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Abstract.

The optimization of aircraft trajectories involves balancing operating costs and climate impact, which are often conflicting

objectives. To achieve compromise optimal solutions, higher-level information such as preferences of decision-makers must

be taken into account. This paper introduces the SolFinder 1.0 module, a decision-making tool designed to identify eco-

efficient aircraft trajectories, which allow to reduce the
::
the

::::::::
reduction

:::
of

:::
the flights climate impact with limited cost penalties5

compared to cost-optimal solutions. SolFinder 1.0 offers flexible decision-making options that allow users to select trade-offs

between different objective functions, including fuel use, flight time, NOx emissions, contrail distance, and climate impact.

The module is included in the AirTraf 3.0 submodel, which optimizes trajectories under atmospheric conditions simulated by

the ECHAM/MESSy Atmospheric Chemistry model. This paper focuses on the ability of the module to identify eco-efficient

trajectories while solving a bi-objective optimization problem that minimizes climate impact and operating costs. SolFinder 1.010

enables users to explore trajectory properties at varying locations of the Pareto fronts without prior knowledge of the problem

results and to identify solutions that limit the cost of reducing the climate impact of a single flight.

1 Introduction

Aviation is estimated to contribute to 3-5% of the total anthropogenic global warming (Lee et al., 2021). Aircraft emissions

affect the radiative budget of the Earth through several effects, which are usually distinguished between carbon dioxide (CO2)15

and non-CO2 effects (Lee et al., 2010). Non-CO2 effects account for about 2/3 of the aviation net effective radiative forcing

(Lee et al., 2021) and include, among others: the radiative forcing from contrail cirrus (Schumann, 2005; Kärcher, 2018),

and the perturbations in the atmospheric concentrations of ozone (O3) and methane (CH4) caused by nitrogen oxide (NOx)

emissions (Stevenson et al., 2004; Köhler et al., 2008). The temperature perturbation resulting from CO2 emissions is only

dependent on the amount of emitted CO2, due to the long atmospheric lifetime of CO2.
::
To

::::::
reduce

::::
CO2:::::::::

emissions,
:::::::

several20

:::::::
solutions

:::
are

::::::::
currently

::::::
under

:::::::::::
development,

:::::::::
exploring,

:::
for

:::::::::
example,

:::
the

:::
use

:::
of

::::
new

:::::::::
propulsion

:::::::::::
technologies

:::
or

:::::::::
alternative

1



::::::
aviation

:::::
fuels

:::::::::::::::::::::::::::::::::
(Staples et al., 2018; Yin and Rao, 2020)

:
. Contrarily, non-CO2 effects occur over short timescales, which typ-

ically range from hours (e.g., contrails) to months or years (e.g., NOx-induced changes on O3 and CH4). As a consequence,

the temperature perturbation caused by an aircraft unit emission is highly dependent on the time and location of the emission

(Köhler et al., 2013; Frömming et al., 2021). Many studies investigated the possibility of using this time and space dependency25

to reduce the climate effect of a flight, for example, by optimizing its trajectory to minimize the induced temperature increase

(Stevenson and Derwent, 2009; Sridhar et al., 2011; Grewe et al., 2017; Matthes et al., 2021; Simorgh et al., 2022).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Stevenson and Derwent, 2009; Sridhar et al., 2011; Grewe et al., 2017; Matthes et al., 2021)

:
.
:::::::
Towards

:::
the

:::::::::::::
implementation

::
of

::::
this

::::
type

::
of

::::::::::
operational

::::::::
strategies,

:::::
some

::::::
recent

::::::
studies

::::::::::
highlighted

:::
the

::::
main

:::::::::
challenges

::::
and

:::::::::::
opportunities

:::::
related

::
to

:::
the

:::::::::
avoidance

::
of

::::::
climate

:::::::
sensitive

::::::
regions

:::
by

::::::
aircraft

:::::::::
trajectories

:::::::::::
optimization

::::::::::::::::::::::::::::::::::
(Simorgh et al., 2022; Molloy et al., 2022)

:
.
::::
Most

::::::::::
importantly,

:::
the

::::::
current

::::
level

:::
of

:::::::
scientific

::::::::::::
understanding

::
of

:::
the

::::::::
non-CO2::::::

effects
::
of

:::::::
aviation

:
is
:::::
lower

::::
than

:::
the

:::
one

:::
of

::::
CO230

::::::
effects,

::
as

:::::::::::
demonstrated

:::
by

:::
the

::::::::::
uncertainty

:::::
ranges

:::
of

:::
the

:::::::
radiative

:::::::
forcing

::::::::
estimates

:::::::
reported

:::
by

:::::::::::::
Lee et al. (2021)

:
.
:::::::::
Moreover,

::
the

::::::::::::
identification

::
of

:::::::
climate

:::::::
sensitive

:::::::
regions

:::::
(e.g.,

:::::::::::::::
ice-supersaturated

:::::::
regions,

:::::::::
supporting

:::::::::
persistent

::::::::
contrails)

:::::
relies

:::
on

:::
the

:::::::::
availability

::
of

:::::::
accurate

:::::::
weather

::::::::
forecast.

:::::::::
Depending

:::
on

:::
the

:::::::
stability

::
of

:::
the

:::::::
forecast,

::::::::::
trajectories

:::
can

:::
be

::::::::
optimized

:::
via

:::::::
tactical

::::::::::
adjustments

:::::
during

::::
the

:::::
flight

::
or,

::::::::::
preferably,

::
in

:::::::
advance

:::::
(e.g.,

:::
one

::::
day

::::::
before

:::::::::
departure)

::
to

:::::
limit

:::
the

:::::::::
associated

:::::::
penalties

:::
in

::::::::
operating

:::::
costs,

:::
e.g.,

::::::::::
minimizing

::::
fuel

:::
use

:::
and

::::::::
workload

:::
of

::::
flight

:::::
crew

:::
and

:::
air

:::::
traffic

::::::::
controller

:::::::::::::::::
(Molloy et al., 2022)

:
.35

Currently, air traffic optimization focuses on minimizing economic penalties, e.g., identifying aircraft trajectories that lead

to minimal operating cost. Minimizing the operating cost and the climate impact of a single flight are expected to be conflicting

objectives of aircraft trajectory optimization (Yamashita et al., 2021). This implies that, in most cases, it is not possible to

identify a solution that simultaneously minimizes both objectives. Therefore, optimizing an aircraft trajectory with respect to

its economic cost and climate impact, a set of Pareto-optimal solutions can be identified. To select a single trajectory among40

this set of optimal solutions, a wide range of decision-making strategies can be employed (Kou et al., 2012; Pasman et al.,

2022). In this paper, we present a new decision-making tool, the SolFinder 1.0 module, which was developed with the aim

of identifying aircraft trajectories leading to a significant reduction of the flight climate impact, while limiting the increase in

economic costs: we define these options as eco-efficient aircraft trajectories. This tool satisfies the following requirements: (1)

– it is applicable to any set of Pareto optimal
::::::::::::
Pareto-optimal

:
solutions resulting from the optimization of a single aircraft45

trajectory; (2)

– it is suitable for identifying compromise solutions between any number of objective functions; (3)

– in particular, when applied for the bi-objective optimization of operating cost and climate impact, it is capable of identi-

fying eco-efficient solutions.

To satisfy these requirements, the following options have been selected and are available in the first version of SolFinder: (1)50

a strategy relying on the VIKOR method (abbreviation from its Serbian name: Vlse Kriterijumska Optimizacija Kompromisno

Resenje, presented by Opricovic and Tzeng, 2004) to identify eco-efficient solutions; (2) a strategy selecting the Pareto-optimal

solution closest to a target percentage change in one of the objectives, such as the economic costs; (3) a decision-making method

which combines the previous two options, applying the VIKOR method while limiting the change in one of the objectives. The
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SolFinder module has been coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC, Jöckel et al., 2010) submodel55

AirTraf (Yamashita et al., 2020), as part of the AirTraf extension for the efficient resolution of multi-objective optimiza-

tion problems. This modelling chain allows
::::::
enables

::::
users

:
to select Pareto-optimal solutions matching specific preferences of

decision-makers, e.g., eco-efficient aircraft trajectories, and to explore their dependency on the atmospheric natural variability.

In Sect. 2, we describe the modelling chain, and we present the decision-making strategies included in SolFinder 1.0 (Sect.

2.3). In Sect. 3, we illustrate an example application of the selected decision-making strategies, using the Pareto-optimal60

solutions that are identified by AirTraf when a European air traffic sample of 100 night-time flights is optimized with respect

to economic cost and climate impact. In Sect. 4, we compare our results to those obtained in previous studies, and we discuss

uncertainties affecting our results. Our key messages are summarized in Sect. 5.

2 Methods

We conduct our simulations using the ECHAM/MESSy Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010). This65

is a numerical climate model system that includes sub-models describing tropospheric and middle atmosphere processes and

their interaction with oceans, land and human influences (Jöckel et al., 2010). This system relies on the second version of the

Modular Earth Submodel System (MESSy2) to connect multi-institutional computer codes, while the core atmospheric model

is the 5th generation European Centre Hamburg general circulation model (ECHAM5, Roeckner et al., 2006). Fig. 1 illustrates

the relation between the EMAC model and the three submodels that have a major relevance in our experiments: CONTRAIL70

(Frömming et al., 2014), ACCF (Yin et al., 2023), and AirTraf (Yamashita et al., 2020).

The EMAC model provides the atmospheric conditions at a specific time and location
::::
(e.g.,

:::::
wind,

:::::::::::
temperature,

::::::::
potential

:::::::
vorticity,

:::::::
relative

::::::::
humidity)

:::
to

::::::::
determine

:::
the

::::
fuel

::::::::::::
consumption,

:::::::
emission

::::::::
indexes,

:::
and

:::::::
climate

::::::
effects

::
of

:::::::
aircraft

::::::::
emissions.

