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Abstract.

The optimization of aircraft trajectories involves balancing operating costs and climate impact, which are often conflicting

objectives. To achieve compromise optimal solutions, higher-level information such as preferences of decision-makers must be

taken into account. This paper introduces the SolFinder 1.0 module, a decision-making tool designed to identify eco-efficient

aircraft trajectories, which allow to reduce the flights climate impact with limited cost penalties compared to cost-optimal so-5

lutions. SolFinder 1.0 offers flexible decision-making options that allow users to select trade-offs between different objective

functions, including fuel use, flight time, NOx emissions, contrail distance, and climate impact. The module is included in the

AirTraf 3.0 submodel, which optimizes trajectories under atmospheric conditions simulated by the ECHAM/MESSy Atmo-

spheric Chemistry model. This paper focuses on the ability of the module to identify eco-efficient trajectories while solving a

bi-objective optimization problem that minimizes climate impact and operating costs. SolFinder 1.0 enables users to explore10

trajectory properties at varying locations of the Pareto fronts without prior knowledge of the problem results and to identify

solutions that limit the cost of reducing the climate impact of a single flight.

1 Introduction

Aviation is estimated to contribute to 3-5% of the total anthropogenic global warming (Lee et al., 2021). Aircraft emissions

affect the radiative budget of the Earth through several effects, which are usually distinguished between carbon dioxide (CO2)15

and non-CO2 effects (Lee et al., 2010). Non-CO2 effects account for about 2/3 of the aviation net effective radiative forcing

(Lee et al., 2021) and include, among others: the radiative forcing from contrail cirrus (Schumann, 2005; Kärcher, 2018),

and the perturbations in the atmospheric concentrations of ozone (O3) and methane (CH4) caused by nitrogen oxide (NOx)

emissions (Stevenson et al., 2004; Köhler et al., 2008). The temperature perturbation resulting from CO2 emissions is only

dependent on the amount of emitted CO2, due to the long atmospheric lifetime of CO2. Contrarily, non-CO2 effects occur over20

short timescales, which typically range from hours (e.g., contrails) to months or years (e.g., NOx-induced changes on O3 and
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CH4). As a consequence, the temperature perturbation caused by an aircraft unit emission is highly dependent on the time and

location of the emission (Köhler et al., 2013; Frömming et al., 2021). Many studies investigated the possibility of using this time

and space dependency to reduce the climate effect of a flight, for example, by optimizing its trajectory to minimize the induced

temperature increase (Stevenson and Derwent, 2009; Sridhar et al., 2011; Grewe et al., 2017; Matthes et al., 2021; Simorgh25

et al., 2022b). Currently, air traffic optimization focuses on minimizing economic penalties, e.g., identifying aircraft trajectories

that lead to minimal operating cost. Minimizing the operating cost and the climate impact of a single flight are expected to

be conflicting objectives of aircraft trajectory optimization (Yamashita et al., 2021). This implies that, in most cases, it is not

possible to identify a solution that simultaneously minimizes both objectives. Therefore, optimizing an aircraft trajectory with

respect to its economic cost and climate impact, a set of Pareto-optimal solutions can be identified. To select a single trajectory30

among this set of optimal solutions, a wide range of decision-making strategies can be employed (Kou et al., 2012; Pasman

et al., 2022). In this paper, we present a new decision-making tool, the SolFinder 1.0 module, which was developed with the

aim of identifying aircraft trajectories leading to a significant reduction of the flight climate impact, while limiting the increase

in economic costs: we define these options as eco-efficient aircraft trajectories. This tool satisfies the following requirements:

(1) it is applicable to any set of Pareto optimal solutions resulting from the optimization of a single aircraft trajectory; (2) it is35

suitable for identifying compromise solutions between any number of objective functions; (3) in particular, when applied for

the bi-objective optimization of operating cost and climate impact, it is capable of identifying eco-efficient solutions. To satisfy

these requirements, the following options have been selected and are available in the first version of SolFinder: (1) a strategy

relying on the VIKOR method (abbreviation from its Serbian name: Vlse Kriterijumska Optimizacija Kompromisno Resenje,

presented by Opricovic and Tzeng, 2004) to identify eco-efficient solutions; (2) a strategy selecting the Pareto-optimal solution40

closest to a target percentage change in one of the objectives, such as the economic costs; (3) a decision-making method

which combines the previous two options, applying the VIKOR method while limiting the change in one of the objectives. The

SolFinder module has been coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC, Jöckel et al., 2010) submodel

AirTraf (Yamashita et al., 2020), as part of the AirTraf extension for the efficient resolution of multi-objective optimization

problems. This modelling chain allows to select Pareto-optimal solutions matching specific preferences of decision-makers,45

e.g., eco-efficient aircraft trajectories, and to explore their dependency on the atmospheric natural variability.

In Sect. 2, we describe the modelling chain, and we present the decision-making strategies included in SolFinder 1.0 (Sect.

2.3). In Sect. 3, we illustrate an example application of the selected decision-making strategies, using the Pareto-optimal

solutions that are identified by AirTraf when a European air traffic sample of 100 night-time flights is optimized with respect

to economic cost and climate impact. In Sect. 4, we compare our results to those obtained in previous studies, and we discuss50

uncertainties affecting our results. Our key messages are summarized in Sect. 5.

2 Methods

We conduct our simulations using the ECHAM/MESSy Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010). This

is a numerical climate model system that includes sub-models describing tropospheric and middle atmosphere processes and
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their interaction with oceans, land and human influences (Jöckel et al., 2010). This system relies on the second version of the55

Modular Earth Submodel System (MESSy2) to connect multi-institutional computer codes, while the core atmospheric model

is the 5th generation European Centre Hamburg general circulation model (ECHAM5, Roeckner et al., 2006). Fig. 1 illustrates

the relation between the EMAC model and the three submodels that have a major relevance in our experiments: CONTRAIL

(Frömming et al., 2014), ACCF (Yin et al., 2023), and AirTraf (Yamashita et al., 2020).

Figure 1. Overview of the relations between EMAC and the three submodels CONTRAIL, ACCF, and AirTraf. The present study focuses

on the description of the decision-making module SolFinder 1.0, which is highlighted in red in the diagram.

