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Dear editor and reviewer, 

Re: “Three-Dimensional Analytical Solution of Self-potential from Regularly Polarized 

Bodies in Layered Seafloor Model” 

Thank you for taking time to review our paper in such detail. We appreciate the chance to 

revise this paper.  

Through your review, we have recognized numerous deficiencies in the manuscript. In 

response to the reviewers' comments, we have made extensive revisions to the manuscript. 

We have supplemented the content of the formula derivations, adding more detailed steps to 

make them easier to understand. In Section 2.1, we demonstrated the equivalence of the self-

potential generated by a uniformly polarized sphere and that generated by an electric dipole. 

Subsequently, we derived the three-dimensional analytical solutions of self-potential in two-

layer and three-layer media. In Section 3, we revised all the figures, using new three-

dimensional potential distribution plots to better present the results of the analytical solutions. 

We also added substantial explanatory content to improve the readability of the article. In 

Section 4, we provided a more detailed description of the experimental process. Recognizing 

the limitations of previously comparing the central survey line results, we have now 

compared the experimental results with the two-dimensional slices of the analytical solutions 

and evaluated them by calculating the coefficient of determination(R2). Additionally, we 

corrected erroneous descriptions in the manuscript and standardized the notation, including 

symbols and Greek letters. 

In this response letter, your comments in blue and our response in black. Because we have 

made extensive revisions, it may not be possible to showcase all the changes through the 

discussion alone. Therefore, we have attached the revised manuscript.  

 

  



Reviewer 1 
The authors introduced a 3D analytical solution for forwarding modeling of self-potential 

from sulfide deposits. Although the topic is interesting and the overall flow of the paper, from 

the formulation to comparison with 2D analytical solution and experimental results, is great, I 

can hardly say the paper is well written in general and there seems to be a lot of room for 

improvement of the manuscript.   

The motivation of the current model development is not compelling, especially given that (1) 

the system has not been proven to be applicable to the field (even though the authors 

attempted to validate the model with laboratory experiments, it does not necessarily mean it 

can be used in the field) and (2) complicated situations are likely to be more easily dealt with 

numerical tools/methods and there seem to be some published already.   

Formulation is poorly explained especially given that deriving analytical solution for the 

system should be the essential part for a model development paper.  I found it difficult to 

follow how the equations are derived. There can be several reasons for this, including (1) the 

papers cited (Li et al., 2005, He, 2012) for seemingly essential equations are not publicly 

available and not explained well, (2) the authors do not seem to use mathematical symbols in 

an organized way, including seemingly interchangeable and thus confusing use of 

uppercase/lowercase and/or Greek/English letters and/or vector/scalar expressions, and (3) 

figure to help the reader to understand formulation is lacking and/or not referenced.  

Especially, please consider making clearer explanations on (1) what is proved and how this is 

done in Section 2.1, (2) the mirror image method in general potentially with a specific 

diagram/schematic in Section 2.2 and (3) derivation of one of formulation from Table 1 in 

Section 2.3. 

Thanks for your suggestions. 

Laboratory settings allow for controlled conditions where variables can be systematically 

tested and understood, providing a strong foundation for subsequent field tests. We plan to 

extend our research to field applications in future studies, following this step-wise approach. 

This methodology aligns with established scientific practices where theoretical models are 

first validated in controlled environments before being tested in more complex, real-world 

scenarios. 

Studies have shown that theoretical models validated in laboratory settings can be 

successfully adapted for field applications. For instance, Ishido and Mizutani (1981) validated 

SP methods using laboratory simulations before successful field deployment (Ishido, T., & 

Mizutani, H. (1981). Experimental and theoretical basis of electrokinetic phenomena in rock-

water systems and its applications to geophysics. Journal of Geophysical Research: Solid 

Earth, 86(B3), 1763-1775). Andre et al. developed a sandbox experiment to monitor the 

evolution of a self-potential anomaly associated with redox processes. These precedents 



provide a strong basis for our approach (Revil, A., Su, Z., Zhu, Z., & Maineult, A. (2023). 

