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Abstract. CE1Accurate information on surface soil mois-
ture (SSM) content at a global scale under different cli-
matic conditions is important for hydrological and climato-
logical applications. Machine-learning-based systematic in-
tegration of in situ hydrological measurements, complex en-5

vironmental and climate data, and satellite observation fa-
cilitate the generation of reliable data products to monitor
and analyse the exchange of water, energy, and carbon in
the Earth system at a proper space–time resolution. This
study investigates the estimation of daily SSM using 8 op-10

timised machine learning (ML) algorithms and 10 ensemble
models (constructed via model bootstrap aggregating tech-
niques and five-fold cross-validation). The algorithmic im-
plementations were trained and tested using International
Soil Moisture Network (ISMN) data collected from 1722 sta-15

tions distributed across the world. The result showed that
the K-neighbours Regressor (KNR) had the lowest root-
mean-square error (0.0379 cm3 cm−3) on the “test_random”
set (for testing the performance of randomly split data dur-
ing training), the Random Forest Regressor (RFR) had the20

lowest RMSE (0.0599 cm3 cm−3) on the “test_temporal” set
(for testing the performance on the period that was not
used in training), and AdaBoost (AB) had the lowest RMSE
(0.0786 cm3 cm−3) on the “test_independent-stations” set

(for testing the performance on the stations that were not 25

used in training). Independent evaluation on novel stations
across different climate zones was conducted. For the opti-
mised ML algorithms, the median RMSE values were be-
low 0.1 cm3 cm−3. GradientBoosting (GB), Multi-layer Per-
ceptron Regressor (MLPR), Stochastic Gradient Descent Re- 30

gressor (SGDR), and RFR achieved a median r score of
0.6 in 12, 11, 9, and 9 climate zones, respectively, out of
15 climate zones. The performance of ensemble models im-
proved significantly, with the median RMSE value below
0.075 cm3 cm−3 for all climate zones. All voting regressors 35

achieved r scores of above 0.6 in 13 climate zones; BSh (hot
semi-arid climate) and BWh (hot desert climate) were the
exceptions because of the sparse distribution of training sta-
tions. The metric evaluation showed that ensemble models
can improve the performance of single ML algorithms and 40

achieve more stable results. Based on the results computed
for three different test sets, the ensemble model with KNR,
RFR and Extreme Gradient Boosting (XB) performed the
best. Overall, our investigation shows that ensemble machine
learning algorithms have a greater capability with respect to 45

predicting SSM compared with the optimised or base ML
algorithms; this indicates their huge potential applicability

1
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in estimating water cycle budgets, managing irrigation, and
predicting crop yields.

1 Introduction

Surface soil moisture (SSM) plays an essential role in the
exchange of water, energy and carbon between land and the5

atmosphere (Green et al., 2019) and affects vegetation and
soil health as well as the prediction and management of
drought and flood events (Manfreda et al., 2017; Rodríguez-
Iturbe and Porporato, 2007; Su et al., 2003; Watson et al.,
2022). SSM is considered a key element in the feedback10

mechanisms that influence weather patterns and precipitation
(Lou et al., 2021). The amount of soil moisture is largely
determined by local climate, vegetation, soil type, and hu-
man activities, including irrigation and land use (Entekhabi
et al., 2010a). While traditional ground-based observations15

provide valuable information, they often have limited spatial
and temporal coverage (Zhang et al., 2022). Remote-sensing
(RS) techniques can provide near-real-time, spatially explicit
soil moisture information over large areas at a lower cost, and
they are particularly useful in areas with challenging terrain20

or in large, densely populated regions where it is not feasi-
ble to obtain ground-based measurements (Srivastava et al.,
2016).

Both microwave RS techniques and optical and thermal
infrared RS techniques have been used to estimate soil mois-25

ture (Eroglu et al., 2019). Passive microwave remote sensing
is the most promising technique for global monitoring of soil
moisture due to the direct relationship between soil emis-
sivity and soil water content (Njoku and Entekhabi, 1996).
It offers an advantage in that it provides observations under30

all-weather conditions and penetrates the vegetation canopy
(Al Bitar et al., 2017). There are many microwave radiome-
ters used for soil moisture observation, such as the Spe-
cial Sensor Microwave/Imager (SSM/I), the Advanced Mi-
crowave Scanning Radiometer for Earth Observation system35

(AMSR-E), the Soil Moisture and Ocean Salinity (SMOS),
and the Soil Moisture Active Passive (SMAP), and many
soil moisture products have been generated using these in-
struments. However, the derived soil moisture products from
passive microwave sensors are limited by their coarse spa-40

tial resolution (generally from 9 to 40 km), thereby imped-
ing their application for regional-scale studies (Piles et al.,
2011). To enable applications at a local scale, many stud-
ies have focused on downscaling soil moisture using high-
resolution optical and thermal data and radar data (Fang et45

al., 2022; Song et al., 2022). The applicability of these down-
scaling algorithms is influenced by the need for a large num-
ber of high-resolution data, which are not widely available at
a global scale. To obtain high-resolution soil moisture mea-
surements, one promising strategy is to combine remotely50

sensed land surface radiometric temperature data with vege-
tation indexes. Additionally, it is possible to derive soil mois-

ture from SMOS and AMSR-E data by applying hydrologic
data assimilation approaches (Baldwin et al., 2017; Portal et
al., 2020). 55

Recently, machine learning (ML) techniques have gained
popularity in several fields, including soil moisture estima-
tion (Ali et al., 2015; Han et al., 2023b; Zhang et al., 2021;
Zhuang et al., 2023), due to their ability to identify patterns
and relationships between soil moisture observations and re- 60

lated predictors that may not be immediately obvious to a
human analyst (Hajdu et al., 2018; Mao et al., 2019). This al-
lows an ML model to make more accurate predictions of soil
moisture based on remote-sensing data. Many efforts have
been directed toward improving soil moisture prediction in 65

the community using ML techniques (Abowarda et al., 2021;
Karthikeyan and Mishra, 2021; Lee et al., 2022; Lei et al.,
2022; Sungmin and Orth, 2021; Zhang et al., 2021). At the
point scale, work has compared three ML algorithms in the
laboratory using a radar sensor (Uthayakumar et al., 2022). 70

At the regional scale, studies have compared different ML
approaches over catchment areas or at larger regional scales
(Acharya et al., 2021; Adab et al., 2020; Senyurek et al.,
2020), and six ML algorithms have been compared with re-
spect to generating high-resolution SSM over four regions 75

(Liu et al., 2020). However, a comparison of different ML
algorithms focusing on soil moisture estimation with train-
ing data distributed across the globe is still missing, and the
selection of predictors remains an open question.

Here, we aim to optimise the prediction of SSM with train- 80

ing data distributed across the globe using ensemble models
constructed from different base ML algorithms and to exten-
sively study their performance in order to identify optimised
combinations for predicting SSM at 5 cm depth. It should be
noted that the current predicted SSM product is at the point 85

scale with a daily temporal resolution and that, based on the
data availability of the International Soil Moisture Network
(ISMN) stations, we are predicting SSM from 2000 to 2018.
The developed model can be easily and directly upscaled
to predict SSM at the global scale with a 1 km resolution 90

if the input data are provided (Han et al., 2023b; Zhang et
al., 2021); SSM at the global scale with a 1 km resolution,
if the input data are provided, will be produced in the fu-
ture and is beyond the scope of the current studyCE2 . The
current study aims to (i) optimise and compare the perfor- 95

mance of the different ML approaches (e.g. training speed,
accuracy, and robustness) with respect to soil moisture esti-
mation based on identical training and testing datasets across
the globe, (ii) justify the selection of appropriate predictors
and their importance in the ML model, and (iii) build ensem- 100

ble models to predict soil moisture and compare the results
achieved by the optimised machine learning algorithms ob-
tained in objective (i).



