
Reply to Reviewer #1 

General comments 
This paper presents an interesting and comprehensive study on the use of machine learning (ML) 

algorithms for predicting surface soil moisture content at a global scale. The authors use eight different 

machine learning algorithms trained with in situ data to predict soil moisture at the top 5 cm of the soil 

across the globe at a spatial resolution of 1 km and a temporal coverage of 2000-2018. The performance 

of various ML algorithms was evaluated. They also created 10 ensemble models from five optimized 

base models with the highest performance metrics and propose KNR_RFR_XB as the best ensemble for 

soil moisture prediction.  

The paper provides a thorough description of the model building and validation process. However, prior 

to publication, the following questions should be addressed:  

Thanks for your thorough review and detailed comments on our manuscript. Your comments are 

immensely valuable in enhancing the manuscript's quality. 

Specific comments 
Abstract  

Please specify which soil layer, period (coverage), temporal and spatial resolution were considered in 

the generation of the machine learning models.  

1. Line 15-20: Instead of using the term “best data product”, it would be more appropriate to use an 

adjective such as reliable or well-validated, as the data product from machine learning may be produced 

empirically without explicit knowledge of the physical processes involved. This may introduce additional 

uncertainties into the final output. (O., S., Orth, R. Global soil moisture data derived through machine 

learning trained with in-situ measurements. Sci Data 8, 170 (2021). https://doi.org/10.1038/s41597-

021- 00964-1 )  

Reply 1: Thanks for your advice. We agree with your comment. In line 18, we will change “the best” 

into “reliable”.  

2. Line 24-34: Please clarify what it means to have the best performance on “test_random” set, 

“test_temporal” and “test_independent-stations” and reword this sentence to focus on the meaning 

rather than the jargon terms. Also, please use full wording before notation (XB = extreme gradient 

boosting).  

Reply 2: Thanks for your advice. As what we understood, here we need to clarify two things: (1) 

meaning of “best performance”, (2) explain a bit of these 3 terms: “test_random” set, “test_temporal” 

and “test_independent-stations”.  

In line 23-24, we will modify the sentence “The result showed that K-neighbours Regressor (KNR) 

performs best on “test_random” set, while Random Forest Regressor (RFR) performs best on 

“test_temporal” and “test_independent-stations.” to a more accurate description with quantitative 

indicators: “The result showed that K-neighbours Regressor (KNR) had the lowest Root Mean Square Error 

(0.0379 cm3/cm3) on “test_random” set, while Random Forest Regressor (RFR) had the lowest RMSE (0.0599 

cm3/cm3) on “test_temporal” and AdaBoost (AB) had the lowest RMSE (0.0786 cm3/cm3) on “test_independent-

stations”.  

We will explain the meaning of “test_random”: for testing the performance of randomly split data during training, 

“test_temporal”: for testing the performance on the period which were not used in training, “test_independent-

stations”:  for testing the performance on the stations which were not used in training. 



In line 33, we will replace “XB” with “Extreme gradient Boosting”.  

Introduction  

3. Please provide citations for all claims or statements that require them (e. g., Line 42:45, Line 47:49, 

Line 52:54) 

Reply 3: Thank you very much for your valuable suggestion. We will ensure that all the claims and 

statements, which you've highlighted as requiring citations, will have proper citations in our revised 

manuscript. These citations will contribute to the accuracy and reliability of the paper. 

4. Line 65-68: The statement “Another advantage of using ML techniques is that they can help to reduce 

the uncertainty…” may not be accurate, as machine learning may introduce additional uncertainties 

into the final output (see response to line 15:20). It would be helpful to discuss this issue in more detail 

and provide references to support your argument.  

Reply 4: Thanks for your advice. In our study, when we said ML can help reduce the uncertainty, we 

initially meant that compared to traditional physical models, ML can alleviate uncertainties (e.g. on 

parameter optimization) to some extent. Nowadays people integrate ML and physical models to reduce 

the prediction uncertainty (Roy et al. 2023). However, we agree that machine learning itself has 

uncertainties. To provide a more accurate representation of our standpoint, we will remove this statement 

and will state the limitations of machine learning in the subsequent discussion section which is related 

to the 16th comment. 

5. Line 75: Please specify which soil layer, period (coverage), temporal and spatial resolution were 

considered in the generation of the machine learning models.  

Reply 5: Thanks for your attentive review. In line 78, we will add the information: for predicting SSM 

in 0-5 cm depth with daily and 1 km resolution from 2000 to 2018. 

Data  

6. Line 91:92: Did you filter out NAN values from the predictor data based on the in-situ soil moisture 

data? If not, what did you do? Please make the statement clear.  

Reply 6: Thanks for your advice and sorry if this was unclear in the manuscript. We first organized the 

in-situ soil moisture data, and then extracted the predictor variables for each station in the period when 

they have in-situ soil moisture data. After this, we filtered out NAN values for each data pair (soil 

moisture and all predictor variables in one specific time and location). If there are NAN values in either 

soil moisture or all predictor variables, we removed it. (Because we organized the in-situ soil moisture 

data in a specific period (2000-2018), there is missing soil moisture values during this period as well). 

