its properties. This supposes

first to include any factor affecting the accumulation term in the corresponding mass matrix, and not its inverse in the stiffness

matrix, as soon as such factor is non-uniform. Second, this contraindicates the use of the chain rule on the accumulation term

during time discretization, as it might break the conservative properties of the continuous PDE. In fact, in many situations it710

is preferable to treat such a PDE in its mixed form, i.e. with the time-derivative of the accumulation term directly applying to

the conserved quantity. This is a generic result for conservation equations, and has already been illustrated on several other

processes (e.g., Celia et al., 1990; Casulli and Zanolli, 2010; Tubini et al., 2021). We have also shown that two-way coupled

PDEs need to be solved as single monolithic process to preserve their conservative properties. In addition, depending on the

relative dynamics of the sub-processes at stake, solving the latter sequentially might require considerably decreasing the time715

step in order to guarantee acceptable transient solutions. A monolithic treatment of coupled equations does not fundamentally

increases the complexity and numerical cost of the solution. Indeed, solving two decoupled tri-diagonal systems of equations

or solving one coupled penta-diagonal system of equations both come with the same complexity (i.e. O(n); El-Mikkawy and

Atlan, 2014; Jia and Jiang, 2015). The possibility to use larger time steps with a monolithic treatment is thus beneficial in terms

of computational cost. Again, this result hold as soon as two-way coupled PDEs are at stake, in snow modelling or elsewhere.720

More generally, coming up with a numerical implementation that guarantees energy and mass conservation is not straightfor-

ward. Therefore, a rigorous assessment of the evolution of energy and mass within the domain is a golden rule that should guide

any numerical developments. This requires knowing the energy and mass fluxes in and out of the domain, and thus to explicitly

compute the residuals of the algebraic system. In the eventuality that constraint on numerical cost requires numerical imple-

mentations violating the energy/mass conservation, then the associated leakage should remain negligible, be well-identified,725

and be tracked carefully. This is what we have done for the energy leakage associated with the sequential treatment of the

feedback of deposition/sublimation on the ice mass conservation. Not only is this required to ensure that the model in itself

produces physically-sound results, but also in the perspective of latter couplings to other components of Earth System Models

(ESMs). Indeed, the introduction within the latter of artificial sink/source of energy/mass obviously contributes to undesired

model drift (e.g., Gupta et al., 2013; Hobbs et al., 2016). This drift is all the easier to correct as the spurious energy/mass730

leakage are well identified and correctly quantified.

More specific to the problem of water vapor diffusion is the treatment of water vapor at boundaries. We have shown in Sect.

4.6 how sensitive the solution fields can be to this treatment. Previous works modelling macroscopic water vapor diffusion in
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snow have only considered two types of BCs on vapor: a no flux condition (e.g., Touzeau et al., 2018), or a Dirichlet-type BC

enforcing saturation of vapor at boundaries (e.g., Schürholt et al., 2022). Jafari et al. (2020) used a mix of both, i.e. no flux at the735

bottom BC and saturation at the top BC. We also recall that forcing the deposition rate to zero at boundary nodes when solving

the Hansen system, as done by Simson et al. (2021), is a roundabout way to arbitrarily prescribe vapor fluxes at boundaries

that perfectly compensate the over/under-saturation at these nodes. In natural configurations, vapor fluxes are expected at both

boundaries. It follows that the proper way to proceed for real-world application is to solve a surface water vapor mass balance

in order to derive well-defined boundary water vapor fluxes, similarly to what is normally done for energy. In contrast, cold740

laboratory experiments can impose a no flux condition on vapor at boundaries by using impermeable plates. Such experiments

reveal strong sublimation at the bottom BC, and strong deposition at the top BC (e.g., supplement of Hagenmuller et al., 2019;

Bouvet et al., 2023). These observations are consistent with the peaks of sublimation/deposition obtained at the bottom/top

boundaries when vapor is forced to no flux, as presented in Sect. 4.6.

These peaks of sublimation/deposition, and the related local increase of density gradients, are a trigger of a wave instability.745

This behaviour is carefully analysed in the study of Schürholt et al. (2022), who also discuss the implications on the numerical

solution. The existence of such a wave instability was already proposed by Adams and Brown (1990) from theoretical argu-

ments. It is due to the dependence of the effective thermal conductivity and vapor diffusion coefficient to ice volume fraction.

