
Central South University 
No.932, Lushannan Road 

Changsha 
China 

 
Email: symdwjz@foxmail.com 

 

5th July 2024 

Dear editor and reviewer, 

Re:” Three-Dimensional Analytical Solution of Self-potential from Regularly Polarized 
Bodies in Layered Seafloor Model” 

Thank you for taking time to review our paper in such detail. We appreciate the chance to 

revise this paper.  

Through your review, we have recognized numerous deficiencies in the manuscript. In 

response to the reviewers' comments, we have made extensive revisions to the manuscript. 

We have supplemented the content of the formula derivations, adding more detailed steps to 

make them easier to understand. In Section 2.1, we demonstrated the equivalence of the self-

potential generated by a uniformly polarized sphere and that generated by an electric dipole. 

Subsequently, we derived the three-dimensional analytical solutions of self-potential in two-

layer and three-layer media. In Section 3, we revised all the figures, using new three-

dimensional potential distribution plots to better present the results of the analytical solutions. 

We also added substantial explanatory content to improve the readability of the article. In 

Section 4, we provided a more detailed description of the experimental process. Recognizing 

the limitations of previously comparing the central survey line results, we have now 

compared the experimental results with the two-dimensional slices of the analytical solutions 

and evaluated them by calculating the coefficient of determination(R2). Additionally, we 

corrected erroneous descriptions in the manuscript and standardized the notation, including 

symbols and Greek letters. 

In this response letter, your comments in blue and our response in black. Because we have 
made extensive revisions, it may not be possible to showcase all the changes through the 
discussion alone. Therefore, we have attached the revised manuscript. 

This paper proposed a method to solve the analytical solution of the SP and based on the 

mirror image current theory, the 2D and 3D analytical solution formulas were derived. Some 

things in the paper were not clear and properly stated which made the paper difficult to read 

especially the derivation of the formulas which is the major goal of the paper. Below are some 

of my observations 



1.I thought the formula accords with the Laplace equation in spherical coordinates is given by 
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What happened to the denominators (𝑟𝑟2) in your 

own quoted equation? 

Thank you for your insightful comment regarding the presence of 1/r2 terms in the Laplace 

equation in spherical coordinates. I would like to clarify that the formula in question is indeed 

derived within the context of spherical coordinates. In a uniformly polarized sphere, the 

external potential U is distributed symmetrically about the polarization axis and is 

independent of the azimuthal angle. This specific symmetry leads to a simplified form of the 

Laplace equation that we have used in our derivations. 

he Laplace equation in spherical coordinates ( , , )r θ φ  is given by: 
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Given the problem's symmetry, the potential U is independent of the azimuthal angle ϕ. Thus, 

the equation reduces to: 
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In our derivation, we focus on solving the radial part of the equation: 
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This can be rewritten as: 
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Integrating this equation with respect to r: 
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where A is an integration constant. Solving for U: 

 ( ) AU r B
r

= − +  

where B is another integration constant. 

When we present the final expression for the potential U(r), the term A/r results from the 

integration process. The 1/r2 term is inherent in the integration steps and thus does not 

explicitly appear in the final potential expression. 



This form of the equation aligns with the theoretical framework described in our paper. 

Similar derivations and explanations can be found in classical works on potential theory, such 

as those by MacMillan (1958) in "The Theory of the Potential".  

I hope this explanation clarifies the basis of our derivations and demonstrates that the 

formulas presented are consistent with the Laplace equation in spherical coordinates. We will 

incorporate additional explanations in the revised manuscript to clarify the derivation steps 

and the context in which the 1/r2 terms are inherently accounted for due to the spherical 

symmetry of the problem. 

2.Was equation 3 (the general solution of potential) in section 2.1 something you guys came 

up with, or was it already there? If the equation is already known, you ought to credit the 

authors or the source, in my opinion. Although equations 1.6 and 1.7 were mentioned, your 

manuscript does not contain any equations of that kind. 

Equation 3 was derived using the method of separation of variables. Here, we have provided 

the complete solution process. 

The Laplace equation in spherical coordinates is given by: 

 2 1 sin 0
sin

U UR
R R

θ
θ θ θ

∂ ∂ ∂ ∂  + =   ∂ ∂ ∂ ∂  
 

We want to find a solution U(R,θ) in the form: 

 ( , ) (cos )n
nU R R Pθ θ=  

where Pn(cosθ)) are the Legendre polynomials. 

Assume the solution can be separated into a radial part R(R) and an angular part Θ(θ): 

 ( , ) ( ) ( )U R R Rθ θ= Θ  

Substitute this into the Laplace equation: 
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Expand the equation: 

 2 ( ) 1 ( )( ) ( ) sin 0
sin

R RR R R
R R

θθ θ
θ θ θ

∂ ∂ ∂ ∂Θ  Θ + =   ∂ ∂ ∂ ∂  
 

Separate the equation into two independent parts: 
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where λ is the separation constant. 

