
1 

 

Ensemble of optimised machine learning algorithms for predicting 

surface soil moisture content at global scale 

Qianqian Han1, Yijian Zeng1, Lijie Zhang2, Calimanut-Ionut Cira3, Egor Prikaziuk1, Ting Duan1, Chao 

Wang4, Brigitta Szabó5, Salvatore Manfreda6, Ruodan Zhuang6, Bob Su1,7,* 

1Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE Enschede, The 5 

Netherlands 
2Research Center Jülich, Institute of Bio and Geosciences: Agrosphere (IBG-3), 52428 Jülich, Germany 
3Departamento de Ingeniería Topográfica y Cartográfica, E.T.S.I. en Topografía, Geodesia y Cartografía, Universidad 

Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain 
4Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA 10 
5Institute for Soil Sciences, Centre for Agricultural Research, 1022 Budapest, Hungary 
6Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy 
7Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, School of Water 

and Environment, Chang’an University, Xi’an 710054, China 

Corresponding author: Bob Su (z.su@utwente.nl) 15 

Abstract. Accurate information on surface soil moisture (SSM) content at a global scale under different climatic conditions 

is important for hydrological and climatological applications. Machine learning (ML) based systematic integration of in-situ 

hydrological measurements, complex environmental and climate data and satellite observation facilitate to generate reliable 

data products to monitor and analyse the exchanges of water, energy and carbon in the Earth system at a proper space-time 

resolution. This study investigates the estimation of daily SSM using eight optimised ML algorithms and ten ensemble 20 

models (constructed via model bootstrap aggregating techniques and five-fold cross-validation). The algorithmic 

implementations were trained and tested using the international soil moisture network (ISMN) data collected from 1722 

stations distributed across the World. The result showed that K-neighbours Regressor (KNR) had the lowest Root Mean 

Square Error (0.0379 cm3/cm3) on “test_random” set (for testing the performance of randomly split data during training), 

while Random Forest Regressor (RFR) had the lowest RMSE (0.0599 cm3/cm3) on “test_temporal” set (for testing the 25 

performance on the period which were not used in training) and AdaBoost (AB) had the lowest RMSE (0.0786 cm3/cm3) on 

“test_independent-stations” set (for testing the performance on the stations which were not used in training). Independent 

evaluation on novel stations across different climate zones was conducted. For the optimised ML algorithms, the median 

RMSEs were below 0.1 cm3/cm3. GradientBoosting (GB), Multi-layer Perceptron Regressor (MLPR), Stochastic Gradient 

Descent Regressor (SGDR), and Random Forest Regressor (RFR) achieved a median r score of 0.6 in twelve, eleven, nine 30 

and nine climate zones, respectively, out of fifteen climate zones. The performance of ensemble models improved 

significantly with the median value of RMSE below 0.075 cm3/cm3 for all climate zones. All voting regressors achieved the r 

scores of above 0.6 in thirteen climate zones except BSh and BWh because of the sparse distribution of training stations. The 

metrical evaluation showed that ensemble models can improve the performance of single ML algorithms and achieve more 
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stable results. Based on the results computed for three different test sets, the ensemble model with KNR, RFR and Extreme 35 

Gradient Boosting (XB) performed the best. Overall, our investigation shows that ensemble machine learning algorithms 

have a greater capability for predicting SSM compared to the optimised, or base ML algorithms, and indicates their huge 

potential applicability in estimating water cycle budgets, managing irrigation and predicting crop yields. 

1 Introduction 

Surface soil moisture (SSM) plays an essential role in exchanges of water, energy and carbon between land and the 40 

atmosphere (Green et al. 2019) and affects vegetation and soil health, as well as the prediction and management of drought 

and flood events (Manfreda et al. 2017; Rodríguez-Iturbe and Porporato 2007; Su et al. 2003; Watson et al. 2022). SSM is 

considered a key element in the feedback mechanisms that influence weather patterns and precipitation (Lou et al. 2021). 

The amount of soil moisture is largely determined by local climate, vegetation, soil type, and human activities, including 

irrigation and land use (Entekhabi et al. 2010a). While traditional ground-based observations provide valuable information, 45 

they often have limited spatial and temporal coverage (Zhang et al. 2022). Remote Sensing (RS) techniques can provide near 

real-time, spatially explicit soil moisture information over large areas at a lower cost, and are particularly useful in areas with 

challenging terrain or large, densely populated regions where it is not feasible to obtain ground-based measurements 

(Srivastava et al. 2016).  

Both microwave, and optical and thermal infrared RS techniques have been used to estimate soil moisture (Eroglu et al. 50 

2019). Passive microwave remote sensing is the most promising technique for global monitoring of soil moisture due to the 

direct relationship between soil emissivity and soil water content (Njoku and Entekhabi 1996). It offers an advantage in 

providing observations in all-weather conditions and penetrating the vegetation canopy (Al Bitar et al. 2017). There are 

many microwave radiometers used for soil moisture observation and many soil moisture products have been generated using 

these microwave radiometers, such as Special Sensor Microwave/Imager (SSM/I), Advanced Microwave Scanning 55 

Radiometer for Earth Observation system (AMSR-E), Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active 

Passive (SMAP). However, the derived soil moisture products from passive microwave sensors are limited by their coarse 

spatial resolution (generally from 9 km to 40 km) that impede the applications for regional scale studies (Piles et al. 2011). 

To enable applications at local scale, many studies have focused on downscaling soil moisture using high-resolution optical 

and thermal and radar data (Fang et al. 2022; Song et al. 2022). The applicability of these downscaling algorithms is 60 

influenced by the need for a large amount of high-resolution data, which are not widely available on global scale. To obtain 

high-resolution soil moisture measurements, one promising strategy is to combine remotely sensed land surface radiometric 

temperature data with vegetation indexes. Additionally, it is possible to derive soil moisture from SMOS and AMSR-E data 

by applying hydrologic data assimilation approaches (Baldwin et al. 2017; Portal et al. 2020). 

Recently, Machine Learning (ML) techniques have gained popularity in several fields including soil moisture estimation (Ali 65 

et al. 2015; Han et al. 2023b; Zhang et al. 2021; Zhuang et al. 2023), due to their ability in identifying patterns and 
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relationships between soil moisture observations and related predictors that may not be immediately obvious to a human 

analyst (Hajdu et al. 2018; Mao et al. 2019). This allows a ML model to make more accurate predictions of soil moisture 

based on remote sensing data. Many efforts have been put into improving soil moisture prediction in the community using 

ML techniques (Abowarda et al. 2021; Karthikeyan and Mishra 2021; Lee et al. 2022; Lei et al. 2022; Sungmin and Orth 70 

2021; Zhang et al. 2021). At point scale, study compared three ML algorithms in the laboratory using a Radar Sensor 

(Uthayakumar et al. 2022). On a regional scale, studiescompared different ML approaches over catchment areas or at larger 

regional scales (Acharya et al. 2021; Adab et al. 2020; Senyurek et al. 2020) and  six ML algorithms was compared in 

generating high-resolution SSM over four regions (Liu et al. 2020). However, the comparison of different ML algorithms on 

soil moisture estimation with training data distributed across the globe is still missing and the selection of predictors remains 75 

an open question. 

Here we aim to optimise the prediction of SSM with training data distributed across the globe by ensemble models 

constructed from different base ML algorithms and extensively study their performances in order to identify optimized 

combinations for predicting SSM at 5 cm depth. It is note that current predicted SSM product is at point scale with daily 

temporal resolution, and based on data availability of ISMN stations, we are predicting SSM from 2000 to 2018. The 80 

developed model can be easily and directly upscaled to predict SSM at global scale with 1km resolution if the input data is 

provided (Han et al. 2023b; Zhang et al. 2021), which will be produced in the future and is beyond the scope of the current 

study. This study aims to (i) optimise and compare the performance of the different ML approaches in soil moisture 

estimation based on the identical training and testing datasets across the globe (e.g. training speed, accuracy, robustness, 

etc.); (ii) justify the selection of appropriate predictors and their importance in the ML model, (iii) build ensemble models for 85 

predicting soil moisture and compare the results achieved by the optimised machine learning algorithms obtained in 

objective (i). 