The EMAC model provides the atmospheric conditions at a specific time and location. The CONTRAIL submodel computes60

the potential contrail coverage (determination of persistent contrails formation), which is used as input for the ACCF and

AirTraf submodels. The ACCF submodel employs the algorithmic Climate Change Functions (aCCFs) in order to deliver

the estimated spatially and temporally resolved climate effect of aviation emissions to AirTraf; lastly, the AirTraf submodel

identifies the optimal aircraft trajectories with respect to the routing strategy selected by the user. The optimization process is

performed in two steps: (1) a genetic algorithm - Adaptive Range Multi-Objective Genetic Algorithms (ARMOGA, Sasaki and65

Obayashi, 2005) - is employed to solve a single- or multi-objective optimization problem; (2) if a multi-objective optimization
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is solved, it is possible that more than one optimal solution is found, thus a decision-making module (SolFinder) intervenes to

select a single recommended trajectory,based on the preferences of the user.

2.1 Base model configuration

For the present study, we applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.54.0) in the T42L31ECMWF-resolution.70

This resolution has a spherical truncation of T42 (corresponding to a quadratic Gaussian grid of approximately 2.8 by 2.8 de-

grees in latitude and longitude), and includes 31 vertical hybrid pressure levels up to 10 hPa (i.e., to an altitude of approximately

30 km). We describe the model output obtained by simulating the atmospheric conditions occurring from 1 January 2018 to

31 January 2018, employing a temporal resolution of 12 minutes, and nudging the prognostics variables divergence, vorticity,

temperature and the (logarithm of the) surface pressure down to the surface towards the respective ECMWF ERA-Interim75

reanalysis data (Dee et al., 2011; Jöckel et al., 2016).

2.2 AirTraf submodel

The air traffic simulator AirTraf is responsible for the optimization of the aircraft trajectories, according to the routing strategy

prescribed by the user. The submodel requires as input information on (1) the atmospheric conditions at the time and location

of the flight, provided by the EMAC model, and on (2) the air traffic sample, including the location of the airports of departure80

and arrival, the departure time of each flight, and characteristics of the aircraft and engine type to be simulated (Yamashita

et al., 2016). Once this information is collected, the genetic algorithm (ARMOGA, Sasaki and Obayashi, 2005) intervenes

to identify an optimal trajectory. The number of design variables of the optimization problem is fixed to 11, since the model

describes each aircraft trajectory as a B-spline curve defined by three control points on the horizontal domain (three pairs

of coordinates) and five on the vertical cross-section (as illustrated in Yamashita et al., 2016, Fig.6). The domains of the85

horizontal control points are centered on the great circle connecting the airports of departure and arrival, while the vertical

control points are bounded by the flight levels at 29000 ft (FL290) and at 41000 ft (FL410), corresponding to altitudes of

about 8.8-12.5 km. To calculate the flight properties along a candidate trajectory, the path is divided in flight segments by

nwp = 101 waypoints. The version AirTraf 2.0 presented by Yamashita et al. (2020) allowed the user to solve single-objective

optimization problems, minimizing one of several available objective functions, including fuel use, flight time, NOx emissions,90

contrail distance, operating costs, and climate impact. AirTraf is being expanded to use the same optimization method for the

efficient resolution of multi-objective optimization problems. As a result, it is possible to simultaneously optimize two or more

objective functions, without combining such functions into a single objective. This is particularly convenient when we aim to

identify eco-efficient aircraft trajectories under a large number of weather conditions. In facts, a conversion factor would be

necessary to combine climate impact and operating costs into a single objective functions. However, this factor (e.g., as defined95

by Simorgh et al. (2022a), Eq.7) is affected by a large variability over different flights and days, thus it is difficult to find a

general value of the factor which can be applicable to optimize large air traffic samples over long-term simulations. Due to this

AirTraf expansion for the resolution of multi-objective optimization problems, a decision-making module became necessary

to ensure that a single optimal solution is identified, and its properties are evaluated and stored by the model. This task can be
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performed by the SolFinder 1.0 module presented in this paper. Therefore, SolFinder has been coupled to AirTraf to select one100

optimal solution from the full Pareto set, reducing the computational effort of the model.

In the development of the decision-making strategies implemented in SolFinder 1.0, the underlying goal has been to find

eco-efficient aircraft trajectories, compromising between the optimization of climate impact and operating costs. Hence, we

include here the definitions of these objective functions within AirTraf. The economic costs of the flights are represented by

the Simple Operating Costs (SOC), defined as in Eq. (1):105

SOC = ct

nwp−1∑

i=1

TIMEi + cf

nwp−1∑

i=1

FUELi (1)

where TIMEi and FUELi represent the flight time and fuel used at the ith flight segment, respectively, while ct = 0.75 $/s and

cf = 0.51 $/kg are the unit time and unit fuel costs (Burris, 2015; Yamashita et al., 2020). The climate impact of each aircraft

trajectory is measured in terms of Average Temperature Response over 20 years (ATR20), as provided by the ACCF submodel

(van Manen and Grewe, 2019; Yin et al., 2023). The total climate impact ATR20tot of each aircraft trajectory is determined110

summing the contribution from the main climate effects:

ATR20tot =
nwp−1∑

i=1

[
ATR20CO2,i + ATR20H2O,i + ATR20NOx-O3,i + ATR20NOx-CH4,i + ATR20contrails,i

]
(2)

where each addend represents, from left to right, the ATR20 at the ith flight segment from (1) carbon dioxide (CO2), (2)

water vapour (H2O), (3) ozone (O3) from emission of NOx, (4) methane (CH4) from emission of NOx, and (5) contrails. The

term ATR20NOx-CH4,i includes the changes in primary mode ozone induced by the reduced CH4 atmospheric concentration,115

while it neglects the feedback from stratospheric water vapour (Yin et al., 2023). The present study uses ATR20 as climate

metric, assuming a business-as-usual Future emission scenario (F-ATR20). Alternative climate metrics can also be used, e.g,

considering a time horizon of 100 years (ATR100). A detailed description of the climate metric conversion is presented in

Dietmüller et al. (2022).