The CONTRAIL submodel computes the potential contrail coverage(determination of persistent contrails formation), which is

used as input for the ACCF and AirTraf submodels,
::::
i.e.,

:::
the

::::::
fraction

:::
of

::
the

::::::
model

:::::::
grid-box

::::::
where

::::::::
persistent

:::::::
contrails

:::
can

:::::
exist75

:::::::::::::::::::
(Burkhardt et al., 2008). The ACCF submodel employs the algorithmic Climate Change Functions (aCCFs) in order to deliver

the estimated spatially and temporally resolved climate effect of aviation emissions to AirTraf; lastly, the AirTraf submodel

identifies the optimal aircraft trajectories with respect to the routing strategy selected by the user. The optimization process is

performed in two steps: (1) a genetic algorithm - Adaptive Range Multi-Objective Genetic Algorithms (ARMOGA, Sasaki and

Obayashi, 2005) - is employed to solve a single- or multi-objective optimization problem; (2) if a multi-objective optimization80

is solved, it is possible that more than one optimal solution is found, thus a decision-making module (SolFinder) intervenes to

select a single recommended trajectory, based on the preferences of the user.

2.1 Base model configuration

For the present study, we applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.54
::::
2.55.0) in the T42L31ECMWF-

resolution. This resolution has a spherical truncation of T42 (corresponding to a quadratic Gaussian grid of approximately85

2.8 by 2.8 degrees in latitude and longitude), and includes 31 vertical hybrid pressure levels up to 10 hPa (i.e., to an altitude
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Figure 1. Overview of the relations between EMAC and the three submodels CONTRAIL, ACCF, and AirTraf. The present study focuses

on the description of the decision-making module SolFinder 1.0, which is highlighted in red in the diagram.

of approximately 30 km). We describe the model output obtained by simulating the atmospheric conditions occurring from 1

January 2018 to 31 January 2018, employing a temporal resolution of 12 minutes, and nudging
:
.
:::
To

:::::
obtain

:::::::
weather

:::::::::
conditions

::::::
aligned

::::
with

:::::
those

::::::::
observed

::
in

:::::::
January

:::::
2018,

:::
the

::::::::::
simulations

:::
are

:::::::::
conducted

:::::::
nudging

:::
by

:::::::::
Newtonian

:::::::::
relaxation

:
the prognos-

tics variables divergence, vorticity, temperature and the (logarithm of the) surface pressure down to the surface towards the90

respective ECMWF ERA-Interim reanalysis data (Dee et al., 2011; Jöckel et al., 2016).

2.2 AirTraf submodel

The air traffic simulator AirTraf is responsible for the optimization of the aircraft trajectories, according to the routing strategy

prescribed by the user. The submodel requires as input information on (1) the atmospheric conditions at the time and location

of the flight, provided by the EMAC model, and on (2) the air traffic sample, including the location of the airports of departure95

and arrival, the departure time of each flight, and characteristics of the aircraft and engine type to be simulated (Yamashita

et al., 2016). Once this information is collected, the genetic algorithm (ARMOGA, Sasaki and Obayashi, 2005) intervenes
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to identify an optimal trajectory. The number of design variables of the optimization problem is fixed to 11, since the model

describes each aircraft trajectory as a B-spline curve defined by three control points on the horizontal domain (three pairs of

coordinates) and five on the vertical cross-section (as illustrated in Yamashita et al., 2016, Fig.6). The domains of the horizontal100

control points are centered on the great circle connecting the airports of departure and arrival, while the vertical control points

are bounded by the flight levels at 29000 ft (FL290) and at 41000 ft (FL410), corresponding to altitudes of about 8.8-12.5 km.

To calculate the flight properties along a candidate trajectory, the path is divided in flight segments by nwp = 101 waypoints.

::
In

::::::::
particular,

:::
to

:::::::
calculate

:::
the

::::
fuel

::::
used

::
at
:::::

each
:::::
flight

:::::::
segment,

:::::::
AirTraf

::::
uses

:::
the

:::::::
aircraft

::::::::::
performance

::::::
model

::
of

::::::::::::
Eurocontrol’s

::::
Base

::
of

:::::::
Aircraft

:::::
Data

::::::
(BADA

::::::::
Revision

::::
3.9,

:::::::::::::::
Eurocontrol, 2011)

::::
and

:::
the

:::::::::
Deutsches

:::::::
Zentrum

:::
für

:::::
Luft-

::::
und

:::::::::
Raumfahrt

::::::
(DLR)105

:::
fuel

::::
flow

:::::::
method

:::::::::::::::::::
(Yamashita et al., 2016)

:
.

The version AirTraf 2.0 presented by Yamashita et al. (2020) allowed the user to solve single-objective optimization prob-

lems, minimizing one of several available objective functions, including fuel use, flight time, NOx emissions, contrail distance,

operating costs, and climate impact. AirTraf
:::
The

::::::::
submodel

:
is being expanded to use the same optimization method for the

efficient resolution of multi-objective optimization problems. As a result, it is possible to simultaneously optimize two or more110

objective functions, without combining such functions into a single objective. This is particularly convenient when we aim to

identify eco-efficient aircraft trajectories under a large number of weather conditions. In facts
:::
fact, a conversion factor would be

necessary to combine climate impact and operating costs into a single objective functions. However, this factor (e.g., as defined

by Simorgh et al. (2023), Eq.7) is affected by a large variability over different flights and days, thus it is difficult to find a

general value of the factor which can be applicable to optimize large air traffic samples over long-term simulations. Due to this115

AirTraf expansion for the resolution of multi-objective optimization problems, a decision-making module became necessary

to ensure that a single optimal solution is identified, and its properties are evaluated and stored by the model. This task can be

performed by the SolFinder 1.0 module presented in this paper. Therefore, SolFinder has been coupled to AirTraf to select one

optimal solution from the full Pareto set, reducing the computational effort of the model.

In the development of the decision-making strategies implemented in SolFinder 1.0, the underlying goal has been to find120

eco-efficient aircraft trajectories, compromising between the optimization of climate impact and operating costs. Hence, we

include here the definitions of these objective functions within AirTraf. The economic costs of the flights are represented by

the Simple Operating Costs (SOC), defined as in Eq. (1):

SOC = ct

nwp−1∑
i=1

TIMEi + cf

nwp−1∑
i=1

FUELi (1)

where TIMEi and FUELi represent the flight time and fuel used at the ith flight segment, respectively, while ct = 0.75 $/s and125

cf = 0.51 $/kg are the unit time and unit fuel costs (Burris, 2015; Yamashita et al., 2020). The climate impact of each aircraft

trajectory is measured in terms of Average Temperature Response over 20 years (ATR20), as provided by the ACCF submodel

(van Manen and Grewe, 2019; Yin et al., 2023). The total climate impact ATR20tot of each aircraft trajectory is determined

summing the contribution from the main climate effects:
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ATR20tot =

nwp−1∑
i=1

[
ATR20CO2,i +ATR20H2O,i +ATR20NOx-O3,i +ATR20NOx-CH4,i +ATR20contrails,i

]
(2)130

where each addend represents, from left to right, the ATR20 at the ith flight segment from (1) carbon dioxide (CO2), (2)

water vapour (H2O), (3) ozone (O3) from emission of NOx, (4) methane (CH4) from emission of NOx, and (5) contrails. The

term ATR20NOx-CH4,i includes the changes in primary mode ozone induced by the reduced CH4 atmospheric concentration,

while it neglects the feedback from stratospheric water vapour (Yin et al., 2023). The present study uses ATR20 as climate

metric, assuming a business-as-usual Future emission scenario (F-ATR20). Alternative climate metrics can also be used, e.g,135

considering a time horizon of 100 years (ATR100). A detailed description of the climate metric conversion is presented in

Dietmüller et al. (2022)
:::::::::::::::::::
Dietmüller et al. (2023).

2.3 SolFinder module

In this section, we describe the decision-making strategies implemented in SolFinder 1.0. Our aim is to solve a multi-objective

optimization problem minimizing a set of N objective functions fn, with n= 1,2, ...,N . If two or more objective functions140

are conflicting, a set of Pareto optimal
::::::::::::
Pareto-optimal

:
solutions, P , is identified. The values fn,j of the objective functions

are assigned to each Pareto-optimal solution pj ∈ P , with j = 1,2, ...,J . Subsequently, a decision-making strategy intervenes,

to select one solution prec ∈ P which is the recommended solution according to the decision-maker criteria. We include the

following strategies towards the resolution of our problem: (1) option selecting a solution based on its weighted distance

from an ideal (usually, not feasible) solution (VIKOR method, Sect. A) for the identification of eco-efficient trajectories (Sect.145

2.3.1); (2) option leading to a target percentage change in one of the objective functions, with respect to its minimum value

(Sect. 2.3.2); (3) option combining the previous two strategies, limiting the change in one of the objective functions while

applying the VIKOR method (Sect. 2.3.3); (4) selection of one of the extremes of the Pareto-optimal set (Sect. 2.3.4).

A large variety of multi-criteria decision-making methods is currently available to select one solution among a set of optimal

options (Wang and Rangaiah, 2017; Sałabun et al., 2020). In a preliminary phase of our research, we considered different150

options among the most popular techniques, including GRA (Grey Relational Analysis, Wang and Rangaiah, 2017), TOPSIS

(Technique for Order Preference by Similarity to Ideal Solution, Chen and Hwang, 1992), and VIKOR (abbreviation from

its Serbian name: Vlse Kriterijumska Optimizacija Kompromisno Resenje, Sect. A). These options have been implemented

in a python library1, in order to apply them on test cases, and compare their effectiveness in identifying eco-efficient aircraft

trajectories. We identified the VIKOR method (Opricovic, 1998; Opricovic and Tzeng, 2004) as a suitable candidate to translate155

our definition of eco-efficient solutions into a decision-making algorithm. This is due to its peculiarity of recommending

more than one solution, if certain criteria are not met by a single solution (Sect. A). This allows to flexibly identify
::::::
flexible

:::::::::::
identification

::
of a region of the Pareto-front (e.g., the section of the Pareto-front leading to a small change in the economic

costs), within which the decision maker is able to choose their preferred solution (e.g., the solution with the largest climate

1See Supplement material and (Castino, 2023).
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impact reduction). Moreover, no a priori knowledge on the optimization problem expected results is needed. To apply the160

VIKOR method, only the following information is provided as input, translating the user preferences in mathematical terms:

– the relative importance of N objective functions, represented by the weights wn ≥ 0, such that
∑

nwn = 1, with n=

1,2, ...,N .