The angular part of the equation is: 
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The solution to this equation is the Legendre polynomial: 

 ( ) (cos )nPθ θΘ =  

where λ=n(n+1) and n is an integer. 

The radial part of the equation is: 
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Substitute λ=n(n+1): 
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Assume the solution is of the form: 
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Combine the radial and angular parts to get the total solution: 
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We apologize for our oversight; Equations (1.6) and (1.7) do not exist. It should refer to 

Equations (9) and (10). We have made the corrections in the main text. 

3.What steps led from equation 7 to equation 8? Is it feasible to simplify it and the 

connectivity for comprehension? If you have derived the majority of these equations, please 

state so. If not, provide appropriate citation by quoting the academics. 

The transition from equation 7 to equation 8 (equation 10 and equation 11 in the revised 

manuscript) involves the principle of superposition of potentials, which is fundamental in 

electrostatics and electromagnetic theory. Specifically, the formula provided for Φsea 

represents the combined potential due to a source dipole and its image dipole. 

The scalar potential U caused by a constant electric dipole is given by: 
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where I is the current, dl is the length element, σ is the conductivity, and R is the distance 

from the dipole to the observation point. 

The potential in a medium with a boundary (such as the sea-air interface) can be determined 

by considering the contribution from both the real dipole and its image dipole. This method 

ensures the boundary conditions are satisfied. 



The potential in the seawater (z>0) is given by the sum of the potentials due to the real 
dipole(P=Ixdl)and the image dipole(P’=Ix’dl): 
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R1 and R0 are the distances from the observation point to the real and image dipoles. 

4.For someone who is not in the geosciences, most of the derivations might be unclear for 

them. I believe you should correctly demonstrate the connections and how you arrived to 

equation 13. All I'm asking is that you provide a step-by-step explanation of the derivations as 

this is your new formula, so that other researchers can comprehend the equations and draw 

conclusions from them. The Table 1 formulas must to be clearly described or demonstrate 

how you arrived at each of their instances. 

Thanks for your good suggestion. The image method is a mathematical technique used to 

simplify boundary value problems in electrostatics. It involves replacing the boundary with an 

equivalent charge distribution (the image charge or dipole) that ensures the boundary 

conditions are satisfied. In the paper, we first discuss 2-layer models. Whether it is the 

seawater-air model or the seawater-seafloor model, the essence of the image method is to 

replace the boundary with an electric dipole or a virtual image dipole, thereby simplifying the 

“one source with two mediums” problem to a “one medium with one source and one image 

source” problem. This is done while satisfying the actual boundary conditions. When the 

measuring points and the source are in the same medium, the potential calculation must take 

into account the conductivity of the medium. Therefore, the potential caused by a constant 

electric dipole is the superposition of the potentials generated by the source point and the 

image point (located in the other medium). When the measuring point and the source point are 

not in the same medium, to satisfy the boundary conditions: 
1）The potential must be continuous across the boundary. This means that the potential just 

above the boundary in the air must equal the potential just below the boundary in the seawater 
2）The normal component of the current density (or electric field) should also be continuous 

across the boundary. This condition ensures that the boundary behaves correctly according to 

Maxwell’s equations. 

the image dipole coincides with the real dipole. The combined dipole moment is used to 

calculate the potential in the air. Because the dipole moment of the image dipole is unknown, 

we need to solve it using the boundary conditions.  

In the seawater-air model, the image dipole moments for the two different measurement 

scenarios are solved as shown in Equations (14) and (15). In the seawater-seafloor model, we 

can use the same method to solve for the dipole moments in different situations by combining 

the boundary conditions. When the measuring point is located in seawater: 
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And when the measuring point is located in seafloor, 
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The following diagram is a schematic representation of the two-layer medium after 

processing using the image method. 

 
Figure 1. Schematic representation of the two-layer medium after processing using the image 
method. 