2.3 SolFinder module120

In this section, we describe the decision-making strategies implemented in SolFinder 1.0. Our aim is to solve a multi-objective

optimization problem minimizing a set of N objective functions fn, with n = 1,2, ...,N . If two or more objective functions

are conflicting, a set of Pareto optimal solutions, P , is identified. The values fn,j of the objective functions are assigned

to each Pareto-optimal solution pj ∈ P , with j = 1,2, ...,J . Subsequently, a decision-making strategy intervenes, to select

one solution prec ∈ P which is the recommended solution according to the decision-maker criteria. We include the following125

strategies towards the resolution of our problem: (1) option selecting a solution based on its weighted distance from an ideal

(usually, not feasible) solution (VIKOR method, Sect. A) for the identification of eco-efficient trajectories (Sect. 2.3.1); (2)

option leading to a target percentage change in one of the objective functions, with respect to its minimum value (Sect. 2.3.2);
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(3) option combining the previous two strategies, limiting the change in one of the objective functions while applying the

VIKOR method (Sect. 2.3.3); (4) selection of one of the extremes of the Pareto-optimal set (Sect. 2.3.4).130

A large variety of multi-criteria decision-making methods is currently available to select one solution among a set of optimal

options (Wang and Rangaiah, 2017; Sałabun et al., 2020). In a preliminary phase of our research, we considered different

options among the most popular techniques, including GRA (Grey Relational Analysis, Wang and Rangaiah, 2017), TOPSIS

(Technique for Order Preference by Similarity to Ideal Solution, Chen and Hwang, 1992), and VIKOR (abbreviation from

its Serbian name: Vlse Kriterijumska Optimizacija Kompromisno Resenje, Sect. A). These options have been implemented135

in a python library1, in order to apply them on test cases, and compare their effectiveness in identifying eco-efficient aircraft

trajectories. We identified the VIKOR method (Opricovic, 1998; Opricovic and Tzeng, 2004) as a suitable candidate to translate

our definition of eco-efficient solutions into a decision-making algorithm. This is due to its peculiarity of recommending more

than one solution, if certain criteria are not met by a single solution (Sect. A). This allows to flexibly identify a region of the

Pareto-front (e.g., the section of the Pareto-front leading to a small change in the economic costs), within which the decision140

maker is able to choose their preferred solution (e.g., the solution with the largest climate impact reduction). Moreover, no a

priori knowledge on the optimization problem expected results is needed. To apply the VIKOR method, only the following

information is provided as input, translating the user preferences in mathematical terms:

– the relative importance of N objective functions, represented by the weights wn ≥ 0, such that
∑

n wn = 1, with n =

1,2, ...,N .145

– the relative importance of group utility (preference towards achieving the greatest benefit) and individual regret (pref-

erence towards avoiding large penalties), represented by the parameter γ, with 0 < γ < 1. If γ > 0.5, the majority rule

principle is applied; contrarily, γ < 0.5 implies the application of the veto principle; lastly, γ ≈ 0.5 represents a voting

by consensus strategy (Opricovic and Tzeng, 2004).

2.3.1 Strategy using VIKOR method to identify eco-efficient trajectories150

The SolFinder 1.0 module identifies eco-efficient trajectories using a decision-making option based on the VIKOR method

described in Sect. A. Fig. 2 illustrates how this decision-making strategy is applied using as example the bi-objective opti-

mization of a flight with respect to its SOC and ATR20. Firstly, the decision-making module collects all the Pareto-optimal

solutions (represented by the red dots in Fig. 2a). Subsequently, the VIKOR method is applied according to the prescribed

values of the parameter γ and the relative weights wn (Fig. 2b). This leads to a recommended subset of optimal solutions (rep-155

resented by the red dots in Fig. 2c). If the VIKOR method identifies more than one recommended solution, i.e., the solutions

pv (v = 1,2, ...,M) are equally recommended, the model selects the one with the minimum value of the objective function as-

signed to the lowest weight wn. In Fig. 2d, the objective with the lowest relative weight is ATR20 (wATR20 = 0.3,wSOC = 0.7),

thus the model selects the point among the recommended solutions (indicated by the green crosses in Fig. 2d) with the lowest

ATR20 (red dot in Fig. 2d).160

1See Supplement material and (Castino, 2023).
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The motivation to this last step in Fig. 2d is due to our goal of identifying eco-efficient aircraft trajectories. In fact, the

resulting strategy can be configured to follow the following steps:

1. A bi-objective optimization problem is solved to simultaneously minimize the total climate impact (ATR20tot as defined

in Eq. (2)) and operating costs (SOC, Eq. (1)). This step results in the identification of J Pareto-optimal solutions (Fig.

2a).165

2. The VIKOR method is applied (Fig. 2b).

3. A set of equally recommended solutions are selected in the sections in the Pareto front closest to the cost-optimal

solution, by assigning a relatively high weight to the operating costs, i.e., wSOC > 0.5 (with γ = 0.5). Depending on the

shape of the Pareto front, this set of solutions extends towards the best ideal solution, ibest, allowing for higher climate

impact reductions with respect to the cost-optimal solution, while avoiding cost penalties that are not compensated by a170

climate impact reduction (Fig. 2c).

4. Among this set of equally recommended solutions, the solution leading to the largest climate impact reduction with

respect to the cost-optimal solution is selected, since wATR < wSOC. We define this point as the eco-efficient solution

among the set of Pareto optimal options (Fig. 2d).
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Figure 2. Illustration of the steps performed by the eco-efficient decision-making strategy relying of VIKOR. The aircraft trajectories are

optimized to minimize SOC and ATR20, resulting in a set of Pareto-optimal solutions (grey crosses). We set wSOC = 0.7, wATR20 = 0.3,

γ = 0.5. Panel a) shows the Pareto-optimal solutions (red dots) collected before applying the decision-making strategy. Panel b) illustrates the

application of the VIKOR method, thus the axes are scaled as in Fig. A1. This step results in the identification of the subset of recommended

solutions, represented by the red dots in panel c). Panel d) shows the selected solution (red dot) among the subset of recommended solutions

(green crosses).
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Sensitivity of VIKOR parameterization175

To understand the effectiveness the VIKOR method with various configurations of γ and w, we take as example a set of

Pareto-optimal solutions, resulting from the bi-objective optimization of an aircraft trajectory with respect to the SOC and

ATR20 of the flight. Within this set, a subset of solution is recommended by the VIKOR method with different values of γ

and w = [wSOC, wATR20]. The results of this analysis are shown in Fig. 3. Firstly, we can notice that the application of the veto

principle (γ < 0.5, Fig.s 3a, 3d, 3g, 3l) leads to the exclusion of elements located in the external sections of the Pareto-front.180

When a high value is assigned to ART20 (wATR20 = 0.8), and the veto principle is not applied (γ ≥ 0.5), the method selects the

section of the Pareto-front including the solution minimising ATR20 (Fig. 3b, 3c). Similarly, when wSOC = 0.8 and γ ≥ 0.5,

the solution with minimum SOC is included in the set of Pareto-optimal solutions (Fig. 3m, 3n).