2. Physical Features and Data 

2.1 Physical Features Selection 

In order to predict SSM accurately, a multidimensional understanding of its complex dynamics requires a comprehensive 90 

integration of diverse environmental factors. While remote sensing techniques and advanced machine learning algorithms 

have revolutionized SSM estimation, the optimal selection of predictor variables remains a pivotal challenge. The dynamic 

interplay of precipitation, evaporation, land surface temperature (LST), vegetation index, soil properties, and topographic 

indices influences SSM patterns. 

As the primary meteorological forcing, precipitation and evaporation control the spatial variability of SSM in most flat areas 95 

(Pan et al. 2003; Wu et al. 2012; Zhang et al. 2019). Many studies have attempted to connect SSM with precipitation and 

evaporation, for example, with a linear stochastic partial differential model (Pan et al. 2003) and Antecedent Precipitation 

Index (API) (Shaw et al. 1997). LST reflects the pattern of evapotranspiration and plays an essential role in SSM retrieval 
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(Parinussa et al. 2011). It was indicated that the GOES-8 satellite imagery derived LST increased with the decrease of 

observed SSM (Sun and Pinker 2004). Furthermore, the daily LST difference is negatively related to the thermal inertia of 100 

soil, while thermal inertia increases with soil moisture increase (Matsushima 2018; Paruta et al. 2020; Zhuang et al. 2023). 

Thus, the daily difference between daytime and night-time LST was also selected as a predictor variable. 

The vegetation index is a transformation of two or more spectral bands of satellite images. For example, the Normalised 

Difference Vegetation Index (NDVI) is one of the most used vegetation indexes, representing the greenness of the vegetation 

condition, and is considered as a conservative water stress index (Goward et al. 1991). Plenty of research has reported 105 

retrieving SSM with the help of vegetation indices. For example, the Temperature/Vegetation Dryness Index (TVDI) was 

shown to have a strong negative relationship with SSM (Patel et al. 2009). SSM was estimated with a random forest model 

using LST, albedo, and NDVI (Zhao et al. 2017). In addition, the Enhanced Vegetation Index (EVI) is also commonly used 

to improve the sensitivity of SSM estimation in areas with high vegetation coverage (Jiang et al. 2008; Matsushita et al. 

2007).  110 

In the case of soil moisture estimation, physics-based models are useful for predicting the movement of water in the soil 

based on physical factors such as temperature, precipitation, and soil physical properties (Sungmin and Orth 2021). 

Nevertheless, the soil physical properties, such as sand, silt and clay content, organic matter content, were rarely included in 

empirical soil moisture models, although they can significantly influence the soil hydraulic processes (Vereecken et al. 

2015). By considering these soil physical properties, empirical models can provide a better understanding of the mechanisms 115 

behind soil moisture dynamics, as they provide insight into the underlying processes that drive changes in soil moisture. Soil 

properties influence the spatial variability of SSM, and among the most available ones, soil texture, porosity and organic 

matter content (OMC) proved to play an important role (Van Looy et al. 2017). Soil texture refers to the fractions of clay, silt 

and sand content. Porosity is the fraction of the total soil volume that is made up by the pore space, which varies depending 

on other soil properties (e.g., soil texture, aggregation, etc.)(Lal and Shukla 2004). Soil organic matter is any material 120 

originally produced by living organisms that is returned to the soil and goes through the decomposition process, and 

represents an important soil component on a volume basis (Hudson 1994; Nath 2014). Soil texture, organic matter content, 

and porosity determine the amount of water that can enter into the soil and be stored. 

Topographic indices are often used to understand the soil moisture patterns in landscapes and make effective landscape 

management decisions (Qiu et al. 2017). Digital elevation model (DEM) data were used because the distribution of 125 

precipitation, vegetation, and other features, are directly related to elevation (Han et al. 2018). Topographic index (TI) 

integrates the water supply from the upslope catchment area and the downslope water drainage for each cell in a DEM. In the 

TI, the slope gradient approximates downslope water drainage, and the specific catchment area, calculated as the total 

catchment area divided by the flow width, approximates the water supply from upslope area (Beven and Kirkby 1979). 

In addition, the geographic coordinate of the soil moisture site was also added as a predictor variable. As discussed by 130 

(Zhang et al. 2021), the information of longitude denotes the closeness to the ocean, while the latitude is related to the 

climatology of the temperature. 
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2.2 Data Source 

Based on consideration of these physical features that influence that dynamics of SSM, we next describe the data used for 

training and testing the different algorithms. The International Soil Moisture Network (ISMN) maintains a global in-situ soil 135 

moisture database through international cooperation (ISMN, 2023). As of July 2021, ISMN contains more than 2842 stations 

from 71 networks over different climatological conditions (Dorigo et al. 2021). However, ISMN does not restrict data 

providers in terms of delivery intervals, automation, and formatting, resulting in heterogeneous data before harmonisation by 

ISMN. This includes variations in units, depth, integration length, sampling intervals, and sensor positioning (both vertically 

and horizontally), among others. To overcome these variations, ISMN harmonises soil moisture data by applying an 140 

automated quality control system, which includes considering the geophysical dynamic range (i.e. threshold) and the shape 

of soil moisture time series (e.g., outliers, breaks, etc.) (Dorigo et al. 2013).  

In this study, we extracted in-situ SSM (at 5cm depth) from ISMN from 1 January 2000 to 31 December 2018, and then the 

predictor variables were incorporated to prepare training and testing sets. We filtered the NaN (Not a Number) values of 

SSM and different predictor variables, and after this 1722 stations were kept for further analysis (Figure 1). In Section 2.1, 145 

we provide a detailed description of each individual source of data. Section 2.2 explains the pre-processing operation applied 

to the available data, while Section 2.3 presents the data splitting procedure. It is worth noting that registration is required for 

further inquiry or downloading the original ISMN data (ISMN, 2023).  

 

Figure 1. Spatial distribution of the ISMN stations considered in this study and their corresponding climate zones. Note: 150 

Data from the 1574 stations coloured in black was used for training and testing the performance of the algorithmic 

implementations, while the 148 stations coloured in red contain independent, unseen data from different locations (their data 

were used for post-training analysis).  

The predictor variables used in the models are listed in Table 1 and detailed hereinafter. The most commonly used predictor 

variables (e.g. remote sensing data, or reanalysis data) are available on the Google Earth Engine platform.  155 
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Table 1. Predictor variables used for training the machine learning algorithms. 

Predictor 

Variable 

Description/ 

Explanation  

Spatial Resolution Temporal 

Resolution 

Source Unit 

Evaporation/ 

Precipitation/ API 

Evaporation/ 

Precipitation/ 

Antecedent 

Precipitation Index 

(Weighted 

summation of daily 

precipitation 

amounts) 

11 km 

 
Daily  

ECMWF 

Reanalysis 5th 

Generation (ERA 

5-Land) 

Milimetre 

(mm) 

NDVI/ EVI Vegetation Index 500 m  Daily  MOD13A1 - 

LST_Daily/ 

LST_Diff/ T_air 

Daily land surface 

temperature/ Land 

surface temperature 

difference between 

day and night/ 2m 

air temperature  

1000 m/1000 m/  

0.25 degrees  
Daily 

MOD11A1/ 

MOD11A1/ ERA5-

Land 

Degree 

Celsius (℃) 

Clay Content/Sand 

Content/Silt 

Content/Porosity/ 

Organic Matter 

Content (OMC) 

Proportion of clay/ 

Proportion of 

sand/Proportion of 

silt/Porosity: 

calculated from 

bulk density/ Soil 

organic matter 

content  

 250 m Static SoilGrids 
Percentage 

(%) 

Lon/ Lat 

Geographic 

coordinates 

information 

(Longitude and 

latitude) 

- Static ISMN 

Sexagesimal 

degree 

(°) 

Elevation/ 

Topographic Index 

Elevation/ 

topographic index 
90 m  Static MERIT Hydro metre (m) 

Year/ DOY Year/ Day of Year - - - - 

 

2.2.1 Precipitation and Evaporation 

In this study, we used the hourly precipitation and evaporation data from ERA5-Land with a time coverage from 1981 to the 

present. ERA5-Land is one of the most advanced reanalysis products released by the European Centre for Medium-Range 160 

Weather Forecasts (ECMWF), with higher spatial resolution and better global water balance than ERA-Interim (Albergel et 

al. 2018; Muñoz-Sabater et al. 2021). To synchronise the temporal coverages of the land surface temperature and Vegetation 

Indices, we adopted all precipitation and evaporation data from 2000 to 2018 and aggregated them from hourly into daily 

values. 
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2.2.2 Land Surface Temperature and Air Temperature 165 

Currently, several LST datasets are available with rigorous validations. MOD11A1 (Collection 6) LST product from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) is based on the split-window method (Wan 2014). The spatial 

resolution of the MOD11A1 is 1 km, with two measurements of LST per day (descending at local time 10:30, and ascending 

at 22:30, respectively). The MOD11A1 LST was reported with an average error of around one degree Celsius (Sobrino et al. 