– the relative importance of group utility (preference towards achieving the greatest benefit) and individual regret (pref-

erence towards avoiding large penalties), represented by the parameter γ, with 0< γ < 1. If γ > 0.5, the majority rule165

principle is applied; contrarily, γ < 0.5 implies the application of the veto principle; lastly, γ ≈ 0.5 represents a voting

by consensus strategy (Opricovic and Tzeng, 2004).

2.3.1 Strategy using VIKOR method to identify eco-efficient trajectories

The SolFinder 1.0 module identifies eco-efficient trajectories using a decision-making option based on the VIKOR methoddescribed

in
:
.
::::
This

:::::::
method,

:::::::::
introduced

::
by

:::::::::::::::
Opricovic (1998)

:::
and

:::::::::::::::
Opricovic (1998),

::::::
makes

:::
use

::
of

:::
the

::::::
overall

:::::::
distance

::::::
(group

::::::
utility)

::::
and170

::
the

:::::::::
maximum

:::::::
distance

:::::::::
(individual

::::::
regret)

::
of

::
a
::::::::::::
Pareto-optimal

:::::::
solution

:::::
from

:::
the

:::::::
minimal

:::::
values

:::
of

:::
the

::::::::::
optimization

:::::::::
objectives

::
to

::::
rank

:::
the

::::::::::::
Pareto-optimal

:::::::::
solutions.

:::
For

:::::
more

::::::
details

:::
on

:::
the

::::::
version

:::
of

:::
the

:::::::
VIKOR

::::::
method

:::::::::::
implemented

:::
in

:::::::::
SolFinder,

:::
we

::::
refer

::
to

:
Sect. A. Fig. 2 illustrates how this decision-making strategy is applied using as

::
an

:
example the bi-objective opti-

mization of a flight with respect to its SOC and ATR20. Firstly, the decision-making module collects all the Pareto-optimal

solutions (represented by the red dots
::::
grey

::::::
crosses in Fig. 2a). Subsequently, the VIKOR method is applied according to the175

prescribed values of the parameter γ and the relative weights wn (Fig. 2b). This leads to a recommended subset of optimal

solutions (represented by the red dots
:::::
green

:::::::
triangles

:
in Fig. 2c). If the VIKOR method identifies more than one recommended

solution, i.e., the solutions pv (v = 1,2, ...,M) are equally recommended, the model selects the one with the minimum value

of the objective function assigned to the lowest weight wn. In Fig. 2d, the objective with the lowest relative weight is ATR20

(wATR20 = 0.3,wSOC = 0.7), thus the model selects the point among the recommended solutions (indicated by the green crosses180

:::::::
triangles in Fig. 2d) with the lowest ATR20 (red dot in Fig. 2d).

The motivation to this last step in Fig. 2d is due to our goal of identifying
::::
This

:::
last

::::
step

::
is

::::
thus

:::::::::
formulated

::
to

::::::::
translate

::
in

:::::::::::
mathematical

:::::
terms

:::
our

::::::::
definition

::
of eco-efficient aircraft trajectories. In fact,

:
,
:::
i.e.,

:
a
:::::::::::
compromise

::::::
solution

:::::::
between

:::::::::::
cost-optimal

:::
and

:::::::::::::
climate-optimal

::::::::
solutions,

::::
such

::::
that

:::
the

::::::
largest

:::::::
possible

::::::
climate

::::::
impact

::::::::
reduction

::
is

::::::::
achieved,

:::::
while

:::::::
keeping

:::
the

::::::::
operating

::::
costs

::::::
nearly

:::::::::
unchanged

:::::
with

::::::
respect

:::
to

:::
the

:::::::::::
cost-optimal

::::::::
solution.

:::::
Using

:::
the

::::::::
VIKOR

:::::::
method,

::
a

::::::
subset

::
of

:::::::::::::
Pareto-optimal185

:::::::
solutions

::
is
:::::::::

identified,
:::::::::

according
::
to
::::

the
:::::::
relative

:::::::::
importance

:::
of

:::
the

::::
two

:::::::::::
optimization

:::::::::
objectives.

::::::::::
Therefore,

::
if

:::
the

:::::::
highest

:::::
weight

::
is
::::::::

assigned
::
to

:::
the

::::::::
objective

::::::::
function

::::::::::
representing

::::::::
operating

:::::
costs,

::::
the

::::::
VIKOR

:::::::
method

:::::::
equally

:::::::::::
recommends

:
a
::::::
subset

::
of

::::::::::::
Pareto-optimal

::::::::
solutions

:::::
close

::
to
::

–
:::
or,

::::::::
possibly,

::::::::
including

::
- the

::::::::::
cost-optimal

::::::::
extreme

::::
point

:::
of

:::
the

:::::::::::
Pareto-front.

:::::::
Among

:::
this

::::::
subset

::
of

::::::
equally

::::::::::::
recommended

:::::::::
solutions,

:::
we

::::::
choose

:::
the

:::::
point

::::::
leading

:::
to

:::
the

::::::
largest

::::::
climate

::::::
impact

:::::::::
reduction,

::::
i.e.,

:::
the

::::::::
minimum

:::::
value

::
of

:::
the

:::::::
objective

::::::::
function

:::::::
assigned

::
to

:::
the

::::::
lowest

::::::
weight.

:::::::::
Therefore,

:::
the

::::::::
objective

::::
with

:::
the

::::::
highest

::::::
weight

:::::
plays190

:
a
::::::::
dominant

::::
role

::
in

:::
the

::::::::
selection

::
of

:::
the

::::::
subset

::
of

::::::
equally

::::::::::::
recommended

::::::::
solutions

::::::::
(VIKOR

::::::::
method),

:::::
while

:::
the

::::::::
objective

::::
with

::
the

::::::
lowest

::::::
weight

::::::::
becomes

::::::::
dominant

::
in

:::
the

:::::::
selection

::
of

::
a
:::::
single

:::::::
solution

::::::
among

:::
this

::::::
subset.

:
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Figure 2.
:::::::

Illustration
:::

of
::
the

::::
steps

::::::::
performed

:::
by

:::
the

:::::::::
eco-efficient

:::::::::::::
decision-making

::::::
strategy

::::::
relying

::
of

::::::
VIKOR.

::::
The

:::::
aircraft

:::::::::
trajectories

:::
are

:::::::
optimized

::
to
::::::::
minimize

::::
SOC

:::
and

::::::
ATR20,

:::::::
resulting

::
in
::
a
::
set

::
of
::::::::::::

Pareto-optimal
:::::::
solutions

::::
(grey

:::::::
crosses).

:::
We

:::
set

:::::::::
wSOC = 0.7,

:::::::::::
wATR20 = 0.3,

::::::
γ = 0.5.

:::::
Panel

::
a)

:::::
shows

:::
the

::::::::::::
Pareto-optimal

:::::::
solutions

:::::
(grey

::::::
crosses)

::::::::
collected

:::::
before

:::::::
applying

:::
the

:::::::::::::
decision-making

:::::::
strategy.

::::
Panel

:::
b)

:::::::
illustrates

:::
the

::::::::
application

:::
of

::
the

:::::::
VIKOR

::::::
method

:::::
(Sect.

:::
A),

:::
thus

:::
the

::::
axes

:::
are

:::::
scaled

::
as

::
in

::::
Fig.

:::
A1.

::::
This

:::
step

::::::
results

::
in

:::
the

::::::::::
identification

:
of
:::

the
:::::
subset

::
of

:::::::::::
recommended

:::::::
solutions,

:::::::::
represented

::
by

:::
the

::::
green

:::::::
triangles

::
in

::::
panel

::
c).

:::::
Panel

::
d)

:::::
shows

::
the

::::::
selected

:::::::
solution

:::
(red

:::
dot)

::::::
among

::
the

:::::
subset

::
of

:::::::::::
recommended

:::::::
solutions

:::::
(green

:::::::
triangles).

:

:::
The

:
resulting strategy can be configured to follow the following steps

::::
steps

:::::
listed

::::
here:
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1. A bi-objective optimization problem is solved to simultaneously minimize the total climate impact (ATR20tot as defined

in Eq. (2)) and operating costs (SOC, Eq. (1)). This step results in the identification of J Pareto-optimal solutions (Fig.195

2a).

2. The VIKOR method is applied,
::::::::
following

:::
the

:::::
steps

::::::::
described

::
in

::::
Sect.

::
A
:
(Fig. 2b).

3. A set of equally recommended solutions are selected in the sections in the Pareto front closest to the cost-optimal

solution, by assigning a relatively high weight to the operating costs, i.e., wSOC > 0.5 (with γ = 0.5). Depending on the

shape of the Pareto front, this set of solutions extends towards the best ideal solution, ibest, allowing for higher climate200

impact reductions with respect to the cost-optimal solution, while avoiding cost penalties that are not compensated by a

climate impact reduction (Fig. 2c).