Q. Han et al.: Ensemble of optimised ML algorithms for predicting surface soil moisture content 3

2 Physical features and data

2.1 Physical feature selection

In order to predict SSM accurately, a multidimensional un-
derstanding of its complex dynamics requires a compre-
hensive integration of diverse environmental factors. While5

remote-sensing techniques and advanced machine learning
algorithms have revolutionised SSM estimation, the optimal
selection of predictor variables remains a pivotal challenge.
The dynamic interplay of precipitation, evaporation, land
surface temperature (LST), vegetation index, soil properties,10

and topographic indices influences SSM patterns.
As the primary meteorological forcing, precipitation and

evaporation control the spatial variability in SSM in most flat
areas (Pan et al., 2003; Wu et al., 2012; Zhang et al., 2019).
Many studies have attempted to connect SSM with precip-15

itation and evaporation, for example, with a linear stochas-
tic partial differential model (Pan et al., 2003) and the an-
tecedent precipitation index (API) (Shaw et al., 1997). LST
reflects the pattern of evapotranspiration and plays an essen-
tial role in SSM retrieval (Parinussa et al., 2011). It was in-20

dicated that the LST derived from GOES-8 satellite imagery
increased with a decrease in observed SSM (Sun and Pinker,
2004). Furthermore, the daily LST difference is negatively
related to the thermal inertia of soil, whereas thermal iner-
tia increases as soil moisture increases (Matsushima, 2018;25

Paruta et al., 2020; Zhuang et al., 2023). Thus, the daily dif-
ference between daytime and night-time LST was also se-
lected as a predictor variable.

The vegetation index is a transformation of two or more
spectral bands of satellite images. For example, the nor-30

malised difference vegetation index (NDVI) is one of the
most used vegetation indexes, representing the greenness of
the vegetation condition, and is considered to be a conserva-
tive water stress index (Goward et al., 1991). Plenty of re-
search has reported retrieving SSM with the help of vege-35

tation indices. For example, the temperature/vegetation dry-
ness index (TVDI) was shown to have a strong negative re-
lationship with SSM (Patel et al., 2009). SSM was estimated
with a random forest model using LST, albedo, and the NDVI
(Zhao et al., 2017). In addition, the enhanced vegetation in-40

dex (EVI) is also commonly used to improve the sensitivity
of SSM estimation in areas with high vegetation coverage
(Jiang et al., 2008; Matsushita et al., 2007).

In the case of soil moisture estimation, physics-based
models are useful for predicting the movement of water in45

the soil based on physical factors such as temperature, pre-
cipitation, and soil physical properties (Sungmin and Orth,
2021). Nevertheless, the soil physical properties, such as
sand, silt, and clay content and organic matter content have
rarely been included in empirical soil moisture models, al-50

though they can significantly influence the soil hydraulic pro-
cesses (Vereecken et al., 2015). By considering these soil
physical properties, empirical models can provide a better

understanding of the mechanisms behind soil moisture dy-
namics, as they provide insight into the underlying processes 55

that drive changes in soil moisture. Soil properties influence
the spatial variability in SSM, and, among the most available
properties, soil texture, porosity, and organic matter content
(OMC) have proven to play an important role (Van Looy et
al., 2017). Soil texture refers to the fractions of clay, silt, and 60

sand content. Porosity is the fraction of the total soil volume
that is made up of the pore space, which varies depending on
other soil properties (e.g. soil texture, and aggregation) (Lal
and Shukla, 2004). Soil organic matter is any material origi-
nally produced by living organisms that is returned to the soil 65

and goes through the decomposition process, and this prop-
erty represents an important soil component on a volume ba-
sis (Hudson, 1994; Nath, 2014). Soil texture, organic matter
content, and porosity determine the amount of water that can
enter into the soil and be stored. 70

Topographic indices are often used to understand the soil
moisture patterns in landscapes and make effective landscape
management decisions (Qiu et al., 2017). Digital elevation
model (DEM) data are used because the distribution of pre-
cipitation, vegetation, and other features is directly related to 75

elevation (Han et al., 2018). The topographic index (TI) in-
tegrates the water supply from the upslope catchment area
and the downslope water drainage for each cell in a DEM. In
the TI, the slope gradient approximates the downslope water
drainage, and the specific catchment area, calculated as the 80

total catchment area divided by the flow width, approximates
the water supply from the upslope area (Beven and Kirkby,
1979).

In addition, the geographic coordinate of the soil moisture
site was also added as a predictor variable. As discussed by 85

Zhang et al. (2021), the information on longitude denotes the
closeness to the ocean, whereas the latitude is related to the
climatology of the temperature.

2.2 Data source

Based on consideration of these physical features that influ- 90

ence that dynamics of SSM, we next describe the data used
for training and testing the different algorithms. The Inter-
national Soil Moisture Network (ISMN) maintains a global
in situ soil moisture database through international cooper-
ation (ISMN, 2023). As of July 2021, ISMN contains more 95

than 2842 stations from 71 networks over different clima-
tological conditions (Dorigo et al., 2021). However, ISMN
does not restrict data providers in terms of delivery inter-
vals, automation, or formatting, resulting in heterogeneous
data before harmonisation by ISMN. This includes variations 100

in units, depth, integration length, sampling intervals, and
sensor positioning (both vertically and horizontally), among
others. To overcome these variations, ISMN harmonises soil
moisture data by applying an automated quality control sys-
tem, which includes considering the geophysical dynamic 105
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range (i.e. threshold) and the shape of soil moisture time se-
ries (e.g. outliers and breaks) (Dorigo et al., 2013).

In this study, we extracted in situ SSM (at 5 cm depth)
from ISMN from 1 January 2000 to 31 December 2018,
and the predictor variables were then incorporated to prepare5

training and test sets. We filtered the NaN (Not-a-Number)
values of SSM and different predictor variables; following
this process, 1722 stations were kept for further analysis
(Fig. 1). In Sect. 2.1, we provide a detailed description of
each individual source of data. Section 2.2 explains the pre-10

processing operation applied to the available data, while
Sect. 2.3 presents the data-splitting procedure. It is worth
noting that registration is required for further inquiry or to
download the original ISMN data (ISMN, 2023).

The predictor variables used in the models are listed in Ta-15

ble 1 and detailed hereinafter. The most commonly used pre-
dictor variables (e.g. remote-sensing data or reanalysis data)
are available on the Google Earth Engine (GEE) platform.

2.2.1 Precipitation and evaporation

In this study, we used the hourly precipitation and evap-20

oration data from ERA5-Land with a time coverage from
1981 to the present. ERA5-Land is one of the most ad-
vanced reanalysis products released by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), with
a higher spatial resolution and better global water balance25

than ERA-Interim (Albergel et al., 2018; Muñoz-Sabater et
al., 2021). To synchronise the temporal coverage of the land
surface temperature and vegetation indices, we adopted all
precipitation and evaporation data from 2000 to 2018 and
aggregated them from hourly into daily values.30

2.2.2 Land surface temperature and air temperature

Currently, several LST datasets are available that have been
rigorously validated. The MOD11A1 (Collection 6) LST
product from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) is based on the split-window method35

(Wan, 2014). The spatial resolution of MOD11A1 is 1 km,
with two measurements of LST per day – descending at
10:30 LT (local time) and ascending at 22:30 LT, respec-
tively. The MOD11A1 LST was reported with an average
error of around 1 ◦C (Sobrino et al., 2020; Wan, 2014).40

2.2.3 Vegetation indices

This study deployed the MOD13A1 dataset of NDVI and
EVI from MODIS as the predictor variables (MODIS, 2015).
MOD13A1 has a spatial resolution of 500 m and a tem-
poral resolution of 16 d. The selected temporal coverage is45

the same as for LST (from 1 January 2000 to 31 Decem-
ber 2018).

2.2.4 Soil properties

In this study, the soil texture (proportion of clay, sand, and
silt content), bulk density (used for calculating porosity), and 50

organic carbon content (used for calculating organic matter
content) values were obtained from SoilGrids (Hengl et al.,
2017). The SoilGrids system currently provides the most de-
tailed quantitative information on soil properties at a global
scale (Hengl et al., 2017). All soil properties are available 55

for seven respective soil depths: 0, 5, 15, 30, 60, 100, and
200 cm (Hengl et al., 2017; Ross et al., 2018). In this study,
clay, sand, and silt content values of the top 5 cm; organic
matter content values of the top 5 cm; and bulk density val-
ues of the top 5 cm were used. 60

2.2.5 DEM and the topographic index (TI)

MERIT Hydro was used in this study (Yamazaki et al., 2019).