Self-Potential as a Tool to Monitor Redox Reactions at an Ore Body: A Sandbox Experiment. 

Minerals, 13(6), 716.). 

While numerical methods are indeed powerful and versatile, they also have limitations. 

Numerical solutions often involve approximations and are influenced by boundary conditions 

and source configurations. For instance, Stoll and Bryan (1970) highlighted the complexities 

in solving stiffness matrices and the limitations posed by artificial boundary conditions in 

numerical methods (Stoll, R. D., & Bryan, G. M. (1970). Wave attenuation in saturated 

sediments. The Journal of the Acoustical Society of America, 47(5B), 1440-1447). Our model, 

based on the mirror image method, offers a strict analytical solution that avoids these 

numerical approximations, providing exact results under defined conditions. 

Therefore, analytical solutions provide exact results, which are critical for validating 

numerical models and ensuring their accuracy. They can serve as benchmarks for numerical 

simulations, enabling us to identify and correct deviations in numerical approaches. In 

scenarios where the analytical model is applicable, it offers faster computations compared to 

iterative numerical methods. 

For the derivation process, we have supplemented with a more comprehensive derivation and 

final formula. We have corrected the citations for the referenced papers. Equation (7) 

(equation (10) in revised manuscript), which represents the formula for the scalar potential 

caused by a constant electric dipole, can be supported by several academic sources (For 

example, here’s a detailed derivation in UTA  

https://web2.ph.utexas.edu/~vadim/Classes/2017f/dipole.pdf#:~:text=URL%3A%20https%3A

%2F%2Fweb2.ph.utexas.edu%2F~vadim%2FClasses%2F2017f%2Fdipole.pdf%0AVisible%

3A%200%25%20). This should provide a more solid theoretical foundation and address any 

concerns about the validity of the equation. We also recognize that providing a reference to an 

unpublished document for an important formula is inappropriate. Considering that this is a 

classical formula for an electric dipole in electromagnetic physics, we believe it is more 

appropriate not to include a reference here. 

As indicated by the title of Section 2.1, this section demonstrates that the self-potential 

generated by a regularly polarized sphere can be equivalently represented by the self-potential 

generated by an electric dipole. Through this demonstration, we can directly use the self-

potential formula for an equivalent electric dipole when calculating the self-potential of 

regularly polarized bodies. 

We have made substantial revisions and additions to the derivation process and descriptions in 

order to clarify our derivation process. Here, we provide a supplementary explanation of the 

entire derivation process. When there are two media, a source point will generate another 

image point on the opposite side of the interface between the two media. We derived the 



potential of this image point using boundary conditions. In the case of three layers of media, 

the source point generates image points on the opposite sides of both interfaces, and these 

image points will, in turn, generate new image points in the other media. For example, a 

source point in a seawater-air combination generates an image point (image point 1) in the air, 

which subsequently generates another image point (image point 1-1) in the seafloor medium. 

Similarly, a source point in a seawater-seafloor combination generates an image point (image 

point 2) in the seafloor, and this image point generates another image point (image point 2-1) 

in the air. This process continues iteratively. During the derivation, we found that the self-

potential expressions for different image points can be categorized into four types. These four 

types of dipoles are distinguished by different dipole moments (as shown in Table 1 of the 

main text). These image points themselves do not have physical significance but are 

mathematically differentiated. 

We acknowledge the confusion caused by the inconsistent use of mathematical symbols. We 

have revised the manuscript to use mathematical symbols in an organized and consistent 

manner, distinguishing clearly between uppercase/lowercase, Greek/English letters, and 

vector/scalar expressions. This should enhance readability and reduce confusion.  

 

Specific comments 

L9. “It is significant to fast and precise forward modeling and inversion for SMS 

explorations.”.  I think English grammar here is not correct. 

We have revised it to: “This approach is significant for achieving fast and precise forward 
modeling and inversion in SMS explorations.” 

L22. What is “AUV”? 

AUV is an abbreviation for autonomous underwater vehicle. AUV is equipped with advanced 

navigation and positioning systems, allowing for precise localization in complex seafloor 

environments. By integrating various sensing devices, such as natural potential instruments 

and magnetometers, they can conduct comprehensive surveys and acquire diverse sets of data. 