4. Among this set of equally recommended solutions, the solution leading to the largest climate impact reduction with

respect to the cost-optimal solution is selected, since wATR <wSOC. We define this point as the eco-efficient solution

among the set of Pareto optimal
::::::::::::
Pareto-optimal options (Fig. 2d).205

Illustration of the steps performed by the eco-efficient decision-making strategy relying of VIKOR. The aircraft trajectories

are optimized to minimize SOC and ATR20, resulting in a set of Pareto-optimal solutions (grey crosses). We set wSOC = 0.7,

wATR20 = 0.3, γ = 0.5. Panel a) shows the Pareto-optimal solutions (red dots) collected before applying the decision-making

strategy. Panel b) illustrates the application of the VIKOR method, thus the axes are scaled as in Fig. A1. This step results in

the identification of the subset of recommended solutions, represented by the red dots in panel c). Panel d) shows the selected210

solution (red dot) among the subset of recommended solutions (green crosses).

Sensitivity of VIKOR parameterization

To understand the effectiveness the VIKOR method with various configurations of γ and w, we take as example a set of Pareto-

optimal solutions, resulting from the bi-objective optimization of an aircraft trajectory with respect to the SOC and ATR20 of

the flight. Within this set, a subset of solution
:::::::
solutions

:
is recommended by the VIKOR method with different values of γ and215

w = [wSOC, wATR20]. The results of this analysis are shown in Fig. 3. Firstly, we can notice that the
:::
This

:::::
figure

:::::::::
illustrates

:::
the

:::::
impact

:::
of

::::::
varying

:::
the

:::::::
weights

::
w

::
by

::::::::::
comparing

:::::::
different

:::::
rows.

:
It
::
is
:::::::
possible

::
to
::::
see

::::
how,

:::::::::
increasing

:::
the

::::
value

:::
of

::::
wSOC:::::

from
:::
0.2

:::::
(Fig.s

::
3a,

:::
3b,

:::
3c)

::
to

:::
0.8

:::::
(Fig.s

:::
3j,

:::
3k,

:::
3l),

:::
the

::
set

::
of

::::::::
solutions

::::::::::::
recommended

::
by

:::::::
VIKOR

:::::
moves

::::::
closer

::
to

::
the

:::::::::::
cost-optimal

:::::::
extreme

::
of

:::
the

:::::
Pareto

:::::
front

::::
(0%

::::::
change

:::
in

::::
SOC

::::
and

:::::::
ATR20).

::
It
::
is

::::
less

:::::::
intuitive

::
to

::::::::::
understand

:::
the

::::::
impact

::
of

::::::::
changing

:::
the

:::::::::
parameter

::
γ,

:::::
which

:::::::::
represents

:::
the

::::::
relative

::::::::::
importance

::
of

:::::
group

::::::
utility.

::
As

:::::::::
explained

::
in

::::
Sect.

::::
2.3,

:::
and

:::::::::
according

::
to

:::
the

:::::::
formulas

::::::::
included220

::
in

::::
Sect.

:::
A,

::::
with

:::::::
γ = 0.5

:::
the

::::
same

:::::::
relative

:::::::::
importance

::
is
::::::::

assigned
::
to

::::::::
avoiding

::::
large

::::::::
penalties

::
in

::::
one

::
of

:::
the

:::::::::
objectives,

::::
and

::
to

::::::::
achieving

:::
the

::::::
greatest

::::::
overall

:::::::
benefit.

::
In

:::
the

::::::
results

::::::::
presented

::
in

:::::
Sect.

:::
3.2,

:::
we

::::::
always

:::
set

:::
the

::::::
default

:::::
value

:::::::
γ = 0.5.

::
A

:::::
value

::
of

::::::
γ < 0.5

:::::
leads

::
to

:::
the application of the veto principle(γ < 0.5, ,

::::
i.e.,

::
if

:::
one

::
of

:::
the

:::::::::
objectives

::
is

::::::
heavily

::::::::
penalized

:::
by

:::::::
selecting

::
a

:::::
certain

:::::::::::::
Pareto-optimal

:::::::
solution,

::::
then

::
it

:::
will

:::::
have

:
a
::::
low

::::::::
likelihood

::
to

:::
be

::::::::::::
recommended.

:::::::::
Therefore,

::::::
setting

:::::::
γ = 0.25

:::
(as

::
in

:
Fig.s

3a, 3d, 3g, 3lj) leads to the exclusion of elements located in the external sections of the Pareto-front. When a high value is225

9



assigned to ART20 (wATR20 = 0.8), and ,
:::::::
because

:::
of

::::
their

:::::::
distance

::
to

:::
the

::::::::
opposite

:::::::
extreme

::
of

:::
the

::::::
Pareto

:::::
front.

:::
On

:::
the

:::::
other

::::
hand,

:::::
when

:
the veto principle is not applied (γ ≥ 0.5), the method selects the section of the Pareto-front including the solution

minimising ATR20 (Fig. 3b, 3c). Similarly,
::
set

::
of

::::::::::::
recommended

:::::::
solutions

::::::
(green

::::::::
triangles)

:::
can

::::::
include

:::
the

:::::::
solution

::::::::::
minimising

::
the

::::::::
objective

::::
with

:::
the

::::::
highest

:::::::
relative

::::::
weight.

::::
For

:::::::
example,

:
when wSOC = 0.8 and γ ≥ 0.5, the solution with minimum SOC is

included in the set of Pareto-optimal solutions (Fig. 3m, 3n
::
k,

::
3l).230
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Figure 3.
::::::::
Variability

::
of

:::
the

::::::
selected

:::::::
solution

::::
(red

::::
dots)

:::::
using

:::
the

::::::::::
eco-efficient

::::::::::::
decision-making

:::::::
method.

::::
The

::::
grey

:::
dots

::::::::
represent

:::
the

:::::::::::
Pareto-optimal

:::::::
solutions,

:::::
while

:::
the

::::
green

:::::::
triangles

::::::
indicate

:::
the

:::::
subset

::
of
:::::::

solutions
:::::::::::

recommended
:::
by

::
the

:::::::
VIKOR

::::::
method.

::::
The

:::
axes

:::::
show

::::::::
percentage

::::::
changes

::
in
:::
the

:::::::
objective

::::::::
functions,

::::::
relative

::
to

:::
the

::::::
solution

:::::::::
minimizing

::::
SOC.

:::
In

:::
this

:::::::
example,

:::
the

:::::
Pareto

::::
front

::::::
consists

::
of
::::

308

:::::::
solutions.

11



This observation is the base for the definition of eco-efficient solution given at the end of Sect. 2.3.1, i.e., the solution

selected with a high relative weight of SOC (wSOC larger than 0.5) and γ = 0.5. Following this definition, the selected solution

shown in Fig. 3m
:
k
:
(represented by a red dot) is an eco-efficient solution. In fact, this solution leads to the maximum ATR20tot

reduction among the subset of the solutions recommended by VIKOR (green dots), while being equally recommended as the

cost-optimal solution by the VIKOR method. In other words, the selected solution in Fig. 3m
:
k follows the definition of eco-235

efficient solutions given in the Introduction, i.e., it allows for a significant reduction in the flight climate impact, while avoiding

significant increases in operating costs. However, we note that determining the values of γ and w remains an arbitrary choice,

which reflects the specific preferences of the decision-maker. Further elements to consider when setting these parameters are

discussed later in Sect. 3.

Variability of the selected solution (red dots) using the eco-efficient decision-making method. The grey dots represent the240

Pareto-optimal solutions, while the green triangles indicate the subset of solutions recommended by the VIKOR method. The

axes show percentage changes in the objective functions, relative to the solution minimizing SOC. In this example, the Pareto

front consists of 308 solutions.

2.3.2 Target percentage change in one of the objective functions

In some scenarios, the decision maker requires
::::::::::::
decision-maker

::::::
wishes

:
to limit the penalty of one of the objective functions,245

e.g., to avoid unsustainable increases in the operating costs. Therefore, in the second decision-making strategy, we propose to

select the solution prec leading to a percentage change in one of the objective functions, fp. On the other hand, to obtain the

expected outcome, this option requires certain information on the optimization results to be known before solving the problem,

such as the typical shape of the Pareto fronts, and reference values at their extreme points. The threshold for the allowable

change is specified as a target value xt. This is translated in the following process:250

fp,ref =min
j

fp,j , j = 1,2, ...,J (3)

xj = 100 ∗ fp,j − fp,ref

fp,ref
(4)

∆xj = |xj −xt| (5)

Therefore, the selected Pareto-optimal solution prec ∈ P is the solution corresponding to the relative change xrec, such that

∆xrec =minj∆xj .255

Fig. 4 illustrates which solution is selected within a Pareto-optimal set resulting from the resolution of a tri-objective opti-

mization problem, simultaneously minimizing flight time, fuel use, and ATR20tot. In this example, xt =+0.5% is set as the

target percentage change in flight time.
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Figure 4. Example of selecting the solution among the Pareto-surface matching a target increase in 0.5% in flight time (indicated by the

red cross
:::::::
triangles). The green dots indicate the Pareto-optimal solutions, which result from a tri-objective optimization problem minimizing

flight time, fuel use, and ATR20tot.

2.3.3 Hybrid option: VIKOR method with target percentage change in one of the objectives

To combine the advantages of the two decision-making strategies presented, a hybrid option is considered, limiting the vari-260

ability in one of the objective functions while applying the VIKOR method. When this strategy is selected, the decision-maker

provides: (1) the configuration of the VIKOR method, setting the parameters γ and w, and (2) a target percentage increase xt

in the objective fp. Subsequently, the following decision-making process is followed:

1. Apply the VIKOR method and select the recommended solution minimizing the objective function having the lowest

weight wn, as described in Sect. A.265

2. Calculate xp, representing the relative change in fp of the recommended solution with respect to the minimum value of

fp.

3. If xp > xt, replace the recommended solution identified in step 1. with the the Pareto-optimal solution leading to a target

percentage change xt in the objective function fp (in other words, apply the strategy described in Sect. 2.3.2).