This observation is the base for the definition of eco-efficient solution given at the end of Sect. 2.3.1, i.e., the solution

selected with a high relative weight of SOC (wSOC larger than 0.5) and γ = 0.5. Following this definition, the selected solution185

shown in Fig. 3m (represented by a red dot) is an eco-efficient solution. In fact, this solution leads to the maximum ATR20tot

reduction among the subset of the solutions recommended by VIKOR (green dots), while being equally recommended as the

cost-optimal solution by the VIKOR method. In other words, the selected solution in Fig. 3m follows the definition of eco-

efficient solutions given in the Introduction, i.e., it allows for a significant reduction in the flight climate impact, while avoiding

significant increases in operating costs. However, we note that determining the values of γ and w remains an arbitrary choice,190

which reflects the specific preferences of the decision-maker. Further elements to consider when setting these parameters are

discussed later in Sect. 3.
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Figure 3. Variability of the selected solution (red dots) using the eco-efficient decision-making method. The grey dots represent the Pareto-

optimal solutions, while the green triangles indicate the subset of solutions recommended by the VIKOR method. The axes show percentage

changes in the objective functions, relative to the solution minimizing SOC. In this example, the Pareto front consists of 308 solutions.
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2.3.2 Target percentage change in one of the objective functions

In some scenarios, the decision maker requires to limit the penalty of one of the objective functions, e.g., to avoid unsustainable

increases in the operating costs. Therefore, in the second decision-making strategy, we propose to select the solution prec leading195

to a percentage change in one of the objective functions, fp. On the other hand, to obtain the expected outcome, this option

requires certain information on the optimization results to be known before solving the problem, such as the typical shape of

the Pareto fronts, and reference values at their extreme points. The threshold for the allowable change is specified as a target

value xt. This is translated in the following process:

fp,ref = min
j

fp,j , j = 1,2, ...,J (3)200

xj = 100 ∗ fp,j − fp,ref

fp,ref
(4)

∆xj = |xj −xt| (5)

(6)

Therefore, the selected Pareto-optimal solution prec ∈ P is the solution corresponding to the relative change xrec, such that

∆xrec = minj ∆xj .205

Fig. 4 illustrates which solution is selected within a Pareto-optimal set resulting from the resolution of a tri-objective opti-

mization problem, simultaneously minimizing flight time, fuel use, and ATR20tot. In this example, xt = +0.5% is set as the

target percentage change in flight time.

Figure 4. Example of selecting the solution among the Pareto-surface matching a target increase in 0.5% in flight time (indicated by the red

cross). The green dots indicate the Pareto-optimal solutions, which result from a tri-objective optimization problem minimizing flight time,

fuel use, and ATR20tot.

2.3.3 Hybrid option: VIKOR method with target percentage change in one of the objectives

To combine the advantages of the two decision-making strategies presented, a hybrid option is considered, limiting the vari-210

ability in one of the objective functions while applying the VIKOR method. When this strategy is selected, the decision-maker
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provides: (1) the configuration of the VIKOR method, setting the parameters γ and w, and (2) a target percentage increase xt

in the objective fp. Subsequently, the following decision-making process is followed:

1. Apply the VIKOR method and select the recommended solution minimizing the objective function having the lowest

weight wn, as described in Sect. A.215

2. Calculate xp, representing the relative change in fp of the recommended solution with respect to the minimum value of

fp.

3. If xp > xt, replace the recommended solution identified in step 1. with the the Pareto-optimal solution leading to a target

percentage change xt in the objective function fp (in other words, apply the strategy described in Sect. 2.3.2).

This strategy addresses the fact that, with the VIKOR method, no limit in the percentage increase of the objective is set, thus220

a fraction of the solutions can be affected by changes much larger than the average, as it is shown in a later section of this paper

(Sect. 3.2, Fig. 7). With this hybrid option, the VIKOR method can be employed to identified eco-efficient trajectories, while

introducing a constraint on the operating costs, to prevent increases in the operating costs of some flights that the decision

maker does not accept.

2.3.4 Selecting one extreme of Pareto-optimal set225

Lastly, an additional option is considered to select a solution minimizing one of the objective functions fn, which we indicate

as fmin. This simple decision-making process selects the optimal-solution corresponding to the result of a single-objective

optimization minimizing fmin. Nevertheless, it can be useful to implement this method to identify which values are used as

reference during the resolution of the multi-objective optimization problem, and to verify the performance of the model.

3 Application of decision-making method to analyse trajectories variability along Pareto-front230

We now present an example study, in which different settings of the decision-making strategies are compared. This application

exemplifies how the decision-making strategies can be employed, and what to consider to determine the settings that best

translate the decision-maker preference. In this example, we focus on the suitable settings to identify eco-efficient aircraft

trajectories. Nevertheless, SolFinder can also be used to comply with alternative decision-making preferences, by changing the

settings of AirTraf and SolFinder.235

3.1 Simulations set-up

As previously stated, we intend to identify eco-efficient aircraft trajectories, i.e., trajectories reducing the climate impact at

limited changes in the operating costs. Therefore, we solve a bi-objective optimization problem, aiming to simultaneously

minimize SOC and ATR20, as defined in Sect. 2.2. We conduct one-month simulations, from 1 January 2018 to 31 January

2018. On each simulation day, 100 night-time flights departing at 00:00 UTC are optimized. Fig. 5 shows the locations of240
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the airports of origin and destination, which were selected considering the Available Seat Kilometres (ASK) for the European

Civil Aviation Conference (ECAC) area in 2018 (Matthes et al., 2023a). The same criterion was used to select the A320-214

(CFM56-5B4) as the aircraft/engine type to be simulated. The climate impact of each aircraft trajectory is estimated using the

aCCF 1.0A (Matthes et al., 2023b). Table 1 summarizes the model configuration.

Figure 5. Location of the 100 flights included in the air traffic sample. Each curve represents the great circle connecting an origin/destination

pair. Note that most origin/destination pairs are connected by two flights, i.e., one for each direction, thus the number of curves is lower than

100.