We have recognized that using abbreviations here is inappropriate, and we have made 

corrections in the main text. 

L34. What do you mean by “affection of the field source”? 

Our description here is unclear. In the numerical forward modeling of the self-potential 

method, using the finite element method as an example: 
 Kx f=  

where K is the stiffness matrix, x is the potential distribution, and f is the source term. 

The source points (such as polarization bodies or charge distributions) indeed affect the 

overall numerical solution process, but this influence primarily manifests in the right-hand 

side term (source term) of the system equation, rather than directly altering the stiffness 



matrix. The stiffness matrix is mainly determined by the physical properties and structure of 

the medium. For an anomalous body with uneven surface polarization intensity, the right-

hand side term (source term) will change due to this uncertainty. This is one of the limitations 

of numerical forward modeling.  

We have revised this section in the main text. 

L34. “which occur difficulty in solving the Poisson equation.” I think the authors should 

correct English. 

We have revised it to: “Compared to numerical methods, analytical solutions are strict 

formulas that can overcome the difficulties in solving the Poisson equation.” 

L58. What is the definition of H? 

We apologize for the oversight; this should be the seawater depth (D) instead of H. 

L79. rho_0 must be a typo of r_0? 

"We apologize for our writing error; it should be r0 at this point. We have corrected this in the 

main text. 

L82. “So we get the potential distribution along the surface of a uniformly polarized sphere is 

equivalent to an electric dipole.” I do not understand what this means. 

Through the derivation of the above formulas, we conclude that under the conditions of R=r 

and P0=M, the self-potential distribution of a uniformly polarized spherical body is the same 

as that of a dipole. For clarity, we have made modifications in the main text:” Therefore, we 

can conclude that the potential distribution of a uniformly polarized spherical body is the 

same as that of a dipole.” 

L92. Is the use of permittivity correct here? In other words, do permittivity and conductivity 

have the same units? 

Use of σ1 in the Ocean: 

In the ocean, the medium is conductive. The conductivity of seawater is typically denoted by 

σ1. This is appropriate because the electric field behavior in a conductive medium is 

influenced by its conductivity. The formula (11) involving σ1 is used to describe the scalar 

potential and electric field distribution in seawater, which aligns with the medium's 

conductive nature. 

Use of ε0 in the Air: 

In the air, the medium is not conductive but rather dielectric. The permittivity of free space is 

denoted by ε0.When the electric field extends into the air, the potential expression uses ε0 

because the permittivity influences the behavior of electric fields in a dielectric medium. 

Given this context, the use of σ1 for the ocean and ε0 for the air is intentional and correct. It 

reflects the different physical properties of the two media — conductivity for seawater and 

permittivity for air. 

And permittivity and conductivity do not have the same units. The unit of permittivity is 



farads per meter (F/m) and the unit of conductivity is siemens per meter (S/m). In our paper, 

distinguishing between these two physical quantities is to illustrate the uniqueness of solving 

the natural potential in a two-layer air-seawater model. 

L137. What do you mean by “the dipole moment is 1 D.”? 

In some papers, the electric dipole moment is expressed in Debye (D). We have recognized 

that using D here is inappropriate, and we have revised it to the more standard unit of 

Coulomb meters (C·m). 

L138. 10-10 must mean 10^-10.  What are units and adjustment term exactly? 

Your understanding is correct; it should be 10−10 here. This oversight was due to a formatting 

error in the LaTeX typesetting of our paper. We will provide further clarification on this 

statement. 

In the formulas for the three-layer model, the potential calculation is an iterative process. We 

set the iteration condition such that the iteration stops when the difference between the 

potential values of successive calculations is less than 10−10 millivolts. In practice, 10−10 is a 

very small value that adequately ensures both computational efficiency and accuracy. 

L140. Do “exceptions” mean negative/positive peaks? 

Your understanding is correct; this refers to a horizontal electric dipole producing potential 

signals of equal magnitude but opposite sign. We have revised the expression in the main text: 

The magnitude of the absolute values is equal.  

