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Abstract. Methane is the second most important greenhouse gas after carbon dioxide, and accounts for around 10 % of total

European Union greenhouse gases emissions. Given that the atmospheric methane budget over a region depends on its

terrestrial and aquatic methane sources, inverse modeling techniques appear as powerful tools for identifying critical areas

that can later be submitted to emission mitigation strategies. In this regard, an inverse modeling system of methane emissions

for Europe is being implemented based on the Weather Research and Forecasting (WRF) model:  the Aarhus University

Methane Inversion Algorithm (AUMIA) v1.0. The forward modeling component of AUMIA consists of the WRF model

coupled to a multipurpose global database of methane anthropogenic emissions. To assure transport consistency during the

inversion process, the backward modeling component will be based on the WRF model coupled to a lagrangian particle

dispersion module. A description of the modeling tools, input data sets and one-year forward modeling evaluation from April

01, 2018 to March 31, 2019 is provided in this paper. The a posteriori methane emission estimates, including a more focused

inverse  modeling  for  Denmark, will  be  provided  in  a  second  paper.  A good general  agreement  is  found between  the

modeling results and observations based on the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5

Precursor satellite.  Model-observation discrepancies for summer peak season are in line with previous studies conducted

over urban areas in central Europe, with relative differences between simulated concentrations and observational data in this

study ranging from 1 to 2%. Domain-wide correlation coefficients and root-mean-square-errors for summer months ranged

from 0.4 to 0.5 and from 27 to 30 ppb, respectively.  For winter months, otherwise,.On the other hand, model-observation

discrepancies for winter months show a significant overestimation of anthropogenic emissions over the study region, with

relative differences ranging from 2 to 3%. Domain-wide correlation coefficients and root-mean-square-errors in this case

ranged from 0.1 to 0.4 and from 33 to 50 ppb, respectively, indicating that a more refined inverse analysis assessment will be

required for this season. According to modeling results, the methane enhancement above the background  concentrations
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came almost entirely from anthropogenic sources; however, these sources contributed with only up to 2 % to the methane

total  column concentration.  Contributions from natural  sources  (wetlands  and  termites)  and  biomass  burning  were  not

relevant  during  the  study period. The results  found in this  study  contribute with  a  new model  evaluation of  methane

concentrations over Europe, and demonstrate a huge potential for methane  inverse modeling  using improved  TROPOMI

products in large-scale applications.

1 Introduction

Atmospheric methane (CH4) has more than doubled since the pre-industrial era (Meinshausen et  al.,  2017). Although it

remains  in  the  atmosphere  for  a  relatively  short  period  of  time (~10 years)  compared  to  carbon  dioxide  (centuries  to

millennia), its constant emission all over the world makes it a well-mixed greenhouse gas (IPCC, 2021). CH 4 concentrations

have a direct influence on the climate, but also have a number of indirect effects on human health and vegetation, including

crop production (Mar et al., 2022). After decades of steady growth, reaching even a growth rate of approximately zero from

2000 to 2006, the atmospheric CH4 has returned to values observed in the second half of the twentieth century, and in recent

years it has increased at a faster rate (Rigby et al., 2008; Nisbet et al., 2016; Palmer et al., 2021). According to Van Dingenen

et al. (2018), if unabated, the global anthropogenic CH4 emissions could increase up to 100 % by 2050, thus leading to a

general situation in which ozone-related premature mortality and crop damage events linked to CH4 emissions would be

more frequent. In the European Union (EU), 53% of anthropogenic CH4 emissions come from agriculture, 26% from waste

and 19% from energy,  with these sectors  accounting  for  up to  95% of CH4 emissions associated  with human activity

worldwide (European Commission, 2020). Improving the quality of CH4 emissions data for these concerned key sectors in

the EU inventory  has  been  mandatory  in  recent  years  (EEA,  2022),  with the  implementation  of  emissions monitoring

technologies,  including  satellite  missions  such  as  the  TROPOspheric  Monitoring  Instrument  (TROPOMI)  onboard  the

Sentinel-5 Precursor satellite. In addition, some major initiatives involving the use of atmospheric inverse modeling at the

global scale, with emphasis given to greenhouse gases that have large anthropogenic sources, have been implemented in

order to respond to an identified demand from the climate community at large (Bergamaschi et al., 2018). 

Prior to an inverse analysis as such, a robust evaluation using chemical transport models and satellite observations

is usually performed to identify and quantify deficiencies in the CH4 emission model. Such comparative studies have focused

mostly on CH4 column-averaged dry air mole fractions (hereafter referred to as XCH4  concentrations) from the SCanning

Imaging Absorption spectroMeter for Atmospheric ChartographY (SCIAMACHY) and, Thermal And Near-infrared Sensor

for  carbon  Observation  (TANSO),  and  Infrared  Atmospheric  Sounding  Interferometer  (IASI) instruments  onboard  the

Environmental Satellite (EnviSat) and, Greenhouse gases Observing SATellite (GOSAT), and Meteorological Operational

(Metop-A -B and -C) satellites, respectively. However, since it was made publicly available to the community in April 2018,

TROPOMI XCH4 data have been exploited in numerous studies not only for validation purposes (e.g., Zhao et al., 2019;

Zhao et al., 2022; Callewaert et al., 2022) but mainly to optimize emission estimates (e.g., Varon et al., 2022; Chen et al.,

2022). TANSO and IASI provides more mature but sparser XCH4 concentrations than TROPOMI, and isare together with
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TROPOMI the only twohree satellite instruments that remain operational since they were launched in 2009, 2012 (Metop-B)

and 2017, respectively. Qu et al. (2021), in a one-year global validation of TROPOMI and TANSO XCH4 retrievals with

Total  Carbon  Column Observing  Network  (TCCON)  CH4  total  column measurements,  have  shown larger  biases  with

TROPOMI in some regions of the world. Nevertheless, with further improvements in the retrieval algorithms, e.g. as those

implemented  by  Lorente  et  al.  (2021)  to  correct  systematic  biases  in  low-  and  high-albedo  regions,  TROPOMI  high

observation density and resolution will likely improve forward modeling evaluation and inversion results (Hu et al., 2018;

Jacob et al., 2022). 

In addition to a chemical transport model to relate emissions to satellite observations, Bayesian inversion techniques

require a cost  function to fit  the satellite observations to the model predictions,  and a priori  estimates of emissions to

regularize the solution where the observations provide insufficient information (Brasseur and Jacob, 2017). Inverse modeling

studies  of  CH4 emissions  available  for  Europe  have  been  mostly  performed  at  global  scale  and  based  on  TANSO

observations (e.g., Tsuruta et al., 2017; Segers et al., 2020), with just a few based on TROPOMI such as the Integrated

Methane Inversion (IMI) v1.0, a cloud-based facility developed to support a growing demand for tools to infer regional CH 4

emissions (Varon et al., 2022). IMI v1.0 exploits the GEOS-Chem chemical transport model and its nested capability to

simulate CH4 concentrations over inversion domains at 0.25°×0.3125° resolution, with dynamic boundary conditions from a

global archive of smoothed TROPOMI data. In 2014, the EU’s Earth Observation Programme implemented the Copernicus

Atmosphere Monitoring Service (CAMS) for developing information services based on environmental monitoring satellites.