2020; Wan 2014).  170 

2.2.3 Vegetation Indices 

This study deployed the MOD13A1 dataset of NDVI and EVI from MODIS as the predictor variables (MODIS 2015). 

MOD13A1 has a spatial resolution of 500 m and the temporal resolution of 16-days. The selected temporal coverage is the 

same as for LST (from 1 January 2000 to 31 December 2018). 

2.2.4 Soil Properties 175 

 In this study, the soil texture (proportion of clay, sand and silt content), bulk density (used for calculating porosity), and 

organic carbon content (used for calculating organic matter content) values were obtained from SoilGrids (Hengl et al. 

2017). The SoilGrids System provides currently the most detailed quantitative information on soil properties at global scale 

(Hengl et al. 2017). All soil properties are available for seven soil depths: 0, 5, 15, 30, 60, 100 and 200 cm, respectively 

(Hengl et al. 2017; Ross et al. 2018). In this study, clay, sand and silt content, organic matter content, and bulk density 180 

values of the top 5 cm were used. 

2.2.5 DEM and Topographic Index (TI) 

 

MERIT Hydro was used in this study (Yamazaki et al. 2019). 

2.2.6 Köppen–Geiger Climate Classification 185 

To further investigate the performance of the ML algorithms over different climate conditions, we used the Köppen–Geiger 

(KG) climate classification system. The KG system classifies the climate based on air temperature and precipitation. The 

climate is grouped into five main classes with thirty sub-types, consisting of tropical, arid, temperate, continental, and polar 

climate (Beck et al. 2018). 

ISMN covers nineteen climate zones: Aw (Tropical wet and dry or savanna climate), BSh (Hot semi-arid climate), BSk 190 

(Cold semi-arid climate), BWh (Hot desert climate), BWk (Cold desert climate), Cfa (Humid subtropical climate), Cfb 

(Temperate oceanic climate), Csa (Hot-summer Mediterranean climate), Csb (Warm-summer Mediterranean climate), Cwb 

(Subtropical highland climate), Dfa (Hot-summer humid continental climate), Dfb (Warm-summer humid continental 
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climate), Dfc (Subarctic climate), Dsb (Mediterranean-influenced warm-summer humid continental climate), Dsc 

(Mediterranean-influenced subarctic climate), Dwa (Monsoon-influenced hot-summer humid continental climate), Dwb 195 

(Monsoon-influenced warm-summer humid continental climate), Dwc (Monsoon-influenced subarctic climate), and ET 

(Tundra climate).  

2.3 Data Pre-processing 

 2.3.1 Antecedent Precipitation Index 

The ERA5-Land daily precipitation data was used to calculate the Antecedent Precipitation Index (API) (Muñoz-Sabater et 200 

al. 2021). API indicates the reverse-time-weighted summation of precipitation over a specified time (Wilke and McFarland 

1986). The historical precipitation influences the soil water content in a weakening effect along the reverse time axis; the 

more recent rainfall event has higher impact on the current SSM (Benkhaled et al. 2004). 

Many researchers applied API to retrieve SSM information (Wilke and McFarland 1986; Zhao et al. 2011). In this study, we 

used the API as a feature for the SSM prediction. The definition of API can be represented with Eq. 1. 205 

𝐴𝑃𝐼𝑎 =∑𝑘𝑖 ∙ 𝑝𝑎−𝑖

𝑡

𝑖=0

 (1) 

     In Eq. (1), 𝐴𝑃𝐼𝑎 represents the API value at day of a, 𝑘 is an empirical factor (decay parameter) to indicate the decay 

effect from the rainfall, which should always be less than one, a suggested range of k is between 0.85 and 0.98 (Ali et al. 

2010), and 𝑝𝑎−𝑖 is the precipitation value at 𝑖𝑡ℎ day before day of a, and t is the number of antecedent days we used to 

calculate 𝐴𝑃𝐼𝑎. 

Despite the spatial heterogeneity of decay parameter (k), since the soil water retention varies in space, most researchers use 210 

only one pair of values (k and t) for their study area (Hillel and Hatfield 2005), which was adopted in this study as well. In 

this regards, we calculated the API with different combinations of the parameters (k and t) and compared the corresponding 

Pearson Correlation Coefficient (r) of API and in-situ SSM, the finally obtained optimised parameters are k = 0.91 and t = 

33. 

2.3.2 Reconstruction of Vegetation Index 215 

Both NDVI and EVI from MOD13A1 are MODIS 16-day composite data. Despite an atmospheric correction procedure for 

the MODIS reflectance data, noise could still be observed in the long-term time-series, which is not physical based on plant 

phenology. Thus, we filtered the NDVI/EVI product with the Savitzky-Golay (S-G) method to reduce the small peak noise 

(Chen et al. 2004). NDVI/EVI were also interpolated to a daily time step by using a simple linear approach to synchronise 

the temporal steps with other features (applying Eq. 2). 220 
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𝑝(𝑡) = 𝑓(𝑡0) + (𝑓(𝑡1) − 𝑓(𝑡0))(
𝑡 − 𝑡0

𝑡1 − 𝑡0
)) (2) 

In Eq. 2, p(t) is the interpolated vegetation index, 𝑓(𝑡0) and 𝑓(𝑡1) are the vegetation index at time t0 and t1, respectively.  

2.3.3 Daily LST and Daily LST Difference 

The MOD11A1 LST product consists of two LST values per day (at 10:30 and 22:30 local time) (Wan 2014). We considered 

the arithmetic average of them as daily LST and calculated the difference between the daytime and night-time value as the 

Daily LST difference for that day. 225 

The quality of the LST was ensured based on the quality control (QC) data associated with the daytime and night-time LST, 

only pixels with the QC value of 0 (i.e., good quality data) were kept (Wan 2014). The MOD11A1 data used in this study 

spans from 2000-02-24 to 2018-12-31.  

2.3.4 Porosity and Organic Matter Content 

Soil porosity was derived from Eq. 3, using the bulk density from SoilGrids (Hengl et al. 2017) and particle density. 230 

∅ = 1 −
𝜌𝑏
𝜌𝑠

 (3) 

In Eq. 3, 𝜌𝑏 is the dry bulk density (g cm-3), and 𝜌𝑠 is the mineral particle density of 2.65 g cm-3. For soil mixture, the bulk 

density scheme assumed that the coarse and fine components share the same particle density.  

Soil organic matter content (also retrieved from SoilGrids) can be converted from soil organic carbon content by multiplying 

a factor of 1.72 (Khatoon et al. 2017). 

2.3.5 DEM and Topographic Index (TI) 235 

We used the topographic index of TOPMODEL (Kirkby 1975), which is defined as follows (Pradhan et al. 2006). 

𝑇𝐼 = 𝑙𝑛(
𝛼

𝛽
) (4) 

𝛼 =
𝑢𝑐𝑎

𝑓𝑤
, (5) 

 

fw = {
90𝑚,𝑤ℎ𝑒𝑛𝑓𝑙𝑜𝑤𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑠1𝑜𝑟4𝑜𝑟16𝑜𝑟64,

√90𝑚,𝑤ℎ𝑒𝑛𝑓𝑙𝑜𝑤𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑠2𝑜𝑟8𝑜𝑟32𝑜𝑟128
 (6) 
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where TI is the topographic index, 𝛼is the ratio of local upslope catchment area, uca, and flow width, fw, and 𝛽 is the slope 

angle of the ground surface that can be obtained from elevation data. Upslope catchment area, flow direction, and elevation 

can be found and used directly from MERIT Hydro: global hydrography datasets (Gruber and Peckham 2009; Yamazaki et 240 

al. 2019). 

