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Abstract. CE1We present developments to the physical
model and the open-source numerical code IMEX_SfloW2D
(de’ Michieli Vitturi et al., 2019). These developments con-
sist of a generalization of the depth-averaged (shallow-water)
fluid equations to describe a polydisperse fluid–solid mix-5

ture, including terms for sedimentation and entrainment,
transport equations for solid particles of different sizes, trans-
port equations for different components of the carrier phase,
and an equation for temperature/energyCE2 . Of relevance for
the simulation of volcanic mass flow, vaporization and en-10

trainment of water are implemented in the new model. The
model can be easily adapted to simulate a wide range of
volcanic mass flows (pyroclastic avalanches, lahars, pyro-
clastic surges), and here we present its application to tran-
sient dilute pyroclastic density currents (PDCs). The numer-15

ical algorithm and the code have been improved to allow for
simulation of sub- to supercritical regimes and to simplify
the setting of initial and boundary conditions. The code is
open-source. The results of synthetic numerical benchmarks
demonstrate the robustness of the numerical code in simulat-20

ing transcritical flows interacting with the topography. More-
over, they highlight the importance of simulating transient in
comparison to steady-state flows and flows in 2D versus 1D.
Finally, we demonstrate the model capabilities to simulate a
complex natural case involving the propagation of PDCs over25

the sea surface and across topographic obstacles, through ap-
plication to the Krakatau volcano, showing the relevance, at a
large scale, of non-linear fluid dynamic features, such as hy-
draulic jumps and von Kármán vortices, to flow conditions
such as velocity and runout.30

1 Introduction

In the past decades, the development of numerical models
for geophysical mass flows and their application to hazard
assessment has seen a rapid growth. Better understanding of
the physics governing such flows has enabled development of 35

more accurate models while a tremendous increase in com-
putational resources has made increasingly high-resolution
numerical simulations possible. Despite these advances, for
some applications, there is still a need for simplified and fast,
yet reliable, models. This is true, for example, for forecast- 40

ing and hazard quantification purposes, where a probabilis-
tic approach generally requires a large number (thousands or
more) of simulations in a relatively short time frame.

For a large class of geophysical mass flows, characterized
by having the horizontal length scale much greater than the 45

vertical one, it is possible to reduce the dimensionality of
the problem (and thus the computational cost of its numeri-
cal solution) by adopting the approach of so-called shallow-
water equations. The shallow-water equations are a set of
partial differential equations that describe fluid flow prob- 50

lems, originally introduced by Adhémar Jean Claude Barré
de Saint-Venant, and are obtained by the averaging of flow
variables over its thickness, thus reducing the model com-
plexity (Pudasaini and Hutter, 2007; Toro, 2013). Shallow-
water equations have been applied successfully to tsunamis 55

(Fernández-Nieto et al., 2008), atmospheric flows (Zeitlin,
2018), storm surges (Von Storch and Woth, 2008), landslides
and debris flows (Iverson and Denlinger, 2001; Denlinger
and Iverson, 2001), snow and rock avalanches (Bartelt et al.,
1999; Christen et al., 2010), and planetary flows (Iga and 60

Matsuda, 2005). In the volcanological field, shallow-water
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equations have been applied to umbrella cloud spreading
(Johnson et al., 2015; de’ Michieli Vitturi and Pardini, 2021),
lahars (Fagents and Baloga, 2006; O’Brien et al., 1993), py-
roclastic density currents (Pitman et al., 2003; Patra et al.,
2005; Capra et al., 2008; Calabrò et al., 2022; Kelfoun et al.,5

2009; de’ Michieli Vitturi et al., 2019; Shimizu et al., 2017a)
and lava flows (Costa and Macedonio, 2005; Biagioli et al.,
2021; Hyman et al., 2022).

Another common feature of most geophysical flows is that
they are multiphase flows, with a continuous carrier phase10

(gas or liquid) and a solid dispersed phase. For the numerical
modelling of such multiphase flows, two main approaches
can be adopted, with the solid phase treated as a continuum
(Eulerian approach) or as discrete elements for which the
equations of motion are solved (Lagrangian approach). The15

latter approach is better suited for low particle concentration
and when the particle relaxation time, quantified by the in-
ertial effect of particles, is much smaller than the character-
istic time of collisions between particles (Dufek, 2015; Neri
et al., 2022). For the volcanological applications of interest20

here (dilute pyroclastic density currents, or dilute PDCs), the
flow can be highly turbulent, favouring particle collisions,
and thus the continuum approach is appropriate. Most of
these flows can be described and modelled using the full 3D
transient multiphase Navier–Stokes equations, but, since the25

numerical three-dimensional calculation is still very costly,
it makes sense to reduce the equations for calculations with
simpler flow conditions. In particular, for currents where tur-
bulent mixing is large enough to maintain vertically uniform
concentration, shallow-water models provide a good approx-30

imation (Bonnecaze et al., 1993). This approach can still be
used for vertically stratified flows, but it is necessary to intro-
duce appropriate correction factors into the equations, gen-
erally based on a simplifying assumption of well-developed
and stationary vertical profiles and yet not easy to calculate35

explicitly (Biagioli et al., 2021; Keim and de’ Michieli Vit-
turi, 2022).