To compare the effects of using different decision-making strategies, we perform two sets of experiments, whose character-245

istics are summarized in Table 2, and explained below:

1. In the first set of experiments, the VIKOR method is employed as we described in Sect. 2.3.1, fixing γ = 0.5 and varying

the relative weight wSOC between 0.2 and 0.9 (Table 2). Therefore, we obtain a total of six selected trade-off solutions.

The density of wSOC values increases for higher values of wSOC, as these values lead to the selections of solutions in the

section of the Pareto-front of major interest when searching for eco-efficient trajectories, that is, the section closer to the250

cost-optimal solution. Additionally, we select the two solutions located at the Pareto-front extremes, i.e., the cost-optimal

and climate-optimal solutions, with the routine mentioned in Sect. 2.3.4. No preliminary knowledge about the expected

problem results is needed to conduct these simulations. As a result of this first set of experiments, for each optimized

flight we obtain information on eight solutions that determine the shape and extension of the Pareto-fronts relative to

individual flights, and the relation between penalties and benefit aggregated over the whole air traffic sample.255

2. In the second set of experiments, we explore the effects of selecting a solution leading to a target change in SOC (Sect.

2.3.2). The target values are chosen using the results form the first set of experiments, which obtained average SOC

increases up to about +3.0% (see Table 3 and Fig. 6). In light of these results, we vary xt from 0.5% to 3.0% (Table
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Table 1. Main settings of ECHAM5, ACCF, and AirTraf.

ECHAM5

Horizontal resolution T42 (2.81◦× 2.81◦)

Vertical resolution L31ECMWF

(31 vertical pressure levels

up to 10 hPa ∼ 30 km )

Time step 12 min

Duration 1-31 Jan. 2018 (each day, 1 month)

ACCF

Version aCCFs V1.0A

Climate metric F-ATR20

Forcing efficacy Included

AirTraf

Trajectory waypoints 101

Aircraft / Engine A320-214 (CFM56-5B4)

Air Traffic Sample Top 100 routes by ASK

for the ECAC area in 2018

Departure time 00:00

Optimization strategy Multi-objective optimization of:

(1) SOC, (2) ATR20tot

2), selecting four solutions per flight. Moreover, we set wSOC = 0.7 to exemplify the effects of using the option of using

VIKOR while setting a target SOC change (Sect. 2.3.3) of +1.0%.260

3.2 Results

As explained in Sect. A, one of the main advantages of the VIKOR method is that no knowledge of the expected results

is needed before solving our problem. For this reason, the first set of experiments applies the VIKOR method with a range

of values of the parameter wSOC. This enables us to perform a preliminary examination of the characteristics of the relation

between benefit (in our application, ATR20tot reduction) and penalty (increase in SOC). Relatively to our problem, this relation265

is shown in Fig. 6, illustrating the change in SOC that is required to achieve a certain reduction in ATR20. The grey curves are
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Table 2. Overview of the two sets of experiments performed to exemplify the use of the different decision-making methods.

Set SolFinder strategy Num. selected sol. Parameter Description Value(s)

1 VIKOR method 6 γ Group utility weight 0.5

for eco-eff. wSOC Rel. weight of SOC 0.2, 0.4, 0.6, 0.7, 0.8, 0.9

wATR Rel. weight of ATR20tot 1−wSOC

Pareto-front 2 fmin Minimized objective ATR20tot or SOC

extremes

2 Target change in fp 4 fp - SOC

xt Target change [%] 0.5, 1.0, 2.0, 3.0

Hybrid VIKOR-target 1 γ Group utility weight (VIKOR) 0.5

option wSOC Rel. weight of SOC (VIKOR) 0.7

wATR Rel. weight of ATR20tot (VIKOR) 1−wSOC

fp objective with limited changes SOC

xt Limit and target change [%] 1.0

obtained aggregating the 100 Pareto-optimal solutions selected using the VIKOR method on each simulation day, varying the

relative weight wSOC of the objective function SOC. The coordinates of the points connected by the black line (representing

the average relation over the 31 simulated days) can be found in Table 3. Setting a low value of wSOC (e.g., wSOC = 0.2), we

obtain a reduction in ATR20tot of about 13%, which is almost as large as the maximum potential reduction achieved selecting270

a climate-optimal routing strategy. Moving along the curve towards the cost-optimal strategy, the magnitude of the ATR20tot

reduction decreases. This occurs with a simultaneous decrease of the cost per Kelvin reduction in climate impact, measured by

the climate-cost coefficient k [$/K] (Table 3). This coefficient is defined as (Matthes et al., 2017):

k =
SOC−SOCcost-opt

ATR20cost-opt−ATR20
(7)

where ATR20cost-opt and SOCcost-opt are relative to the cost-optimal solution, while ATR20 and SOC are relative to the consid-275

ered decision-making strategy. From this first set of experiments, we understand that: (1) the average ∆ATR20tot ranges from

-3.5 to -14.4%, with an increase in SOC of 0.1-3.0%, respectively; (2) about half of the maximum feasible climate change

reduction can be achieved with only +0.5% in SOC.

As previously mentioned, the red and green points highlighted in Fig. 6 result from summing all the solutions selected for

the 100 flights, and averaging over the month of simulation. However, each optimized trajectory is characterised by a different280

change in ATR20tot and SOC with respect to its corresponding cost-optimal solution. We note here that this cost-optimal

solution (shown in red in Fig. 6), which we take as reference to calculate the relative changes in ATR20tot and SOC, is specific

to each route and each simulation day, thus it varies between different flights. The distributions of ∆ATR20tot and ∆SOC
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Figure 6. Relation between the relative changes in climate impact, ∆ATR20tot [%], and in simple operating cost, ∆SOC [%], with respect

to the cost-optimal solution. The values are obtained summing over the 100 routes optimized per day. The black line illustrates the average

values over the 31 days included in the simulations, connecting the points selected varying the VIKOR weight wSOC from 0.2 to 0.9 (green

dots). The extremes of the Pareto fronts (climate- and cost-optimal solutions, red dots) are included. The gray lines represent the Pareto fronts

obtained on each simulation day.

values across the optimized flights are represented in Fig. 7, which compares the results obtained varying the parameter wSOC

applying the VIKOR method, and the climate-optimal scenario. Fig. 7b shows the percentage of flights characterized by a285

certain ∆SOC. One can see that, employing VIKOR, the mode of each curve is close to ∆SOC ∼ 0%, while the mean and

maximum ∆SOC values increase when the weight wSOC decreases. Looking at the ∆ATR20tot distributions in Fig. 7a, we can

observe larger differences also in the modal values for varying wSOC.