This strategy addresses the fact that, with the VIKOR method, no limit in the percentage increase of the objective is set,270

thus a fraction of the solutions can be affected by changes much larger than the average, as it is shown in a later section of

this paper (Sect. 3.2, Fig. 7). With this hybrid option, the VIKOR method can be employed to identified
::::::
identify

:
eco-efficient

trajectories, while introducing a constraint on the operating costs, to prevent increases in the operating costs of some flights

that the decision maker
::::::::::::
decision-maker

:
does not accept.

2.3.4 Selecting one extreme of Pareto-optimal set275

Lastly, an additional option is considered to select a solution minimizing one of the objective functions fn, which we indicate

as fmin. This simple decision-making process selects the optimal-solution corresponding to the result of a single-objective

optimization minimizing fmin. Nevertheless, it can be useful to implement this method to identify which values are used as

reference during the resolution of the multi-objective optimization problem, and to verify the performance of the model.
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3 Application of decision-making method to analyse trajectories
:
’ variability along Pareto-front280

We now present an example study, in which different settings of the decision-making strategies are compared. This application

exemplifies how the decision-making strategies can be employed, and what to consider to determine the settings that best

translate the decision-maker preference. In this example, we focus on the suitable settings to identify eco-efficient aircraft

trajectories. Nevertheless, SolFinder can also be used to comply with alternative decision-making preferences, by changing the

settings of AirTraf and SolFinder.285

3.1 Simulations set-up

As previously stated, we intend to identify eco-efficient aircraft trajectories, i.e., trajectories reducing the climate impact at

limited changes in the operating costs. Therefore, we solve a bi-objective optimization problem, aiming to simultaneously

minimize SOC and ATR20, as defined in Sect. 2.2. We conduct one-month simulations, from 1 January 2018 to 31 January

2018. On each simulation day, 100 night-time flights departing at 00:00 UTC are optimized. Fig. 5 shows the locations of290

the airports of origin and destination, which were selected considering the Available Seat Kilometres (ASK) for the European

Civil Aviation Conference (ECAC) area in 2018 (Matthes et al., 2023a). The same criterion was used to select the A320-214

(CFM56-5B4) as the aircraft/engine type to be simulated. The climate impact of each aircraft trajectory is estimated using the

aCCF 1.0A (Matthes et al., 2023b). Table 1 summarizes the model configuration.

Figure 5. Location of the 100 flights included in the air traffic sample. Each curve represents the great circle connecting an origin/destination

pair. Note that most origin/destination pairs are connected by two flights, i.e., one for each direction, thus the number of curves is lower than

100.
::
The

:::
list

::
of

:::::
ICAO

:::::
airport

:::::
codes

:
is
:::::::
included

::
in

::::
Sect.

::
B.

To compare the effects of using different decision-making strategies, we perform two sets of experiments, whose character-295

istics are summarized in Table 2, and explained below:
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Table 1. Main settings of ECHAM5, ACCF, and AirTraf.

ECHAM5

Horizontal resolution T42 (2.81◦× 2.81◦)

Vertical resolution L31ECMWF

(31 vertical pressure levels

up to 10 hPa ∼ 30 km )

Time step 12 min

Duration 1-31 Jan. 2018 (each day, 1 month)

ACCF

Version aCCFs V1.0A

Climate metric F-ATR20

Forcing efficacy Included

AirTraf

Trajectory waypoints 101

Aircraft / Engine A320-214 (CFM56-5B4)

Air Traffic Sample Top 100 routes by ASK

for the ECAC area in 2018

Departure time 00:00

Optimization strategy Multi-objective optimization of:

(1) SOC, (2) ATR20tot

1. In the first set of experiments, the VIKOR method is employed as we described in Sect. 2.3.1, fixing γ = 0.5 and varying

the relative weight wSOC between 0.2 and 0.9 (Table 2). Therefore, we obtain a total of six selected trade-off solutions.

The density of wSOC values increases for higher values of wSOC, as these values lead to the selections of solutions in the

section of the Pareto-front of major interest when searching for eco-efficient trajectories, that is, the section closer to the300

cost-optimal solution. Additionally, we select the two solutions located at the Pareto-front extremes, i.e., the cost-optimal

and climate-optimal solutions, with the routine mentioned in Sect. 2.3.4. No preliminary knowledge about the expected

problem results is needed to conduct these simulations. As a result of this first set of experiments, for each optimized

flight we obtain information on eight solutions that determine the shape and extension of the Pareto-fronts relative to

individual flights, and the relation between penalties and benefit aggregated over the whole air traffic sample.305
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2. In the second set of experiments, we explore the effects of selecting a solution leading to a target change in SOC (Sect.

2.3.2). The target values are chosen using the results form the first set of experiments, which obtained average SOC

increases up to about +3.0% (see Table 3 and Fig. 6). In light of these results, we vary xt from 0.5% to 3.0% (Table

2), selecting four solutions per flight. Moreover, we set wSOC = 0.7 to exemplify the effects of using the option of using

VIKOR while setting a target SOC change (Sect. 2.3.3) of +1.0%.310

Table 2. Overview of the two sets of experiments performed to exemplify the use of the different decision-making methods.

Set SolFinder strategy Num. selected sol. Parameter Description Value(s)

1 VIKOR method 6 γ Group utility weight 0.5

for eco-eff. wSOC Rel. weight of SOC 0.2, 0.4, 0.6, 0.7, 0.8, 0.9

wATR Rel. weight of ATR20tot 1−wSOC

Pareto-front 2 fmin Minimized objective ATR20tot or SOC

extremes

2 Target change in fp 4 fp - SOC

xt Target change [%] 0.5, 1.0, 2.0, 3.0

Hybrid VIKOR-target 1 γ Group utility weight (VIKOR) 0.5

option wSOC Rel. weight of SOC (VIKOR) 0.7

wATR Rel. weight of ATR20tot (VIKOR) 1−wSOC

fp objective with limited changes SOC

xt Limit and target change [%] 1.0

3.2 Results

As explained in Sect. A, one of the main advantages of the VIKOR method is that no knowledge of the expected results

is needed before solving our problem. For this reason, the first set of experiments applies the VIKOR method with a range

of values of the parameter wSOC. This enables us to perform a preliminary examination of the characteristics of the relation

between benefit (in our application, ATR20tot reduction) and penalty (increase in SOC). Relatively
::::::
Relative

:
to our problem,315

this relation is shown in Fig. 6, illustrating the change in SOC that is required to achieve a certain reduction in ATR20. The

grey curves
:
in
::::

Fig.
:::
6b are obtained aggregating the 100 Pareto-optimal solutions selected using the VIKOR method on each

simulation day, varying the relative weight wSOC of the objective function SOC. The coordinates of the points connected by

the black line (representing the average relation over the 31 simulated days) can be found in Table 3. Setting a low value of

wSOC (e.g., wSOC = 0.2), we obtain a reduction in ATR20tot of about 13%, which is almost as large as the maximum potential320

reduction achieved selecting a climate-optimal routing strategy. Moving along the curve towards the cost-optimal strategy, the
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magnitude of the ATR20tot reduction decreases. This occurs with a simultaneous decrease of the cost per Kelvin reduction in

climate impact, measured by the climate-cost coefficient k [$/K] (Table 3). This coefficient is defined as (Matthes et al., 2017):

k =
SOC−SOCcost-opt

ATR20cost-opt −ATR20
(6)

where ATR20cost-opt and SOCcost-opt are relative to the cost-optimal solution, while ATR20 and SOC are relative to the consid-325

ered decision-making strategy. From this first set of experiments, we understand that: (1) the average ∆ATR20tot ranges from

-3.5 to -14.4%, with an increase in SOC of 0.1-3.0%, respectively; (2) about half of the maximum feasible climate change

reduction can be achieved with only +0.5% in SOC.

Figure 6. Relation between the relative changes in climate impact, ∆ATR20tot [%], and in simple operating cost, ∆SOC [%], with respect to

the cost-optimal solution. The
::::
Panel

:::
a):

:::::
scatter

:::::
graph

:
of
:::::::::
∆ATR20tot:[::

%]
:::::
against

:::::
∆SOC

:
[
::
%]

:
,
::::::::
comparing

:::
the values are obtained

:::::
varying

:::
the

:::::
weight

::
of

:::::
simple

:::::::
operating

:::::
costs

::::
wSOC.

:::::
Panel

::
b):

::::
values

:::::::
obtained summing over the 100 routes optimized per day. The black line illustrates

the average values over the 31 days included in the simulations, connecting the points selected varying the VIKOR weight wSOC from 0.2 to

0.9 (green dots). The extremes of the Pareto fronts (climate- and cost-optimal solutions, red dots) are included. The gray lines represent the

Pareto fronts obtained on each simulation day.

As previously mentioned, the red and green points highlighted in Fig. 6
:
b
:
result from summing all the solutions selected

for the 100 flights, and averaging over the month of simulation. However, each optimized trajectory is characterised by a330

different change in ATR20tot and SOC with respect to its corresponding cost-optimal solution. We note here that this cost-

optimal solution (shown in red in Fig. 6
:
b), which we take as reference to calculate the relative changes in ATR20tot and SOC,

is specific to each route and each simulation day, thus it varies between different flights. The
:::
full

:::::::::
variability

::
of

:::
the

::::::::::
relationship

:::::::
between

::::::
relative

:::::::
changes

::
in
::::::::

ATR20tot::::
and

::::
SOC

::
is
:::::::::
illustrated

::
in

::::
Fig.

:::
6a.

::
In

::::
this

:::::
panel,

::::
one

:::
can

:::
see

::::
that

::::::
specific

::::::::
solutions

::::
can

::::
show

:::::
large

:::::::::
deviations

::::
from

:::
the

:::::::
average

::::::
values,

::
as

:::::
some

::::::::
solutions

:::::
reach

::
an

::::::::
absolute

:::::::::
∆ATR20tot::::::

larger
::::
than

::::
60%

::
at

::::::::
penalties335

:::::
lower

::::
than

::::
2.5%

:::
in

:::::
terms

::
of

:::::::
∆SOC.