2.3.6 Spatial Resampling 

Land surface features have different spatial resolutions. For calculating the long-term gridded global SSM, the predictor 

variables were resampled to 1-km resolution. Afterwards, the predictor variables were extracted for pixels that collocate with 

the considered in-situ sites, at 1 km resolution. The World Geodetic System of 1984 (WGS84, EPSG:4326) was chosen as 245 

the geographic coordinate system in our study. 

2.4 Data Split 

The precipitation, API, evaporation, air temperature, daily LST, daily LST difference, and NDVI/EVI data (described in 

Section 2.2) were synchronised based on the temporal coverage of in-situ data time-series of each ISMN station (described 

in Section 2.1). The full data contained a total of 735,475 registries (each sample contained nineteen predictor variables) and 250 

was differentiated in the training set and three different test sets, based on the following strategy (also described in Table 2): 

First, we extracted 10% stations from every network for an independent evaluation of the derived ML models. This is called 

the “test_independent-stations” set and contains a total of 148 stations. The data from these 10% of the stations do not 

belong to either the training, or any testing set.  

Afterwards, based on the temporal component of the data, we divided the remaining data (90% of the full available data) into 255 

“train&test_random” (70%; at this stage train&test_random form a single temporary set), and test_temporal set (containing 

30% of the available data). This way, assuming the data were recorded from 1 January 2000 to 31 December 2019, the 

“train&test_random” set contains the first 70% data (14 years, from 2000 to 2013), and the “test_temporal” set consists of 

the last 30% data (6 years, from 2014 to 2019). The “test_temporal” set was used to analyse the performance of time-series 

prediction for stations where SSM data of earlier period was used to build the ML model. 260 

Finally, the temporary “train&test_random” data, obtained in the second step, was randomly split into the “train” and 

“test_random” sets by applying a 75:25% division criteria. The two resulting sets were used for training and testing the 

considered algorithmic implementations. 

Table 2. Description of the sets of data used for training and testing the machine learning implementations and their size. 
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ID Name of the set Percentage of total 

data 

Number of 

samples 

Use description 

1 test_independent-

stations 

10% 66,155 used for evaluating the performance of the models on 

unseen data belonging to new stations evenly spread at 

global level in space. It cover all the years. 

2 test_temporal 90% × 30% = 27% 199,886 used for computing and comparing the performance 

metrics achieved by the trained models on unseen data 

divided by temporal criteria. It cover the last 30% time 

series. 

3 test_random 90% × 70% ×  25% 

= 15.75% 

117,359 used for computing and comparing the performance 

metrics achieved by the trained models on unseen data 

divided by applying the randomisation criteria. It 

covers the first 70% time series and was randomly 

divided. 

4 train 90% × 70% × 75% 

= 47.25% 

352,075 used for training the model, cross-validation, and 

optimising the algorithms by hyper-parameters tuning 
 265 

3. ML Algorithms and Ensembles 

The optimization task of the considered ML algorithms involved an extensive search for the training hyperparameters that 

achieved the highest performance metrics in different training scenarios (as illustrated in Figure 2).  
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Figure 2. Conceptual framework of the optimisation operation of ML algorithms and construction of ensemble models. 270 

The “Data collection and preprocessing” step was explained in Sections 2.1 and 2.2, while the “Data Splitting” operation 

was described in Section 2.3. The “ML algorithm selection” and “Hyperparameter Tuning” steps, related to the optimisation 

procedure will be described in Section 3.1 and 3.2. The procedure to build the “Ensemble Models” is described in Section 

3.3. The metrics considered for the comparison are presented in Section 3.4. Finally, the “Comparison of the ML models 

performance” (either optimised ML models, or ensemble models) is approached from different perspectives in Section 4 and 275 

5. 

3.1 Selection of Machine Learning Algorithms 

We used the scikit-learn Python library (Pedregosa et al. 2011) to build and test the machine learning algorithms. Eight 

algorithms were selected based on their popularity and their proved performance in regression tasks (Sarker 2021). The 

algorithms considered for optimisation were (1) Random Forest Regressor (RFR) (Belgiu and Drăguţ 2016; Breiman 2001), 280 

(2) K-neighbours Regressor (KNR) (Papadopoulos et al. 2011), (3) AdaBoost (AB) (Yıldırım et al. 2019), (4) Stochastic 

Gradient Descent Regressor (SGDR), (5) Multiple Linear Regressor (MLR), (6) Multi-layer Perceptron Regressor (MLPR) 

(Gaudart et al. 2004), (7) Extreme Gradient Boosting (XB) (Karthikeyan and Mishra 2021), and (8) GradientBoosting (GB) 

(Wei et al. 2019). 

3.2 Optimisation Procedure (Hyper-Parameter tuning) 285 

Each of the considered eight ML algorithms has different, specific parameters that can be tuned to improve the performance 

of the prediction. To optimise the training procedure and achieve the maximum performance of the algorithms for our task, 

we applied the hyper-parameter tuning technique (Feurer and Hutter 2019), as it is one of the most popular methods to 

search for the best parameter values. In this study, grid search cross-validation (GridSearchCV) function (LaValle et al. 

2004) was implemented in scikit-learn for hyper-parameter tuning. In the case of  the ML algorithms that need long 290 

computation time, “itertools” Python function was applied (based on a for-loop). 

The goal was to identify the best set of specific parameters of the eight considered ML algorithms, with the Coefficient of 

Determination R-square (r2) score used as the evaluation metric. In the hyper-parameter tuning operation, we set a range for 

every parameter considered in various iterations. For example, for the ‘n_neighbors’ hyperparameter (specific to the KNR 

algorithm), we first set the possible values to 5, 10, 15;  after we identified that the best set value is 5, we updated the range 295 

of possible values to 3, 4, 5, 6, 7 to narrow down the possible interval, and achieve the parameter values delivering more 

accurate performance metrics. 

3.3 Construction of the Ensemble Models 

In order to enhance capabilities of individual models, we exploited ensemble techniques which helped to identify the proper 

combination of models. This way, we ensembled a set of base models (the optimised versions of machine learning models 300 
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mentioned in Section 3.1, obtained by applying the optimisation procedure described in Section 3.2) using model stacking 

techniques to combine the predictions of the models and built a new model.  

The reasoning behind using an ensemble was that by stacking multiple base models representing different hypotheses, we 

can find a better hypothesis that might not be contained within the hypothesis space of the individual models from which the 

ensemble is built (Cira et al. 2020). Three main aspects causing this situation were identified (Dietterich 2000): (1) having 305 

insufficient input data (statistical), (2) difficulties for the learning algorithm to converge to the global minimum 

(computational), and (3) representational, where the function cannot be represented by any of the hypotheses proposed and 

modelled by the algorithms during training.  

A popular form of stacking involves computing the outputs of base models, performing a prediction for each model, and 

averaging their predictions inside the ensemble. In this technique, each 𝑚 sub-model contributes equally to a combined 310 

prediction, 𝑦, as defined in Eq. 7. The specific steps are: (1) generate weak learners, each with its own initial values (by 

training them separately), and (2) combine these models in an ensembling environment, where their predictions are averaged 

for every instance of the set to compute. 

𝑦(𝑥) = 
1

𝑀
∑ 𝑦𝑚(𝑥)

𝑀

𝑚=1
 (7) 

We built ensemble models by combining base models as diversely as possible (an example is illustrated in Figure 3). This 

way, the optimised versions of single ML algorithms become the weak learners, or base models, within ensemble models 315 

that will be constructed using model bagging methodology. We applied ensemble learning procedures to test different 

combinations of the algorithms with the highest performance metrics and study their impact on the predicting performance.  

The base models are the five ML models that achieved the highest performance metrics after the optimisation procedure 

described in Section 3.2. The constructed ensemble model variants will contain all the possible combinations of the five base 

models, taken three at a time (𝐶𝑛
𝑘 = 

𝑛!

𝑘!(𝑛−𝑘)!
, 𝑤ℎ𝑒𝑟𝑒𝑛 = 5, 𝑘 = 3). In this way, ten ensemble models will be obtained and 320 

the performance of every ensemble model built will be studied in Section 4.3.2. 
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Figure 3. Example of an ensemble model structure (based on the average voting of three weak learners). 