Physically, we understand the mechanism as follows: water vapor diffuses less readily across regions with higher ice volume

fraction; because thermal conductivity of air is about 100 times less than that of ice, temperature gradients are stronger in750

regions with low ice volume fraction, and vapor fluxes are enhanced; these two phenomenon combine to induce local accu-

mulation of water vapor in places where the latter encounter an abrupt increase in ice volume fraction in its flow towards

decreasing temperatures; this local accumulation leads to local over-saturation which is resorbed through deposition, increas-

ing further the ice volume fraction at the transition. Similarly, when water vapor flows across an abrupt decrease of ice volume

fraction, enhanced water fluxes in the downstream low-density region combined to the difficulty of the upstream high-density755

region to supply water vapor lead to local under-saturation, which causes sublimation. Our developments have highlighted two

stabilising effects: one that is physical, i.e. the inclusion of settlement; the other that is numerical, i.e. the element-wise treat-

ment of Φi. Given these two effects, and acknowledging the fact that the numerical set-up considered here is rather extreme

(macroscopic temperature gradient of 1000 Km−1, 1000 elements for a 2 cm-thick snowpack), we think that this instability

wave is unlikely to become a major modelling difficulty for many of the natural settings. This point is more hazardous for, e.g.,760

seasonal-scale simulations of thin arctic snowpacks, and more simulations covering a large range of realistic configurations are

needed.

As discussed by Simson et al. (2021), the surface ice mass balance related to new precipitation or to sublimation (for dry

snow) has also to be addressed. We think that our choice regarding the element-wise treatment of conserved quantities will

greatly facilitate this implementation. For simulations on a seasonal time scale, occasional re-meshing will be necessary to765

limit the computational cost. Again the element-wise nature of conserved quantities will enable unequivocal redistribution of

the latter over merged or split elements. More generally, we draw the reader’s attention to the widespread confusion between

physical and numerical layers. Even when one claims to be adopting a continuous representation of the snowpack, the numerical
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solution of PDEs always requires discretization of the domain, which amounts to the definition of numerical layers. As soon

as some integration is at stake (e.g., assessment of snowpack deformation from stress and viscosity), some assumption must770

necessarily be made about the evolution of fields within the numerical layers. Therefore, it is obviously preferable to have

finer mesh in areas where gradients of relevant physical quantities are strong, and a coarser mesh elsewhere. This is equivalent

to saying that there must be some kind of correspondence between numerical and physical layers, if we define the latter as

sections of the domain characterised by low gradients of physical properties.

The present work is a further step towards the development of the next generation of detailed snowpack models, associating775

sound and universal physics with a robust numerical treatment. So far, the implemented processes are limited to the coupled

heat conduction, water vapor diffusion and settlement in dry snow, but the numerical subtleties that have been highlighted

are relevant for many other processes, in snow modelling and beyond. Our model is now ready to reproduce well-controlled

laboratory experiments provided that BCs are well constrained. In contrast, modelling natural settings will require more work,

in particular regarding the energy, water vapor mass, and ice mass balances at boundaries. For longer-term developments, it will780

be necessary to implement other processes, notably those related to the liquid phase of water (melting/refreezing, percolation),

as well as those regarding snow metamorphism.

Code availability. The source files of the code are provided at https://doi.org/10.5281/zenodo.7941767 to guarantee the permanent repro-

ducibility of results. However, we recommend that potential future users and developers access the code from its Git repository (https:

//github.com/jbrondex/ivori_model_homemadefem, last access: 25 September 2023) to benefit from the last versions of the code. The ver-785

sion used in this work is tagged as v0.1.0. For setting up the environment and running the simulations, please follow the instructions described

in the README file present in the GitHub repository.