:::::::::
Moreover,

::::
Fig.

::
6a

::::::
shows

::::
that

:::
the

::::::
subsets

:::
of

::::::::::::
Pareto-optimal

::::::::
solutions

::::::::
obtained

::::::
setting

:::::::
different

:::::
wSOC ::::::

behave
::
as

::::::::
expected:

:::::::
moving

::
to

::::::
higher

:::::
values

::
of

:::::
wSOC:::::

leads
::
to

::::::
subsets

::::
that

:::
are

:::::::
confined

::::::
below

:::::
lower

::::::::
increases
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::
in

:::::
SOC,

:::::
while

:::
they

::::
still

::::::
stretch

:::::::
towards

::::
high

::::::::
ATR20tot :::::::::

reductions
::::
(e.g.,

:::
see

:::
the

::::::
points

:::::::
selected

::::
with

:::::::::
wSOC=0.9,

::::::::::
highlighted

::
in

:::::
pink).

:::
The

:
distributions of ∆ATR20tot and ∆SOC values across the optimized flights are represented in Fig. 7, which compares

the results obtained varying the parameter wSOC applying the VIKOR method, and the climate-optimal scenario. Fig. 7b shows340

the percentage of flights characterized by a certain ∆SOC. One can see that, employing VIKOR, the mode of each curve is

close to ∆SOC ∼ 0%, while the mean and maximum ∆SOC values increase when the weight wSOC decreases. Looking at the

∆ATR20tot distributions in Fig. 7a, we can observe larger differences also in the modal values for varying wSOC.

Figure 7. Relative frequencies [%] of different values of ∆ATR20tot [%] (Fig. 7a), and of ∆SOC [%] (Fig. 7b) with respect to the cost-

optimal solution. The histograms compare the distributions of the values obtained with different decision-making strategies, considering the

100 flights optimized on each simulation day (31*100 values per histogram). The solutions are selected by identifying the minimum climate

impact (climate-optimal solutions), or employing the VIKOR method with varying wSOC (first set of experiments).

The results of the first set of experiments can then be used to conduct the second set, fixing a target or a limit increase in

SOC as described in Sect. 3.1. The result of this second set of experiments are shown in Table 4. To illustrate the difference of345

employing different decision-making methods, it is useful to compare Fig. 7 with Fig. 8. The most evident difference emerges

comparing Fig. 7b with Fig. 8b. As intended, when we set a target increase in SOC (e.g., +1.0%), most of the selected flights

are affected by an increase in SOC equal or similar to the target, thus the curves are centered on this ∆SOC value. However, we

can also deduce that some Pareto-front
:::::::::::
Pareto-fronts do not extend to the target ∆SOC, since values of ∆SOC which are lower

than the target are assigned to a fraction of the flights. This results in average ∆SOC values that are lower than the targets,350

as we can see in Table 4. For example, a total increase of 0.8% in SOC is obtained, when the target is set to 1.0%. Moreover,

Fig. 8b shows what distribution of ∆SOC the user can expect employing the hybrid method described in Sect. 2.3.3. The

histogram relative to the hybrid option (yellow, hatch-filled) corresponds to the one obtained with VIKOR (with wSOC=0.7),

with an additional peak at the determined target SOC increase (1.0%), replacing the larger SOC increases observed in Fig.

7b. The results illustrated in Figs. 7b and 8b confirm that the strategies available in SolFinder 1.0 are correctly implemented,355

and lead to the expected selection of Pareto-optimal solutions. Moreover, the possibility of relying on the VIKOR method to

identify eco-efficient trajectories is confirmed by Fig. 9. These curves represent the distributions of the climate-cost coefficient
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k [$/K], obtained using VIKOR (blue curves) or the target SOC change (red curves). It is possible to observe that lower values

of k are obtained using VIKOR, in particular when a relatively high weight is assigned to SOC.

Figure 8. Relative frequencies [%] of different values of ∆ATR20tot [%] (Fig. 8a), and of ∆SOC [%] (Fig. 8b) with respect to the cost-

optimal solution. The histograms compare the distributions of the values obtained with different decision-making strategies, considering the

100 flights optimized on each simulation day (31*100 values per histogram). The solutions are selected by targeting different SOC changes,

or applying the hybrid method with wSOC=0.7 and xt = 1.0% (second set of experiments).

Figure 9. Relative frequencies [%] of different values of the climate-cost coefficient k [$/K], comparing the SolFinder solution-picking

strategies using VIKOR (blue curves) or the target SOC change (red curves). The curves approximate the histogram outlines (connecting

the bars centers) to highlight the shapes of the distributions and facilitate their comparison. Each curve includes the values obtained with

different decision-making strategies, considering the 100 flights optimized on each simulation day (31*100 values per histogram).

Employing different decision-making strategies, we obtain trajectories which are characterized by different properties. How360

these properties vary is shown in Fig. 10, which compares the mean flight altitudes and flown distances obtained when different

decision-making strategies are selected. Firstly, we can notice that cost-optimal flights are characterized by the highest mean
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flight altitudes and the shortest trajectories , to minimize fuel consumption
::::::
among

:::
the

:::::::
solutions

::::::::::
considered,

:::
due

::
to
:::
the

::::::::
presence

::
of

::::
fuel

:::::::::::
consumption

::
in

:::
the

:::::::::::
optimization

::::::::
objective. On the opposite situation, the lowest altitude and the longest distances

are obtained for climate-optimized flights. This confirms previous studies, which commented that (1) aircraft emissions have365

lower climate impact at lower altitudes, e.g., due to shorter residence time of emitted species (Castino et al., 2021; Matthes

et al., 2021; Frömming et al., 2012), and (2) lateral deviations may be necessary to avoid climate sensitive regions (Matthes

et al., 2020). Moreover, the variability of the flight properties across the set of simulated flights is larger for climate-optimized

flights than for cost-optimal ones. For example, comparing the different variability in flight altitudes, we see the impact of

the lowest aerodynamic drag, which allow to minimize
:::::
allows

:::::::
minimal

:
fuel use, is systematically found at higher altitudes.370

Contrarily, the altitude leading to the minimal ATR20 is highly variable, due to the high temporal and spatial variability of

the atmospheric conditions determining the net flight ATR20. Trade-off solutions between these two extreme scenarios show

intermediate properties, with median values and interval bars which gradually evolve moving from one extreme of the curve in

Fig. 6 to the other. We can also see that employing the VIKOR method rather than fixing a target increase in costs can lead to

different tendencies in the average characteristics of the selected trajectories. For example, comparing the VIKOR method with375

w = 0.4 (causing ∆SOC ∼ +1.2%, see Table 3) and setting a target +1.0% change in SOC, we can see that the latter strategy

leads to a less frequent selection of lower flight altitudes, while flying longer trajectories, than the former case. Therefore, the

user is recommended to identify their preferred decision-making strategy by also considering these secondary aspects, and not

exclusively the resulting distributions in objective functions values.

Lastly, we analyse the contribution to the total change in ATR20 of each effect of aviation emissions that we considered in380

our optimization process: CO2, H2O, contrails, NOx via perturbation of ozone, and NOx via methane depletion. The relative

importance of these effects under different decision-making strategies is illustrated in Fig. 11.

Contribution of different climate effects of aviation to the absolute ∆ATR20 Kwhen employing different decision-making

strategies. The horizontal, dotted line distinguish between solutions selected using VIKOR or climate-optimal solutions (upper

section), solutions selected targeting a SOC relative change (middle section), and solutions selected applying the hybrid method385

(lowest bar). The vertical, dashed line separates positive (warming) from negative (cooling) values of ∆ATR20.

Firstly, we can notice that the ATR20 from CO2 emissions increases moving from cost-optimal to climate-optimal and com-

promise solutions. This increase is expected, as the climate impact of CO2 is independent from
::
of the background atmospheric

conditions at time and location of emission; thus it is simply proportional to the amount of fuel used, which is minimized by

cost-optimal flights. On the other hand, the increase in the ATR20 from CO2 is largely compensated by the reduction in the390

ATR20 from contrails and, secondarily, from the impact of NOx on ozone. Moreover, Fig. 11 shows that reduction in climate

impact of contrails becomes increasingly dominant over the reduction of the other effects, when the relative weight wSOC of

SOC increases. This aspect should be considered when selecting the preferred settings of the decision making
::::::::::::::
decision-making

strategy. For example, if the decision-maker is interested in reducing both the climate impact of contrails and NOx-ozone

via trajectory optimization, this goal can be achieved allowing larger changes in SOC than those needed to only reduce the395

ATR20 from contrails effects. The dominant contributions of contrails and, secondarily, of the NOx climate impact to the

ATR20 reduction is confirmed by the results obtained optimizing aircraft trajectories with different tools (Lührs et al., 2021;

20



Figure 10. Variability of mean flight altitudes [km] (Fig. 10a) and flown
:::::
ground distance [km] (Fig. 10b) when employing different decision-

making strategies. The flight altitudes are calculated averaging over each trajectory, and over the 100 flights optimized on each day. The

flown
:::::
ground distances represent the total length of each trajectory, averaged over the 100 flights optimized on each simulation day. The

boxes extend between 1st and 3rd quartiles over time, and include segments marking the median values. The whiskers indicate the the

distribution of the remaining values (excluding eventual outliers).

Simorgh et al., 2022).
:::::::
However,

:::::
large

:::::::::::
uncertainties

:::::
affect

:::
the

::::::::
estimates

:::
of

::::::::
non-CO2 ::::::

effects
::
of

:::::::
aviation

::::
(see

:::::
Sect.