3.4. Evaluation of the Performance 

We use five-fold cross validation to evaluate the training performance of different algorithms, both before and after the 325 

hyper-parameter tuning. 

To assess the performances of different ML algorithms, we compared predicted SSM with in-situ observations. In this 

research, we considered three commonly used statistical evaluation metrics (Entekhabi et al. 2010b): the Root Mean Square 

Error (RMSE), defined in Eq. 8, the Pearson Correlation Coefficient (r) score, represented in Eq. 9, and the Coefficient of 

Determination R-square (r2) score, presented in Eq. 10, as follows.  330 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)

2𝑁
𝑖=1

𝑁
 (8) 

 

𝑟 =
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)(𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)
𝑁
𝑖=1

√∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)
2𝑁

𝑖=1 √∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)
2𝑁

𝑖=1

 
(9) 

 

𝑟2 = 1 −
∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)
2𝑁

𝑖=1

 (10) 

 

In Eqs. 8 to 10, 𝑦𝑝𝑟𝑒𝑑,𝑖 is the predicted SSM, 𝑦𝑟𝑒𝑓,𝑖  is the in-situ measured SSM, N is the number of valid pairs of SSM, 

𝑦𝑝𝑟𝑒𝑑,𝑖 is the mean value of the predicted SSM, 𝑦𝑟𝑒𝑓,𝑖 is the mean value of the in-situ measured SSM. 335 

In this study, there are three main steps, (1) the evaluation of the r2 score on the training set, (2) the evaluation of the five-

fold cross validation, and (3) the evaluation of the “test_random”, “test_temporal”, “test_independent-stations” sets. In the 

first step of the evaluation, the r2 score on the training dataset was analysed to identify significant differences among 

different ML algorithms. In the second step, r2 score andRMSE were computed to carry out the performance comparison on 

the “train” set using cross validation. In the third step, the r score, r2 score, and RMSE were calculated on the “test_random”, 340 

“test_temporal”, and “test_independent-stations” sets to compare the performance of the trained algorithms. 

The performance of the eight MLs and ten ensemble models were compared on the squared error of the predictions with non-

parametric Kruskal-Wallis test at the 5% significance level, computed on the “test_random”, “test_temporal” and 

“test_independent-stations” sets.  
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4. Results 345 

4.1 Best Parameters from Hyper-parameter Tuning (Optimised Machine Learning Models) 

The optimal performance after the hyperparameter tuning is presented in the fourth column of Table S1. The algorithms of 

RFR, KNR and XB show a superior result with r2 scores of 0.859, 0.8848 and 0.9139 respectively, while the algorithms of 

GB, MLPR and ABGB also show a considerable result with r2 scores of 0.7977, 0.7638, and 0.6547, respectively. It should 

be noticed that, in other relevant studies, such as (Kucuk et al. 2022), AB also performed slightly worse than RFR, GB and 350 

XB in SSM estimation. However, the performance of the other two methods (SGDR and MLR) is not satisfactory. Both 

SGDR and MLR were unable to model the highly non-linear relationship between the soil moisture and the predictor 

variables because these two algorithms are linear regressors.  

In the meanwhile, the computational efficiency of hyperparameter tuning of different algorithms varies greatly, sometimes 

with a different order of magnitude. For example, it only took 17 minutes for GB to finish the turning, while XB needed 355 

more than 25 hours. However, this seems to be more dependent on the choice of parameters and their range, as XB has nine 

parameters, and we selected at least five values to tune for each parameter. 

4.2 Five-Fold Cross Validation 

After hyper-parameters tuning, five-fold cross validation was used for performance comparison on the “train” dataset. The 

performance of the five-fold cross-validation for the eight algorithms is listed in Table 3. Similar to the result in Table S1, 360 

five algorithms (RFR, KNR, MLPR, XB and GB) display a high performance. The XB achieved the best performance, with 

an RMSE of 0.0337 cm3/cm3 and an r2 score of 0.9081. It is followed by the KNR algorithm, with an RMSE of 0.0392 

cm3/cm3, and an r2 score of 0.8760. RFR, GB and MLPR also achieved acceptable performance, even though the RMSE of 

0.04 cm3/cm3 is often required in the community as the non-strict standard. 

Table 3. Mean values and standard deviation of the evaluation metrics obtained in the five-fold cross validation. 365 

ID ML algorithm RMSE and standard 

deviation (cm3/cm3) 

r2 score 

A7 XB 0.0337 ±0.0001 0.9081 ±0.0008 

A2 KNR 0.0392 ±0.0003 0.8760 ±0.0021 

A1 RFR 0.0413 ±0.0003  0.8627 ±0.0019  

A8 GB 0.0500 ±0.0001 0.7982 ±0.0017 

A6 MLPR 0.0541 ±0.00003 0.7638 ±0.0004 

A3 AB 0.0653 ±0.0003 0.6566 ±0.0025 

A5 MLR 0.0852 ±0.0006  0.4148 ±0.0006  

A4 SGDR 0.0853 ±0.0006  0.4140 ±0.0006  
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4.3 Analysis of the Model Performance on “test_random”, “test_temporal” and “test_independent-stations” Sets 

4.3.1 Performance of Single, Optimised ML Models 

Having identified the best hyper-parameters for the considered algorithms and, therefore, the optimised versions of the ML 

models for our task, we next calculated and compared their performance on the “test_random”, “test_temporal” and 370 

“test_independent-stations” sets. As described in Table 2, the amount of samples used for evaluating the performance (each 

containing nineteen predictor variables) for “train”, “test_random”, “test_temporal” sets were 352,075, 117,359, and 199,886 

registries, respectively, together with 148 stations in the “test_independent-stations” set (containing 66,155 registries). The 

number of stations was 1574 for “train” & “test_random” and  1550 for “test_temporal” set.  

From Table 4, we can find that RFR, KNR, XB performed better on the “test_random” set, compared to the other five. KNR 375 

achieved the best performance, achieving a maximum r2 score of 0.8848. RFR, KNR, AB, XB, GB, MLPR performed 

relatively well on the “test_temporal” set, achieving a maximum r2 score of 0.7126. In independent station evaluation, except 

MLPR, all ML algorithms perform similar but AB performs the best with r2 score of 0.4905. In all, RFR, KNR, XB 

performed well in every step. 

Table 4. Performance metrics obtained by eight optimised ML algorithms on the test sets. 380 

ID ML  

Test_random  

(117,359 registries) 

Test_temporal  

(199,886 registries) 

Test_independent-stations 

(66,155 registries) 

RMSE 

(cm3/cm3) 
r2 score 

RMSE 

(cm3/cm3) 
r2 score 

RMSE 

(cm3/cm3) 
r2 score 

A2 KNR 0.0379 0.8848 0.0667 0.6435 0.0900 0.3327 

A7 XB 0.0385 0.8806 0.0609 0.7023 0.0817 0.4499 

A1 RFR 0.0413 0.8626 0.0599 0.7126 0.0806 0.4649 

A8 GB 0.0502 0.7977 0.0617 0.6948 0.0842 0.4158 

A6 MLPR 0.0546 0.7605 0.0640 0.6710 0.1014 0.1528 

A3 AB 0.0651 0.6597 0.0696 0.6114 0.0786 0.4905 

A4 SGDR 0.0853 0.4152 0.0852 0.4173 0.0854 0.3995 

A5 MLR 0.0852 0.4158 0.0851 0.4191 0.0852 0.4018 

 

4.3.2 Performance of Ensemble Models 

Based on the results displayed in Table 4, the ensemble regressors were built using RFR, KNR, XB, GB and AB as base 

models (as they displayed the best performance). We combined three ML algorithms in each combination to form the ten  

ensemble models. The performance of these ten models was found to be stable (as observed in Table 5). Specifically, 385 

KNR_RFR_XB and GB_RFR_XB displayed the best performance in “test_random” (RMSE were 0.0355 cm3/cm3 and 

0.0391 cm3/cm3, and the r2 scores were 0.8985 and 0.8772) and test_temporal (RMSE were 0.0576 cm3/cm3 and 0.0568 

cm3/cm3 and r2 scores were 0.7335 and 0.7410) sets. However, there were no considerable differences among the different 

combinations for test_independent-stations.  
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The voting regressors built with ensembling techniques generally showed improved performance when compared to the 390 

considered base models. For example, AB achieved a  RMSE of 0.0651 cm3/cm3, 0.0696 cm3/cm3, and 0.0786 cm3/cm3, in 

the “test_random”, “test_temporal”, and “test_independent-stations”, respectively, while in the voting regressor result, the 

six combinations that had AB were able to achieve RMSEs of 0.0417 cm3/cm3 to 0.0468 cm3/cm3 in the “test_random” set, 

0.0584 cm3/cm3 to 0.0593 cm3/cm3 in the “test_temporal” set and 0.0767 cm3/cm3 to 0.0775 cm3/cm3 in “test_independent-

stations”. The ensemble models improved AB’s performance by 0.0183-0.0234 cm3/cm3 (28% - 36%), 0.0103-0.0112 395 

cm3/cm3 (15-16%), and 0.0011-0.0019 cm3/cm3 (1.4%-2.4%) in the “test_random”, “test_temporal” and “test_independent-

stations” sets in terms of RMSE. 