Appendix A: Parameterizations used in our model

A1 Effective vapor diffusion coefficient

All simulations presented in the paper are run using the parameterization of the effective vapor diffusion coefficient proposed790

by Simson et al. (2021). It is based on the parameterization derived by Calonne et al. (2014), but it uses the Heaviside function

Θ to hinder vapor diffusion for ice volumes above two-thirds. It writes:

Deff =D0

(
1− 3

2
Φi

)
Θ

(
2

3
−Φi

)
, (A1)

with D0 given in Table 1. Additional simulations mentioned in the paper were run using the parameterization of Hansen and

Foslien (2015), which writes:795

Deff = Φi(1−Φi)D0 + (1−Φi)

 kiD0

Φi

(
ka +LmD0

dρv,sat

dT + (1−Φi)ki

)
 , (A2)

with all constant values listed in Table 1.
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A2 Effective thermal conductivity

All simulations presented in the paper are run using the parameterization of Calonne et al. (2011) for the effective thermal

conductivity, which writes:800

keff = k0 + k1ρiΦi + k2(ρiΦi)
2, (A3)

with k0 = 0.024 W m−1 K−1, k1 =−1.23×10−4 W m2 K−1 kg−1, and k2 = 2.5×106 W m5 K−1 kg−2. Additional simu-

lations mentioned in the paper were run using the parameterization of Hansen and Foslien (2015). The latter writes:

keff = Φi ((1−Φi)ka + Φiki) + (1−Φi)

 kika

Φi

(
ka +LmD0

dρv,sat

dT + (1−Φi)ki

)
 , (A4)

with all constant values listed in Table 1.805

A3 Effective heat capacity

Contrary to Simson et al. (2021) and Schürholt et al. (2022), our parameterization of the effective heat capacity neglects the

heat carried by dry air, which then writes:

(ρCp)
eff

= ρiCiΦi, (A5)

with all constant values given in Table 1. This assumption is justified by the small volumetric heat capacity of dry air compared810

to that of ice. This choice enables closing the energy budget without having to track the dry air leaving the snowpack as it

settles.

A4 Saturation water vapor density

All simulations presented in this paper are run using the parameterization of Libbrecht (1999) for the saturation water vapor

density:815

ρeq
v =

exp(−Tr/T )

fT

(
a0 + a1(T −Tm) + a2(T −Tm)2

)
, (A6)

with Tr = 6150 K, f = 461.31 J K−1 kg−1, a0 = 3.6636×1012 Pa, a1 =−1.3086×108 Pa K−1, a2 =−3.3793×106 Pa K−2,

and Tm = 273 K.

A5 Effective viscosity

All simulations presented in the paper are run using the viscosity parameterization of Vionnet et al. (2012):820

η(Φi,T ) = fη0
ρiΦi

cη
exp(aη(T0−T ) + bηρiΦi) , (A7)

with the fusion temperature T0 = 273 K; the constant parameters η0 = 7.62237×106 kgs−1, aη = 0.1 K−1, bη = 0.0.023 m3 kg−1,

cη = 250 kgm−2; and an additional parameter f which normally accounts for snow microstructure properties but which is set

to f = 1 in the present study.
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Appendix B: Spatial and temporal discretization825

The spatial discretization is based on the FEM. Indeed, the FEM enables a clear distinction between element-wise and nodal

variables. The former are constant over elements and typically correspond to conserved quantities (e.g., ice volume fraction),

while the latter are defined at mesh nodes, are continuous in space, and typically correspond to physical quantities driving the

fluxes in between elements (e.g., temperature). As explained in further details in Sect. 3.3, such a vision is consistent with the

fact that the conservation of energy and mass are fulfilled on average per spatial intervals rather than locally. In contrast to the830

work of Schürholt et al. (2022) who used a python-based FEM platform, we code every step of the method internally except

the inversion of the linear system. This allows us to have complete control over the numerical implementation. On the other

hand, this enables to design a code structure well-suited for snowpack modelling, in which each physical process corresponds

to a module that can be easily activated or de-activated at user convenience. Below, we briefly recall the basics of the FEM.

For more details, we refer the reader to one of the many books that have been written on the subject (e.g., Pepper and Heinrich,835

2005).

The exact (analytical) solution u of a PDE being usually out of reach, the idea of the FEM is to find an approached (numer-

ical) solution ũ under the form:

ũ(x, t) =

NDOF∑
j=1

ϕj(x)uj(t) ∀x ∈ Γ, (B1)

where Γ is the considered domain, and the uj are the discrete unknown scalar values of the problem to be solved. The functions840

ϕj are linearly independent functions of space, referred to as the shape functions. Here, we follow the classical approach and

adopt first-order Lagrangian polynomials as shape functions: the shape function ϕj is a continuous piece-wise linear function,

whose value equals 1 at the jth node and 0 at all other nodes. In this case, the unknown scalar value uj simply corresponds to

the value of ũ at the jth node, and the shape functions ϕj can be viewed as linear interpolators in between nodes. The restriction

of shape functions to first-order polynomials is motivated by the results of Schürholt et al. (2022) that have reported that, in845

their experiments, increasing the polynomial order was equivalent to increasing the mesh resolution with the corresponding

number of nodes.