To make this statement clear, in lines 92-93, we will change from “In this study, we extracted in-situ 

SSM from ISMN from 1 January 2000 to 31 December 2018, filtered the NaN (Not a Number) values 

of different predictor variables and kept 1722 stations for further analysis (Figure 1). Land surface 

information was also incorporated to prepare training and testing sets.” to “In this study, we extracted 

in-situ SSM from ISMN from 1 January 2000 to 31 December 2018, and then the predictor variables 

were incorporated to prepare training and testing sets. We filtered the NaN (Not a Number) values of 

SSM and different predictor variables, and after this 1722 stations were kept for further analysis (Figure 

1).”  

7. Line 104: Why is "Year/ DOY " a predictor?  

Reply 7: Thank you pointing out this question. There are two reasons why we include Year and DOY 

as predictors.  



(1) Firstly, they can help capture the seasonal variations in soil moisture. Soil moisture can exhibit 

significant changes across different seasons, such as summer droughts or winter wet periods. 

By incorporating year and DOY as input variables, the model can learn and capture these 

seasonal trends, leading to more accurate predictions of soil moisture changes at different time 

points. 

(2) Secondly, Year and DOY help analyze the historical trends of soil moisture. Certain years or 

specific dates might exhibit consistent trends in soil moisture, such as prolonged dry spells or 

continuous rainfall. The model can leverage this historical trend information to make more 

accurate predictions of soil moisture changes. 

In addition, we will implement the feature importance experiment (which is related to the 10th comment) 

to provide more details.  

8. Line 140: To improve readability, could you please ensure that all temporal coverages are consistent 

(2000-2018). I noticed that line 117 mentions the years 2000-2019, but I believe only the years 2000- 

2018 were used for analysis.  

Reply 8: Thanks for your careful check. The correct temporal coverate should be 2000-2018. In line 117, 

“2019” will be changed to “2018”. 

9. Line 232: " The full data contained a total of 735,475 registries (each sample contained nineteen 

predictor variables) and was differentiated in the training set and three different test sets, based on the 

following strategy (also described in Table 2)" I am finding this a bit confusing and would appreciate 

some clarification. Is it correct that the combined data of all predictors and in-situ data is 735,475, and 

that this data was split into train and test samples as shown in Table 2?  

Reply 9 : Yes, that is correct. We aimed to explain how we split the full data into 4 parts. Our full data 

has 735475 rows, and each row includes in-situ soil moisture and 19 predictor variables. 

10. Additionally, I noticed that Table 1 shows fewer than 19 predictors. Could you please explain how 

you arrived at the number 19 predictors? Is it necessary to use all 19 predictors, or could feature or 

predictor importance be performed to determine the various influences of predictors and select 

important features if necessary?  

Reply 10: Thanks for your careful check. Because in Table1 we wrote “Soil Texture”, actually it includes 

sand, silt, and clay content. In the fifth row and the first column of Table1, we will modify “Soil Texture” 

to “Clay Content/Sand Content/Silt Content”. In the fifth row and the second column, we will modify 

“Soil texture (proportion of clay, sand, silt)” to “Proportion of clay/proportion of sand/proportion of 

silt”. 

For the feature importance, thank you very much for your valuable feedback. In response to your 

question regarding the necessity of using such a multitude of input variables, we will conduct a 

comprehensive feature importance analysis across different regression models to address this inquiry. 

The KNR+RFR+XB ensemble model performed the best, therefore we plan to compute the feature 

importance based on these three MLs, and then we calculate the mean feature importance of all features 

for these three MLs with permutation importance method (Li et al. 2021).  

We believe by doing this experiment, we will observe the feature importance across different ML models 

and the overall feature importance. Then we can conclude that which input variables contribute to 

predicting the target variable. The result of this experiment will be added in the supplementary 

information. 

Methodology  



11. Line 279: Introduce the full wording e.g., coefficient of determination before using the associated 

notation r 2.  

Reply 11: Thanks for your careful check. In line 279, we will add the full wording of r2,  from “the r2 

score” to “the Coefficient of Determination R-square (r2) score”. 

12. Line 350: Could you please explain the reason for choosing both r and r 2 as evaluation metrics? 

What is the significance of using both in this context?  

Reply 12: Thank you for your advice. The r score measures the correlation between two or more 

variables (A and B, for example). The r2 score measures how much variation of B values can be 

explained by A values). They are two very different metrics and each measures a different thing. The r2 

score is more important in ML training. Based on your advice, we decided to keep r2 score as evaluation 

metric to provide a comprehensive view of the model's performance, accounting for its ability to explain 

variance.  

However, in the evaluation of individual independent sites (section 4.4 and 4.5), we observed instances 

where r² values could be negative due to poorer model performance on some sites because they were 

not included in the training and different climate conditions from training sites. These situations might 

potentially lead to misinterpretations of model performance. To ensure an accurate assessment, we will 

keep using r score values in this evaluation part, which directly quantify the linear relationship between 

predicted and observed values. 