L142. Why tilted dipole is related to any depth? 

Our previous expression was inaccurate. An inclined polarized electric dipole generates self-

potential signals of different absolute values on either side of the dipole. The self-potential 

signals increase along the polarization angle of the dipole. 

L147. The authors should describe exactly what redox reaction is occurring. 

In the main text, we have supplemented the specific description of the redox reaction. The 

prevailing explanation for the origin of the self-potential in seafloor hydrothermal sulfide 

deposits is the geobattery model formed by the redox reactions of sulfide minerals. We 

simulated this redox reaction using an iron-copper composite sphere. Here, we have added a 

graph showing the variation of the self-potential signals of 10 electrodes placed directly above 

the inclined sphere. In this graph, it can be observed that the self-potential polarities on either 

side of the sphere's polarization direction are opposite, with similar trends in their variation. 

We selected the self-potential results at 5000 seconds to plot the self-potential slices in Figure 

8 of the main text. At this time, the self-potential is relatively stable. 



 
Figure 1. Temporal self-potential curves for electrodes located above the sphere. 

 
Figure 2. Sketch of the experimental observation electrodes, with the red dashed line 
indicating the projection position of the sphere. Electrodes 60 and 65 are marked. 

 

 

  



Reviewer2  
This paper proposed a method to solve the analytical solution of the SP and based on the 

mirror image current theory, the 2D and 3D analytical solution formulas were derived. Some 

things in the paper were not clear and properly stated which made the paper difficult to read 

especially the derivation of the formulas which is the major goal of the paper. Below are some 

of my observations 

1.I thought the formula accords with the Laplace equation in spherical coordinates is given by 

2
2 2

1 1 sin 0
sin

u ur
r r r r

θ
θ θ θ

∂ ∂ ∂ ∂  + =   ∂ ∂ ∂ ∂  
What happened to the denominators (𝑟𝑟2) in your 

own quoted equation? 

Thank you for your insightful comment regarding the presence of 1/r2 terms in the Laplace 

equation in spherical coordinates. I would like to clarify that the formula in question is indeed 

derived within the context of spherical coordinates. In a uniformly polarized sphere, the 

external potential U is distributed symmetrically about the polarization axis and is 

independent of the azimuthal angle. This specific symmetry leads to a simplified form of the 

Laplace equation that we have used in our derivations. 
he Laplace equation in spherical coordinates ( , , )r θ φ  is given by: 

 
2

2 2
2 2 2 2 2

1 1 1sin 0
sin sin

U U UU r
r r r r r

θ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂  ∇ = + + =   ∂ ∂ ∂ ∂ ∂  
 

Given the problem's symmetry, the potential U is independent of the azimuthal angle ϕ. Thus, 

the equation reduces to: 

 2 2
2 2

1 1 sin 0
sin

U UU r
r r r r

θ
θ θ θ

∂ ∂ ∂ ∂  ∇ = + =   ∂ ∂ ∂ ∂  
 

In our derivation, we focus on solving the radial part of the equation: 

 2
2

1 0Ur
r r r

∂ ∂  = ∂ ∂ 
 

This can be rewritten as: 

 2 0Ur
r r
∂ ∂  = ∂ ∂ 

 

Integrating this equation with respect to r: 

 2 Ur A
r

∂
=

∂
 

where A is an integration constant. Solving for U: 

 ( ) AU r B
r

= − +  



where B is another integration constant. 

When we present the final expression for the potential U(r), the term A/r results from the 

integration process. The 1/r2 term is inherent in the integration steps and thus does not 

explicitly appear in the final potential expression. 

This form of the equation aligns with the theoretical framework described in our paper. 

Similar derivations and explanations can be found in classical works on potential theory, such 

as those by MacMillan (1958) in "The Theory of the Potential".  

I hope this explanation clarifies the basis of our derivations and demonstrates that the 

formulas presented are consistent with the Laplace equation in spherical coordinates. We will 

incorporate additional explanations in the revised manuscript to clarify the derivation steps 

and the context in which the 1/r2 terms are inherently accounted for due to the spherical 

symmetry of the problem. 