The best performing voting regressor (KNR_RFR_XB, composed of XB, RFR, and KNR) achieved a RMSE value of 0.0355 

cm3/cm3 and a r2 score value of 0.8985 on the “test_random” set. The RMSE of KNR, RFR, and XB were 0.0379, 0.0413 

and 0.0385 cm3/cm3 in “test_random”, and the r2 scores of KNR, RFR, and XB were 0.8848, 0.8626, and0.8806. Compared 400 

with KNR, RFR, and XB, the ensemble model improved, for RFR, 0.0058 cm3/cm3 (14%) of RMSE and 0.0137 (1.6%) of r2 

score. On the “test_temporal” and “test-independent-stations”, the performance of KNR_RFR_XB also performed better 

than the single three ML algorithms. In summary, models built with ensembling techniques averaged the performance of 

base ML algorithms and performed more stable than single ML algorithms. Overall, ensembling techniques improved the 

performance of base algorithms in “test_random” dataset, but had little effect on the “test_independent-stations” dataset. 405 

Table 5. Performance metrics obtained by the ten ensemble models built with different combinations of selected machine 

learning algorithms. 

ID ML  

Test_random 

(117,359 registries) 

Test_temporal 

(199,886 registries) 

Test_independent-stations 

(66,155 registries) 

RMSE 

(cm3/cm3) 
r2 score 

RMSE 

(cm3/cm3) 
r2 score 

RMSE 

(cm3/cm3) 
r2 score 

E5 KNR_RFR_XB 0.0355 0.8985 0.0576 0.7335 0.0775 0.5046 

E3 GB_KNR_XB 0.0383 0.8821 0.0572 0.7374 0.0781 0.4980 

E1 GB_KNR_RFR 0.0389 0.8783 0.0575 0.7347 0.0778 0.5019 

E4 GB_RFR_XB 0.0391 0.8772 0.0568 0.7410 0.0767 0.5154 

E10 AB_KNR_XB 0.0417 0.8605 0.0584 0.7266 0.0774 0.5066 

E9 AB_KNR_RFR 0.0426 0.8542 0.0593 0.7177 0.0768 0.5137 

E2 AB_RFR_XB 0.0429 0.8518 0.0587 0.7234 0.0771 0.5108 

E6 AB_GB_KNR 0.0457 0.8323 0.0588 0.7225 0.0775 0.5055 

 

Abbreviations: RFR=Random Forest Regressor, KNR=K-neighbours Regressor, AB=AdaBoost, SGDR=Stochastic 

Gradient Descent Regressor, MLR=Multiple Linear Regressor, MLPR=Multi-layer Perceptron Regressor, XB=Extreme 410 

Gradient Boosting, GB=GradientBoosting. Notes: (1) GB_KNR_RFR refers to the ensemble model constructed by GB, 

KNR and RFR; while AB_RFR_XB refers to the ensemble model constructed by AB, RFR and XB. (2) The same naming 

procedure applies for GB_KNR_XB, GB_RFR_XB, KNR_RFR_XB, AB_GB_KNR, AB_GB_RFR, AB_GB_XB, 

AB_KNR_RFR, AB_KNR_XB. 
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4.3.3 Comparison of Single, Optimised ML and Ensemble Models 415 

Table 6 shows which methods performed significantly better or worse and the cumulative rank of the methods based on the 

Kruskal-Wallis order computed for the three test sets. Based on the analysis on the “test_random” set, KNR is significantly 

more accurate than the other methods. KNR ensembled with RFR and XB, or RFR and GB, or GB and XB are the second, 

third and fourth most accurate methods, respectively. When the performances of single algorithms are considered, RFR, XB, 

and GB follow the performance of KNR. MLR and SGDR display the weakest performance. If AB which has a weaker 420 

performance as a single ML is ensembled with any of the following algorithms: KNR or XB or RFR – which are all 

significantly more accurate than AB, the prediction performance of  the ensemble significantly decreases when compared to 

the performance of those single algorithms. GB, MLPR, AB, SGDR and MLR describe the relationship between the target 

and predictors significantly less accurately than the ensemble methods. 

On “test_temporal” set, KNR_RFR_XB performs significantly better than any of the other methods. GB ensembled with 425 

KNR and XB or KNR and RFR or RFR and XB are the second, third and fourth most accurate methods. Among the single 

ML methods RFR is significantly the most accurate, which is followed by KNR, XB, GB, MLPR. Similarly to the results on 

“test_random” set, MLR and SGDR performed significantly worse when compared to any other method.  If AB is ensembled 

with KNR or RFR, the prediction performance does not improve significantly or significantly decreases compared to the 

performance of those single MLs. 430 

On “test_independent-stations” set, the best performing predictions could be reached by using the ensemble of any three 

MLs from KNR, RFR, XB, and GB. Among the single, optimised ML methods, RFR is significantly the most accurate, and 

is followed by XB, AB, GB, KNR, MLR, SGDR, MLPR, respectively. All ensembles perform significantly better than the 

single MLs.  

The results underpin that the inclusion of a not well performing algorithm in an ensemble will lead to a worse performance 435 

than a single well performing model. 

Table 6. Result of the Kruskal-Wallis test. 

ID Method 

Significant difference 
Rank based 

on sign. diff. 

analysis 

Test_random 

(117,359registries) 

Test_temporal 

(199,886 registries) 

Test_independent- 

stations 

(66,155 registries) 

E5 KNR_RFR_XB l m i 4 

E3 GB_KNR_XB j l hi 8 

E1 GB_KNR_RFR k k hi 8 

E4 GB_RFR_XB i k i 9 

A1 RFR j j f 13 

E10 AB_KNR_XB h i gh 14 

A2 KNR m i c 15 

E9 AB_KNR_RFR h fg gh 17 

A7 XB i h ef 17 

E6 AB_GB_KNR f g gh 18 

E2 AB_RFR_XB g g g 18 
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E8 AB_GB_XB e f hi 20 

E7 AB_GB_RFR e e g 23 

A8 GB d d d 29 

A3 AB b b e 32 

A6 MLPR c c a 34 

A5 MLR a a b 37 

A4 SGDR a a b 37 

 

Notes: Different letters show that there is a significant difference between the methods. Letter “a” indicates the worst 

performing algorithm. 440 

Based on the result of the Kruskal-Wallis test, the best single ML and best ensemble algorithms were identified. The 

probability density function (PDF) of them are shown in Figure S4. On “test_random” set, the overlap between in-situ SSM 

and predicted SSM from KNR and KNR_RFR_XB are 96.2% and 93.1%. On “test_temporal” set, the overlap between in-

situ SSM and predicted SSM from RFR and KNR_RFR_XB are 87.9% and 90.7%. On “test_independent-stations” set, the 

overlap between in-situ SSM and predicted SSM from RFR and KNR_RFR_XB are 80.5% and 81.0%. It shows that the 445 

ensemble model performs better on unseen data. 