CAMS global inversion-optimised CH4 fluxes are constrained based on TANSO measurements, and are available for the

period 1990-2020 at a 2°×3° resolution (Segers et al., 2020). Inverse modeling studies using in-situ (e.g., Bergamaschi et al.,

2018) and ground-based total column (e.g., Wunch et al., 2019) measurements instead of satellite observations have also

been conducted – inversions yielded, depending on the European region, higher/lower CH4 emissions with regard to the

EDGAR-based a priori emission estimates. A review of the global CH4 budget by Saunois et al. (2019) found significant

discrepancies between CH4 emission estimates using bottom-up and top-down approaches, with most of the discrepancies

being attributed to uncertainties in natural sources.  Recent inverse modeling studies combining CH 4 concentrations with

isotopic signature of CH4 (δ13C-CH4) attribute roughly 85 % of the post-2006 growth in atmospheric CH4 to microbial

sources, with about 50 % coming from the tropics (Basu et al., 2022). 

A few studies have combined model simulations with satellite observations to characterize CH4 concentrations over

Europe. Hence, this study aims at evaluating recent improvements to atmospheric modeling tools and satellite measurements

made by the atmospheric modeling community. This is the first in a serial of two papers that aim to implement an inversion

system of CH4 emissions for Eurpope based on the next-generation TROPOMI XCH4 measurements: the Aarhus University

Methane Inversion Algorithm (AUMIA) v1.0. Here, we evaluate  XCH4 concentrations derived from the  AUMIA forward

modeling component coupled to a multipurpose global database of CH4 anthropogenic emissions, against the Netherlands

Institute for Space Research (SRON) S5P-RemoTeC XCH4 product version 17. This is a new scientific TROPOMI XCH4

product that presents substantial improvements in relation to the operational product. Several two-week periods in 2018 and
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2019 were carefully selected for model sensitivity tests. Then, one-year simulation period from April 01, 2018 to March 31,

2019 was performed for model validation. In addition, simulated CH4 concentrations have been compared to near-surface

observations from the Integrated Carbon Observation System (ICOS) network. In the second part of this work, we will

provide a posteriori CH4 emission estimates based on the WRF model coupled to a lagrangian particle dispersion module

which is currently under development. It will be also provided model evaluation and inverse modeling of CH4 emissions for

Denmark. The paper is arranged as follows. In section 2, the CH4 observations and modeling tools, including a description of

the experimental design, are introduced. Next, in section 3, the forward modeling performance is evaluated by comparing the

model results against near-surface and total column observations. Section 4 will discuss the contributions of anthropogenic

sources to the XCH4 concentration. Finally, a summary and concluding remarks are given in section 5.

2 Data and Methods

2.1 WRF-GHG model

The core component of AUMIA v1.0 is the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021). WRF

is a fully compressible, non-hydrostatic model supported by the National Center for Atmospheric Research (NCAR) to a

worldwide community of users. Due to its robustness and versatility, WRF has been widely used for operational forecasts

and research related  to severe  weather  and air pollution (e.g.,  Vara-Vela et  al.,  2021),  the latter  through the use of  its

chemistry extension, the WRF-Chem model (Grell  et  al.,  2005).  The WRF Greenhouse Gas model (Beck et  al.,  2011),

hereafter referred to as WRF-GHG, is selected as the forward modeling component of AUMIA. WRF-GHG is an extension

to the WRF-VPRM model (Ahmadov et al., 2007) which  couples the WRF model to the Vegetation Photosynthesis and

Respiration Model (VPRM) (Mahadevan et al., 2007). 

              WRF-GHG simulates CH4 concentration based on emission estimates from external data sets as well as from online

calculations driven  by model  parameters  such  as  soil  moisture,  soil  temperature  and vegetation type.  CH4 fluxes  from

external data sets, specifically for anthropogenic (except for biomass burning) and biomass burning sources, are converted

into  atmospheric  concentrations  based  on  flux  modelsan incremental  approach. The CH4 concentration changes are

calculated as the CH4 emission multiplied by a conversion factor that depends on the air density and thickness of the first

model layer. On the other hand, online calculations comprise CH4 emissionsfluxes from wetlands and termites, andas well as

CH4 uptake by soil, are all calculated online in the simulations (see section 2.2.2 for further details). CH4 contributions from

anthropogenic, biogenic (wetlands, termites and soil uptake) and biomass burning sources, as well as those from background

concentrations are separately determined using tagged tracers. WRF-GHG  allows for passive transport (i.e., without any

chemical loss or production) of not only CH4, but also of carbon dioxide and carbon monoxide which undergo advection and

convective mixing as any other chemical species. WRF-GHG was incorporated into the WRF-Chem model for the first time

at its version 3.4, and is since then one of the many available chemistry options in this model. A detailed description of the

WRF-GHG model, its emission preprocessors and related modules can be found in Beck et al. (2011) and Beck (2012). In
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this work, WRF-GHG was run as a chemistry option in the WRF-Chem model version 4.3. Implementing the AUMIA v1.0

will enable us to extend its application to other greenhouse gases such as carbon dioxide, e.g., by incorporating new satellite

missions such as the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M).

2.1.1 Grid configuration

The  experimental  setup  consisted  of  two  nested  domains  configured  in  a  Lambert  conformal  projection  at  horizontal

resolutions of 30 and 10 km. The parent domain has 120×120 grid points and is defined to cover most of Europe, whereas

the nested domain (D02) has 67×61 grid points and focuses on Denmark (see Figure 1). The 10 km grid spacing domain

covering Denmark is motivated by improving the country greenhouse gases quantification. WRF-GHG uses an Arakawa C-

grid staggering and a hybrid vertical coordinate which is a coordinate that is terrain-following near the ground and becomes

isobaric higher up. The vertical resolution includes 45 layers extending from the surface up to 1 hPa, with more closely

spaced layers at lower altitudes. Static geographical data (e.g., topography, land use) and masked surface fields are derived

from Moderate Resolution Imaging Spectroradiometer (MODIS) and U. S. Geological Survey (USGS) products.  Tables 1

lists the main grid configuration features used in the simulations. 
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Figure 1. Modeling domains. The parent domain covers most of Europe, whereas the nested domain (D02) focuses on

Denmark.  The red  markers,  numbered  from 1 to  14,  indicate  the  location of  the  ICOS stations considered  for  model

evaluation. ICOS station features are presented in detail in Table 3.

Table 1. WRF-GHG grid configuration.