2.Was equation 3 (the general solution of potential) in section 2.1 something you guys came 

up with, or was it already there? If the equation is already known, you ought to credit the 

authors or the source, in my opinion. Although equations 1.6 and 1.7 were mentioned, your 

manuscript does not contain any equations of that kind. 

Equation 3 was derived using the method of separation of variables. Here, we have provided 

the complete solution process. 

The Laplace equation in spherical coordinates is given by: 

 2 1 sin 0
sin

U UR
R R

θ
θ θ θ

∂ ∂ ∂ ∂  + =   ∂ ∂ ∂ ∂  
 

We want to find a solution U(R,θ) in the form: 

 ( , ) (cos )n
nU R R Pθ θ=  

where Pn(cosθ)) are the Legendre polynomials. 

Assume the solution can be separated into a radial part R(R) and an angular part Θ(θ): 
 ( , ) ( ) ( )U R R Rθ θ= Θ  

Substitute this into the Laplace equation: 

 2 ( ( ) ( )) 1 ( ( ) ( ))sin 0
sin

R R R RR
R R

θ θθ
θ θ θ

∂ ∂ Θ ∂ ∂ Θ  + =   ∂ ∂ ∂ ∂  
 

Expand the equation: 

 2 ( ) 1 ( )( ) ( ) sin 0
sin

R RR R R
R R

θθ θ
θ θ θ

∂ ∂ ∂ ∂Θ  Θ + =   ∂ ∂ ∂ ∂  
 

Separate the equation into two independent parts: 



 2
2

1 1 ( ) 1 1 ( )sin
( ) ( ) sin

d dR R d dR
R R R dR dR d d

θθ λ
θ θ θ θ

Θ  = − =   Θ  
 

where λ is the separation constant. 

The angular part of the equation is: 

 
1 ( )sin ( ) 0

sin
d d

d d
θθ λ θ

θ θ θ
Θ  + Θ = 

 
 

The solution to this equation is the Legendre polynomial: 

 ( ) (cos )nPθ θΘ =  

where λ=n(n+1) and n is an integer. 

The radial part of the equation is: 

 2
2

1 ( ) ( ) 0d dR RR R R
R dR dR

λ − = 
 

 

Substitute λ=n(n+1): 

 2
2

1 ( ) ( 1) ( ) 0d dR RR n n R R
R dR dR

 − + = 
 

 

Assume the solution is of the form: 

 1( ) n n
n n

BR R A R
R += +  

Combine the radial and angular parts to get the total solution: 

 1
0

( , ) (cos )n n
n nn

n

BU R A R P
R

θ θ
∞

+
=

= + 
 

∑  

We apologize for our oversight; Equations (1.6) and (1.7) do not exist. It should refer to 

Equations (9) and (10). We have made the corrections in the main text. 

3.What steps led from equation 7 to equation 8? Is it feasible to simplify it and the 

connectivity for comprehension? If you have derived the majority of these equations, please 

state so. If not, provide appropriate citation by quoting the academics. 

The transition from equation 7 to equation 8 (equation 10 and equation 11 in the revised 

manuscript) involves the principle of superposition of potentials, which is fundamental in 

electrostatics and electromagnetic theory. Specifically, the formula provided for Φsea 

represents the combined potential due to a source dipole and its image dipole. 

The scalar potential U caused by a constant electric dipole is given by: 

 03 34
Idl x xU P

R Rπσ
− = = − 

 
 



where I is the current, dl is the length element, σ is the conductivity, and R is the distance 

from the dipole to the observation point. 

The potential in a medium with a boundary (such as the sea-air interface) can be determined 

by considering the contribution from both the real dipole and its image dipole. This method 

ensures the boundary conditions are satisfied. 

The potential in the seawater (z>0) is given by the sum of the potentials due to the real 
dipole(P=Ixdl)and the image dipole(P’=Ix’dl): 

 
'

0 0
3 3

1 1 1 0

( ) ( ) ( 0)
4 4

x x
sea

I dl x x I dl x x z
R Rπσ πσ
− −

Φ = + >  

R1 and R0 are the distances from the observation point to the real and image dipoles. 