2.2.6 Köppen–Geiger climate classification

To further investigate the performance of the ML algorithms
over different climate conditions, we used the Köppen– 65

Geiger (KG) climate classification system. The KG system
classifies the climate based on air temperature and precipi-
tation. The climate is grouped into 5 main classes with 30
sub-types, consisting of tropical, arid, temperate, continen-
tal, and polar climates (Beck et al., 2018). 70

ISMN covers 19 climate zones: Aw – tropical wet and
dry or savanna climate, BSh – hot semi-arid climate, BSk
– cold semi-arid climate, BWh – hot desert climate, BWk
– cold desert climate, Cfa – humid subtropical climate, Cfb
– temperate oceanic climate, Csa – hot-summer Mediter- 75

ranean climate, Csb – warm-summer Mediterranean cli-
mate, Cwb – subtropical highland climate, Dfa – hot-
summer humid continental climate, Dfb – warm-summer
humid continental climate, Dfc – subarctic climate, Dsb –
Mediterranean-influenced warm-summer humid continental 80

climate, Dsc – Mediterranean-influenced subarctic climate,
Dwa – monsoon-influenced hot-summer humid continental
climate, Dwb – monsoon-influenced warm-summer humid
continental climate, Dwc – monsoon-influenced subarctic
climate, and ET – tundra climate. 85

2.3 Data preprocessing

2.3.1 Antecedent precipitation index

The ERA5-Land daily precipitation data were used to calcu-
late the antecedent precipitation index (API) (Muñoz-Sabater
et al., 2021). The API indicates the reverse-time-weighted 90

summation of precipitation over a specified time (Wilke and
McFarland, 1986). The historical precipitation influences the
soil water content with a weakening effect along the reverse
time axis: more recent rainfall events have a higher impact
on the current SSM (Benkhaled et al., 2004). 95
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Figure 1. Spatial distribution of the ISMN stations considered in this study and their corresponding climate zones. Note that the data from
the 1574 stations coloured in black were used for training and testing the performance of the algorithmic implementations, whereas the 148
stations coloured in red contain independent, unseen data from different locations; the data from the latter stations were used for post-training
analysis.

Table 1. Predictor variables used for training the machine learning algorithms.

Predictor variable Description/Explanation Spatial Temporal Source Unit
resolution resolution

Evaporation/Precipitation/API Evaporation/Precipitation/Antecedent
precipitation index (weighted summa-
tion of daily precipitation amounts)

11 km Daily ECMWF reanalysis fifth
generation (ERA 5-Land)

Millimetre (mm)

NDVI/EVI Vegetation index 500 m Daily MOD13A1 –

LST_Daily/LST_Diff/T_air Daily land surface temperature/Land
surface temperature difference between
day and night/2 m air temperature

1000 m/1000 m/0.25◦ Daily MOD11A1/MOD11A1/
ERA5-Land

Degrees Celsius (◦C)

Clay content/Sand content/Silt
content/Porosity/Organic mat-
ter content (OMC)

Proportion of clay/Proportion of
sand/Proportion of silt/Porosity (calcu-
lated from bulk density)/Soil organic
matter content

250 m Static SoilGrids Percentage (%)

Long/Lat Geographic coordinates information
(longitude and latitude)

– Static ISMN Sexagesimal degree (◦)

Elevation/Topographic Index Elevation/Topographic index 90 m Static MERIT Hydro Metre (m)

Year/DOY Year/Day of year – – – –

Many researchers have applied the API to retrieve SSM
information (Wilke and McFarland, 1986; Zhao et al., 2011).
In this study, we used the API as a feature for the SSM pre-
diction. The definition of API can be represented as follows:

APIa =
t∑
i=0

ki ·pa−i . (1)5

In Eq. (1), APIa represents the API value at day a; k is
an empirical factor (decay parameter) to indicate the decay
effect from the rainfall, which should always be less than 1,

with a suggested range of k being between 0.85 and 0.98
(Ali et al., 2010); pa−i is the precipitation value at the ith 10

day before day a; and t is the number of antecedent days that
we used to calculate APIa .

Despite the spatial heterogeneity in the decay parame-
ter (k), as the soil water retention varies in space, most re-
searchers use only one pair of values (k and t) for their study 15

area (Hillel and Hatfield, 2005); this approach was adopted in
this work as well. Thus, we calculated the API with different
combinations of the parameters (k and t) and compared the
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corresponding Pearson correlation coefficient (r) of the API
and in situ SSM; the final obtained optimised parameters are
k = 0.91 and t = 33.

2.3.2 Reconstruction of the vegetation index

Both the NDVI and EVI from MOD13A1 are MODIS 16 d5

composite data. Despite an atmospheric correction procedure
for the MODIS reflectance data, noise could still be observed
in the long-term time series, which is not physical based on
plant phenology. Thus, we filtered the NDVI and EVI prod-
ucts with the Savitzky–Golay (S-G) method to reduce the10

small peak noise (Chen et al., 2004). NDVI and EVI were
also interpolated to a daily time step using a simple linear
approach to synchronise the temporal steps with other fea-
tures as follows:

p(t)= f (t0)+ (f (t1)− f (t0))
(
t − t0
t1− t0

)
. (2)15

In Eq. (2), p(t) is the interpolated vegetation index; f (t0)
and f (t1) are the vegetation index at time t0 and t1, respec-
tively.

2.3.3 Daily LST and daily LST difference

The MOD11A1 LST product consists of two LST values per20

day (at 10:30 and 22:30 LT) (Wan, 2014). We considered the
arithmetic average of them as daily LST and calculated the
difference between the daytime and night-time value as the
daily LST difference for that day.

The quality of the LST was ensured based on the qual-25

ity control (QC) data associated with the daytime and night-
time LST; only pixels with a QC value of 0 (i.e. good-quality
data) were kept (Wan, 2014). The MOD11A1 data used in
this study span from 24 February 2000 to 31 December 2018.

2.3.4 Porosity and organic matter content30

Soil porosity was derived from Eq. (3), using the bulk density
from SoilGrids (Hengl et al., 2017) and particle density:

∅= 1−
ρb

ρs
. (3)

In Eq. (3), ρb is the dry bulk density (g cm−3) and ρs is the
mineral particle density of 2.65 g cm−3. For soil mixture, the35

bulk density scheme assumed that the coarse and fine com-
ponents share the same particle density.

Soil organic matter content (also retrieved from SoilGrids)
can be converted from soil organic carbon content by multi-
plying by a factor of 1.72 (Khatoon et al., 2017).40

2.3.5 DEM and the topographic index (TI)

We used the topographic index of TOPMODEL (Kirkby,
1975), which is defined as follows (Pradhan et al., 2006):

TI= ln
(
α

β

)
; (4)

α =
uca
fw
; (5) 45

fw={
90 m when flow direction is 1 or 4 or 16 or 64,
√

90 m when flow direction is 2 or 8 or 32 or 128.
(6)

Here, TI is the topographic index, α is the ratio of local
upslope catchment area (uca) to flow width (fw), and β is
the slope angle of the ground surface that can be obtained
from elevation data. Upslope catchment area, flow direction, 50

and elevation can be found and used directly from MERIT
Hydro: global hydrography datasets (Gruber and Peckham
2009; Yamazaki et al., 2019).

2.3.6 Spatial resampling

Land surface features have different spatial resolutions. For 55

calculating the long-term gridded global SSM, the predictor
variables were resampled to a 1 km resolution. Afterwards,
the predictor variables were extracted for pixels that collocate
with the considered in situ sites, at a 1 km resolution. The
World Geodetic System of 1984 (WGS84, EPSG:4326) was 60

chosen as the geographic coordinate system in our study.

2.4 Data split

The precipitation, API, evaporation, air temperature, daily
LST, daily LST difference, and NDVI and EVI data (de-
scribed in Sect. 2.2) were synchronised based on the tempo- 65

ral coverage of in situ data time series of each ISMN station
(described in Sect. 2.1). The full data contained a total of
735 475 registries (each sample contained 19 predictor vari-
ables) and were differentiated into the training set and three
different test sets, based on the following strategy (also de- 70

scribed in Table 2):

– First, we extracted 10 % of stations from every network
for an independent evaluation of the derived ML mod-
els. This is called the “test_independent-stations” set
and contains a total of 148 stations. The data from these 75

10 % of the stations do not belong to the training set nor
any test set.