Attributes Model parameter/coverage

Domains
120×120 (latitude×longitude) grid points over Europe, 67×61 
(latitude×longitude) grid points over Denmark 

Center-point of the parent domain 51.98 °N, 5.66 °E

Map projection Lambert conformal

Horizontal and vertical resolution 30 and 10 km – 45  sigma-type levels

Model top 1 hPa (~44 km)

Time step 180 and 60 s

Static data
Topography: USGS, 30 s resolution
Land use: MODIS, 21 land use categories

Grid relaxation zone 5 points

2.2 Input emissions

2.2.1 Anthropogenic fluxes

Anthropogenic  fluxes of  CH4 (not  including biomass burning sources)  are  externally  prepared  based on the  Emissions

Database for Global Atmospheric Research (EDGAR) version 6 Greenhouse Gas Emissions (Crippa et al., 2021Ferrario et

al., 2021). EDGAR has been widely used in support of policy design for greenhouse gases emissions verification, using

international  statistics  and  a  consistent  Intergovernmental  Panel  on  Climate  Change  (IPCC)  methodology.  Statistical

information compiled by the IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) is adopted by EDGAR

for most sources and countries, complemented with information from scientific literature and other references for specific

processes  and/or  countries.  A detailed  description of  data providers  and technical  procedures  for  the  greenhouse gases

emissions of EDGAR can be found in Janssens-Maenhout et al. (2019). EDGARv6.0 includes a set of key novelties such as

country/region- and sector-specific yearly profiles for all sources and country-specific weekly and daily profiles to represent

hourly emissions. EDGARv6.0 CH4 fluxes in this work include activity data from 24 different sectors that can be grouped

into the following broad sectors:  energy, industry,  aviation,  ground transport,  shipping, agriculture and waste.  Biomass

burning fluxes from human activities were prepared separately using a satellite-based emissions preprocessor (Wiedinmyer

et al., 2023). EDGARv6.0 CH4 fluxes are provided as monthly grid maps spatially distributed on a common grid at 0.1°×0.1°

resolution,  and  can  be  freely  downloaded  at  http://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/v60_GHG/.
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Figure 2 shows the spatial distributions of CH4 emission rates for different sectors for May 2018 in the 30 km modeling

domain.

Figure 2. Spatial distribution of EDGARv6.0 CH4 emission rates for the concerned key sectors for May 2018 in the 30 km

modeling domain. Each grid point in panel (d) represents the sum of emission rates from all different sectors (except biomass

burning) based on country-specific temporal profiles.

2.2.2 Biogenic fluxes

Anaerobic microbial production of CH4 in wetlands represents the dominant source of CH4 emissions from nature, followed

by CH4 emissions from termites. Uptake of atmospheric CH4 by soil is the only terrestrial sink. CH4 fluxes from natural

source and sink processes are all calculated online in the model simulations. CH4 fluxes from wetlands are determined based

on the wetland model developed by Kaplan (2002). This model is based on a diagnostic approach that determines CH 4

emissions  from wetlands as a percentage of the heterotrophic respiration following the approach of (Christensen et  al.,

(1996).  The  heterotrophic  respiration  is  previously  calculated  based  on  a  carbon  decomposition  rate  and  WRF-GHG

variables soil moisture and soil temperature followingusing the approach of Sitch et al. (2003) and the WRF-GHG variables
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soil moisture and soil temperature. A wetland inundation map (Kaplan et al., 2002) is then applied for the determination of

the wetland  fraction  per  grid  cell.  CH4 fluxes  from termites  are  calculated,  based  on  the  global  data  base  for  termite

emissions described in Sanderson (1996), as the product of the biomass of a population of termites and the flux of CH 4

emitted from that  termite population. A mapping of  the vegetation types used by Sanderson  (1996) to  the WRF-GHG

vegetation type is previously performed for the quantification of the termite’s biomass per grid cell. Based on WRF-GHG

driving  variables  such  as  soil  moisture,  soil  temperature,  CH4 concentration  and  precipitation,  soil  uptake  fluxes  are

calculated following the approach devised by Ridgwell et al. (1999). For wetland grid cells (i.e., grid cells dominated by

wetlands), the calculation of soil uptake is suppressed as this process does not take place over flooded areas.  It was verified

that no significant natural wetlands were found over the modeling domain, with termites and soil uptake being the primary

sources and sinks of CH4 emissions in the region. Figure S1 in the Supplement shows the temporal mean spatial distribution

of CH4 emission rate for natural sources and sinks, averaged over the period from May 1 to 31, 2018.

2.2.3 Biomass burning fluxes

Biomass burning fluxes of CH4 are externally prepared based on the Fire INventory from NCAR version 2.5 (FINNv2.5)

(Wiedinmyer et al., 2023). FINNv2.5 uses satellite observations of active fires and land cover, together with emission factors

and fuel loadings to provide daily, highly-resolved (1 km) open burning emissions estimates for use in chemical transport

models. Active fire products from both MODIS instruments onboard the Terra and Aqua satellites are applied, and to avoid

double counting of the same fire on a single day, multiple detections of the fire in question are identified globally and then

removed as described by Al-Saadi et al. (2008). While CH4 fluxes from anthropogenic and biogenic sources are added at the

first model level, a plume rise algorithm is applied to determine the injection height of biomass burning plumes. The plume

rise algorithm, implemented in the WRF-Chem by Grell et al. (2011), is based on the 1-D time-dependent cloud model

developed by Freitas et al. (2007). The algorithm is called for numerical integration for grid cells that contain fire spots, with

the lower and upper limits of the injection height being calculated based on the fire category (biome burned) provided by the

FINNv2.5, as well as heat flux fields inferred from WRF-GHG.

2.3 Experiment design

Initially,  a  model  sensitivity  analysis  for  evaluationng  of  model  parameterizationsphysics  schemes such  as  planetary

boundary layer and cumulus clouds,  andas well as global forcings for meteorological fields and CH4 concentration, was

carried out over several two-week periods in 2018 and 2019. Then, based on the model configuration that best fit the satellite

data,  Each of these two-week periods were previously examined to have at least 75% of days with TROPOMI XCH4 data

covering large portions of Europe. As a result, the physics schemes Yonsei University (YSU) for planetary boundary layer

and Kain-Fritsch for cumulus clouds, together with initial and boundary conditions from the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) model (Hersbach et al., 2020), for meteorological processes, and

from the NCAR Community Atmosphere Model with Chemistry (CAM-chem) (Lamarque et al.,  2012; Emmons, et  al.,
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2020), for background concentrations of CH4, were selected and then used  to perform a one-year simulation period from

April 01, 2018 to March 31, 2019 was performed. Initial and boundary conditions to drive the simulations at 30 km are based

on global data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) model

(Hersbach et al., 2020), for meteorological processes, and from the NCAR Community Atmosphere Model with Chemistry

(CAM-chem) (Lamarque et al., 2012; Emmons, et al., 2020), for background concentrations of CH4; both called for input

every 6 h. Off-line initial and boundary conditions derived from the simulations at 30 km are used as input to feed the

simulations at 10 km. Model results and discussion for the nested domain are under development and will be described in a

forthcoming  paper.  The  main  physical  parameterizations  included  the  Rapid  Radiative  Transfer  Model  (RRTM)  for

longwave radiation; the Pennsylvania State/NCAR Mesoscale Model version 5 (MM5) for shortwave radiation; the Revised

Mesoscale Model version 5 Monin–Obukhov scheme for the surface layer (Jimenez et al., 2012); the Unified Noah land-

surface model for land surface (Chen and Dudhia, 2001); the Yonsei University scheme for the planetary boundary layer

(Hong  et  al.,  2006);  the  Kain–Fritsch  scheme for  cumulus  clouds  (Kain  2004);  and  the  WRF Single-Moment  5-class

(WSM5) scheme for microphysics (Hong et al., 2004). This period was defined based on the following criteria: i) availability

of TROPOMI XCH4 data, ii) latest available year data of EDGARv6.0 emissions for CH4, and iii) no occurrence of sustained

and irregular  scenarios  in  terms  of  emissions  (e.g.,  large-scale  fire  outbreaks  and  emission  reductions  associated  with

COVID-19 lockdowns). Tables 2 lists the physics and emissions schemes used in the simulations, with physics schemes

other than planetary  boundary layer and cumulus clouds being selected based on Beck et al. (2011). A schematic of the

model running process is depicted in Appendix A. Off-line initial and boundary conditions derived from the simulations at 30

km are used as input to feed the simulations at  10 km. Model results and discussion for  the nested domain are under

development and will be described in a forthcoming paper.