4.For someone who is not in the geosciences, most of the derivations might be unclear for 

them. I believe you should correctly demonstrate the connections and how you arrived to 

equation 13. All I'm asking is that you provide a step-by-step explanation of the derivations as 

this is your new formula, so that other researchers can comprehend the equations and draw 

conclusions from them. The Table 1 formulas must to be clearly described or demonstrate 

how you arrived at each of their instances. 

Thanks for your good suggestion. The image method is a mathematical technique used to 

simplify boundary value problems in electrostatics. It involves replacing the boundary with an 

equivalent charge distribution (the image charge or dipole) that ensures the boundary 

conditions are satisfied. In the paper, we first discuss 2-layer models. Whether it is the 

seawater-air model or the seawater-seafloor model, the essence of the image method is to 

replace the boundary with an electric dipole or a virtual image dipole, thereby simplifying the 

“one source with two mediums” problem to a “one medium with one source and one image 

source” problem. This is done while satisfying the actual boundary conditions. When the 

measuring points and the source are in the same medium, the potential calculation must take 

into account the conductivity of the medium. Therefore, the potential caused by a constant 

electric dipole is the superposition of the potentials generated by the source point and the 

image point (located in the other medium). When the measuring point and the source point are 

not in the same medium, to satisfy the boundary conditions: 
1）The potential must be continuous across the boundary. This means that the potential just 

above the boundary in the air must equal the potential just below the boundary in the seawater 
2）The normal component of the current density (or electric field) should also be continuous 

across the boundary. This condition ensures that the boundary behaves correctly according to 

Maxwell’s equations. 



the image dipole coincides with the real dipole. The combined dipole moment is used to 

calculate the potential in the air. Because the dipole moment of the image dipole is unknown, 

we need to solve it using the boundary conditions.  

In the seawater-air model, the image dipole moments for the two different measurement 

scenarios are solved as shown in Equations (14) and (15). In the seawater-seafloor model, we 

can use the same method to solve for the dipole moments in different situations by combining 

the boundary conditions. When the measuring point is located in seawater: 

 1 2

1 2

'''x xI dl I dlσ σ
σ σ

−
=

+
 

And when the measuring point is located in seafloor, 

 2

1 2

2'''' xIxdl I dlσ
σ σ

=
+

 

The following diagram is a schematic representation of the two-layer medium after 

processing using the image method. 

 
Figure 3. Schematic representation of the two-layer medium after processing using the image 
method. 

In the three-layer model, the image method generates an infinite number of images. As an 

example, we consider the first three images (as shown in Figure 4). The source point 

generates corresponding images in the other two media, referred to as the first image. The 

generated images in turn create new images in the other medium. For instance, an image 

dipole 1 generated in the air by the source point will produce a second image dipole 1-1 in the 

seafloor medium; similarly, an image dipole 2 generated in the seafloor medium will produce 

another second image dipole 2-2 in the air. This process continues, generating an infinite 

number of image dipoles. We calculate the potential generated by each image point in a 

manner similar to the two-layer model, based on the boundary conditions. Upon solving for 



different image points, we find that the image points can be categorized into four types, based 

on the depth patterns of the image dipoles. The coordinates of the first type of image dipole 

are 0 0 0( , , 2m ) m 1,2,...x y D z− =， , with the corresponding dipole moment solved as 

m

1 2

1 2

, 1,2,...m
x xd d m

σ σ
η

σ σ
−

= =
+




 
I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 1 0 0 0( - ) ( - ) ( - 2 )m x x y y z mD z= + + +r i j k . The image 

2 and image 2-2-2 in the figure represents this type of image. The second type of image dipole 

located at 0 0 0( , , 2m ), 1,2,...x y D z m+ = , with the corresponding dipole moment solved as 

m

1 2

1 2

, 1,2,...m
x xd d m

σ σ
η

σ σ
−

= =
+




 
I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 2 0 0 0( - ) ( - ) ( - 2 )m x x y y z mD z= + + −r i j k . The image 