In the three-layer model, the image method generates an infinite number of images. As an 

example, we consider the first three images (as shown in Figure 2). The source point 

generates corresponding images in the other two media, referred to as the first image. The 

generated images in turn create new images in the other medium. For instance, an image 

dipole 1 generated in the air by the source point will produce a second image dipole 1-1 in the 

seafloor medium; similarly, an image dipole 2 generated in the seafloor medium will produce 

another second image dipole 2-2 in the air. This process continues, generating an infinite 

number of image dipoles. We calculate the potential generated by each image point in a 

manner similar to the two-layer model, based on the boundary conditions. Upon solving for 

different image points, we find that the image points can be categorized into four types, based 

on the depth patterns of the image dipoles. The coordinates of the first type of image dipole 

are 0 0 0( , , 2m ) m 1,2,...x y D z− =， , with the corresponding dipole moment solved as 
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each image point can be expressed as: 1 0 0 0( - ) ( - ) ( - 2 )m x x y y z mD z= + + +r i j k . The image 

2 and image 2-2-2 in the figure represents this type of image. The second type of image dipole 

located at 0 0 0( , , 2m ), 1,2,...x y D z m+ = , with the corresponding dipole moment solved as 
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I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 2 0 0 0( - ) ( - ) ( - 2 )m x x y y z mD z= + + −r i j k . The image 

1-1 represents this type. The third type of image dipole located at 

0 0 0( , , 2n ), 0,1,...x y D z n− + = , with the corresponding dipole moment 
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each image point can be expressed as: 1n 0 0 0( - ) ( - ) ( 2 )x x y y z nD z= + + + −r i j k . The source 

and image2-2 represent this type. The coordinates of the first type of image dipole are 

0 0 0( , , 2n ), 0,1,...x y D z n− − =  , with the corresponding dipole moment 
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I l I li . The vector distance between the measuring point and 

each image point can be expressed as: 2n 0 0 0( - ) ( - ) ( 2 )x x y y z nD z= + + + +r i j k . The image 

1 and image 1-1-1 represent this type of image. The classification of these image points is 

based on their positions. We can see that, apart from the source point, the third and fourth 

types of image points are located in the air, while the first and second types are located in the 

seafloor. Other than this, there are no other physical differences between the various types of 

image points. 



 
Figure 2. Schematic representation of the three-layer medium after processing using the 
image method (Using the first three image points as an example). 

5.Is it possible to put the result analysis of Section 3 and Section 4 in table format to support 

the figure results? The table will help to make the analysis more comprehensible. 

We understand the importance of presenting results in a clear and comprehensible manner. In 

our revised manuscript, we have provided detailed analyses in Section 3 and Section 4 using 

three-dimensional potential distributions and depth slices, as well as calculating the R2 values 

in section 4. These visual representations are crucial for illustrating the spatial variations and 

correlations inherent in our study. We believe that the three-dimensional figures and depth 

slices offer a more intuitive understanding of the spatial distribution of self-potential signals, 

which might be challenging to convey effectively in a tabular format. Additionally, the R2 

values calculated and presented in Section 4 quantitatively support the accuracy and 

correlation of our model predictions with the experimental data. We hope this explanation 

clarifies our approach and the rationale behind our presentation choices. 

6.For better understanding, it would be beneficial if you could explain section 3 following 

figure 4, and each figure should have an explanation. Section 4 should follow the same 

procedure as related to Figure 5. Provide a thorough explanation for each of the following 

three figures: a horizontal electric dipole, b vertical electric dipole, and c tilted electric dipole. 

In Section 3, we have supplemented extensive explanatory content, including the 

interpretation of self-potential distributions generated by horizontal, vertical, and inclined 

dipoles. We have conducted a detailed analysis of self-potential slices at different depths. In 

Section 4, we have added descriptions of the experimental setup and procedures, and we have 

compared and evaluated the measured self-potential results with the forward modeling results. 



7.It is not clear if you compared the formula for the 2D analytical solution you generated with 

the 2D measured data, just as you did for the 3D analytical solution. 

We thank you for your insightful suggestion. The primary focus of our research is on three-

dimensional (3D) analysis, which is why we developed and presented the 3D analytical 

solution. Correspondingly, we conducted 3D physical simulations to validate our analytical 

models. Our experimental setup is inherently three-dimensional, with the entire experiment 

conducted in a 3D space where self-potential can be recorded at any point within this space. 

We realize that our initial description might have been unclear and potentially confusing. To 

address this, we have revised the relevant sections of the manuscript to better emphasize our 

3D approach and its importance to our study. 

The revisions clarify that the core objective was to establish and validate a comprehensive 3D 

analytical solution. The physical simulations were also designed in a 3D context to provide 

accurate validation of these models. 

We hope this detailed explanation clarifies our approach and addresses your concern. Thank 

you for your constructive feedback, which has been instrumental in refining our study. 

However, to make it easier, it would be even better if the previously mentioned points—

particularly the derivation formula and the results—were broken down and discussed in detail 

while keeping in mind potential readers of the work who are not geoscientists. The current 

state of the document may make it somewhat difficult for someone who is not in the field of 

geoscience to understand, and the goal of any research paper is to provide clarity so that 

others can benefit from your work. 

 

 

 