The results of the first set of experiments can then be used to conduct the second set, fixing a target or a limit increase in

SOC as described in Sect. 3.1. The result of this second set of experiments are shown in Table 4. To illustrate the difference of290

employing different decision-making methods, it is useful to compare Fig. 7 with Fig. 8. The most evident difference emerges

comparing Fig. 7b with Fig. 8b. As intended, when we set a target increase in SOC (e.g., +1.0%), most of the selected flights

are affected by an increase in SOC equal or similar to the target, thus the curves are centered on this ∆SOC value. However,

we can also deduce that some Pareto-front do not extend to the target ∆SOC, since values of ∆SOC which are lower than the

target are assigned to a fraction of the flights. This results in average ∆SOC values that are lower than the targets, as we can295

see in Table 4. For example, a total increase of 0.8% in SOC is obtained, when the target is set to 1.0%. Moreover, Fig. 8b

shows what distribution of ∆SOC the user can expect employing the hybrid method described in Sect. 2.3.3. The histogram

relative to the hybrid option (yellow, hatch-filled) corresponds to the one obtained with VIKOR (with wSOC=0.7), with an
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Figure 7. Relative frequencies [%] of different values of ∆ATR20tot [%] (Fig. 7a), and of ∆SOC [%] (Fig. 7b) with respect to the cost-

optimal solution. The histograms compare the distributions of the values obtained with different decision-making strategies, considering the

100 flights optimized on each simulation day (31*100 values per histogram). The solutions are selected by identifying the minimum climate

impact (climate-optimal solutions), or employing the VIKOR method with varying wSOC (first set of experiments).

additional peak at the determined target SOC increase (1.0%), replacing the larger SOC increases observed in Fig. 7b. The

results illustrated in Figs. 7b and 8b confirm that the strategies available in SolFinder 1.0 are correctly implemented, and lead300

to the expected selection of Pareto-optimal solutions. Moreover, the possibility of relying on the VIKOR method to identify

eco-efficient trajectories is confirmed by Fig. 9. These curves represent the distributions of the climate-cost coefficient k [$/K],

obtained using VIKOR (blue curves) or the target SOC change (red curves). It is possible to observe that lower values of k are

obtained using VIKOR, in particular when a relatively high weight is assigned to SOC.

Figure 8. Relative frequencies [%] of different values of ∆ATR20tot [%] (Fig. 8a), and of ∆SOC [%] (Fig. 8b) with respect to the cost-

optimal solution. The histograms compare the distributions of the values obtained with different decision-making strategies, considering the

100 flights optimized on each simulation day (31*100 values per histogram). The solutions are selected by targeting different SOC changes,

or applying the hybrid method with wSOC=0.7 and xt = 1.0% (second set of experiments).
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Figure 9. Relative frequencies [%] of different values of the climate-cost coefficient k [$/K], comparing the SolFinder solution-picking

strategies using VIKOR (blue curves) or the target SOC change (red curves). The curves approximate the histogram outlines (connecting

the bars centers) to highlight the shapes of the distributions and facilitate their comparison. Each curve includes the values obtained with

different decision-making strategies, considering the 100 flights optimized on each simulation day (31*100 values per histogram).

Employing different decision-making strategies, we obtain trajectories which are characterized by different properties. How305

these properties vary is shown in Fig. 10, which compares the mean flight altitudes and flown distances obtained when different

decision-making strategies are selected. Firstly, we can notice that cost-optimal flights are characterized by the highest mean

flight altitudes and the shortest trajectories, to minimize fuel consumption. On the opposite situation, the lowest altitude and

the longest distances are obtained for climate-optimized flights. This confirms previous studies, which commented that (1)

aircraft emissions have lower climate impact at lower altitudes, e.g., due to shorter residence time of emitted species (Castino310

et al., 2021; Matthes et al., 2021; Frömming et al., 2012), and (2) lateral deviations may be necessary to avoid climate sensitive

regions (Matthes et al., 2020). Moreover, the variability of the flight properties across the set of simulated flights is larger for

climate-optimized flights than for cost-optimal ones. For example, comparing the different variability in flight altitudes, we

see the impact of the lowest aerodynamic drag, which allow to minimize fuel use, is systematically found at higher altitudes.

Contrarily, the altitude leading to the minimal ATR20 is highly variable, due to the high temporal and spatial variability of315

the atmospheric conditions determining the net flight ATR20. Trade-off solutions between these two extreme scenarios show

intermediate properties, with median values and interval bars which gradually evolve moving from one extreme of the curve in

Fig. 6 to the other. We can also see that employing the VIKOR method rather than fixing a target increase in costs can lead to

different tendencies in the average characteristics of the selected trajectories. For example, comparing the VIKOR method with

w = 0.4 (causing ∆SOC ∼ +1.2%, see Table 3) and setting a target +1.0% change in SOC, we can see that the latter strategy320

leads to a less frequent selection of lower flight altitudes, while flying longer trajectories, than the former case. Therefore, the

user is recommended to identify their preferred decision-making strategy by also considering these secondary aspects, and not

exclusively the resulting distributions in objective functions values.
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Figure 10. Variability of mean flight altitudes [km] (Fig. 10a) and flown distance [km] (Fig. 10b) when employing different decision-making

strategies. The flight altitudes are calculated averaging over each trajectory, and over the 100 flights optimized on each day. The flown

distances represent the total length of each trajectory, averaged over the 100 flights optimized on each simulation day. The boxes extend

between 1st and 3rd quartiles over time, and include segments marking the median values. The whiskers indicate the the distribution of the

remaining values (excluding eventual outliers).

Lastly, we analyse the contribution to the total change in ATR20 of each effect of aviation emissions that we considered in

our optimization process: CO2, H2O, contrails, NOx via perturbation of ozone, and NOx via methane depletion. The relative325

importance of these effects under different decision-making strategies is illustrated in Fig. 11.