In this work, we present a new version of IMEX-
SfloW2D (de’ Michieli Vitturi et al., 2019), a depth-averaged
model originally developed for the simulation of pyroclas-40

tic avalanches, i.e. a type of granular flow characterized
by relatively thin layers at high particle concentration (10–
50 vol %). Similarly to other codes used in volcanological
research and applications such as VolcFlow (Kelfoun and
Druitt, 2005), TITAN2D (Pitman et al., 2003; Patra et al.,45

2005) and SHALTOP (Bouchut and Westdickenberg, 2004;
Mangeney et al., 2007), IMEX-SfloW2D is a shallow-water-
equation model based on depth averaging, obtained by in-
tegrating the full 3D equations along the vertical dimen-
sion. With respect to the original version of the model (de’50

Michieli Vitturi et al., 2019), where the granular mixture was
described as a single-phase mono-disperse granular fluid ig-
noring the presence of the interstitial gas, here the formula-
tion and the equations have been generalized to a fluid–solid
mixture, also adding sedimentation and entrainment terms,55

transport equations for the solid particles of different sizes,
transport equations for different components of the carrier
phase, and an equation for temperature/energy.

The model framework is general, and, by changing the
constitutive equations defining phase properties and flow rhe- 60

ology, it is possible to simulate a variety of geophysical
flows. However, in this paper we focus our attention on the
modelling of PDCs, i.e. flows of gas and pyroclasts (frag-
ments of volcanic rocks produced by explosive fragmenta-
tion), and in particular dilute PDCs, which are characterized 65

by densities of less than 10 kg m−3 TS1 (roughly correspond-
ing to a particle volume fraction of less than approximately
0.01). This hypothesis allows us to neglect the influence of
particle–particle friction and the internal stress tensor.

Dilute PDCs can form in relation to several volcanic be- 70

haviours (Valentine, 1987; Branney and Kokelaar, 2002;
Sulpizio et al., 2014; Dufek et al., 2015), including the col-
lapse of Plinian and Vulcanian columns and the explosive
fragmentation of a lava dome or cryptodome (Sigurdsson
et al., 2015). Irrespective of the generating mechanism, di- 75

lute PDC propagation regimes can be characterized by the
flow Richardson number (Ri), expressing the ratio between
the potential energy and the kinetic energy available for mix-
ing or, in other terms, the ratio between the relative celerity
of surface waves and the velocity of the flow (Chow, 1959). 80

Dilute PDCs may propagate as either subcritical (Ri > 1) or
supercritical (Ri < 1) flows (Bursik and Woods, 1996), and
they can also experience transitions from one regime to the
other. For supercritical flows, where the speed of the flow is
greater than the speed of gravity waves, entrainment is sig- 85

nificant and the runout distance tends to be shorter. As large
amounts of ambient air are entrained into the flow, ash par-
ticles elutriate to form a coignimbrite column (Bursik and
Woods, 1996; Engwell et al., 2016). Conversely, subcritical
flows, where the velocity of the flow is low enough for in- 90

ternal waves to propagate in either direction, have negligi-
ble entrainment and tend to have longer runout distances. On
par with entrainment, sedimentation exerts a major role in
controlling the rate of change of the flow bulk density and,
hence, its existence. Indeed, dilute PDCs, as any other den- 95

sity current (e.g. turbidity currents), exist until there is a pos-
itive density contrast with the ambient in which they flow.
If sufficient air is entrained or a sufficient quantity of par-
ticles are lost by sedimentation, then the density falls be-
low that of the ambient air and a buoyant liftoff occurs. The 100

capability of dilute flows to overcome topographic barriers,
and consequently the sedimentation regimes, also depends on
the Richardson number (Woods and Wohletz, 1991; Woods
et al., 1998). For these reasons, an accurate description of
these regimes is mandatory for a model of dilute PDCs, both 105

in the definition of the equations and in their numerical dis-
cretization and solution.