1-1 represents this type. The third type of image dipole located at 

0 0 0( , , 2n ), 0,1,...x y D z n− + = , with the corresponding dipole moment 

n

1 2

1 2

, 0,1,...n
x xd d n

σ σ
η

σ σ
−

= =
+




 
I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 1n 0 0 0( - ) ( - ) ( 2 )x x y y z nD z= + + + −r i j k . The source 

and image2-2 represent this type. The coordinates of the first type of image dipole are 

0 0 0( , , 2n ), 0,1,...x y D z n− − =  , with the corresponding dipole moment 

n

1 2

1 2

, 0,1,...n
x xd d n

σ σ
η

σ σ
−

= =
+




 
I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 2n 0 0 0( - ) ( - ) ( 2 )x x y y z nD z= + + + +r i j k . The image 

1 and image 1-1-1 represent this type of image. The classification of these image points is 

based on their positions. We can see that, apart from the source point, the third and fourth 

types of image points are located in the air, while the first and second types are located in the 

seafloor. Other than this, there are no other physical differences between the various types of 

image points. 



 
Figure 4. Schematic representation of the three-layer medium after processing using the 
image method (Using the first three image points as an example). 

5.Is it possible to put the result analysis of Section 3 and Section 4 in table format to support 

the figure results? The table will help to make the analysis more comprehensible. 

We understand the importance of presenting results in a clear and comprehensible manner. In 

our revised manuscript, we have provided detailed analyses in Section 3 and Section 4 using 

three-dimensional potential distributions and depth slices, as well as calculating the R2 values 

in section 4. These visual representations are crucial for illustrating the spatial variations and 

correlations inherent in our study. We believe that the three-dimensional figures and depth 

slices offer a more intuitive understanding of the spatial distribution of self-potential signals, 

which might be challenging to convey effectively in a tabular format. Additionally, the R2 

values calculated and presented in Section 4 quantitatively support the accuracy and 

correlation of our model predictions with the experimental data. We hope this explanation 

clarifies our approach and the rationale behind our presentation choices. 

6.For better understanding, it would be beneficial if you could explain section 3 following 

figure 4, and each figure should have an explanation. Section 4 should follow the same 

procedure as related to Figure 5. Provide a thorough explanation for each of the following 

three figures: a horizontal electric dipole, b vertical electric dipole, and c tilted electric dipole. 

In Section 3, we have supplemented extensive explanatory content, including the 

interpretation of self-potential distributions generated by horizontal, vertical, and inclined 

dipoles. We have conducted a detailed analysis of self-potential slices at different depths. In 

Section 4, we have added descriptions of the experimental setup and procedures, and we have 

compared and evaluated the measured self-potential results with the forward modeling results. 



7.It is not clear if you compared the formula for the 2D analytical solution you generated with 

the 2D measured data, just as you did for the 3D analytical solution. 

We thank you for your insightful suggestion. The primary focus of our research is on three-

dimensional (3D) analysis, which is why we developed and presented the 3D analytical 

solution. Correspondingly, we conducted 3D physical simulations to validate our analytical 

models. Our experimental setup is inherently three-dimensional, with the entire experiment 

conducted in a 3D space where self-potential can be recorded at any point within this space. 

We realize that our initial description might have been unclear and potentially confusing. To 

address this, we have revised the relevant sections of the manuscript to better emphasize our 

3D approach and its importance to our study. 

The revisions clarify that the core objective was to establish and validate a comprehensive 3D 

analytical solution. The physical simulations were also designed in a 3D context to provide 

accurate validation of these models. 

We hope this detailed explanation clarifies our approach and addresses your concern. Thank 

you for your constructive feedback, which has been instrumental in refining our study. 

However, to make it easier, it would be even better if the previously mentioned points—

particularly the derivation formula and the results—were broken down and discussed in detail 

while keeping in mind potential readers of the work who are not geoscientists. The current 

state of the document may make it somewhat difficult for someone who is not in the field of 

geoscience to understand, and the goal of any research paper is to provide clarity so that 

others can benefit from your work. 

 

 