Firstly, we can notice that the ATR20 from CO2 emissions increases moving from cost-optimal to climate-optimal and

compromise solutions. This increase is expected, as the climate impact of CO2 is independent from the background atmospheric

conditions at time and location of emission; thus it is simply proportional to the amount of fuel used, which is minimized by

cost-optimal flights. On the other hand, the increase in the ATR20 from CO2 is largely compensated by the reduction in the330
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Figure 11. Contribution of different climate effects of aviation to the absolute ∆ATR20 [K] when employing different decision-making

strategies. The horizontal, dotted line distinguish between solutions selected using VIKOR or climate-optimal solutions (upper section),

solutions selected targeting a SOC relative change (middle section), and solutions selected applying the hybrid method (lowest bar). The

vertical, dashed line separates positive (warming) from negative (cooling) values of ∆ATR20.

ATR20 from contrails and, secondarily, from the impact of NOx on ozone. Moreover, Fig. 11 shows that reduction in climate

impact of contrails becomes increasingly dominant over the reduction of the other effects, when the relative weight wSOC of

SOC increases. This aspect should be considered when selecting the preferred settings of the decision making strategy. For

example, if the decision-maker is interested in reducing both the climate impact of contrails and NOx-ozone via trajectory

optimization, this goal can be achieved allowing larger changes in SOC than those needed to only reduce the ATR20 from335

contrails effects. The dominant contributions of contrails and, secondarily, of the NOx climate impact to the ATR20 reduction

is confirmed by the results obtained optimizing aircraft trajectories with different tools (Lührs et al., 2021; Simorgh et al.,

2022b).

4 Discussion

In this paper, we illustrated the decision making strategies implemented in the SolFinder 1.0 module, and how they can be340

used to identify eco-efficient trajectories. The climate-optimization of aircraft trajectories has been increasingly researched in

the last decade, as efforts to reduce the climate impact of aviation lead to the investigation of operational mitigation strategies.

For example, Grewe et al. (2017) optimized a set of transatlantic flights during eight representative weather patterns in winter
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and summer, employing the air traffic simulator SAAM and the Climate Change Functions (CCFs). This study found that a

1.0% increase in operating costs allows to reduce the climate impact by 10%. In our study, we considered a different region345

of the airspace (European flights), and we included a larger number of weather patterns (every day in the month of January

2018), but limited to the winter season and to night-time; nevertheless, we found the results in Grewe et al. (2017) to be aligned

with those we presented in Sect. 3, since a ∆SOC∼+1.2% corresponds to a ∆ATR20∼−10.3% (Table 3). The maximum

feasible climate impact reduction is higher (about 20%) in Grewe et al. (2017), but this is achieved with an approximately

double increase in costs. The discrepancy in the section of the Pareto-front closer to the climate-optimal solution may be due350

to the different temporal and spatial domains. Under specific weather conditions, cost-benefit relations were found to show

higher eco-efficiency than what we found aggregating the model output over all the routes, and all the simulated days. For

example, Lührs et al. (2021) analysed a day characterised by a weather situation with strong contrail formation, and found that

a 0.75% increase in fuel used halved the climate impact. This study suggests the possibility of identifying weather situations

that allow for a higher eco-efficiency than others. The modelling chain presented in this paper enables us to optimize aircraft355

trajectories under a large number of different atmospheric conditions, within a feasible computational time. Therefore, on-

going research is using the newly developed version of AirTraf, coupled with the SolFinder module, to analyse under which

weather conditions eco-efficient aircraft trajectories are most likely to be identified. To this end, additional decision-making

strategies are being investigated, to exploit the ability of VIKOR to identify lower values of the climate-cost coefficient k than

a strategy applying a target increase in SOC to all flights (Fig. 9). Two candidate additional strategies are illustrated in Fig. 12.360

With these options, only a fraction of the flights identified by VIKOR is climate-optimized, due to an additional condition. This

is obtained setting a threshold value of the coefficient k, in order to climate-optimize only the top ranked half of the flights (Fig.

12a) or until a certain budget is spent (e.g, +0.5% of SOC in Fig. 12b). A disadvantage of these decision-making strategies is

that their settings configuration relies on information on the whole system of optimized flights, which is not available when

we consider the Pareto front resulting from a single-flight optimization. Therefore, preliminary simulations have to be run to365

derive some parameter values, for example the specific threshold value of the climate-cost coefficient k [$/K]. Because of the

large variability of k, these decision-making strategies are more reliant on the results obtained from previous simulations than

the strategies included in SolFinder 1.0.

The present work estimates the climate effect of aviation resulting from the emission of CO2, H2O, NOx, and from the for-

mation of contrail-cirrus. Estimating the radiative forcing caused by non-CO2 effects is a complex process, leading to results370

that are affected by large uncertainties due to, for example, incomplete scientific understanding and modeling capabilities (Lee

et al., 2021). As described in Sect. 3.1, we use the aCCFs version 1.0A to estimate the climate impact of aviation (Matthes et al.,

2023b), which are calibrated towards the results of a climate response model (AirClim, Dahlmann et al., 2016) to align the

relative importance of individual aCCFs. This is an update of the consistent set of aCCF 1.0 (Yin et al., 2023), calculating the cli-

mate impact of CO2, H2O, NOx-ozone, NOx-methane and contrails in terms of ATR20, assuming pulse emissions (P-ATR20).375

This prototype set of functions are the focus of on-going research, to address their sources of uncertainties. Moreover, we

employed factors to: (1) convert the aCCFs values to a different climate metric, F-ATR20, which assumes a business-as-usual

future emission scenario; (2) include the efficacy of each climate impact effect (Dietmüller et al., 2022). These assumptions
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Figure 12. Relation between the percentage changes in climate impact, ∆ATR20 [%], and in simple operating cost, ∆SOC [%], with respect

to the cost-optimal solution. The values are obtained aggregating the properties of all the optimized flights (31 days, 100 routes optimized

per day). The black curve connects the points obtained with the SolFinder strategy relying on VIKOR, while the blue line and points refer to

the SolFinder strategy targeting a fixed SOC change. The red lines refer to additional strategies considered for future versions of SolFinder:

optimization of the 50% of the flights best ranked by k (Fig. 12a), and optimization of the flights best ranked by k until an increase in SOC

of 0.5% is achieved.

introduce additional sources of uncertainties (Matthes et al., 2023a). Moreover, we note that we use a simplified representation

of the operating cost, to limit the computational time required for their evaluation within each optimization step. To this end,380

we assume a linear relationship between cost of time and flight time (see Eq. (1) and Yamashita et al., 2020). Therefore, we

neglect additional costs caused by delays.