2.3.1 Postprocessing

In order to compare the simulated XCH4 concentrations with the observations, a set  of model data posprocessing steps

involving a priori information from the satellite retrievals were carried out as follows: (i) the a priori profiles and averaging

kernelssatellite information for each orbit wasere regridded to the WRF-GHG discretization using a bilinear interpolation;

(ii) the simulated concentrations were resampled to the SRON S5P-RemoTeC standard twelve-levels pressure grid; (iii) the

smoothed concentrations  corresponding  to  the  resampled  profiles  were  calculated  according  to  the  following  linear

transformation:

CH 4 , smooth=K ⋅CH 4 ,tot+( I − K )⋅ A  (1)
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where CH 4 , smooth represents the smoothed CH4 concentration, A and K  are the a priori profile and averaging kernel of the

retrieval, respectively, I  is the identity matrix, and CH 4 , tot is the total CH4 concentration. CH 4 , tot is obtained by adding up

the tracer contributions from the emission sources and bacground concentrations are:

CH 4 , tot=CH 4 ,ant+CH 4 ,bio+CH 4 ,bbu+CH 4 ,bgd (2)

where  CH 4 , ant,  CH 4 , bio,  CH 4 , bbu and  CH 4 , bgd represent the CH4 concentrations from anthropogenic sources, biogenic

sources, biomass burning and background concentrations; (iv) the XCH4 concentration was finally calculated as the pressure-

weighted concentration following Zhao et al. (2019):

XCH 4=∑
i [

Pbotto m− P top

Psfc − Ptop
]× CH 4 , smooth (3)

where Pbottom and Ptop represent the pressures at the bottom and at the top of the it h vertical grid cell, and Pt op and Psfc

represent the hydrostatic pressures at the top and at the surface of the model domain, respectively. Simulated total column

concentrations without  taking into account the a priori information and averaging kernels were also computed to evaluate

smoothing effects. In this case, the Equations (2) and (3) are directly applied to the model outputs without any previous

smoothing. Model evaluation against in-situ CH4 measurements is performed on the basis of the closest model grid points to

the ICOS stations. Three groups of eight, six and five ICOS stations, with sampling heights between 8.0–16.8 m, 40–50 m,

and 100 m, respectively, were selected for comparison with simulated CH4 concentrations interpolated to roughly 10, 50 and

100 m above ground level.

Table 2. WRF-GHG simulation design.

Atmospheric process Scheme/Model

Cloud microphysics WSM5 (Hong et al., 2004)

Longwave radiation RRTM (Mlawer et al., 1997)

Shortwave radiation MM5 (Dudhia 1989)

Boundary layer YSU (Hong et al., 2006)

Land surface Unified Noah land-surface model (Chen and Dudhia, 2001)

Surface layer Revised MM5 Monin–Obukhov (Jimenez et al., 2012)

Cumulus clouds Kain-Fritsch (new Eta) (Kain 2004)

Anthropogenic emissions1 EDGARv6.0 (Crippa et al., 2021Ferrario et al., 2021)
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Wetland emissions Kaplan (2002)

Termite emissions Sanderson (1996)

Soil uptake fluxes Ridgwell et al. (1999)

Biomass burning emissions1 FINNv2.5 (Wiedinmyer et al., 2023) coupled to a plume rise module

Initial and boundary conditions2 ERA5 (0.25°, 37 pressure levels) for meteorology and CAM-chem (0.9°×1.25°, 56 
vertical levels) for CH4 concentrations., both called for input every 6 h

Simulation period April 01, 2018 to March 31, 2019
1The emission files for anthropogenic and biomass burning sources were processed for model input using the NCAR utilities
anthro_emis and fire_emis, respectively.
2The initial and boundary conditions for CH4 concentrations were prepared using the NCAR utility mozbc.

2.4 Observational data

2.4.1 TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S5P) satellite is a

spectrometer that provides global coverage of total column concentrations for different gases at an unprecedent resolution of

5.5×7 km2 utilizing a push-broom configuration. The TROPOMI-based XCH4 concentrations in this study are taken from the

Netherlands  Institute  for  Space  Research  (SRON)  S5P-RemoTeC  XCH4 product  version  17,  available  at

https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/. In relation to the operational data products (Hu et al., 2016),

the SRON S5P-RemoTeC XCH4 product v17 (Lorente et al., 2022) provides updates regarding the regularization scheme,

the selection of  the spectroscopic database,  the implementation of  a higher resolution digital  elevation map for  surface

altitude, and a more sophisticated a posteriori correction for the albedo dependence. The main update with respect to the

previous version, the SRON S5P-RemoTeC XCH4 v14 (Lorente  et  al.,  2021),  includes XCH4 retrievals  over ocean for

observations  made  under  sun-glint  geometries.  A  quality  data  assessment  was  performed  using  TCCON and  TANSO

measurements. The TROPOMI XCH4 data of interest to this work correspond to the recommended high-quality retrievals,

with quality assurance value of 1 and for S5P orbits over Europe, i.e., with crossing times between 09:00 and 13:00 UTC.

2.4.2 ICOS

The Integrated Carbon Observation System (ICOS) is a pan-European Research Infrastructure that provides harmonized,

high-precision, and long-term monitoring of atmospheric greenhouse gases. It sustains a network of stations that spread out

over different  ecosystems across  12 European countries  (Heiskanen et  al.,  2022).  Greenhouse  gases  concentrations and

meteorological parameters are usually taken at different heights of measurement towers set up in mountainous terrain or in

remote environments. ICOS CH4 concentrations in this study correspond to the fully quality checked Level 2 data, available

for download at  the ICOS Carbon Portal  (https://data.icos-cp.eu).  For users  interested in using ICOS data,  we strongly

recommend to use the ICOS Carbon Portal pylib, a python library that provides easy access to data hosted at the ICOS

Carbon Portal. The ICOS stations used in this study are compiled in Table 3 and their locations are shown in Figure 1.
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Table 3. ICOS stations and atmospheric parameters considered for model evaluation.