– Afterwards, based on the temporal component of the
data, we divided the remaining data (90 % of the full
available data) into the “train and test_random” set 80

(containing 70 % of the available data; at this stage,
train and test_random form a single temporary set) and
the “test_temporal” set (containing 30 % of the avail-
able data). This way, assuming the data were recorded



Q. Han et al.: Ensemble of optimised ML algorithms for predicting surface soil moisture content 7

from 1 January 2000 to 31 December 2019, the train and
test_random set contains the first 70 % of data (14 years,
from 2000 to 2013) and the test_temporal set consists of
the last 30 % of data (6 years, from 2014 to 2019). The
test_temporal set was used to analyse the performance5

of time series prediction for stations where SSM data
from an earlier period were used to build the ML model.

– Finally, the temporary train and test_random data, ob-
tained in the second step, were randomly split into the
“train” and “test_random” sets by applying a 75 % to10

25 % division criteria. The two resulting sets were used
for training and testing the considered algorithmic im-
plementations.

3 ML algorithms and ensembles

The optimisation task of the considered ML algorithms in-15

volved an extensive search for the training hyperparameters
that achieved the highest performance metrics in different
training scenarios (as illustrated in Fig. 2).

The data collection and preprocessing step have been ex-
plained in Sect. 2.1 and 2.2, while the data-splitting operation20

has been described in Sect. 2.3. The ML algorithm selection
and hyperparameter tuning steps, related to the optimisation
procedure, are described in Sect. 3.1 and 3.2. The proce-
dure to build the ensemble models is described in Sect. 3.3.
The metrics considered for the comparison are presented in25

Sect. 3.4. Finally, the comparison of the ML models’ perfor-
mance (either optimised ML models or ensemble models) is
approached from different perspectives in Sects. 4 and 5.

3.1 Selection of machine learning algorithms

We used the scikit-learn Python library (Pedregosa et al.,30

2011) to build and test the machine learning algorithms.
Eight algorithms were selected based on their popularity
and their proven performance with respect to regression
tasks (Sarker, 2021). The algorithms considered for opti-
misation were (1) Random Forest Regressor (RFR) (Belgiu35

and Drăguţ, 2016; Breiman, 2001), (2) K-neighbours Re-
gressor (KNR) (Papadopoulos et al., 2011), (3) AdaBoost
(AB) (Yıldırım et al., 2019), (4) Stochastic Gradient Descent
Regressor (SGDR), (5) Multiple Linear Regressor (MLR),
(6) Multi-layer Perceptron Regressor (MLPR) (Gaudart et40

al., 2004), (7) Extreme Gradient Boosting (XB) (Karthikeyan
and Mishra, 2021), and (8) GradientBoosting (GB) (Wei et
al., 2019).CE3

3.2 Optimisation procedure (hyperparameter tuning)

Each of the considered eight ML algorithms has different,45

specific parameters that can be tuned to improve the perfor-
mance of the prediction. To optimise the training procedure
and achieve the maximum performance of the algorithms for

our task, we applied the hyperparameter tuning technique
(Feurer and Hutter, 2019), as it is one of the most popu- 50

lar methods to search for the best parameter values. In this
study, the grid search cross-validation (GridSearchCV) func-
tion (LaValle et al., 2004) was implemented in scikit-learn
for hyperparameter tuning. In the case of the ML algorithms
that require a long computation time, the “itertools” Python 55

function was applied (based on a for loop).
The goal was to identify the best set of specific parameters

of the eight considered ML algorithms, with the coefficient of
determination r-square (r2) score used as the evaluation met-
ric. In the hyperparameter tuning operation, we set a range 60

for every parameter considered in various iterations. For ex-
ample, for the “n_neighbors” hyperparameter (specific to the
KNR algorithm), we first set the possible values to 5, 10, and
15; after we identified that the best set value is 5, we updated
the range of possible values to 3, 4, 5, 6, and 7 to narrow 65

down the possible interval and achieve the parameter values
delivering more accurate performance metrics.

3.3 Construction of the ensemble models

In order to enhance capabilities of individual models, we
exploited ensemble techniques which helped to identify the 70

proper combination of models. This way, we assembled a set
of base models (the optimised versions of machine learning
models mentioned in Sect. 3.1, obtained by applying the opti-
misation procedure described in Sect. 3.2) using model stack-
ing techniques to combine the predictions of the models and 75

built a new model.
The reasoning behind using an ensemble was as follows:

by stacking multiple base models representing different hy-
potheses, we can find a better hypothesis that might not be
contained within the hypothesis space of the individual mod- 80

els from which the ensemble is built (Cira et al., 2020). Three
main aspects causing this situation were identified (Diet-
terich, 2000): (1) insufficient input data (statistical), (2) diffi-
culties for the learning algorithm to converge to the global
minimum (computational), and (3) the function cannot be 85

represented by any of the hypotheses proposed nor modelled
by the algorithms during training (representational).

A popular form of stacking involves computing the outputs
of base models, performing a prediction for each model, and
averaging their predictions inside the ensemble. In this tech- 90

nique, each m sub-model contributes equally to a combined
prediction, y, as defined in Eq. (7). The specific steps are as
follows: (1) generate weak learners, each with its own initial
values (by training them separately), and (2) combine these
models in an ensemble environment, where their predictions 95

are averaged for every instance of the set to compute.

y (x)=
1
M

∑M

m=1
ym(x) (7)

We built ensemble models by combining base models as
diversely as possible (an example is illustrated in Fig. 3). This
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Table 2. Description of the sets of data used for training and testing the machine learning implementations and their size.

ID Name of the set Percentage of total data Number of samples Use description

1 test_independent-stations 10 % 66 155 Used for evaluating the performance of
the models on unseen data belonging to
new stations evenly spread at a global
level in space; it covers all of the years.

2 test_temporal 90 %× 30 % = 27 % 199 886 Used for computing and comparing the
performance metrics achieved by the
trained models on unseen data divided
by temporal criteria; it covers the last
30 % of the time series.

3 test_random 90 %× 70 %× 25 % = 15.75 % 117 359 Used for computing and comparing the
performance metrics achieved by the
trained models on unseen data divided
by applying the randomisation criteria;
it covers the first 70 % of the time series
and was randomly divided.

4 train 90 %× 70 %× 75 % = 47.25 % 352 075 Used for training the model, cross-
validation, and optimisation of the algo-
rithms by hyperparameter tuning

Figure 2. Conceptual framework of the optimisation operation of ML algorithms and the construction of ensemble models.

way, the optimised versions of single ML algorithms become
the weak learners, or base models, within ensemble models
that will be constructed using model bagging methodology.
We applied ensemble learning procedures to test different
combinations of the algorithms with the highest performance5

metrics and study their impact on the predictive performance.
The base models are the five ML models that achieved

the highest performance metrics after the optimisation proce-
dure described in Sect. 3.2. The constructed ensemble model

variants will contain all of the possible combinations of the 10

five base models, taken three at a time (Ckn =
n!

k!(n−k)!
, where

n= 5, k = 3). In this way, 10 ensemble models will be ob-
tained, and the performance of every ensemble model built
will be studied in Sect. 4.3.2.
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Figure 3. Example of an ensemble model structure (based on the average voting of three weak learners).

3.4 Evaluation of the performance

We use five-fold cross validation to evaluate the training per-
formance of different algorithms, both before and after the
hyperparameter tuning.

To assess the performance of different ML algorithms, we5

compared predicted SSM with in situ observations. In this re-
search, we considered three commonly used statistical evalu-
ation metrics (Entekhabi et al., 2010b): the root-mean-square
error (RMSE), defined in Eq. (8); the Pearson correlation co-
efficient (r) score, represented in Eq. (9); and the coefficient10

of determination r-square (r2) score, presented in Eq. (10).