4.4 Performance on the “test_independent-stations” Set Grouped by Climate Zones 

In Section 4.3, we analysed the performance of our model on three sets, “test_random”, “test_temporal”, and 

“test_independent-stations”, which consist of stations located in different climate zones and, as expected, we observed 

important variations in the model’s performance across different stations (due to their unique climatic condition).  450 

To further examine  the performance of each station in the “test_independent-stations” set, we considered the number of 

stations in both the “train” and “test_independent-stations” sets. Specifically, the stations from the “train” set are distributed 

across nineteen Köppen climate zones, while the “test_independent-stations” set stations are across sixteen climate zones 

(Cwb, Dsc, Dwb, are not represented in  the “test_independent-stations” set).  

To ensure a robust climate zones analysis, we excluded stations with less than 100 days of observations in the 455 

“test_independent-stations” set. Figure S2 shows the number of stations on the  “test_independent-stations” dataset over each 

climate zone (the number of stations decreased from 148 to 117 after applying this (100 days) filter and the climate zones 

covered by “test_independent-stations” set decreased from sixteen to fifteen, Dwc being removed). 

The performances of the eight optimised ML algorithms and ten constructed ensemble models in the fifteen climate zones 

are described in the boxplots of Figure 4 (which includes the stations from the “test-independent-stations” set with more than 460 

100 days of  in-situ measurements). In Figure 4a, the median RMSE values in most of the climate zones were below 0.1 

cm3/cm3. In Figure 4b, except BSh, BWh, in other thirteen climate zones, we can find at least one single ML algorithm that 

can have a median r score higher than 0.6. GB, MLPR, SGDR and RFR can achieve a median r score of 0.6 in twelve, 

eleven, nine, and nine climate zones, respectively. The median of r score from GB in BSh, BWh and BWk were below 0.6 

because these three climate zones all have sparse “train” stations and they are all arid climates. In Figure 4c, the median 465 



20 

 

values of RMSE in all climate zones were below 0.075 cm3/cm3 in the case of ensemble models. Figure 4d, we can see that 

the r scores in other thirteen climate zones were above 0.6 except BSh and BWh. This indicates that the number of “train” 

stations also plays an important role in ensemble models. Ensemble models can improve the performance but can not 

completely solve the problem of lacking training data. 

Using ensemble models is a way to improve the performance of the single, optimised ML algorithms. However, the outliers 470 

in the lower part of the r score boxplot were still present in BSk and Dfb, even for the ensemble models. 

 

Figure 4. Boxplot of RMSE and r score for “test_independent-stations” set based on climate zones -the performance of eight 

optimised ML algorithms can be found in (a) and (b), while the performance of ten ensemble models are shown in (c) and 

(d). 475 

Abbreviations: (1) Related to the climate zones: Aw (Tropical wet and dry or savanna climate), BSh (Hot semi-arid 

climate), BSk (Cold semi-arid climate), BWh (Hot desert climate), BWk (Cold desert climate), Cfa (Humid subtropical 

climate), Cfb (Temperate oceanic climate), Csa (Hot-summer Mediterranean climate), Csb (Warm-summer Mediterranean 

climate), Dfa (Hot-summer humid continental climate), Dfb (Warm-summer humid continental climate), Dfc (Subarctic 

climate), Dsb (Mediterranean-influenced warm-summer humid continental climate), Dwa (Monsoon-influenced hot-summer 480 

humid continental climate), ET (Tundra climate). (2) Related to the ML algorithms: RFR=Random Forest Regressor , 

KNR=K-neighbours Regressor, AB=AdaBoost, SGDR=Stochastic Gradient Descent Regressor, MLR=Multiple Linear 

Regressor, MLPR=Multi-layer Perceptron Regressor, XB=Extreme Gradient Boosting, GB=GradientBoosting.  
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Notes: (1) GB_KNR_RFR refers to the ensemble model constructed by GB, KNR and RFR; while AB_RFR_XB refers to 

the ensemble model constructed by AB, RFR and XB. (2) The same naming procedure applies for GB_KNR_XB, 485 

GB_RFR_XB, KNR_RFR_XB, AB_GB_KNR, AB_GB_RFR, AB_GB_XB, AB_KNR_RFR, AB_KNR_XB.  

4.5 Performance on Single, Selected Stations from the “test_independent-stations” Set 

 We selected the BSk climate zone as an example to deepen the analysis of outliers. The weakest r scores were present at 

station “SEVILLETA” (lon: 106.68° W, lat: 34.36° N), the r scores being all lower than 0.4 for each of the eight single, 

optimised ML algorithms and the ten ensemble models.  490 

For our single-station analysis, we also chose two stations where the performance values were improved by the ensemble 

models. In Figure 7, we can observe that all r scores computed for the  ensemble models at station CARRIZORAN (lon: 

120.03° W, lat: 35.28° N, in climate zone BSk) were above 0.8, while at station WHISKEYCK (lon: 105.12° W, lat: 37.21° 

N, in climate zone BSk) all r scores were above 0.6.  

In Figure 6, it can be found that the predicted SSM was consistent with the in-situ SSM at both of these two stations. For the 495 

outlier station “SEVILLETA”, we found that the r score between API and predicted SSM in station SEVILLETA is 0.8, and 

the r score between evaporation and predicted SSM is -0.67. This implied that our predictor variables were consistent with 

our predicted SSM, but the  predictor variables were not the main decisive factor for the in-situ SSM in station 

“SEVILLETA”. There was no significant difference between the main static predictor variables of station “SEVILLETA” 

and other stations in the BSk climate zone. The potential cause could be an environmental factor that is not considered as an 500 

independent variable during the prediction (e.g. different vegetation types). 

 

Figure 5. The r scores of three stations obtained by eight optimised ML algorithms and ten ensemble models. 
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Figure 6. In-situ and predicted SSM from GB and KNR_RFR_XB and API in station (a) CARRIZORAN, (b) 505 

WHISKEYCK and (c) SEVILLETA; (d) static predictors of stations in climate zone BSk. 

5. Discussion 

Soil moisture is an important parameter for understanding the water cycle, predicting crop yields, and managing irrigation. 

Remotely sensed soil moisture has become an important dataset for supporting many human activities, such as water 

resource conservation and management, environmental monitoring, and disaster response (Su et al. 2003). In this section, we 510 

will discuss the performance and the uncertainty of single, optimised ML algorithms and the proposed ensemble models. 

5.1 Performance of Trained Regression Models 

This study presents one of the first studies constructing and comprehensively evaluating different ML algorithms for 

estimating SSM with not only optimised, individual models, but also with ensemble models using the optimised algorithms 

as base models. The predictor variables were selected based on their relevance to physical processes in the land-atmosphere 515 

interaction.  

First, based on various predictor variables extracted from multi-source datasets, we trained and tested eighteen ML models in 

order to find their optimised version for estimating SSM. The cross-validation result showed that the RFR, KNR and XB 
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outperform other ML algorithms. When evaluated on “test_random” set, KNR achieved the lowest RMSE of 0.0379 cm3/cm3 

among individual ML algorithms and a high r2 score of 0.8848.  While on “test_temporal”, RFR showed the lowest RMSE 520 

of 0.0599 cm3/cm3 and highest r2 score of 0.7126. On “test_independent-stations”, AB showed the lowest RMSE 0.0786 

cm3/cm3 and highest r2 score of 0.4905. 

Second, the ensemble models improved the performance of the individual ML algorithms if the ensemble does not include a 

significantly worse performing algorithm. From Section 4.3.2, we can observe that ensemble models mostly improved the 

performance of base algorithms in “test_random” sets, and had the minimal impact on “test_independent-stations”. From 525 

section 4.3.3, the ensemble models based on the combination of KNR_RFR_XB showed the best performance on 

“test_random” and “test_temporal”. KNR_RFR_XB  and GB_RFR_XB had the significantly best performance on 

“test_independent-stations” set. Considering the performance of all eight MLs and ten ensembles on all three test sets the 

ensemble of KNR and RFR and XB performs the best, thus this is the suggested method to predict SSM based on the 

presented predictors. 530 

Third, we found significant variations in the model’s performance across different stations because of their unique climatic 

conditions. Therefore, we further analysed the “test_independent-stations” performance on climate zone level. For single, 

optimised ML algorithms, the median RMSE from five models except MLPR, MLR and SGDR were below 0.1 cm3/cm3. 