The PDE is then rewritten in its weak form, which consists in multiplying the latter by any arbitrary test function, and to

integrate this product over Γ. Integration by parts is carried out on the divergence term to weaken the differentiation requirement

on the solution field, which naturally makes boundary normal flux integrals arise. In order to obtain a closed set of discrete850

equations, the arbitrary test function is replaced by a finite set of test functions ϕi that are taken equal to the shape functions

(standard Galerkin procedure). The problem is then reduced to solving NDOF algebraic equations that can be cast into matrix

forms, with matrix terms defined as integrals over space (see Appendix C). These integrals are evaluated using Gaussian

quadratures. The latter consists in replacing a continuous integral by a weighted sum of function values at specific points, the

so-called Gaussian points, located within the elements. In particular, model parameters that depend on model variables are855

evaluated directly at Gaussian points at which nodal variables are interpolated through shape functions. When the considered

model parameter is a non-linear function of some model variable, this is different from evaluating the model parameter at nodes
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and then using shape functions to interpolate the obtained values at Gaussian point as done in, e.g., Schürholt et al. (2022). We

use a default value of two Gaussian points per element, but this setting could easily be changed.

While the FEM provides a spatial discretization scheme, the obtained matrix equation also needs to be discretized in time.860

The theta method is the most commonly adopted. It consists in expressing all quantities as a weighted average between their

values at previous time step and their values at current time step. In general, the matrix form of the resulting algebraic system

is:[
M + θ∆tKn+1

]︸ ︷︷ ︸
Left-Hand Side Matrix A

Un+1 = [M + (θ− 1)∆tKn]Un + ∆t
[
θFn+1 + (1− θ)Fn

]︸ ︷︷ ︸
Right-Hand Side Vector B

+∆tF∂Γ, (B2)

where the superscript n+ 1 (resp. n) is applied to quantities evaluated at current (resp. previous) time step, ∆t is the time865

step size, and U the solution vector. The matrices M and K are referred to as, respectively, the mass and stiffness matrices.

The vector F is called the force vector, and the vector F∂Γ corresponds to boundary fluxes entering/leaving the domain dur-

ing the time step. The particular cases θ = 0, θ = 0.5 and θ = 1 correspond to, respectively, the first-order explicit Euler, the

Crank-Nicholson, and the first-order implicit Euler methods. It can be shown that whenever 0.5≤ θ ≤ 1 the time-stepping

algorithm is L2-stable: the error between the continuous time-derivative and its discrete counter-part remains bounded without870

any requirement on the time step size. However, if the considered PDE is non-linear, the system (B2) also becomes non-linear

for any θ > 0. Such a system must be linearized. Linearization algorithms, such as Picard or Newton, are iterative methods

that require the prescription of an initial guess, which must be sufficiently close to the solution to ensure convergence of the

algorithm. The fulfilment of this condition hampers the prescription of arbitrary large time step, even when the time discretiza-

tion method is said to be unconditionally stable. On the other hand, while every case with θ 6= 0.5 is first-order in time (i.e.,875

the discretization error decreases linearly with ∆t, as ∆t converge to zero), the Crank-Nicholson method is second-order in

time (i.e., the discretization error decreases quadratically with ∆t, as ∆t converge to zero). This higher accuracy of the Crank-

Nicholson combined with its stability are often invoked to justify its use (e.g., Bader and Weilenmann, 1992; Decharme et al.,

2011; Schürholt et al., 2022). Yet, the obtained solution can be affected by spurious (decaying) oscillations if the time step is

too large or the element size too small. For this reason, we prefer to use the standard first-order implicit Euler method (θ = 1).880

Although potentially less accurate than the Crank-Nicholson method, the latter is more stable and less prone to oscillations

(Formaggia and Scotti, 2011).