RMSE=

√∑N
i=1(ypred,i − yref,i)

2

N
(8)

r =

∑N
i=1(ypred,i − ypred,i)(yref,i − yref,i)√∑N

i=1(ypred,i − ypred,i)2
√∑N

i=1(yref,i − yref,i)2
(9)

r2
= 1−

∑N
i=1(yref,i − ypred,i)

2∑N
i=1(yref,i − yref,i)2

(10)

In Eqs. (8) to (10), ypred,i is the predicted SSM, yref,i is the15

in situ SSM, N is the number of valid pairs of SSM, ypred,i is
the mean value of the predicted SSM, and yref,i is the mean
value of the in situ SSM.

In this study, there are three main steps: (1) the evalu-
ation of the r2 score on the training set; (2) the evalua-20

tion of the five-fold cross validation; and (3) the evaluation
of the test_random, test_temporal, and test_independent-
stations sets. In the first step of the evaluation, the r2 score
on the training dataset was analysed to identify significant
differences among different ML algorithms. In the second25

step, the r2 score and RMSE were computed to carry out
the performance comparison on the train set using cross
validation. In the third step, the r score, r2 score, and
RMSE were calculated on the test_random, test_temporal,
and test_independent-stations sets to compare the perfor-30

mance of the trained algorithms.
The performance of the 8 ML algorithms and 10 ensemble

models were compared with respect to the squared error of
the predictions using a non-parametric Kruskal–Wallis test

at the 5 % significance level, computed on the test_random, 35

test_temporal, and test_independent-stations sets.

4 Results

4.1 Best parameters from hyperparameter tuning
(optimised machine learning models)

The optimal performance after the hyperparameter tuning is 40

presented in the fourth column of Table S1 in the Supple-
ment. The RFR, KNR, and XB algorithms show a superior
result with r2 scores of 0.859, 0.8848, and 0.9139, respec-
tively, while the GB, MLPR, and AB algorithms also show
a considerable result with r2 scores of 0.7977, 0.7638, and 45

0.6547, respectively. It should be noticed that, in other rele-
vant studies, such as Kucuk et al. (2022), AB also performed
slightly worse than RFR, GB, and XB with respect to SSM
estimation. However, the performance of the other two meth-
ods (SGDR and MLR) is not satisfactory. Both SGDR and 50

MLR were unable to model the highly non-linear relation-
ship between the soil moisture and the predictor variables
because these two algorithms are linear regressors.

The computational efficiency of hyperparameter tuning of
different algorithms varies greatly, sometimes with a differ- 55

ent order of magnitude. For example, it only took 17 min for
GB to finish the turning, whereas XB needed more than 25 h.
However, this seems to be more dependent on the choice of
parameters and their range, as XB has nine parameters, and
we selected at least five values to tune for each parameter. 60

4.2 Five-fold cross validation

After hyperparameter tuning, five-fold cross validation was
used for performance comparison on the train dataset. The
performance of the five-fold cross-validation for the eight al-
gorithms is listed in Table 3. Similar to the result in Table S1, 65

five algorithms (RFR, KNR, MLPR, XB, and GB) display a
high performance. XB achieved the best performance, with
an RMSE of 0.0337 cm3 cm−3 and an r2 score of 0.9081.
It is followed by the KNR algorithm, with an RMSE of
0.0392 cm3 cm−3 and an r2 score of 0.8760. RFR, GB, and 70
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Table 3. Mean values and standard deviation of the evaluation met-
rics obtained in the five-fold cross validation.

ID ML RMSE and standard r2

algorithm deviation (cm3 cm−3) score

A7 XB 0.0337± 0.0001 0.9081± 0.0008
A2 KNR 0.0392± 0.0003 0.8760± 0.0021
A1 RFR 0.0413± 0.0003 0.8627± 0.0019
A8 GB 0.0500± 0.0001 0.7982± 0.0017
A6 MLPR 0.0541± 0.00003 0.7638± 0.0004
A3 AB 0.0653± 0.0003 0.6566± 0.0025
A5 MLR 0.0852± 0.0006 0.4148± 0.0006
A4 SGDR 0.0853± 0.0006 0.4140± 0.0006

The abbreviations used in the table are as follows: XB – Extreme Gradient
Boosting, KNR – K-neighbours Regressor, RFR – Random Forest Regressor, GB –
GradientBoosting, MLPR – Multi-layer Perceptron Regressor, AB – AdaBoost,
MLR – Multiple Linear Regressor, and SGDR – Stochastic Gradient Descent
Regressor. CE4

MLPR also achieved acceptable performance, even though
an RMSE of 0.04 cm3 cm−3 is often required in the commu-
nity as a non-strict standard.

4.3 Analysis of the model performance on the
test_random, test_temporal, and5

test_independent-stations sets

4.3.1 Performance of single, optimised ML models

Having identified the best hyperparameters for the consid-
ered algorithms and, therefore, the optimised versions of
the ML models for our task, we next calculated and com-10

pared their performance on the test_random, test_temporal,
and test_independent-stations sets. As described in Ta-
ble 2, the number of samples used to evaluate the perfor-
mance (each containing 19 predictor variables) for the train,
test_random, and test_temporal sets were 352 075, 117 359,15

and 199 886 registries, respectively, together with 148 sta-
tions in the test_independent-stations set (containing 66 155
registries). The number of stations was 1574 for the train and
test_random sets and 1550 for the test_temporal set.

From Table 4, we can find that RFR, KNR, and XB20

performed better on the test_random set, compared with
the other five algorithms. KNR achieved the best perfor-
mance, with a maximum r2 score of 0.8848. RFR, KNR,
AB, XB, GB, and MLPR performed relatively well on the
test_temporal set, achieving a maximum r2 score of 0.7126.25

In independent station evaluation, except MLPR, all ML al-
gorithms perform similarly, but AB performs the best (with
an r2 score of 0.4905). Overall, RFR, KNR, and XB per-
formed well at every step.

4.3.2 Performance of ensemble models30

Based on the results displayed in Table 4, the ensemble re-
gressors were built using RFR, KNR, XB, GB, and AB

as base models (as they displayed the best performance).
We integrated three ML algorithms in each combination to
form the 10 ensemble models. The performance of these 35

10 models was found to be stable (as observed in Ta-
ble 5). Specifically, KNR_RFR_ XB and GB_RFR_XB dis-
played the best performance in test_random (the RMSE val-
ues were 0.0355 and 0.0391 cm3 cm−3 and the r2 scores
were 0.8985 and 0.8772) and test_temporal (the RMSE val- 40

ues were 0.0576 and 0.0568 cm3 cm−3 and the r2 scores
were 0.7335 and 0.7410) sets. However, there were no con-
siderable differences among the different combinations for
test_independent-stations.

The voting regressors built with ensemble techniques 45

generally showed improved performance when com-
pared with the considered base models. For exam-
ple, AB achieved an RMSE of 0.0651, 0.0696, and
0.0786 cm3 cm−3 for the test_random, test_temporal, and
test_independent-stations sets, respectively, while in the 50

voting regressor result, the six combinations that had
AB were able to achieve RMSE values of 0.0417
to 0.0468 cm3 cm−3 for the test_random set, 0.0584 to
0.0593 cm3 cm−3 for the test_temporal set, and 0.0767 to
0.0775 cm3 cm−3 for test_independent-stations set. The en- 55

semble models improved AB’s performance by 0.0183–
0.0234 cm3 cm−3 (28 %–36 %), 0.0103–0.0112 cm3 cm−3

(15 %–16 %), and 0.0011–0.0019 cm3 cm−3 (1.4 %–2.4 %)
for the test_random, test_temporal, and test_independent-
stations sets in terms of the RMSE. 60

The best-performing voting regressor (KNR_RFR_XB,
composed of XB, RFR, and KNR) achieved an RMSE
value of 0.0355 cm3 cm−3 and an r2 score value of 0.8985
on the test_random set. The RMSE values of KNR, RFR,
and XB were 0.0379, 0.0413, and 0.0385 cm3 cm−3 for the 65

test_random set, respectively, and the r2 scores of KNR,
RFR, and XB were 0.8848, 0.8626, and 0.8806, respec-
tively. Compared with KNR, RFR, and XB, the perfor-
mance of the ensemble model KNR_RFR_XB was im-
proved; for example, for RFR, the performance was im- 70

proved by 0.0058 cm3 cm−3 (14 %) for the RMSE and by
0.0137 (1.6 %)TS1 for the r2 score. On the test_temporal
and test-independent-stations sets, the performance of
KNR_RFR_XB was also better than the single three ML
algorithms. In summary, models built with ensemble tech- 75

niques averaged the performance of base ML algorithms and
performed more stably than single ML algorithms. Overall,
ensemble techniques improved the performance of base algo-
rithms for the test_random dataset, but they had little effect
on the test_independent-stations dataset. 80

4.3.3 Comparison of single, optimised ML and
ensemble models

Table 6 shows which methods performed significantly bet-
ter or worse and the cumulative rank of the methods based
on the Kruskal–Wallis order computed for the three test sets. 85
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Table 4. Performance metrics obtained by eight optimised ML algorithms on the test sets.