Station name Country Latitude Longitude Altitude Sampling height Parameters

1. Hohenpeissenberg Germany 47.80 °N 11.02 °E 934 m 50 m CH4

2. Hyytiälä Finland 61.84 °N 24.29 °E 181 m 16.8 m CH4

3. Ispra Italy 45.81 °N 8.63 °E 210 m 40 and 100 m CH4

4. Jungfraujoch Switzerland 46.54 °N 7.98 °E 3580 m 10 m WS and WD

5. Karlsruhe Germany 49.09 °N 8.42 °E 110 m 100 m CH4

6. Křešín u Pacova Czech Republic 49.57 °N 15.08 °E 534 m 10 and 50 m CH4, T, WS and WD

7. Lindenberg Germany 52.16 °N 14.12  °E 73 m 10 and 40 m CH4, T, WD and WD

8. Monte Cimone Italy 44.19 °N 10.69 °E 2165 m 8 m CH4

9. Norunda Sweden 60.08 °N 17.47 °E 46 m 100 m CH4

10. Observatoire pérenne
de l'environnement

France 48.56 °N 5.50 °E 390 m 10 and 50 m CH4, T, WS and WD

11. Puy de Dôme France 45.77 °N 2.96 °E 1465 m 10 m CH4, T, WS and WD

12. Saclay France 48.72 °N 2.14 °E 160 m 10, 15 and 100 m CH4, T, WS and WD

13. Torfhaus Germany 51.80 °N 10.53 °E 801 m 10 m CH4, T, WS and WD

14. Trainou France 47.96 °N 2.11 °E 131 m 50 and 100 m CH4

Note. T: air temperature; WS: wind speed; WD: wind direction. CH4 and T were interpolated to roughly 10, 50 and 100 m
above ground level, while the simulated WS and WD were calculated based on the model parameters U10 and V10.

2.5 Evaluation metrics

There are a number of statistical parameters that can be used to evaluate the performance of atmospheric models, including

the correlation coefficient (r), mean bias error (MBE) and root-mean-square error (RMSE). r is a measure of the strength and

direction  of  the  linear  relationship  between  simulation  and  observation,  MBE measures  the  mean  difference  between

simulation and observation, and RMSE is the square root of the mean squared error between simulation and observation. All

three are appropriate over multiple time and space scales and can be calculated as follows:

r=
∑ [ ( P j − P̄ ) x (O j− Ō ) ]

√∑ ( P j− P̄ )
2
x∑ (O j −Ō )

2
                                                                                                                              (4)

MBE=
1
n∑ ( P j−O j )                                                                                                                                                (5)

RMSE=√ 1
n
∑ ( P j −O j )

2                                                                                                                                         (6)
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Here,  j  represents the pairing of observations (O) and predictions (P) by site and time. Overbars signify means over site

and/or time. n is the number of pairs of observation-prediction values. 

In conjunction with the statistics previously mentioned, graphical  methods such as time series,  scatter plots and Taylor

diagrams (Taylor, 2001) were also included to better understand the model behavior over entire ranges of concentrations and

gauge performance more fully. For ease of model-satellite data comparison, the satellite data were initially regridded to the

model grid and thenTo facilitate the statistical evaluation of the model-satellite comparison, both the satellite and model data

were flattened  to  a transformed  into one-dimensional  arrays.  Subsequently,  Equations (4),  (5)  and (6)  were  applied  to

compute domain-wide statistics. Overall, as described in section 43, the model simulations of meteorological parameters and

methanesimulated CH4 concentrations were in good agreement with the satellite information and near-surface measurements

reported at different ICOS sites across Europe. However, several limitations and uncertainties were identified and will help

to improve the model’s forecast capability in future implementations.

3 Model evaluation

3.1 Near-surface CH4 concentration

Given that  the distances between the model grid points and ICOS sites can be of several kilometers,  it  is important to

highlight that the model evaluation in this section focuses more on the model’s ability to reproduce the broad spatial and

temporal variability of CH4 over the modeling domain. As mentioned in section 2.2.2, three sets of eight, six and five ICOS

stations, with sampling heights between 8.0–16.8 m, 40–50 m, and 100 m, respectively, were selected for comparison with

simulated CH4 concentrations interpolated to roughly 10, 50 and 100 m above ground level. Figures 3, 4 and 5 show the

monthly mean spatial distributions of observed and simulated CH4 concentrations for the first, second and third vertical

levels,  respectively,  both data sets averaged over the period from April  1,  2018 to March 31, 2019. Figure S12 in the

Supplement shows the monthly mean time series of CH4 concentrations averaged over all ICOS stations and corresponding

model grid points for the three levels.
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Figure 3. Monthly mean spatial distributions of simulated CH4 concentration interpolated to roughly 10 m (shaded), together

with monthly mean CH4 concentrations from the ICOS sites with sampling heights between 8 and 16.8 m (circles), both data

sets averaged over the period from April 1, 2018 to March 31, 2019. The concentrations are in ppb and were computed based

on quality-controlled ICOS CH4 data for all stations simultaneously.

Overall,  CH4 concentrations  for  the  first  level  were  overestimated,  mainly  during  wintertime  when  model-observation

mismatches reached their highest  values,  between 200 and 300 ppb (see Figure S12 in the Supplement).  According to

modeling  results  in  this  study,  the  simulated  CH4 concentrations  depended  largely  on  the  background  concentrations,

followed by a small contribution from anthropogenic sources. A small month-over-month variation is observed in the CH4

concentrations  from  ICOS  measurements,  whereas  strong  seasonal  changes  are  on  the  contrary  observed  in  the  CH 4

concentrations derived from model simulations – seasonal changes in the simulated concentrations are modulated by the

anthropogenic sources. Using EDGARv6.0 CH4 fluxes as the a priori emission estimates and two sets of TROPOMI-based

14

385

390

395

400

405

410

415



XCH4 observations, the global inversion approach conducted by Tsuruta et al. (2023) showed that over central Europe the

anthropogenic CH4 emissions would be slightly overestimated, mainly during spring and autumn. However, higher emission

estimates are otherwise found when ground-based data is used to drive the inversions. The No inverse modeling studies of

CH4 emissions based entirely on EDGARv6.0 for anthropogenic sources have been conducted over Europe. However, a

recent inversion  approach  for  CH4 emissions  over  China  conducted  by  Hu  et  al.  (2022)  showed  that  the  a  posteriori

emissions (excluding agricultural soil) decreased by 36% compared to the EDGARv6.0 a priori emission estimates. They

also found a 47.1% reduction when it came to CH4 emissions from waste alone. Waste emissions in EDGARv6.0 for 2018 do

not have a significant daily and weekly patterns over the year, although emission peaks can be observed in February. Under

real conditions, however, the production of CH4 from waste sources depends not only on the amount of degradable organic

matter but also on seasonal weather conditions (Kissas et al., 2022). Uncertainties in EDGAR emissions from other key

sectors such as agriculture and energy can also contribute significantly to the overall model-observation discrepancies. For

EU27+UK (the 27 European countries and the UK), Solazzo et al. (2021) reported that while CH 4 has the best level of

accuracy among the three EDGAR greenhouse gases, with only a roughly 10% uncertainty share, the structural uncertainties

of the three key sectors in terms of CH4  (agriculture, waste and energy) account for nearly 90%. 