Specific BCs can be implemented through appropriate modification of the matrix system (B2). More specifically, Neumann

BCs can be directly implemented through the boundary flux vector F∂Γ. Dirichlet BC at a boundary node can be implemented885

by replacing its corresponding line in the left-hand side (l.h.s.) matrix A of Eq. (B2) with the line of the identity matrix and

setting the Dirichlet value in the right-hand side (r.h.s.) vector B. Robin BCs must be seen as a weighted combination of

Neumann and Dirichlet BCs in which the flux at the considered boundary is specified as a linear function of the value of the

solution field at the corresponding boundary node. Implementing a Robin BC then consists in: (i) adding the prescribed flux

to the corresponding line of the boundary flux vector F∂Γ, and (ii) modifying the l.h.s. matrix A as for a Dirichlet BC, except890

that the diagonal term of the modified line, which is set to 1 when implementing a Dirichlet BC, must be set to the multiplying
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factor applying to the solution field in this case. The r.h.s. vector B is left unchanged.

Once the solution vector has been obtained, it is possible to diagnose the fluxes entering/leaving the system by calculating the

matrix system residual, defined as ∆tF∂Γ = AU−B. Note that this operation applies for all types of BCs, notably Dirichlet895

conditions for which the boundary fluxes are not explicitly prescribed but nonetheless exist to maintain the boundary solution at

its prescribed value. Assessing the boundary fluxes is necessary to verify the closure of the energy budget, and can be required

for latter coupling to external models.

Appendix C: Discrete forms of the systems of equations

This appendix presents the different FEM discretizations of the Calonne and Hansen systems for all considered strategies that900

are summarized in Fig. 1. In what follows, the functions ϕi and ϕj correspond to, respectively, the test and shape functions.

C1 CC_3DOF

The Calonne system is solved for the solution vector u = (T,ρv, c). The discrete system evaluated at non-linear iteration k+ 1

can be expressed in matrix form as:


MTṪ +KT,TT +KT,CC = F ∂Γ

T

MPṖ +KP,PP +KP,CC = F ∂Γ
P

M̃CC +KC,TT +KC,PP = FC

(C1)905

where:

M i,j
T =

∫
Γ

(ρCp)
eff
ϕiϕjdV, (C2)

M i,j
P =

∫
Γ

(1−Φi)ϕiϕjdV, (C3)

M̃ i,j
C =

∫
Γ

ϕiϕjdV, (C4)

K i,j
T,T =

∫
Γ

keff∇ϕi · ∇ϕjdV, (C5)910

K i,j
P,P =

∫
Γ

Deff∇ϕi · ∇ϕjdV, (C6)
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K i,j
T,C =

∫
Γ

−LmϕiϕjdV, (C7)

K i,j
P,C =

∫
Γ

ϕiϕjdV, (C8)

K i,j
C,T =

∫
Γ

sαvkin(T k)
dρeq

v

dT

∣∣∣∣
T=Tk

ϕiϕjdV, (C9)

K i,j
C,P =

∫
Γ

−sαvkin(T k)ϕiϕjdV, (C10)915

F i
C =

∫
Γ

sαvkin(T k)

(
dρeq

v

dT

∣∣∣∣
T=Tk

T k − ρeq
v (T k)

)
ϕidV, (C11)

where the saturation vapor density ρeq
v has been linearized through Eq. (8), while vkin is fixed from the temperature field T k

obtained at the previous non-linear iteration. Vectors F ∂Γ
T and F ∂Γ

P correspond to normal boundary fluxes of sensible heat and

vapor respectively. Additional internal sources of energy beside phase change-related latent heat effect could easily be added

as a force vector in the energy budget equation. Finally, note that the matrix M̃C is not a true mass matrix in the sense that it920

does not apply to a time-derivative, and must therefore be treated carefully during the time-stepping assembly (B2).