:
1
::::
and

:::
4),

:::::
which

:::
can

::::::
heavily

:::::
affect

:::
the

:::::::
relative

:::::::::
importance

::
of

:::
the

:::::::
different

::::::
effects

::
of

:::::::
aviation

:::::::::
emissions.

:::::::::
Therefore,

:
it
::
is
:::::::
relevant

::
to

::::::
update

::
the

:::::::::
modelling

:::::
chain

::::::::
presented

::::
here

:::::
when

::::::::::::
enhancements

::
in
::::

the
:::::::
scientific

::::::::::::
understanding

::::
and

::
in

:::
our

::::::
ability

::
to

::::::
model

::::::::
non-CO2400

:::::
effects

:::
are

::::::::
available,

:::
for

::::::::
example,

:::
via

:::::::
updated

::::::
aCCFs

:::::::
versions.

:
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Figure 11.
:::::::::
Contribution

::
of

:::::::
different

::::::
climate

:::::
effects

::
of

::::::
aviation

:::
to

::
the

:::::::
absolute

:::::::
∆ATR20

:
[
:
K]

::::
when

::::::::
employing

:::::::
different

:::::::::::::
decision-making

:::::::
strategies.

::::
The

::::::::
horizontal,

:::::
dotted

::::
line

::::::::
distinguish

:::::::
between

:::::::
solutions

::::::
selected

:::::
using

::::::
VIKOR

::
or
::::::::::::

climate-optimal
::::::::

solutions
:::::
(upper

:::::::
section),

:::::::
solutions

::::::
selected

:::::::
targeting

:
a
::::
SOC

::::::
relative

::::::
change

::::::
(middle

:::::::
section),

:::
and

:::::::
solutions

:::::::
selected

::::::
applying

:::
the

::::::
hybrid

::::::
method

:::::
(lowest

::::
bar).

::::
The

::::::
vertical,

:::::
dashed

:::
line

:::::::
separates

:::::::
positive

::::::::
(warming)

::::
from

::::::
negative

:::::::
(cooling)

:::::
values

::
of

::::::::
∆ATR20.

4 Discussion

In this paper, we illustrated the decision making
::::::::::::::
decision-making strategies implemented in the SolFinder 1.0 module, and how

they can be used to identify eco-efficient trajectories. The climate-optimization of aircraft trajectories has been increasingly

researched in the last decade, as efforts to reduce the climate impact of aviation lead to the investigation of operational miti-405

gation strategies. For example, Grewe et al. (2017) optimized a set of transatlantic flights during eight representative weather

patterns in winter and summer, employing the air traffic simulator SAAM and the Climate Change Functions (CCFs). This

study found that a
::::
10%

::::::::
reduction

::
in

:::::::
climate

::::::
impact

:::
can

:::
be

:::::::
achieved

::::
with

::
a 1.0% increase in operating costsallows to reduce

the climate impact by 10%. In our study, we considered a different region of the airspace (European flights), and we in-

cluded a larger number of weather patterns (every day in the month of January 2018), but limited to the winter season and to410

night-time; nevertheless, we found the results in Grewe et al. (2017) to be aligned with those we presented in Sect. 3, since a

∆SOC ∼+1.2% corresponds to a ∆ATR20 ∼−10.3% (Table 3). The maximum feasible climate impact reduction is higher

(about 20%) in Grewe et al. (2017), but this is achieved with an approximately double increase in costs. The discrepancy in

the section of the Pareto-front closer to the climate-optimal solution may be due to the different temporal and spatial domains.

:::
The

:::::::::
mitigation

::::::::
potential

::
of

:::::::::
optimized

::::::
aircraft

::::::::::
trajectories

::
is

::::::::
expected

::
to

:::
be

:::::::
affected

::
by

::::::::
seasonal

:::
and

:::::
daily

:::::::::
variability

:::::
(e.g.,415
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:::::::::::::::::::::::::::::::::
Reutter et al. (2020); Castino et al. (2021)

::
),

::::
thus

:::
the

:::::::::::
methodology

::::::::
presented

:::
in

:::
this

:::::
paper

::::
can

::
be

::::::::
extended

::
to

:::::
cover

::::::::
multiple

:::::
years,

::
to

:::::::::
investigate

::::
this

::::::
aspect.

:
Under specific weather conditions, cost-benefit relations were found to show higher eco-

efficiency than what we
::::
were

:
found aggregating the model output over all the routes, and all the simulated days. For example,

Lührs et al. (2021) analysed a day characterised by a weather situation with strong contrail formation, and found that a 0.75%

increase in fuel used halved the climate impact. This study suggests the possibility of identifying weather situations that allow420

for a higher eco-efficiency than others. The modelling chain presented in this paper enables us to optimize aircraft trajectories

under a large number of different atmospheric conditions, within a feasible computational time. Therefore, on-going research

is using the newly developed version of AirTraf, coupled with the SolFinder module, to analyse under which weather condi-

tions eco-efficient aircraft trajectories are most likely to be identified. To this end, additional decision-making strategies are

being investigated, to exploit the ability of VIKOR to identify lower values of the climate-cost coefficient k than a strategy425

applying a target increase in SOC to all flights (Fig. 9). Two candidate additional strategies are illustrated in Fig. 12. With

these options, only a fraction of the flights identified by VIKOR is climate-optimized, due to an additional condition. This is

obtained setting a threshold value of the coefficient k, in order to climate-optimize only the top ranked half of the flights (Fig.

12a) or until a certain budget is spent (e.g, +0.5% of SOC in Fig. 12b). A disadvantage of these decision-making strategies is

that their settings configuration relies on information on the whole system of optimized flights, which is not available when430

we consider the Pareto front resulting from a single-flight optimization. Therefore, preliminary simulations have to be run to

derive some parameter values, for example the specific threshold value of the climate-cost coefficient k [$/K]. Because of the

large variability of k, these decision-making strategies are more reliant on the results obtained from previous simulations than

the strategies included in SolFinder 1.0.

Figure 12. Relation between the percentage changes in climate impact, ∆ATR20 [%], and in simple operating cost, ∆SOC [%], with respect

to the cost-optimal solution. The values are obtained aggregating the properties of all the optimized flights (31 days, 100 routes optimized

per day). The black curve connects the points obtained with the SolFinder strategy relying on VIKOR, while the blue line and points refer to

the SolFinder strategy targeting a fixed SOC change. The red lines refer to additional strategies considered for future versions of SolFinder:

optimization of the 50% of the flights best ranked by k (Fig. 12a), and optimization of the flights best ranked by k until an increase in SOC

of 0.5% is achieved.
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The present work estimates the climate effect of aviation resulting from the emission of CO2, H2O, NOx, and from the435

formation of contrail-cirrus. Estimating the radiative forcing caused by non-CO2 effects is a complex process, leading to

results that are affected by large uncertainties due to, for example, incomplete scientific understanding and modeling capabil-

ities (Lee et al., 2021). As described in Sect. 3.1, we use the aCCFs version 1.0A to estimate the climate impact of aviation

(Matthes et al., 2023b), which are calibrated towards the results of a climate response model (AirClim, Dahlmann et al., 2016)

to align the relative importance of individual aCCFs. This is an update of the consistent set of aCCF 1.0 (Yin et al., 2023),440

calculating the climate impact of CO2, H2O, NOx-ozone, NOx-methane and contrails in terms of ATR20, assuming pulse

emissions (P-ATR20). This prototype set of functions are the focus of on-going research, to address their sources of uncertain-

ties. Moreover, we employed factors to: (1) convert the aCCFs values to a different climate metric, F-ATR20, which assumes

a business-as-usual future emission scenario; (2) include the efficacy of each climate impact effect (Dietmüller et al., 2022)

:::::::::::::::::::
(Dietmüller et al., 2023). These assumptions introduce additional sources of uncertainties (Matthes et al., 2023a). Moreover,445

we
::
the

:::::::
majority

:::
of

:::::::::::::::
ice-supersaturated

::::::
regions

::::::::::
(supporting

::::::::
persistent

::::::
contrail

:::::::::
formation)

:::::
have

:::::::::::
characteristic

:::::::::
dimensions

::::
that

:::
are

::::::
smaller

::::
than

:::
the

::::::::
horizontal

:::::::::
resolution

::
of

:::
our

::::::
model.

:::
To

::::
take

:::
this

:::::
factor

::::
into

:::::::
account,

:::
we

:::::::
employ

:
a
::::::::::::::
parameterization

:::::::::
developed

::
by

::::::::::::::::::::
Burkhardt et al. (2008)

:
to

:::::::
estimate

::::
the

::::::
fraction

:::
of

:::::
model

::::
grid

::::
box

::::::
which

::
is

:::::::::
supporting

::::::::
persistent

::::::::
contrails.

::::
The

::::::::
potential

::
of

:::::::
reducing

::::
the

::::::
flights

::::::
climate

:::::::
impact

::
by

:::::::
contrail

:::::::::
avoidance

:::::
could

:::
be

:::::::
reduced

:::
by

::::::
factors

::::
not

::::::::
included

::
in

::::
this

:::::
study.

::::
For

:::::::
example,

::::
here

:::
we

:::
use

:::::::
weather

:::::::::
conditions

::::::::
simulated

::
by

:::
an

::::::::::
atmospheric

:::::
model

::::::::
(EMAC)

:::::
rather

::::
than

:::::::
weather

:::::::
forecast.

::
In

::::
real

:::
life450

::::::::::
applications,

::::
this

:::::::::
mitigation

::::::
strategy

:::::
relies

:::
on

:::
the

::::::::
accuracy

:::
and

:::::::
stability

:::
of

:::::::
weather

:::::::
forecast,

:::
as

::::::::
discussed

::
in

:::::
Sect.

::
1.