Comparatively,  model-observation  discrepancies  on  CH4  concentration  at  upper  levels  (50  and  100  m)  were

noticeably reduced with increasing height (see Figure S12 in the Supplement). The bias reductions in this case are attributed

to a diminishing influence of surface emissions on both magnitude and variability of CH4 concentrations. The top-left panel

in Figure S34 in the Supplement shows the reductions in variability as a function of standard deviation, based on a site-

specific comparison. The higher the sampling height (or vertical level), the smaller the model-observation discrepancies in

terms of standard deviations are. Despite improvements in terms of variability, correlation coefficients remained quite similar

between the three levels, ranging from 0.2 to 0.4 in most cases. Model evaluation of the global CAMS chemical modeling

system  against  ICOS  measurements,  for  the  sites  here  selected  and  for  a  period  two  and  a  half  years  from  now

(https://global-evaluation.atmosphere.copernicus.eu/ch4/ghg/insitu-icos), shows structural correlation coefficients similar to

those found here with WRF-GHG. However, unlike the large positive bias found in this work for the sampling height of 10

m, CAMS does underpredict the observations with model-observation discrepancies ranging from -100 to -200 ppb most of

the time. In addition, no bias reduction with increasing height can be noticed in this CH 4 product. Input emissions from

anthropogenic sources in CAMS simulations are built based on various existing data sets, including nationally reported

emissions as well as global estimates (e.g., EDGAR, ECLIPSE and CEDS). As pointed out by Solazzo et al. (2021), the fact

that EDGAR has adopted the IPCC recommendations assures consistency in time and comparability across countries, but

conversely, it can facilitate the propagation of uncertainties when similar emission sources are incorporated.
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Figure 4. Monthly mean spatial distributions of simulated CH4 concentration interpolated to roughly 50 m (shaded), together

with monthly mean CH4 concentrations from the ICOS sites with sampling heights between 40 and 50 m (circles), both data

sets averaged over the period from April 1, 2018 to March 31, 2019. The concentrations are in ppb and were computed based

on quality-controlled ICOS CH4 data for all stations simultaneously.
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Figure 5. Monthly mean spatial  distributions of  simulated  CH4 concentration  interpolated  to  roughly 100 m (shaded),

together with monthly mean CH4 concentrations from the ICOS sites with sampling heights of 100 m (circles), both data sets

averaged over the period from April 1, 2018 to March 31, 2019. The concentrations are in ppb and were computed based on

quality-controlled ICOS CH4 data for all stations simultaneously.

Besides errors in the CH4 emission estimates, inaccuracies in background concentrations and meteorological conditions may

have  also  contributed  partly  to  model-observation  discrepancies.  With  regard  to  the  contribution  from  background

concentrations, boundary conditions in the lowest model layer in CAM-chem are set to the fields specified for Climate

Model Intercomparison Project – Phase 6 (CMIP6) historical conditions and future scenarios provided by Meinshausen et al.

(2017). These prescribed CH4 concentrations are then used in the model to overwrite, at each time step, the corresponding

model mixing ratios (Lamarque et al., 2012). Thus, the combined effect of using uniform and projected CH 4 concentrations

as lower boundary conditions in WRF-GHG simulations represents a source of uncertainty and contributes to the model-

observation  discrepancies.  Regarding  the  meteorological  conditions,  an  unprecedented  warmer  than  normal  weather
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conditions were observed throughout the study period (Hari et al., 2020), mainly during the 2018-2019 winter season. In

fact,  model  simulations  for  the  period  from December  21,  2018 to  January  14,  2019 were  no  included  in  the  model

evaluation due to persistent instabilities in vertical winds over central Europe, where a sequence of heavy snowfall events

have been observed (e.g., Yessimbet et al., 2022). As can be seen in Figure S23 in the Supplement, the model overpredicted

the temperature at 10 m all over the winter, with overpredictions for December (averaged over December 1-20, 2018) and

January (overaged over January 15-31, 2019) being much larger compared to the other winter months. Wind shifts were

fairly well represented by the model, but at the same time, it did overpredict wind speed. A site-specific model evaluation in

terms of correlation coefficient and standard deviation is provided in Figure S34 in the Supplement.

3.2 XCH4 concentration

Figure 6 shows the temporal mean spatial distributions of XCH4 concentration from SRON RemoTeC-S5P estimates and

WRF-GHG simulations, along with their relative differences, averaged over the period from May 1 to August 31, 2018.

Temporal mean spatial distributions by month are shown in Figures S45 to S156 in the Supplement. Differences between

simulated XCH4 concentrations with and without smoothing are noticeable. While relative differences between simulated

concentrations without smoothing and observational data usually range from -1 to 1% (panel (g) in Figure 6), those between

smoothed concentrations and observational data usually range from 1 to 2% (panel (c) in Figure 6). Model-observation

discrepancies in the latter case reached their minimum values during the summer peak season (Figures S67 to S89 in the

Supplement), but reached otherwise their maximum values during winter months (Figures S134 to S156 in the Supplement).

Model performance for different seasons can be also observed in Figure 7 which shows the monthly variability of observed

and simulated XCH4 concentrations over the study region. The lower differences between the satellite measurements and

model results without smoothing were related to a CH4 offset (against the anthropogenic emissions contribution), as the

atmospheric layer above the model top (1 hPa) was not vertically integrated in Equation (3). Simulated CH 4 concentrations

and atmospheric pressures in this case did not experience any smoothing before vertical integration. Regarding the smoothed

profiles, despite it was verified that the averaging kernels from satellite retrievals fluctuate slightly up and down around 1 in

the troposphere (where much of atmospheric CH4 resides), the smoothing effects in upper levels usually lead to a XCH4

reduction. This reduction often happens because the a priori profile (second term on the right-hand side of Equation (1)) does

not influence the retrieval accuracy significantly (Hu et al., 2016). Since there is no CH4 compensation in this case, then the

bigger differences in the XCH4 concentrations can be attributed mainly to an overestimation of anthropogenic emissions,

although a systematic bias related to background signals should be also considered. At urban scale, analysis of downwind

and upwind concentrations such as the differential column methodology devised by Chen et al. (2016) can be applied for

minimizing the influence of background signals (e.g., Zhao et al., 2022); however, its application at a continental scale would

require a high-resolution modeling configuration as well as a dense network of spectrometers. Data gaps such as those

observed in central and southern Europe (see panels (a) or (e) in Figure 6) are often produced as a consequence of applying

regridding techniques to sparse data sets. 
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Figure 6. Temporal mean spatial distributions of XCH4 concentration from SRON RemoTeC-S5P (panels (a) and (e)) and

WRF-GHG estimates with and without smoothing (panels (b) and (f), respectively),  along with their relative differences

(panels (c) and (g)), averaged over the period from May 1 to August 31, 2018. The simulated mean XCH4 concentrations are

calculated on the basis of the closest model times to the S5P crossing times. The panels on the right show the scatterplots of

observed and simulated XCH4 concentrations, together with the number of pairs of observation-model values and domain-

wide correlation coefficient.