ID ML test_random test_temporal test_independent-stations
algorithm (117 359 registries) (199 886 registries) (66 155 registries)

RMSE r2 RMSE r2 RMSE r2

(cm3 cm−3) score (cm3 cm−3) score (cm3 cm−3) score

A2 KNR 0.0379 0.8848 0.0667 0.6435 0.0900 0.3327
A7 XB 0.0385 0.8806 0.0609 0.7023 0.0817 0.4499
A1 RFR 0.0413 0.8626 0.0599 0.7126 0.0806 0.4649
A8 GB 0.0502 0.7977 0.0617 0.6948 0.0842 0.4158
A6 MLPR 0.0546 0.7605 0.0640 0.6710 0.1014 0.1528
A3 AB 0.0651 0.6597 0.0696 0.6114 0.0786 0.4905
A4 SGDR 0.0853 0.4152 0.0852 0.4173 0.0854 0.3995
A5 MLR 0.0852 0.4158 0.0851 0.4191 0.0852 0.4018

The abbreviations used in the table are as follows: KNR – K-neighbours Regressor, XB – Extreme Gradient Boosting, RFR –
Random Forest Regressor, GB – GradientBoosting, MLPR – Multi-layer Perceptron Regressor, AB – AdaBoost, SGDR –
Stochastic Gradient Descent Regressor, and MLR – Multiple Linear Regressor. CE5

Table 5. Performance metrics obtained by the 10 ensemble models built with different combinations of selected machine learning algorithms.

ID ML test_random test_temporal test_independent-stations
algorithm (117 359 registries) (199 886 registries) (66 155 registries)

RMSE r2 RMSE r2 RMSE r2

(cm3 cm−3) score (cm3 cm−3) score (cm3 cm3) score

E5 KNR_RFR_XB 0.0355 0.8985 0.0576 0.7335 0.0775 0.5046
E3 GB_KNR_XB 0.0383 0.8821 0.0572 0.7374 0.0781 0.4980
E1 GB_KNR_RFR 0.0389 0.8783 0.0575 0.7347 0.0778 0.5019
E4 GB_RFR_XB 0.0391 0.8772 0.0568 0.7410 0.0767 0.5154
E10 AB_KNR_XB 0.0417 0.8605 0.0584 0.7266 0.0774 0.5066
E9 AB_KNR_RFR 0.0426 0.8542 0.0593 0.7177 0.0768 0.5137
E2 AB_RFR_XB 0.0429 0.8518 0.0587 0.7234 0.0771 0.5108
E6 AB_GB_KNR 0.0457 0.8323 0.0588 0.7225 0.0775 0.5055

The abbreviations used in the table are as follows: RFR – Random Forest Regressor, KNR – K-neighbours Regressor, AB – AdaBoost,
XB – Extreme Gradient Boosting, and GB – GradientBoosting. Note that GB_KNR_ RFR refers to the ensemble model constructed by
GB, KNR, and RFR, whereas AB_RFR_XB refers to the ensemble model constructed by AB, RFR, and XB. The same naming procedure
applies for GB_KNR_XB, GB_RFR_XB, KNR_RFR_XB, AB_GB_KNR, AB_GB_RFR CE6 , AB_GB_XB, AB_KNR_RFR, and
AB_KNR_XB.

Based on the analysis on the test_random set, KNR is signifi-
cantly more accurate than the other methods. The ensembles
comprising KNR with RFR and XB, with RFR and GB, or
with GB and XB are the second, third, and fourth most ac-
curate methods, respectively. When the performance of sin-5

gle algorithms is considered, RFR, XB, and GB follow the
performance of KNR. MLR and SGDR display the weakest
performance. If AB, which has weaker performance than a
single ML, is assembled with KNR, XB, or RFR – which are
all significantly more accurate than AB – the prediction per-10

formance of the ensemble significantly decreases compared
with the performance of those single algorithms. GB, MLPR,
AB, SGDR, and MLR describe the relationship between the
target and predictors significantly less accurately than the en-
semble methods.15

For the test_temporal set, KNR_RFR_XB performs signif-
icantly better than any of the other methods. The ensembles
of GB with KNR and XB, with KNR and RFR, or with RFR
and XB are the second, third, and fourth most accurate meth-
ods, respectively. Among the single ML methods, RFR is sig- 20

nificantly the most accurate, followed by KNR, XB, GB, and
MLPR. Similarly to the results for the test_random set, MLR
and SGDR performed significantly worse compared with any
other method. If an ensemble of AB with KNR or RFR is
used, the predictive performance does not improve signifi- 25

cantly or significantly decreases compared with the perfor-
mance of those single ML algorithms.

For the test_independent-stations set, the best-performing
predictions could be reached using the ensemble of any three
ML algorithms from KNR, RFR, XB, and GB. Among the 30

single, optimised ML methods, RFR is significantly more ac-
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curate, followed by XB, AB, GB, KNR, MLR, SGDR, and
MLPR. All ensembles perform significantly better than the
single ML algorithms.

The results underpin that the inclusion of an algorithm that
is not performing well in an ensemble will lead to worse per-5

formance than a single model that is performing well.
Based on the result of the Kruskal–Wallis test, the best

single ML and the best ensemble algorithms were identi-
fied. Their probability density functions (PDFs) are shown
in Fig. S4 in the Supplement. For the test_random set, the10

overlap between the in situ SSM and predicted SSM from
KNR and KNR_RFR_XB is 96.2 and 93.1 %.CE7 For the
test_temporal set, the overlap between the in situ SSM and
predicted SSM from RFR and KNR_RFR_XB is 87.9 and
90.7 %.CE8 For the test_independent-stations set, the overlap15

between the in situ SSM and predicted SSM from RFR and
KNR_RFR_XB is 80.5 and 81.0 %.CE9 This shows that the
ensemble model performs better on unseen data.

4.4 Performance on the test_independent-stations set
grouped by climate zones20

In Sect. 4.3, we analysed the performance of our model on
three sets, test_random, test_temporal, and test_independent-
stations, which consist of stations located in different climate
zones; as expected, we observed important variations in the
model’s performance across different stations (due to their25

unique climatic conditions).
To further examine the performance of each station in

the test_independent-stations set, we considered the num-
ber of stations in both the train and test_independent-
stations sets. Specifically, the stations from the train set30

are distributed across 19 Köppen climate zones, whereas
the test_independent-stations set stations are across 16 cli-
mate zones (Cwb, Dsc, and Dwb, are not represented in the
test_independent-stations set).

To ensure a robust climate zone analysis, we ex-35

cluded stations with less than 100 d of observations in the
test_independent-stations set. Figure S2 shows the number
of stations in the test_independent-stations dataset over each
climate zone; the number of stations decreased from 148 to
117 after applying the (100 d) filter, and the climate zones40

covered by test_independent-stations set decreased from 16
to 15 (Dwc was removed).