Based on above, section 4.4 and 4.5 which are related to individual independent stations evaluation we 

will keep same as before. Other parts we will remove the r score values. 

13. Line 384: Arranging Table 3, as well as any other relevant tables, in ascending or descending order 

based on performance can improve readability.  

Reply 13: That is a nice idea, sorting will be done based on increasing RMSE. Table 3 will be changed 

into sorting on increasing RMSE. Table 4 and 5 will be changed into sorting on increasing RMSE on 

“Test_random”.  

14. Line 430: 470: Could you please explain why the Kruskal-Wallis test is necessary when you can 

already compare models using various performance metrics such as RMSE and r 2 ?  

Reply 14: We use the Kruskal-Wallis test to analyze if there is significant difference between the 

performance of the different MLs and ensemble models based on the squared errors of the predictions, 

therefore we find it important to show the results of this test. We see the metrics but those are single 

values and statistical tests are the way of distribution comparison. 

15. Line 480: Please move Figure 5 into supplementary information.  

Reply 15: Thanks for your advice. We agree with it. Figure 5 will be moved into supplementary 

information.  

16. In addition to addressing these questions, it would also be helpful to compare the performance 

metrics and uncertainties of your proposed ensemble model with other existing soil moisture products 

or methods. This would provide more context for your results and help readers evaluate their 

significance.  It would also be interesting to discuss the limitations and assumptions of your machine 

learning algorithms and how they affect the reliability and applicability of your soil moisture predictions. 

Finally, it would be useful to suggest future work or research directions to improve or extend your study. 

Reply 16: Thanks for your valuable advice. We will modify like following: 

(1) In line 596, we will add the comparison with other methods and soil moisture products. We drafted 

an initial paragraph could be added: “Furthermore, a comparison of ensemble models with other existing 



soil moisture products and methods highlights their superior performance. For instance, evaluating the 

root mean square error (RMSE) on randomly selected test samples, our KNR_RFR_XB ensemble model 

achieves an RMSE of 0.0355 cm³/cm³. In contrast, the RFR model used for generating a global daily 1 

km soil moisture product presents an ubRMSE (unbiased root-mean-square error) of 0.045 cm³/cm³ 

(Zheng et al. 2023) and the RFR model used for generating a global daily 0.25 degree soil moisture 

product presents an RMSE of 0.05 cm³/cm³ (Zhang et al. 2021). The RFR model used for reconstruction 

of a daily SMAP surface soil moisture dataset shows an ubRMSE of 0.04 cm³/cm³ (Yang and Wang 

2023). The XB model used for generating a global daily 1 km soil moisture product presents an RMSE 

of 0.038 cm³/cm³ (Zhang et al. 2023). These comparisons demonstrate that our ensemble model has the 

potential to improve predictive accuracy compared to individual methods. This makes our model a 

candidate for further exploration as an effective tool for accurate prediction of soil moisture.” 

 (2) For the uncertainty, limitations and future work. We will rewrite the content in lines 618-627, and 

move the content in lines 597-604 to lines 628-. We will add the future work in the end of this part. The 

final version of the uncertainty, limitations and future work will be like: “Although the proposed 

ensemble model has been demonstrated to be an effective solution to predict soil moisture, there are still 

limitations. Firstly, our ensemble model can be limited in the areas outside the training conditions  such 

as climate zones BSh, BWh and BWk (Sungmin and Orth 2021).  Secondly, hyper-parameters tuning is 

a computationally expensive operation that proved to have an important effect on the performance of 

each machine learning model. However, it involves the human factor with expertise in choosing the 

right ranges for each hyperparameter in order to achieve the best possible training. We recommend to 

carry out the training in at least two iterations, first selecting wider parameter intervals, and then 

narrowing it down to ranges in proximity to the best value detected in the initial experiments. Thirdly, 

the training of algorithmic implementations within ensembling environments requires more 

computational power. However, the increased and the more stable prediction behaviour is more 

desirable when tackling tasks where high performance metrics are expected. Lastly, depending on the 

base models, the performance of ensemble models can sometimes worsen when compared to well-

performing optimised algorithms. For this reason, it is advised to optimise the base algorithms as much 

as possible for the chosen task. It is also observed that regression algorithms with a higher complexity 

generally displayed a higher generalisation capacity. The above four points highlight the limitations and 

challenges of our ensemble model in practical applications. Future research directions may include 

enhancing the generalization ability of the model to obtain more accurate predictions in areas outside 

the training conditions, such as increasing the training data or using transfer learning techniques. In 

addition, more efficient and automated hyperparameter tuning methods can be explored to improve the 

performance of the model. Addressing the computational demands required to train the ensemble models 

is also a key direction, possibly involving the use of parallel computing, distributed frameworks, or 

hardware acceleration approaches, all of which aim to further enhance the performance and applicability 

of our models.” 

The content we will add above is also related to the 4th comment.  
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