5 Conclusions

In this study, we described the decision-making strategies implemented in the SolFinder 1.0 module. The SolFinder 1.0 module

has been coupled to the AirTraf 3.0 submodel, as part of its development to efficiently solve multi-objective optimization385

problems. AirTraf is coupled to an atmospheric chemistry model (EMAC): thus, using this modelling chain, we showed here

how the selected decision-making strategies can be used to identify solutions matching specific preferences (e.g., eco-efficient

aircraft trajectories), explore the results variability under different weather patterns. To demonstrate the usage of the tool, this

paper showed results for the period of one winter month (1-31 January 2018). We solved a bi-objective optimization problem

minimizing the climate impact of the aircraft trajectory (F-ATR20tot) and its simple operating costs (SOC), and we compared390

the solutions selected by different configurations of SolFinder 1.0. Comparing the strategies using VIKOR and a target change

in SOC, we found that lower values of the climate-cost coefficient k [$/K] (i.e., a higher eco-efficiency) are obtained with the

former option. The decision making strategies included in SolFinder 1.0 are applied on sets of Pareto-optimal solutions relative

to a single aircraft trajectory. In the next SolFinder versions, we plan to take into account the mitigation potential variability

across all flights. As a result, only the best performing fraction of the flights is optimized with respect to their climate impact,395

and the cost of the operational mitigation strategy is lowered. On-going research is using the modelling chain presented in
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this paper to identify those weather situations allowing for the largest reductions in the temperature response from aviation

emissions via the optimization of aircraft trajectories.

Code and data availability. The Modular Earth Submodel System (MESSy) is continuously further developed and applied by a consortium

of institutions. The usage of MESSy and access to the source code is licenced to all affiliates of institutions which are members of the400

MESSy Consortium. Institutions can become a member of the MESSy Consortium by signing the MESSy Memorandum of Understanding.

More information can be found on the MESSy Consortium Website (http://www.messy-interface.org). The code presented here has been

based on MESSy version 2.54.0 and will be available after the official release of AirTraf 3.0, a submodel of MESSy. An open access version

of SolFinder (see Supplement material) is available from the 4TU.ResearchData repository (Castino, 2023) under the licence GNU Lesser

General Public License v3.0, as are the scripts to produce the plots presented in this paper. The simulation output analysed in this paper is405

archived in the 4TU.ResearchData repository (Castino et al., 2023).

Appendix A: VIKOR method

In this Sect. A, we quote the steps characterizing the VIKOR method, as they were introduced and described in Opricovic

(1998) and Opricovic and Tzeng (2004). Fig. A1 illustrates the main working principles of the VIKOR method. The x-axis

represents the normalized distance from the minimum value of f1, scaled by its relative weight w1. As an example, this410

weight is set to w1 = 0.2, thus the x-axis ranges from 0 to 0.2. Similarly, the y-axis represents the normalized distance from

the minimum value of f2, weighted using w2 = 0.8. The axes intersect at the reference point ibest, defined as the best ideal

(i.e., usually not feasible) solution. Opposite to ibest, it is possible to identify iworst, which assumes the worst values of fn

(fn,worst) found among the set of Pareto-optimal solutions. For example, when aiming at minimizing fn, iworst corresponds

to the maximum fn among the Pareto set. The grey points in Fig. A1 indicate the location of the Pareto-optimal solutions,415

relative to ibest. In facts, the VIKOR method ranks the Pareto-optimal solutions using as reference point ibest. Hence, the first

step consists in identifying such reference point, by determining the best values of each objectives, fn,best. Since we aim to

minimize the objective functions, we use the following definitions of fn,best and fn,worst:

fn,best = min
j

fn,j , fn,worst = max
j

fn,j , n = 1,2, ...,N, j = 1,2, ...,J (A1)

In Fig. A1 we highlight the Pareto-optimal solution pj . In the second step of the VIKOR method, two quantities are calculated420

for each point in the Pareto set: S(pj), which measures the group utility of the solution pj , and R(pj), which represents its

individual regret. In other words, S(pj) measures the overall distance of pj from ibest, taking into account all the optimization

objectives. On the other hand, R(pj) measures the largest distance of pj from ibest considering each objective individually.

These quantities are defined by Eqs. (4) and (5), respectively:
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S(pj) =
N∑

n=1

wn
fn,best− fn,j

fn,best− fn,worst
(A2)425

R(pj) = max
n

[
wn

fn,best− fn,j

fn,best− fn,worst

]
(A3)

where wn is the relative weight of each objective fn.

The geometric representation of S(pj) and R(pj) is illustrated in Fig. A1. It is possible to deduce from Eqs. (4) and (5) and

from Fig. A1 that lower values of S(pj) and R(pj) are preferable. These measures of the distance of pj from ibest are combined

in the value Q(pj), which is used as main ranking parameter by the VIKOR method. The value of Q(pj) is calculated using430

Eq. (6):

Q(pj) = γ
Sj −minj Sj

maxj Sj −minj Sj
+ (1− γ)

Rj −minj Rj

maxj Rj −minj Rj
(A4)

Figure A1. Illustration of the VIKOR method applied to a bi-objective optimization problem, minimizing f1 and f2. In this example, we

set w1 = 0.2 and w2 = 0.8, thus the x (y) axis ranges from 0.0 to 0.2 (0.8). The grey dots represent Pareto-optimal solutions. The red cross

indicates the Pareto-optimal solution pj . The green dashed line represents S(pj), while the orange dotted segment represents R(pj). The

reference points ibest and iworst are indicated by the black triangle and black square, respectively.

The next step consists in creating three ranking lists of the Pareto optimal solutions, sorting them by S, R, and Q. We define

pi as the Pareto-optimal solution at the ith position in the list sorted by Q. Consequently, the first compromise solution to be

recommended is p1, which minimizes Q: Q(p1) = minj Q(pj). The following conditions are then evaluated:435

1. acceptable advantage: Q(p2)−Q(p1)≥ 1
J−1
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If this condition is not verified, a set of Pareto-optimal solutions pv (v = 1,2, ...,M) is recommended, where M is the

maximum value for which Q(pM )−Q(p1)≤ 1
J−1 is true.

2. acceptable stability: p1 is the best ranked solution not only by Q, but also by S and R.

If this condition is not satisfied, both p1 and p2 are recommended.440

Therefore, the application of the VIKOR method results in the identification of either one optimal solution, p1, or a subset

of optimal solutions, pv (v = 1,2, ...,M), which are recommended to the decision-maker.
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