The performance of the 8 optimised ML algorithms and 10
constructed ensemble models in the 15 climate zones is de-
scribed in the box plots of Fig. 4 (which includes the stations45

from the test-independent-stations set with more than 100 d
of in situ measurements). In Fig. 4a, the median RMSE val-
ues in most of the climate zones were below 0.1 cm3 cm−3.
In Fig. 4b, in 13 climate zones (excluding BSh and BWh), we
find at least one single ML algorithm with a median r score50

higher than 0.6. GB, MLPR, SGDR, and RFR can achieve
a median r score of 0.6 in 12, 11, 9, and 9 climate zones,
respectively. The median r scores from GB in BSh, BWh,

and BWk were below 0.6 because these three climate zones
all have sparse train stations and are all arid. In Fig. 4c, 55

the median RMSE values in all climate zones were below
0.075 cm3 cm−3 for ensemble models. From Fig. 4d, we can
see that the r scores in the other 13 climate zones were above
0.6 (excluding BSh and BWh). This indicates that the num-
ber of train stations also plays an important role in ensemble 60

models. Ensemble models can improve performance but can
not completely solve the problem of lacking training data.

Using ensemble models is a way to improve the perfor-
mance of the single, optimised ML algorithms. However, the
outliers in the lower part of the r score box plot were still 65

present in BSk and Dfb, even for the ensemble models.

4.5 Performance on single, selected stations from the
test_independent-stations set

We selected the BSk climate zone as an example to deepen
the analysis of outliers. The weakest r scores were present at 70

Sevilleta station (34.36◦ N, 106.68◦W), with the r scores all
being lower than 0.4 for each of the 8 single, optimised ML
algorithms and the 10 ensemble models.

For our single-station analysis, we also chose two sta-
tions where the performance values were improved by the 75

ensemble models. In Fig. 7, we can observe that all r scores
computed for the ensemble models at Carrizoran station
(35.28◦ N, 120.03◦W; climate zone BSk) were above 0.8,
while all r scores were above 0.6 at Whiskeyck station
(37.21◦ N, 105.12◦W; climate zone BSk). 80

In Fig. 6, it can be found that the predicted SSM was con-
sistent with the in situ SSM at both of these stations. For
the outlier station, Sevilleta, we found that the r score be-
tween API and predicted SSM is 0.8, whereas the r score
between evaporation and predicted SSM is −0.67. This im- 85

plied that our predictor variables were consistent with our
predicted SSM, but the predictor variables were not the main
decisive factor for the in situ SSM at station Sevilleta. There
was no significant difference between the main static predic-
tor variables of Sevilleta station and other stations in the BSk 90

climate zone. The potential cause could be an environmen-
tal factor that is not considered to be an independent variable
during the prediction (e.g. different vegetation types).

5 Discussion

Soil moisture is an important parameter for understanding 95

the water cycle, predicting crop yields, and managing irriga-
tion. Remotely sensed soil moisture has become an impor-
tant dataset with respect to supporting many human activi-
ties, such as water resource conservation and management,
environmental monitoring, and disaster response (Su et al., 100

2003). In this section, we will discuss the performance and
the uncertainty of single, optimised ML algorithms and the
proposed ensemble models.
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Table 6. Result of the Kruskal–Wallis test.

ID Method Significant difference Rank based on
significant

difference
analysis

test_random test_temporal test_independent-stations
(117 359 registries) (199 886 registries) (66 155 registries)

E5 KNR_RFR_XB l m i 4
E3 GB_KNR_XB j l hi 8
E1 GB_KNR_RFR k k hi 8
E4 GB_RFR_XB i k i 9
A1 RFR j j f 13
E10 AB_KNR_XB h i gh 14
A2 KNR m i c 15
E9 AB_KNR_RFR h fg gh 17
A7 XB i h ef 17
E6 AB_GB_KNR f g gh 18
E2 AB_RFR_XB g g g 18
E8 AB_GB_XB e f hi 20
E7 AB_GB_RFR e e g 23
A8 GB d d d 29
A3 AB b b e 32
A6 MLPR c c a 34
A5 MLR a a b 37
A4 SGDR a a b 37

Note that the different letters show that there is a significant difference between the methods. The letter “a” indicates the worst-performing algorithm.

5.1 Performance of trained regression models

This study presents one of the first studies constructing and
comprehensively evaluating different ML algorithms for esti-
mating SSM with not only optimised, individual models but
also with ensemble models using the optimised algorithms5

as base models. The predictor variables were selected based
on their relevance to physical processes in land–atmosphere
interaction.

First, based on various predictor variables extracted from
multi-source datasets, we trained and tested 18 ML mod-10

els in order to find their optimised version for estimating
SSM. The cross-validation result showed that RFR, KNR,
and XB outperform other ML algorithms. When evaluated
on the test_random set, KNR achieved the lowest RMSE
(0.0379 cm3 cm−3) among individual ML algorithms and a15

high r2 score (0.8848). In contrast, for the test_temporal set,
RFR showed the lowest RMSE (0.0599 cm3 cm−3) and high-
est r2 score (0.7126). For the test_independent-stations set,
AB showed the lowest RMSE (0.0786 cm3 cm−3) and high-
est r2 score (0.4905).20

Second, the ensemble models improved the performance
of the individual ML algorithms if the ensemble did
not include a significantly worse-performing algorithm.
From Sect. 4.3.2, we can observe that ensemble mod-
els mostly improved the performance of base algorithms25

in the test_random set and had a minimal impact on the
test_independent-stations set. From Sect. 4.3.3, it can be
noted that the ensemble models based on the combina-

tion of KNR_RFR_XB showed the best performance on the
test_random and test_temporal sets. KNR_ RFR_XB and 30

GB_RFR_XB had significantly better performance on the
test_independent-stations set. Considering the performance
of all 8 ML algorithms and 10 ensembles on all three test
sets, the ensemble of KNR and RFR and XB performs the
best; thus, this is the suggested method to predict SSM based 35

on the presented predictors.
Third, we found significant variations in the model’s per-

formance across different stations because of their unique
climatic conditions. Therefore, we further analysed the
test_independent-stations performance on the climate zone 40

level. For single, optimised ML algorithms, the median
RMSE values from five models (excluding MLPR, MLR,
and SGDR) were below 0.1 cm3 cm−3. GB, XB, and RFR
achieved a median r score of 0.6 in 12, 11, and 9 cli-
mate zones, respectively, out of 15 climate zones. The 45

ensemble models significantly improved the performance.
The median RMSE values in all climate zones were below
0.10 cm3 cm−3, and all voting regressors achieved r scores
above 0.6 in 13 climate zones (excluding BSh and BWh be-
cause of the sparse distribution of train stations). 50

Fourth, we selected the BSk climate zone as an example to
deepen the analysis of outlier stations. The result showed that
ensemble models can improve the performance of single ML
algorithms and obtain more stable results. The r scores from
ensemble models at the Carrizoran station were all above 0.8 55

and those at the Whiskeyck station were all above 0.6; in
general, the optimised individual ML algorithms did not per-
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Figure 4. Box plot of the RMSE and r score for the test_independent-stations set based on climate zones: the performance of 8 optimised
ML algorithms can be found in panels (a) and (b), while the performance of 10 ensemble models are shown in panels (c) and (d). The
abbreviations used in the figure for the climate zones are as follows: Aw – tropical wet and dry or savanna climate, BSh – hot semi-arid
climate, BSk – cold semi-arid climate, BWh – hot desert climate, BWk – cold desert climate, Cfa – humid subtropical climate, Cfb –
temperate oceanic climate, Csa – hot-summer Mediterranean climate, Csb – warm-summer Mediterranean climate, Dfa – hot-summer humid
continental climate, Dfb – warm-summer humid continental climate, Dfc – subarctic climate, Dsb – Mediterranean-influenced warm-summer
humid continental climate, Dwa – monsoon-influenced hot-summer humid continental climate, and ET – tundra climate. The abbreviations
used in the figure for the ML algorithms are as follows: RFR – Random Forest Regressor, KNR – K-neighbours Regressor, AB – AdaBoost,
SGDR – Stochastic Gradient Descent Regressor, MLR – Multiple Linear Regressor, MLPR – Multi-layer Perceptron Regressor, XB –
Extreme Gradient Boosting, and GB – GradientBoosting. Note that GB_KNR_RFR refers to the ensemble model constructed by GB, KNR,
and RFR, whereas AB_RFR_XB refers to the ensemble model constructed by AB, RFR, and XB. The same naming procedure applies for
GB_KNR_XB, GB_RFR_XB, KNR_RFR_XB, AB_GB_KNR, AB_GB_RFR, AB_GB_XB, AB_KNR_RFR, and AB_KNR_XB.