::::::
Lastly,

::
we

:
note that we use a simplified representation of the operating cost, to limit the computational time required for their eval-

uation within each optimization step. To this end, we assume a linear relationship between cost of time and flight time (see

Eq. (1) and Yamashita et al., 2020). Therefore, we neglect additional costs caused by delays.
::::::
Further

:::::::
research

::::
will

:::::::
explore

::
the

:::::::
impact

::
of

:::::::::
optimizing

::::
not

::::
only

:::
the

:::::::
location

::
of

::::
the

:::::
flight

::::::::
trajectory

::::
(see

::::
Sect.

:::::
2.2),

:::
but

::::
also

:::
the

::::::::
airspeed,

:::::::::
improving

::::
fuel455

::::::::
efficiency

::::::::
compared

:::
to

:::
this

:::::
study,

::::::
which

:::::::
assumed

::
a
:::::::
constant

:::::
Mach

:::::::
number

:::
for

:::
all

::::::::
solutions.

:::::
Other

:::::::
studies

:::::
found

::::
that

:::::
speed

::::::
changes

::::
can

::
be

:::::::::
important

:::
for

:::::::
reducing

::::
fuel

::::
flow,

:::::
NOx ::::::::

emissions
::::
and,

:::::::::
ultimately,

:::::
NOx ::::::

climate
::::::
effects

::::::::::::::::::
(Simorgh et al., 2023)

:
.

::::
This

:::::::::::
improvement

::
of

::::::
AirTraf

::
is
::::::::
expected

::
to

::::::
impact

:::
the

::::::::
SolFinder

::::::
results,

:::
by

:::::::
reducing

:::
the

::::::::
penalties

::
in

:::::
terms

::
of

::::::::
operating

:::::
costs

:::
and

::::
CO2:::::::::

emissions
::
for

::
a
::::::
certain

::::
gain

::
in

:::::
terms

::
of

::::::::
reduction

::
of

:::::::
ATR20.

:::
On

:::
the

:::::
other

:::::
hand,

::::::::
including

:::
the

:::::::
airspace

:::::::
structure

::::
and

:::::::
capacity,

::::::
which

:::
are

::::::::
neglected

::
in

::::
this

:::::
study,

::::
can

::::::
reduce

:::
the

::::::::
estimated

:::::::
climate

::::::
impact

:::::::::
mitigation

:::::::
potential

:::
of

:::
this

::::::::::
operational460

:::::::
strategy.

5 Conclusions

In this study, we described the decision-making strategies implemented in the SolFinder 1.0 module. The SolFinder 1.0 module

has been coupled to the AirTraf 3.0 submodel, as part of its development to efficiently solve multi-objective optimization

problems. AirTraf is coupled to an atmospheric chemistry model (EMAC): thus, using this modelling chain, we
:::
We

:
showed465

here how the selected decision-making strategies can be used to identify solutions matching specific preferences (e.g., eco-

efficient aircraft trajectories), .
:::::::::
Moreover,

:::::
using

::::
this

:::::::::
modelling

:::::
chain,

::
it
::
is

:::::::
possible

:::
to explore the results variability under
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different weather patterns
:
a
:::::
large

::::::
number

:::
of

::::::::::
consecutive

:::::
days,

::::
due

::
to

:::
the

::::::::
coupling

:::::::
between

:::::::::
SolFinder

::::
and

::
an

:::::::::::
atmospheric

::::::::
chemistry

:::::
model

:::::::::
(EMAC),

:::
via

:::
the

::::::
EMAC

::::::::
submodel

:::::::
AirTraf. To demonstrate the usage of the tool, this paper showed results

for the period of one winter month (1-31 January 2018). We solved a bi-objective optimization problem minimizing the climate470

impact of the aircraft trajectory (F-ATR20tot) and its simple operating costs (SOC), and we compared the solutions selected

by different configurations of SolFinder 1.0. Comparing the strategies using VIKOR and a target change in SOC, we found

that lower values of the climate-cost coefficient k [$/K] (i.e., a higher eco-efficiency) are obtained with the former option. The

decision making
:::::::::::::
decision-making

:
strategies included in SolFinder 1.0 are applied on sets of Pareto-optimal solutions relative

to a single aircraft trajectory. In the next SolFinder versions, we plan to take into account the mitigation potential variability475

across all flights. As a result, only the best performing fraction of the flights is optimized with respect to their climate impact,

and the cost of the operational mitigation strategy is lowered. On-going research is using the modelling chain presented in

this paper to identify those weather situations allowing for the largest reductions in the temperature response from aviation

emissions via the optimization of aircraft trajectories.

Code and data availability. The Modular Earth Submodel System (MESSy) is continuously further developed and applied by a consortium480

of institutions. The usage of MESSy and access to the source code is licenced to all affiliates of institutions which are members of the

MESSy Consortium. Institutions can become a member of the MESSy Consortium by signing the MESSy Memorandum of Understanding.

More information can be found on the MESSy Consortium Website (http://www.messy-interface.org). The code presented here has been

based on MESSy version 2.55.0 and will be available after the official release of AirTraf 3.0, a submodel of MESSy. An open access version

of SolFinder (see Supplement material) is available from the 4TU.ResearchData repository (Castino, 2023) under the licence GNU Lesser485

General Public License v3.0, as are the scripts to produce the plots presented in this paper. The simulation output analysed in this paper is

archived in the 4TU.ResearchData repository (Castino et al., 2023).

Appendix A: VIKOR method

In this Sect. A, we quote the steps characterizing the VIKOR method, as they were introduced and described in Opricovic

(1998) and Opricovic and Tzeng (2004). Fig. A1 illustrates the main working principles of the VIKOR method. The x-axis490

represents the normalized distance from the minimum value of f1, scaled by its relative weight w1. As an example, this weight is

set to w1 = 0.2, thus the x-axis ranges from 0 to 0.2. Similarly, the y-axis represents the normalized distance from the minimum

value of f2, weighted using w2 = 0.8. The axes intersect at the reference point ibest, defined as the best ideal (i.e., usually not

feasible) solution. Opposite to ibest, it is possible to identify iworst, which assumes the worst values of fn (fn,worst) found among

the set of Pareto-optimal solutions. For example, when aiming at minimizing fn, iworst corresponds to the maximum fn among495

the Pareto set. The grey points in Fig. A1 indicate the location of the Pareto-optimal solutions, relative to ibest. In facts
:::
fact,

the VIKOR method ranks the Pareto-optimal solutions using as reference point ibest :::
ibest ::

as
::
a

::::::::
reference

::::
point. Hence, the first

step consists in identifying such
::
of

:::::::::
identifying

::::
such

:
a
:
reference point, by determining the best values of each

::
of

:::
the objectives,

fn,best. Since we aim to minimize the objective functions, we use the following definitions of fn,best and fn,worst:

25



fn,best =min
j

fn,j , fn,worst =max
j

fn,j , n= 1,2, ...,N, j = 1,2, ...,J (A1)500

In Fig. A1 we highlight the Pareto-optimal solution pj . In the second step of the VIKOR method, two quantities are calculated

for each point in the Pareto set: S(pj), which measures the group utility of the solution pj , and R(pj), which represents its

individual regret. In other words, S(pj) measures the overall distance of pj from ibest, taking into account all the optimization

objectives. On the other hand, R(pj) measures the largest distance of pj from ibest considering each objective individually.

These quantities are defined by Eqs. (4) and (5), respectively:505

S(pj) =

N∑
n=1

wn
fn,best − fn,j

fn,best − fn,worst
(A2)

R(pj) = max
n

[
wn

fn,best − fn,j
fn,best − fn,worst

]
(A3)

where wn is the relative weight of each objective fn.

The geometric representation of S(pj) and R(pj) is illustrated in Fig. A1. It is possible to deduce from Eqs. (4) and (5) and

from Fig. A1 that lower values of S(pj) and R(pj) are preferable. These measures of the distance of pj from ibest are combined510

in the value Q(pj), which is used as main ranking parameter by the VIKOR method. The value of Q(pj) is calculated using

Eq. (6):

Q(pj) = γ
Sj −minj Sj

maxj Sj −minj Sj
+(1− γ)

Rj −minjRj

maxjRj −minjRj
(A4)

The next step consists in creating three ranking lists of the Pareto optimal
::::::::::::
Pareto-optimal

:
solutions, sorting them by S, R,

and Q. We define pi as the Pareto-optimal solution at the ith position in the list sorted by Q. Consequently, the first compromise515

solution to be recommended is p1, which minimizes Q: Q(p1) = minjQ(pj). The following conditions are then evaluated:

1. acceptable advantage: Q(p2)−Q(p1)≥ 1
J−1

If this condition is not verified, a set of Pareto-optimal solutions pv (v = 1,2, ...,M) is recommended, where M is the

maximum value for which Q(pM )−Q(p1)≤ 1
J−1 is true.

2. acceptable stability: p1 is the best ranked solution not only by Q, but also by S and R.520

If this condition is not satisfied, both p1 and p2 are recommended.

Therefore, the application of the VIKOR method results in the identification of either one optimal solution, p1, or a subset

of optimal solutions, pv (v = 1,2, ...,M), which are recommended to the decision-maker.
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Figure A1. Illustration of the VIKOR method applied to a bi-objective optimization problem, minimizing f1 and f2. In this example, we

set w1 = 0.2 and w2 = 0.8, thus the x (y) axis ranges from 0.0 to 0.2 (0.8). The grey dots represent Pareto-optimal solutions. The red cross

indicates the Pareto-optimal solution pj . The green dashed line represents S(pj), while the orange dotted segment represents R(pj). The

reference points ibest and iworst are indicated by the black triangle and black square, respectively.
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Appendix B:
:::
Air

:::::
traffic

:::::::
sample

Figure B1.
::

List
::
of

:::::::::::::
origin/destination

::::::
airport

::::
pairs

::::::
included

::
in

:::
the

::
air

:::::
traffic

::::::
sample,

::
as

:::::::
illustrated

::
in
:::
the

:::
map

::
in
::::
Fig.

:
5.
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