GB, XB and RFR achieved a median r score of 0.6 in twelve, eleven, and nine climate zones, respectively, out of fifteen 

climate zones. The ensemble models improved significantly the performance. The median value of RMSE in all climate 535 

zones were all below 0.10 cm3/cm3, and all voting regressors achieved the r scores above 0.6 in thirteen climate zones except 

BSh and BWh because of the sparse distribution of “train” stations. 

Forth, we selected the BSk climate zone as an example to deepen the analysis of outlier stations. The result showed that 

ensemble models can improve the performance of single ML algorithms and obtain more stable results. The r scores from 

ensemble models at station CARRIZORAN were all above 0.8, and those at station WHISKEYCK were all above 0.6,  540 

while, in general, the optimised individual ML algorithms did not perform as good as the ensemble models. However, we 

found the worst performance at the outlier station SEVILLETA that the ensemble models could not improve. The potential 

cause could be an environmental factor that is not considered as an independent variable during the prediction (e.g. different 

vegetation types). Another potential cause could be the non-representativeness of the in-situ measurements for the studied 

pixel scale.  545 

When considering ensemble models, there are several advantages. Firstly,the ensemble models significantly improve the 

accuracy of the individual ML algorithms. By combining multiple regression models, the ensemble models can capture more 

of the complexity and variability in the data, leading to more accurate predictions (Cira et al. 2020). Secondly,because the 

ensemble models uses multiple models, they are less sensitive to outliers or individual model errors, making them more 

robust and stable models. Thirdly, the ensemble models allow us to use different types of regression models and 550 

hyperparameters, so researchers can choose the best models for our particular data and problem. Lastly, the ensemble models 

can reduce overfitting by combining models that have different strengths and weaknesses, leading to a more generalizable 
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model. Furthermore, a comparison of ensemble models with other existing soil moisture products and methods highlights 

their superior performance. For instance, evaluating the root mean square error (RMSE) on randomly selected test samples, 

our KNR_RFR_XB ensemble model achieves an RMSE of 0.0355 cm³/cm³. In contrast, the RFR model used for generating 555 

a global daily 1 km soil moisture product presents an ubRMSE (unbiased root-mean-square error) of 0.045 cm³/cm³ (Zheng 

et al. 2023) and the RFR model used for generating a global daily 0.25 degree soil moisture product presents an RMSE of 

0.05 cm³/cm³ (Zhang et al. 2021). The RFR model used for reconstruction of a daily SMAP surface soil moisture dataset 

shows an ubRMSE of 0.04 cm³/cm³ (Yang and Wang 2023). The XB model used for generating a global daily 1 km soil 

moisture product presents an RMSE of 0.038 cm³/cm³ (Zhang et al. 2023). These comparisons demonstrate that our 560 

ensemble model has the potential to improve predictive accuracy compared to individual methods. This makes our model a 

candidate for further exploration as an effective tool for accurate prediction of soil moisture. 

5.2 Uncertainty of Proposed Models 

There is often uncertainty in these remotely sensed soil moisture dataset due to several factors. One of them comes from the 

variability of the soil itself. For instance, soil properties such as texture, and organic matter content can affect the ability of 565 

the soil to hold water and how quickly it absorbs or releases moisture. Such spatial variability of soil properties can lead to 

differences in the observed soil moisture even within a small area. Lots of existing soil moisture products in large areas are 

obtained from point measurements over heterogeneous landscape which leads to  uncertainty in the estimation at the pixel 

scale (Guerschman et al. 2015). To reduce this uncertainty, we used relatively high spatial resolution that provides more 

detailed and accurate information about the distribution of soil moisture across different climate regions at a global scale. We 570 

comprehensively explored different ML models working on multi-source datasets, including ERA5-Land, MODIS, 

SoilGrids, and MERIT Hydro. 

Specifically, we used high-resolution remotely-sensed products and reanalysis data at the global scale, so that it is possible to 

generate detailed maps of soil moisture at a fine spatial resolution, which can help to reduce uncertainty due to spatial 

heterogeneity and improve the accuracy of soil moisture estimates. 575 

Although the proposed ensemble model has been demonstrated to be an effective solution to predict soil moisture, there are 

still limitations. Firstly, our ensemble model can be limited in the areas outside the training conditions  such as climate zones 

BSh, BWh and BWk (Sungmin and Orth 2021).  Secondly, hyper-parameters tuning is a computationally expensive 

operation that proved to have an important effect on the performance of each machine learning model. However, it involves 

the human factor with expertise in choosing the right ranges for each hyperparameter in order to achieve the best possible 580 

training. We recommend to carry out the training in at least two iterations, first selecting wider parameter intervals, and then 

narrowing it down to ranges in proximity to the best value detected in the initial experiments. Thirdly, the training of 

algorithmic implementations within ensembling environments requires more computational power. However, the increased 

and the more stable prediction behaviour is more desirable when tackling tasks where high performance metrics are 

expected. Lastly, depending on the base models, the performance of ensemble models can sometimes worsen when 585 
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compared to well-performing optimised algorithms. For this reason, it is advised to optimise the base algorithms as much as 

possible for the chosen task. It is also observed that regression algorithms with a higher complexity generally displayed a 

higher generalisation capacity. The above four points highlight the limitations and challenges of our ensemble model in 

practical applications. Future research directions may include enhancing the generalization ability of the model to obtain 

more accurate predictions in areas outside the training conditions, such as increasing the training data or using transfer 590 

learning techniques. In addition, more efficient and automated hyperparameter tuning methods can be explored to improve 

the performance of the model. Addressing the computational demands required to train the ensemble models is also a key 

direction, possibly involving the use of parallel computing, distributed frameworks, or hardware acceleration approaches, all  

of which aim to further enhance the performance and applicability of our models. 

6. Conclusions 595 

Soil moisture plays an essential role in the exchanges of water, energy and carbon between land and the 

atmosphere. In this study, we investigated performance of different ML algorithms in estimating SSM based on data of the 

International Soil Moisture Network (ISMN) collected from 1722 stations with 8 Machine Learning algorithms and 10 

ensemble models. The major findings of this study are as follows. 

The algorithms considered for optimisation were (1) Random Forest Regressor (RFR) , (2) K-neighbours Regressor 600 

(KNR)(Papadopoulos et al. 2011), (3) AdaBoost (AB) (Yıldırım et al. 2019), (4) Stochastic Gradient Descent Regressor 

(SGDR), (5) Multiple Linear Regressor (MLR), (6) Multi-layer Perceptron Regressor (MLPR) (Gaudart et al. 2004), (7) 

Extreme Gradient Boosting (XB) (Karthikeyan and Mishra 2021), and (8) GradientBoosting (GB) (Wei et al. 2019). 

The cross-validation result showed that the Random Forest Regressor (RFR), K-neighbours Regressor (KNR) and Extreme 

Gradient Boosting (XB) outperform other ML algorithms. From Kruskal-Wallis test result, KNR performs best on 605 

“test_random” set, while RFR performs best on “test_temporal” and “test_independent-stations”. The ensemble models 

proved to improve the performance of the individual ML algorithms, the best performing ensemble model in “test_random”, 

“test_temporal” and “test_independent-stations” is the KNR_RFR_XB.  

The optimised ML algorithms achieved the median RMSEs of below 0.1 cm3/cm3 on the “test_independent-stations” on 

climate zone level. GradientBoosting (GB), Multi-layer Perceptron Regressor (MLPR), Stochastic Gradient Descent 610 

Regressor (SGDR), and Random Forest Regressor (RFR) achieved a median r score of 0.6 in twelve, eleven, nine and nine 

climate zones, respectively, out of fifteen climate zones. The ensemble models improved the performance significantly, with 

the median value of RMSE in all climate zones all below 0.075 cm3/cm3. All voting regressors achieved the r scores of above 

0.6 in thirteen climate zones except BSh and BWh because of the sparse distribution of training stations. We suggest 

researchers who work on SSM predictions with ML to use the single ML algorithms RFR and KNR, and the ensemble 615 

models KNR_RFR_XB. 
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In summary, our results showed that there is a huge potential to use ensemble models to generate accurate SSM products 

globally which is important to local-scale environment and agricultural applications. 

 

 620 

Code and data availability. The algorithms in this paper were conducted in Python. The code is available at 
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