Figure 5. The r scores of three stations obtained by 8 optimised ML
algorithms and 10 ensemble models.

form as well as the ensemble models. However, we found
the worst performance at the outlier station, Sevilleta, and
the ensemble models could not improve this performance.
The potential cause could be an environmental factor that is
not considered as an independent variable during the predic- 5

tion (e.g. different vegetation types). Another potential cause
could be the non-representativeness of the in situ measure-
ments for the studied pixel scale.

When considering ensemble models, there are several ad-
vantages. Firstly, the ensemble models significantly improve 10

the accuracy of the individual ML algorithms. By combin-
ing multiple regression models, the ensemble models can
capture more of the complexity and variability in the data,
leading to more accurate predictions (Cira et al., 2020). Sec-
ondly, because the ensemble models uses multiple models, 15

they are less sensitive to outliers or individual model errors,
making them more robust and stable models. Thirdly, the
ensemble models allow us to use different types of regres-
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Figure 6. In situ and predicted SSM from GB and KNR_RFR_XB and the API at the (a) Carrizoran, (b) Whiskeyck, and (c) Sevilleta
stations; panel (d) presents static predictors of stations in climate zone BSk.

sion models and hyperparameters, so researchers can choose
the best models for their particular data and problem. Lastly,
the ensemble models can reduce overfitting by combining
models that have different strengths and weaknesses, leading
to a more generalisable model. Furthermore, a comparison5

of ensemble models with other existing soil moisture prod-
ucts and methods highlights their superior performance. For
instance, evaluating the root-mean-square error (RMSE) on
randomly selected test samples, our KNR_RFR_XB ensem-
ble model achieves an RMSE of 0.0355 cm3 cm−3. In con-10

trast, the RFR model used to generate a global daily 1 km soil
moisture product presents an ubRMSE (unbiased root-mean-
square error) of 0.045 cm3 cm−3 (Zheng et al., 2023), and the
RFR model used to generate a global daily 0.25◦ soil mois-
ture product presents an RMSE of 0.05 cm3 cm−3 (Zhang et15

al., 2021). The RFR model used for the reconstruction of a
daily SMAP surface soil moisture dataset shows an ubRMSE
of 0.04 cm3 cm−3 (Yang and Wang, 2023). The XB model
used to generate a global daily 1 km soil moisture product
presents an RMSE of 0.038 cm3 cm−3 (Zhang et al., 2023).20

These comparisons demonstrate that our ensemble model has
the potential to improve predictive accuracy compared with
individual methods. This makes our model a candidate for

further exploration as an effective tool for accurate predic-
tion of soil moisture. 25

5.2 Uncertainty of the proposed models

There is often uncertainty in these remotely sensed soil mois-
ture datasets due to several factors. One of them comes from
the variability in the soil itself. For instance, soil properties,
such as texture and organic matter content, can affect the 30

ability of the soil to hold water and how quickly it absorbs or
releases moisture. Such spatial variability in soil properties
can lead to differences in the observed soil moisture, even
within a small area. Lots of existing soil moisture products
for large areas are obtained from point measurements over 35

heterogeneous landscape, thereby leading to uncertainty in
the estimation at the pixel scale (Guerschman et al., 2015). To
reduce this uncertainty, we used a relatively high spatial res-
olution that provides more detailed and accurate information
about the distribution of soil moisture across different cli- 40

mate regions at a global scale. We comprehensively explored
different ML models working on multi-source datasets, in-
cluding ERA5-Land, MODIS, SoilGrids, and MERIT Hy-
dro.
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Specifically, we used high-resolution remotely sensed
products and reanalysis data at the global scale, so that it
is possible to generate detailed maps of soil moisture at a
fine spatial resolution, which can help to reduce uncertainty
due to spatial heterogeneity and improve the accuracy of soil5

moisture estimates.
Although the proposed ensemble model has been demon-

strated to be an effective solution to predict soil moisture,
there are still limitations. Firstly, our ensemble model can be
limited in the areas outside of the training conditions, such10

as the BSh, BWh, and BWk climate zones (Sungmin and
Orth, 2021). Secondly, hyperparameter tuning is a computa-
tionally expensive operation that has been proven to have an
important effect on the performance of each machine learn-
ing model; however, it involves a human factor in that one15

requires expertise with respect to choosing the right ranges
for each hyperparameter in order to achieve the best possi-
ble training. We recommend carrying out the training in at
least two iterations: first selecting wider parameter intervals
and then narrowing them down to ranges in the proximity20

of the best value detected in the initial experiments. Thirdly,
the training of algorithmic implementations within ensemble
environments requires more computational power. However,
increased and more stable prediction behaviour is more desir-
able when tackling tasks where high performance metrics are25

expected. Lastly, depending on the base models, the perfor-
mance of ensemble models can sometimes worsen compared
with optimised algorithms that perform well. For this reason,
it is advisable to optimise the base algorithms as much as
possible for the chosen task. It is also observed that regres-30

sion algorithms with a higher complexity generally displayed
a higher generalisation capacity. The above four points high-
light the limitations and challenges of our ensemble model
in practical applications. Future research directions may in-
clude enhancing the generalisation ability of the model to ob-35

tain more accurate predictions in areas outside of the training
conditions, such as increasing the training data or using trans-
fer learning techniques. In addition, more efficient and au-
tomated hyperparameter tuning methods can be explored to
improve the performance of the model. Addressing the com-40

putational demands required to train the ensemble models
is also a key direction, possibly involving the use of parallel
computing, distributed frameworks, or hardware acceleration
approaches, all of which aim to further enhance the perfor-
mance and applicability of our models.45

6 Conclusions

Soil moisture plays an essential role in the exchange of water,
energy, and carbon between land and the atmosphere. In this
study, we investigated the performance of different ML algo-
rithms with respect to estimating SSM based on data of the50

International Soil Moisture Network (ISMN) collected from
1722 stations with 8 machine learning algorithms and 10 en-

semble models. The major findings of this study are outlined
in the following.

The algorithms considered for optimisation were (1) Ran- 55

dom Forest Regressor (RFR), (2) K-neighbours Regressor
(KNR) (Papadopoulos et al., 2011), (3) AdaBoost (AB)
(Yıldırım et al., 2019), (4) Stochastic Gradient Descent
Regressor (SGDR), (5) Multiple Linear Regressor (MLR),
(6) Multi-layer Perceptron Regressor (MLPR) (Gaudart et 60

al., 2004), (7) Extreme Gradient Boosting (XB) (Karthikeyan
and Mishra, 2021), and (8) GradientBoosting (GB) (Wei et
al., 2019).

The cross-validation result showed that RFR, KNR, and
XB outperform other ML algorithms. Based on the Kruskal– 65

Wallis test result, KNR performs best on the test_random
set, whereas RFR performs best on the test_temporal and
test_independent-stations sets. The ensemble models im-
proved the performance of the individual ML algorithms, and
the best-performing ensemble model for the test_random, 70

test_temporal and test_independent-stations sets was the
KNR_RFR_XB.

The optimised ML algorithms achieved median RMSE
values of below 0.1 cm3 cm−3 for the test_independent-
stations at the climate zone level. GB, MLPR, SGDR, and 75

RFR achieved a median r score of 0.6 in 12, 11, 9, and
9 climate zones, respectively, out of 15 climate zones. The
ensemble models improved the performance significantly,
with a median RMSE value in all climate zones of below
0.075 cm3 cm−3. All voting regressors achieved r scores of 80

above 0.6 in 13 climate zones (excluding BSh and BWh be-
cause of the sparse distribution of training stations). We sug-
gest that researchers who work on SSM predictions with ML
use the single ML algorithms RFR and KNR and the ensem-
ble models KNR_RFR_ XB. 85

In summary, our results showed that ensemble models
have huge potential with respect to generating accurate SSM
products globally, which is important for local-scale environ-
ment and agricultural applications.

Code and data availability. The algorithms in this pa- 90

per were conducted in Python. The code is available at
https://doi.org/10.5281/zenodo.8004346 (Han et al., 2023a).
The training data are available from Qianqian Han upon request
(q.han@utwente.nl).

The data used in this study are publicly available but are sub- 95
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