C2 CC_2DOF

The Calonne system is solved for the solution vector u = (T,ρv). The discrete system evaluated at non-linear iteration k+ 1

can be expressed in matrix form as:

MTṪ +KT,TT +KT,PP = FT +F ∂Γ
T

MPṖ +KP,PP +KP,TT = FP +F ∂Γ
P

(C12)925

where:

K i,j
T,T =

∫
Γ

[
keff∇ϕi · ∇ϕj +Lmsαvkin(T k)

dρeq
v

dT

∣∣∣∣
T=Tk

ϕiϕj

]
dV, (C13)

K i,j
P,P =

∫
Γ

[
Deff∇ϕi · ∇ϕj + sαvkin(T k)ϕiϕj

]
dV, (C14)
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K i,j
T,P =

∫
Γ

−Lmsαvkin(T k)ϕiϕjdV, (C15)

K i,j
P,T =

∫
Γ

−sαvkin(T k)
dρeq

v

dT

∣∣∣∣
T=Tk

ϕiϕjdV, (C16)930

F i
T =

∫
Γ

Lmsαvkin(T k)

(
dρeq

v

dT

∣∣∣∣
T=Tk

T k − ρeq
v (T k)

)
ϕidV, (C17)

F i
P =

∫
Γ

−sαvkin(T k)

(
dρeq

v

dT

∣∣∣∣
T=Tk

T k − ρeq
v (T k)

)
ϕidV, (C18)

while MT, and MP are expressed as in the CC_3DOF case. Again, additional internal sources of energy could easily be added

in the force vector FT if needed, and the non-linearity due to ρeq
v and vkin is treated as for the CC_3DOF case. The field of c is

then diagnosed in a next step as the closure of the water vapor mass balance equation where ρv is set to the obtained solution935

field.

C3 CD_PC

The equations of the Calonne system are solved sequentially. In a first step, the heat equation is solved for T with a source term

that is fixed from the c-field computed at the previous time step. The discrete counterpart of this equation can be expressed in

matrix form as:940

MTṪ +KT,TT = FT +F ∂Γ
T , (C19)

where:

F i
T =

∫
Γ

LmcϕidV, (C20)

and MT, KT,T as expressed in the CC_3DOF case, and with the possibility to add additional internal sources of energy in FT.

The obtained solution field is used to fix the distributions of vkin and ρeqv . The water vapor mass balance equation can then be945

solved for ρv under its diffusion-reaction form in a second step. The discrete counterpart of this equation can be expressed in

matrix form as:

MPṖ +KP,PP = FP +F ∂Γ
P (C21)

where:

F i
P =

∫
Γ

sαvkin(T k+1)ρeq
v (T k+1)ϕidV, (C22)950
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and MP, KP,P as expressed in the CC_2DOF case. We stress that, because vkin and ρeqv are fixed from the field T k+1 obtained

in a previous (separated) step, no linearization is required in this case. The field of c is computed in a third step as the closure

of the water vapor mass balance equation where ρv is set to the obtained solution field.

C4 CD_FD

The CD_FD strategy is similar to the CD_PC strategy except that the c-field computed at the previous time step is used to955

fix the source terms of both the heat and water vapor mass balance equations. It follows that the discrete counterparts of both

equations write exactly the same as for the CD_PC case, except for KP,P and FP which write:

K i,j
P,P =

∫
Γ

Deff∇ϕi · ∇ϕjdV, (C23)

and

F i
P =

∫
Γ

−cϕidV. (C24)960

As for the CD_PC case, no linearization is required in this approach. The field of c is computed in a third step by solving

Eq. (2) at all nodes, where ρv and ρeq
v (T ) are set to the obtained solution fields.

C5 H_MF

In the Hansen system, notingH the vector of enthalpy content, the total (i.e. sensible plus latent) energy budget writes in matrix

form:965

MHḢ +KT,TT = F ∂Γ
T

M̃HH +KH,TT = FH

(C25)

where:

M i,j
H =

∫
Γ

ϕiϕjdV, (C26)

M̃ i,j
H =

∫
Γ

ϕiϕjdV, (C27)

K i,j
T,T =

∫
Γ

(
keff +DeffLm

dρeq
v

dT

∣∣∣∣
T=Tk

)
∇ϕi · ∇ϕjdV, (C28)970

K i,j
H,T =

∫
Γ

−
(
Lm(1−Φi)

dρeq
v

dT

∣∣∣∣
T=Tk

+ (ρCp)
eff

)
ϕiϕjdV, (C29)
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F i
H =

∫
Γ

(
Lm(1−Φi)(ρ

eq
v (T k)− dρeq

v

dT

∣∣∣∣
T=Tk

T k)− (ρCp)
eff
T0

)
ϕidV, (C30)

where the saturation vapor density ρeq
v has been linearized through Eq. (8). Vector F ∂Γ

T corresponds to the normal heat flux

(sensible and latent) at the boundary. This matrix representation is referred to as "mixed-form" as the heat budget equation

includes two unknowns, the total energyH and the temperature T , which are related through a non-linear constitutive equation.975

As for the CC_3DOF case, note that the matrix M̃H is not a true mass matrix and must be treated carefully during the time-

stepping assembly (B2). The field of c is then diagnosed in a next step as the closure of the water vapor mass balance equation

with ρv = ρeqv , where ρeqv is computed from the obtained field of T .