Zhao et al. (2019) applied the WRF-GHG model to analyze XCH4 observations over Berlin for a period during summertime,

and found a bias in the simulated XCH4 concentration of around 2.7%. In that case, they updated the boundary conditions

with information from CAMS instead of CAM-chem, used EDGARv4.1 emission estimates for anthropogenic sources and

compared  the  model  results  against  total  column  measurements  from  a  network  of  five  spectrometers.  Based  on  the

smoothed concentrations in this work, relative differences between 1 and 2% were often found for summer peak season,

when the  anthropogenic  sources  had  their  minimum contributions  to  the  XCH4 concentration.  For  winter  months,  the

differences were found to range from 2 to 3%, similar to those found by Zhao et al. (2019) for summertime. Despite a model

overestimation of near-surface CH4 concentrations on the order of 200-300 ppb is observed during wintertime, the model-
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observation  discrepancies  on  XCH4 concentration  ranged  roughly  from  40  to  60  ppb.  The  higher  model-observation

discrepancies during winter months suggest that a more refined inverse analysis assessment will be required for this season.

A recent joint inversion of CH4 and δ13C-CH4 conducted by Basu et al. (2022) for periods of relatively stability (2000-2006)

and growth (2008-2014) in atmospheric  CH4 suggests a significant reduction in the a priori  CH4 emission estimates from

fossil and microbias sources over northern extra-tropic regions. Bias in simulated XCH4 concentrations over water bodies,

namely the Mediterranean Sea, Bay of Biscay and small portions of the Atlantic Ocean adjacent to Spain and Portugal, is of

similar magnitude as that found over land. Thanks to the TROPOMI’s wide swath, the SRON S5P-RemoTeC XCH4 product

v17 provides new opportunities to look into sensitivity of CH4  signals to surface emissions in the Mediterranean Sea (e.g.,

CH4 emissions from oil and gas platforms).

Figure 7. Monthly boxplots of observed and simulated XCH4 concentrations with and without smoothing for the period from

April 01, 2018 to March 31, 2019. The months from May to August of 2018 (between dashed lines) were selected for model

evaluation of the contribution of anthropogenic sources to the XCH4 concentration, discussed ahead in section 4.

With regard to temporal variability, a clear annual cycle of the XCH 4 interquartile range can be noticed regardless of its

smooth month-over-month variation along the year (orange boxes in Figure 7). Both sets of simulated XCH 4 concentrations,

i.e. the simulated profiles with and without smoothing, represented fairly well this cycle although with a less dispersion

(length of the box). The simulated XCH4 concentrations without smoothing show even a less-dispersed interquartile range

(blue boxes in Fig. 7) compared to that of the smoothed concentrations (green boxes in Figure 7). In addition, the minimum

concentrations in the simulated interquartile ranges are delayed (May) compared to observations (April), with the same
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happening  in  terms  of  medians.  Based  on  the  smoothed  concentrations,  model-observation  discrepancies  reached  their

maximum values during winter months (differences in median concentrations between 40-50 ppb), while they reached their

minimum values during summer peak season (differences in median concentrations between 20-30 ppb).  As discussed in

section 3.2, the better XCH4 representation with the simulated profiles without smoothing responded to a CH4 compensation,

as the atmospheric layer above the model top (1 hPa) was not vertically integrated in Equation (3). Since there is no a CH 4

compensation with the smoothed profiles, then the bigger differences in the XCH4 concentrations can be attributed mainly to

an overestimation of anthropogenic emissions. A systematic bias related to the background concentrations, however, should

be also embedded in the model bias in both cases. Modeling studies using CAMS suggest that an offset between model

concentrations and observations needs to be taken into account previously in the boundary conditions (Zhao et al., 2019;

Galkowsky et al., 2021). Looking at the other 50% of data, including outliers, it can be also observed a similar behavior with

observations spread out further than simulated concentrations. A number of outliers with  concentrations below 1750 ppb

have been observed in April and May of 2018, although the reason why they occur in the months with the lowest CH 4

concentrations needs to be further investigated. Statistical metrics of the model-observation comparison indicate, overall, a

better model performance for summer months, with correlation coefficients and root-mean-square errors ranging from 0.4-

0.5 and 27-30 ppb, respectively (see Table 4).

Table 4. Overall WRF-GHG performance against space-based XCH4 observations.

Month
WRF-GHG/SRON S5P Sth. WRF-GHG/SRON S5P

n RMSE MBE r n RMSE MBE r

January 2019 869 17.32 6.86 0.43 869 50.42 46.36 0.15

February 2019 9893 16.05 5.34 0.35 9893 48.44 45.09 0.29

March 2019 8691 15.95 1.80 0.31 8691 44.22 40.23 0.24

April 2018 15430 16.35 2.77 0.32 15430 35.88 31.76 0.39

May 2018 16817 17.38 -8.28 0.25 16817 28.63 24.13 0.31

June 2018 8590 12.08 -4.76 0.54 8590 27.77 24.39 0.53

July 2018 9546 15.49 -9.47 0.52 9546 28.84 24.93 0.44

August 2018 10732 13.81 -6.77 0.47 10732 29.96 26.64 0.40

September 2018 10114 12.02 -0.98 0.44 10114 36.97 34.27 0.36

October 2018 10707 13.21 -2.09 0.34 10707 33.40 29.72 0.20

November 2018 2917 14.93 3.01 0.46 2917 37.95 33.41 0.23

December 2018 951 16.90 1.25 0.51 951 39.97 34.86 0.37
Note. n: number of pairs of observation-model values; RMSE: root-mean-square error (in ppb); MBE: mean bias error (in
ppb); r: correlation coefficient.
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4 XCH4 concentration from anthropogenic sources

Contribution of anthropogenic emissions to the XCH4 concentration is calculated based on the months with the best model

performance, between May and August of 2018 (see Figure 4). Figure 8 shows the temporal mean spatial distributions with

and without smoothing of simulated XCH4 concentrations, XCH4 enhancement above background (EAB) concentrations,

XCH4 enhancement from human activities (EHA) concentrations, and contribution of anthropogenic sources to the XCH4

concentration. Model results suggest that XCH4 EHA concentrations as high (or even higher) as those found over high CH4

emitting countries in western Europe can accumulate over countries in central and southern parts of Europe during summer

months (see panels (c) and (g) in Figure 8). The XCH4 EAB concentrations (panels (b) and (f)) depended almost entirely on

the CH4 contribution from human activities (panels (c) and (g)), result that is in line with previous studies conducted over

urban areas in central Europe (e.g., Zhao et al., 2019; Zhao et al., 2022). However, the anthropogenic sources contribute only

up to 2% to the XCH4 concentration (panels (d) and (h)), with most part of XCH4 coming from background signals. 