C6 H_TF

Applying the chain rule in the Hansen system of equations, one can eliminate the total energy H to express the system in terms980

of T only. The equivalent matrix form is given by:

MTṪ +KT,TT = F ∂Γ
H (C31)

where

M i,j
T =

∫
Γ

(
(ρCp)

eff
+Lm(1−Φi)

dρeq
v

dT

∣∣∣∣
T=Tk

)
ϕiϕjdV, (C32)

and the expression of KT,T is the same as for the H_MF case. Again, the field of c is then diagnosed in a next step as the985

closure of the water vapor mass balance equation with ρv = ρeqv , where ρeqv is computed from the obtained field of T .

Appendix D: Modifications made to the published code of Simson et al. (2021)

After running the code published by Simson et al. (2021) (https://zenodo.org/record/5588308, last access: 2023-05-04), three

bugs (i.e., inconsistencies in the code that hamper mass conservation) have been identified. Here, we detail these three bugs and

explain the changes that were made to the lines of code that caused the problems to fix these bugs. In addition to these bugs,990

we recall that the explicit temporal discretization of the continuity equation performed by Simson et al. (2021) also causes a

violation of mass conservation (Sect. 3.3 and Appendix E). Although we consider this last point to be of a conceptual order

rather than a bug (the problem appears both in the paper and in the code), we also present the modifications that are needed in

the published code to switch from the original explicit time discretization to the implicit one.

D1 Spatial inconsistency in the strain rate computation995

We recall that the settlement scheme consists of two operations that must be done consistently to guarantee mass conservation

(Sect. 3.3): (i) the update of the ice volume fraction field, and (ii) the update of the mesh. The strain rate is required in both
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operations. In the approach of Simson et al. (2021), the strain rate is evaluated at nodes: the strain rate at node k is calculated

from the viscosity and stress at node k. As explained in Sect. 3.3, the stress at node k is calculated from the overburden

snow mass with the implicit assumption that the ice volume fraction Φi,k stored at node k actually applies to the whole space1000

interval located above, i.e. between nodes k and k+ 1. On the other hand, in the published version of the code, the authors

were updating the mesh using the strain rate evaluated at node k to compute the deformation of the space interval below, i.e.

between the nodes k and k− 1. This operation was done in the file Model/velocity.py through the following code lines

(l.214-220):

D _r a t e [1005

0

] = 0 # s t r a i n r a t e a t l o w e s t node = 0 , i n t e r s e c t i o n w i t h t h e ground no s t r a i n

v [ 0 ] = D_ ra t e [ 0 ] * dz [ 0 ] # l o c a l v e l o c i t y a t t h e l o w e s t node v=0 [ ms−1]

v [ 1 : ] = np . cumsum (

D _r a t e [ 1 : ] * dz [ : ]1010

) # I n t e g r a t e d e f o r m a t i o n r a t e s [ s−1] i n space t o d e r i v e v e l o c i t y [ ms−1]

The fact that the ice volume fraction stored at node k relates to the snow mass contained in the element above, whereas the

strain rate calculated at node k is used for the deformation of the element below, leads to inconsistencies when ice volume

fraction is updated. Therefore, we modified the code so that the strain rate used to deform the space interval between nodes k

and k−1 during the mesh update step is the one evaluated at node k−1 instead of the one evaluated at node k. Concretely, the1015

code lines reported above are replaced by:

v [ 0 ] = 0 # l o c a l v e l o c i t y a t t h e l o w e s t node v=0 [ ms−1]

v [ 1 : ] = np . cumsum (

D _r a t e [ :−1] * dz [ : ]

) # I n t e g r a t e d e f o r m a t i o n r a t e s [ s−1] i n space t o d e r i v e v e l o c i t y [ ms−1]1020