XCH4 signals from natural sources (wetlands and termites) and biomass burning were not relevant during the study

period.  The  inversion estimates for 2018 conducted by Tsuruta et al. (2023) showed that, compared to the anthropogenic

emissions, the wetland emissions over central  Europe were small, mainly during summer months when biogenic fluxes

reached  their  minimum valuesAccording  to  Kaplan  (2002),  potential  natural  wetlands  in  the  30  km modeling  domain

concentrate over the Baltic countries, Belarus and western regions of Russia. Among the factors that could have negatively

influenced the accumulation of biospheric CH4 in the atmosphere over the study region are: a less CH4 formation tied to the

extremely dry season in summer 2018 over central and northern Europe (Rousi et al., 2022); a CH 4 compensation by soil

uptake processes as the fluxes are dominated by mineral soils which are mostly net sink of CH4 (Tsuruta et al., 2023); and

transport mechanisms. According to the Kaplan wetland map, potential natural wetlands in Europe concentrate over western

regions of Russia. Yu et al. (2022) suggest that northern temperate wetland emissions in Russia show strong sensitivity to

both hydrology and temperature. On the other hand, winds may disperse CH4 concentrations out of the study region, thus

reducing drastically the XCH4 concentrations over specific regions. Both the observed and simulated wind patterns over

central Europe show that, between May and August of 2018, air masses flowed mostly southeast-southwest (see Figure S23

in the Supplement), deflecting that way most of the air coming from wetland areas. A recent study conducted by Karoff and

Vara-Vela (2023) found that the XCH4 concentrations over wetlands in Europe are lower than the average XCH4 levels for

all the land cover types analysed. They recommend, however, that before this result is verified with obervations from other

satellite instruments, the TROPOMI XCH4 measurements over wetlands need to be handled with caution.
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Figure 8. Temporal mean spatial distributions with and without smoothing of simulated XCH4 concentration (panels (a) and

(e)), XCH4 enhancement above background (EAB) (panels (b) and (f)), XCH4 enhancement from human activities (EHA)

(panels  (c)  and  (g)),  and  contribution  of  anthropogenic  sources  to  the  XCH4 concentration  (panels  (d)  and  (h)).

Concentrations were averaged for grid points with satellite measurements during the period from May 1 to August 31, 2018,

months with the best model performance for smoothed concentrations (see Fig. 4).

5 Summary and conclusions

A new CH4 inversion system for Europe is being implemented in order to evaluate CH4 emission estimates from different

sources,  with a  focus  on anthropogenic  activities.  In  this  first  part,  the forward  modeling component  of  the system is

introduced and evaluated against CH4 column-averaged dry air mole fractions (XCH4) and near-surface CH4 observations.

To that end, sets of 97-hour simulations for one-year simulation period from April 01, 2018 to March 31, 2019, were run

using the WRF greenhouse gases model coupled to a multipurpose global database of CH4 anthropogenic emissions. CH4

fluxes  from  biogenic  sources  were  calculated  online  in  the  simulations,  whereas  fluxes  from  biomass  burning  were

externally prepared based on a satellite-based emissions preprocessor. Model results were evaluated against Netherlands

Institute for Space Research (SRON) S5P-RemoTeC XCH4 (v17) concentrations, as well as against CH4 Level 2 data from
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Integrated Carbon Observation System (ICOS) stations. Simulated XCH4 concentrations without  taking into account the a

priori information and averaging kernels from satellite retrievals were also computed to evaluate smoothing effects. 

Model-observation discrepancies on near-surface CH4 concentration (10 m) indicate a significant overestimation on

the order of 200-300 ppb during winter months.  Comparatively, model-observation discrepancies on CH4 concentration at

upper levels  (50 and 100 m) were noticeably reduced with increasing height. The bias reductions in this case are attributed

to a diminishing influence of surface emissions on both magnitude and variability of CH4 concentrations. In terms of XCH4, a

better representation was found with the simulated profiles without smoothing – it was related to a CH 4 offset (against the

anthropogenic  emissions  contribution)  as  the  atmospheric  layer  above  the  model  top  was  not  vertically  integrated  in

Equation (3). Based on the smoothed concentrations, model-observation discrepancies reached their maximum values during

winter months (differences in median concentrations between 40-50 ppb), while they reached their minimum values during

summer peak season (differences in median concentrations between 20-30 ppb). Domain-wide correlation coefficients and

root-mean-square-errors ranged from 0.4 to 0.5 and from 27 to 30 ppb, respectively, for summer months, and from 0.1 to 0.4

and from 33 to 50 ppb, respectively, for winter months. The higher model-observation discrepancies on XCH4 concentration

found during winter  months are largely related to  a  significant  overestimation of  anthropogenic emissions;  however,  a

systematic bias related to background signals should be also embedded in the model bias, in both scenarios with and without

smoothing.  The  XCH4  enhancement above background  concentrations depended  almost entirely on the  CH4 contribution

from anthropogenic sources;  however,  these sources contributed with only up to 2% to the  XCH4 concentration.  XCH4

signals from natural sources (wetlands and termites) and biomass burning were not relevant during the study period. 

The results found in this study are in line with previous studies conducted over urban areas in central Europe, and

thus,  demonstrate  a huge  potential  for CH4  inverse  modeling  using  updated  TROPOMI XCH4  data  sets  in  large-scale

applications. As discussed in section 3, model results suggest a significant overestimation of anthropogenic emissions during

winter months. Then, for a better constraint of monthly country-scale fluxes of CH4, an inverse analysis method taking full

advantage of all satellite data available for a given month might provide much more accurate emission estimates.  Ongoing

work is being conducted in this direction and will be published in a second part.

Code and data availability

The  WRF-Chem  model  code  version  4.3  is  freely  distributed  by  NCAR  at

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html.  The  WRF-Chem  preprocessor  tools  anthro_emis,

fire_emis  and  mozbc are  provided by NCAR at  https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community.  Run

control files, preprocessing and postprocessing scripts, as well as relevant primary input/output data sets needed to replicate

the modeling results in this work can be found in the following Zenodo repository: https://doi.org/10.5281/zenodo.7899895

(Vara-Vela et al., 2023).
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Appendix A: Model running process

As a detailed description on how to run WRF-GHG can be found in Beck et al. (2011), only the initialization process, which

can vary depending on specific requirements, is summarized here. Firstly, moving simulations of 97 hours were performed

automatically for each month so that the number of 97-hour simulations in a given month constitute a cycle in our automated

bash  routines.  Each  cycle  begins,  through its  first  moving  simulation,  with  initial  and  boundary  conditions  previously

prepared from a 7-day simulation which ends at the initialization time of the cycle, at YYYY-MM-DD 00:00:00 (according

to WRF-GHG date and time format). Most of this 7-day simulation is discarded as spin-up time and only the last hour is

saved to be used as initial conditions in the first moving simulation. Then, when the first moving simulation ends, the second

one begins right after it with initial conditions prepared from the first moving simulation at YYYY-MM-D+1 00:00:00, and

goes ahead up to complete a 97-hour simulation length at YYYY-MM-D+5 00:00:00. The third moving simulation will begin

right after the second one ends, with initial conditions prepared from the second moving simulation at YYYY-MM-D+2

00:00:00, and will go  ahead up to complete a 97-hour simulation length at YYYY-MM-D+6 00:00:00. This process will

continue up to complete the cycle, with the same procedures being applied to the other 11 remaining cycles. The boundary

conditions  are  prepared  from  CAM-chem  data  during  the  preprocessing  part  in  each  moving  simulation.  With  this
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methodology, all satellite data available for a given month could potentially be ingested in sets of up to 73-hour backward in

time simulations. As the first day of each moving simulation is used as spin-up time, it is discarded and only the second day

is used for model evaluation. The simulations were executed on LUMI (Large Unified Modern Infrastructure), which is a

pan-European pre-exascale supercomputer able to provide computing power of up to 552 petaflops. 
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