D2 Inconsistency in the sequence of tasks

In the published version of the code, the strain rate was updated in between the ice volume fraction update and mesh update

steps, leading to inconsistency between the two operations. This inconsistency was corrected by replacing the following code

lines of the file Model/coupled_update_phi_coord.py (l.13-16):

phi_new = u p d a t e _ p h i ( c , d t , nz , phi , v_dz )1025

( coord_new , dz , v_dz_new , v_new , sigma ) = u p d a t e _ c o o r d (

T , c , d t , nz , phi , coord , Se tVel , v_opt , v i s c o s i t y

)

by:

( coord_new , dz , v_dz_new , v_new , sigma ) = u p d a t e _ c o o r d (1030
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T , c , d t , nz , phi , coord , Se tVel , v_opt , v i s c o s i t y

)

phi_new = u p d a t e _ p h i ( c , d t , nz , phi , v_dz_new )

D3 Inconsistency in the relationship between Φi and the effective snow density

In the code published by Simson et al. (2021), which is consistent with Eq. (18) of their article, the stress is calculated from1035

the overburden snow mass neglecting the contribution of the air mass, i.e. assuming the effective snow density is ρsnow = ρiΦi.

However, in the code, the initial field of ice volume fraction Φ0
i is retrieved from the user-prescribed initial field of snow density

ρ0
snow as:

Φ0
i =

ρ0
snow− ρa

ρi− ρa
, (D1)

where ρa = 1.335 kg m−3 is the air density. To correct this inconsistency, line 19 of the file Model/phi_from_rho_eff.py,1040

which was:

p h i = np . t r u e _ d i v i d e ( ( r h o _ e f f − rho_a ) , ( r h o _ i − rho_a ) )

is replaced by:

p h i = np . t r u e _ d i v i d e ( r h o _ e f f , r h o _ i )

D4 Explicit versus implicit time integration of the continuity equation1045

In the published version of the code, the continuity equation is discretized using an explicit time integration scheme. This is

done in the file Model/coupled_update_phi_coord.py, through the following code line :

phi_new = p h i + d t * ( c / r h o _ i − v_dz * p h i )

Switching to the mass-conservative implicit time integration scheme implies to replace this code line by the following:

phi_new = ( p h i + d t * ( c / r h o _ i ) ) / ( 1 + d t * v_dz )1050

Appendix E: Mass-conservative temporal discretization of the continuity equation

Let consider the numerical layer k+ 1/2 undergoing settlement without any phase change between t and t+ ∆t. If we denote

Φni,k+1/2 and Lnk+1/2 (resp. Φn+1
i,k+1/2 and Ln+1

k+1/2) the ice volume fraction and length of the numerical layer before (resp. after)

settlement, and if we neglect the contribution of air in the snow mass, then the mass conservation simply writes:

Φn+1
i,k+1/2L

n+1
k+1/2 = Φni,k+1/2L

n
k+1/2, (E1)1055
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which can be rewritten:

Φn+1
i,k+1/2 = Φni,k+1/2

Lnk+1/2

Ln+1
k+1/2

. (E2)

The total deformation of the layer k+ 1/2 over ∆t is:

Ln+1
k+1/2−L

n
k+1/2 =

znk+1∫
z=znk

ε̇n+1
zz (z)dz∆t, (E3)

and thus the spatially averaged strain writes:1060

Ln+1
k+1/2−L

n
k+1/2

Lnk+1/2

=

∫ znk+1

z=znk
ε̇nzz(z)dz

Lnk+1/2

∆t= ε̇n+1
zz,k+1/2∆t. (E4)

It follows that:

Ln+1
k+1/2

Lnk+1/2

= 1 + ε̇n+1
zz,k+1/2∆t. (E5)

Combining Eqs (E2) and (E5) gives:

Φn+1
i,k+1/2 =

Φni,k+1/2

1 + ε̇n+1
zz,k+1/2∆t

. (E6)1065

Equation (E6) guarantees mass conservation by construction (provided that the air contribution in the snow mass is neglected).

Equation (19) is an extension of Eq. (E6) which also includes the contribution of the mean deposition within layer k+ 1/2.

When phase change is present, the deposition/sublimation effectively changes the ice volume fraction affected to the layer.
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