In this work, Sects. 2 and 3 are devoted to the presenta-
tion of the new physical model for dilute PDCs based on the
shallow-water approximation. The new model extends previ- 110
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ous similar models by describing a polydisperse fluid–solid
mixture with sedimentation and entrainment terms, transport
equations for the solid particles of different sizes, transport
equations for different components of the carrier phase, and
an equation for temperature/energy. Moreover, it accounts for5

the potential vaporization of liquid water and entrainment of
water vapour into the current. Section 4 summarizes the main
aspects of the numerical algorithm, with emphasis on those
details that are relevant for resolving the sub- and supercrit-
ical transitional regimes. We devote Sect. 5 to the applica-10

tion of the model to one-dimensional literature benchmark
tests (Delestre et al., 2013) in order to show the capability of
the code to properly simulate the different flow regimes. For
supercritical conditions, we also present two 2D test cases,
derived from Engwell et al. (2016). These tests show that15

the steady conditions reached by the simulation after the ini-
tial transient phase correspond to those obtained with the 1D
steady model presented in Engwell et al. (2016) and based
on Bursik and Woods (1996). Finally, in Sect. 6 the model
is applied to the Krakatau volcano, with input parameters in-20

formed by the 1883 eruption. This is an original study on the
propagation of PDCs over water, with a complex 3D topog-
raphy and display of complex super- to subcritical regime
transitions, well representing the complexity of PDC dynam-
ics in real cases. For this example, a 30 m SRTMCE3 DEM25

of the area is used, which allows us to simulate the effects of
real topographic obstacles on the flow propagation and un-
derstand how they control the flow regime.

Most of the examples presented in this work, as well as
the source code, can be freely downloaded from the model30

repository at https://github.com/demichie/IMEX_SfloW2D_
v2TS2 . The GitHub repository also contains pre- and post-
processing Python scripts, both general and specific for the
included examples. The repository and the codes (Fortran
main code and Python utility scripts) are compliant with35

the set of standards defined by the European Open Science
Cloud (EOSC) Synergy (Software Quality Assurance as a
Service, SQAaaS), which assigned, through Quality Assess-
ment & Awarding (QAA), aCE4 SQAaaS gold badge. The
compiled code is also available as a Docker container at40

the following link: https://hub.docker.com/r/demichie/imex_
sflow2d_v2TS3 .

2 The physical model

We present here the equations adopted to describe a gas–
particle flow with temperature-dependent mixture density,45

under the assumptions that the flow propagates at atmo-
spheric pressure and that the effects of compressibility are
negligible. In addition, we adopt a physical formulation
based on depth averaging of the flow variables, which is ap-
propriate for shallow flows and is computationally less ex-50

pensive than considering density and velocity variation with
depth.

Table 1. List of model variables with notation and units.CE5

Symbol Variable Units

h flow thickness m
B topography elevation m
t time s
u,v horizontal velocity components m s−1

T flow temperature K
Ta atmospheric air temperature before entrainment K
Tb water vapour temperature before entrainment K
Tl water temperature K
P ambient pressure Pa
ρm volumetrically averaged flow density kg s−1

ρa air density kg s−1

ρwv water vapour density kg s−1

ρs,is is solid class density kg s−1

αa air volume fraction
αwv water vapour volume fraction
αs,is is solid class volume fraction
Cv mixture specific heat J kg−1 K−1

Ca air specific heat J kg−1 K−1

Cwv water vapour specific heat J kg−1 K−1

Cs,is is solid class specific heat J kg−1 K−1

Ra air specific gas constant J kg−1 K−1

Rwv water vapour specific gas constant J kg−1 K−1

g gravitational acceleration m s−2

g′ reduced gravity m s−2

Ea atmospheric air entrainment rate m s−1

Ewv water vapour entrainment rate m s−1

Ss,is is solid class sedimentation rate m s−1

Fx ,Fy friction forces per unit area kg m−1 s−2

f friction coefficient
ε entrainment air coefficient
Ri Richardson number
γis,wv is solid class vaporization coefficient
Lw water specific latent heat of vaporization J kg−1

CD gas–particle drag coefficient
Re Reynolds number
ds particle diameter m
ν kinematic viscosity coefficient of atmospheric air m2 s

The model is based on the Saint-Venant equations (Pu-
dasaini and Hutter, 2007; Toro, 2013), coupled with source
terms describing the entrainment/loss of mass and frictional 55

forces and enriched with an energy equation and with trans-
port equations for different flow phases/components. In fact,
we assume that the flow is a homogeneous mixture of a multi-
component gas phase (for the applications presented in this
work air and water vapour) and ns dispersed solid phases. 60

The density of the mixture ρm(x,y, t) is defined in terms of
the volumetric fractions α(·) and densities ρ(·) of the compo-
nents:

ρm = αaρa+αwvρwv+

ns∑
is=1

αs,isρs,is , (1)

where the subscript a denotes the air component; the sub- 65

script wv denotes the water vapour component; and the sub-
script s,is denotes the class is = 1, . . .,ns of the solid phases.
Each solid class is characterized by its diameter dis , density
ρs,is , and specific heat Cs,is . For a full list of model variables
and notation, please refer to Table 1. 70

https://github.com/demichie/IMEX_SfloW2D_v2
https://github.com/demichie/IMEX_SfloW2D_v2
https://github.com/demichie/IMEX_SfloW2D_v2
https://hub.docker.com/r/demichie/imex_sflow2d_v2
https://hub.docker.com/r/demichie/imex_sflow2d_v2
https://hub.docker.com/r/demichie/imex_sflow2d_v2
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Equations are written in global Cartesian coordinates, with
x and y orthogonal to the z axis, parallel to gravitational
acceleration g TS4 = (0,0,g). We denote the flow thickness
(parallel to the vertical z axis) with h(x,y, t) and the hor-
izontal components of the flow velocity with u(x,y, t) and5

v(x,y, t) (averaged over the vertical flow thickness). The
flow moves over a topography B(x,y, t), and we allow the
topography to change with time (for example, by particle
sedimentation).

Conservation of mass for the flow is calculated as follows:10

∂ρmh

∂t
+
∂ (ρmhu)

∂x
+
∂ (ρmhv)

∂y

=−

ns∑
is=1
[ρs,isSs,is)] + ρaEa+ ρwv,bEwv, (2)

TS5where Ss is the volumetric rate of sedimentation of solid
particles; Ea is the volumetric air entrainment rate from the
atmosphere; and Ewv is the volumetric water vapour entrain-
ment, which could occur for flows over waterbodies (sea or15

lakes). These rates are defined per unit surface area and thus
have units of metres per secondCE6 . The notation ρwv,b used
here denotes the density of water vapour ingested into the
flow, which is not that corresponding to flow temperature but
boiling temperature.20

Introducing the notation g′ for the reduced gravity g′ =
[(ρm− ρa)/ρm]g, the equations for the momentum compo-
nents are as follows:

∂ (ρmhu)

∂t
+
∂

∂x

(
ρmhu

2
+ ρmg

′
h2

2

)
+
∂

∂y
(ρmhuv)

=−ρmg
′h
∂B

∂x
+Fx − u

ns∑
is=1

(ρs,isSs,is), (3)

∂ (ρmhv)

∂t
+
∂

∂x
(ρmhuv)+

∂

∂y

(
ρmhv

2
+ ρmg

′
h2

2

)
=−ρmg

′h
∂B

∂y
+Fy − v

ns∑
is=1

(ρs,isSs,is), (4)25

where Fx and Fy represent the friction terms. Equations (3)
and (4) are derived inCE7 the so-called hydrostatic approxi-
mation; i.e. the variation in momentum in the z direction is
neglected and pressure is always hydrostatic. There are no
terms associated with air and water vapour entrainment be-30

cause they do not carry any horizontal momentum into the
flow.

Density of the gas components is a function of the flow
temperature T , which changes with entrainment of external
air. In addition, part of the thermal energy of particles lost35

when the current travels over water produces steam which
can be entrained in the flow. For this reason, with respect
to the classical incompressible shallow-water equations, we
also model the total energy budget of the flow, by solving
the following equation for the total mixture energy (sum of40

internal and kinetic energies):

∂

∂t

[
ρmh

(
CvT +

1
2

(
u2
+ v2

))]
+
∂

∂x

([
CvT +

1
2

(
u2
+ v2

)
+ g′

h

2

]
ρmhu

)
+
∂

∂y

([
CvT +

1
2

(
u2
+ v2

)
+ g′

h

2

]
ρmhv

)
=−ρmg

′h

(
u
∂B

∂x
+ v

∂B

∂y

)
−

1
2

(
u2
+ v2

) ns∑
is=1

(ρs,isSs,is)−

ns∑
is=1

(ρs,isCs,isT Ss,is)

+CaρaTaEa+Cwvρwv,bTbEwv, (5)

where Cv is the mass-averaged specific heat of the mixture;
Cs,is , Ca and Cwv are the specific heat of solid, air and water
vapour, respectively; and Ta and Tb are the atmospheric air 45

and water vapour temperatures before entrainment. In this
equation, heat transfer by thermal conduction is neglected,
as well as thermal radiation. The full derivation of the energy
equation is presented in Appendix A2.

It is worth noting that the design of conservative and stable 50

numerical schemes for the solution of Eqs. (2)–(5) requires
some care. This is because the numerical solution of mass
and momentum equations, even when these quantities are
globally conserved, does not necessarily result in an accurate
description of the mechanical energy balance of the shallow- 55

water system (Fjordholm et al., 2011; Murillo and García-
Navarro, 2013). In fact, many numerical schemes perform
well in practice but they may have an excessive amount of nu-
merical dissipation near shocks, preventing a correct energy
dissipation property across discontinuities (which can arise 60

even in the case of smooth topography). A quantification of
the error in the conservation of mechanical energy is beyond
the scope of this paper, also because the error is case depen-
dent and the topography plays a crucial role, but the reader
can refer to Arakawa and Lamb (1977), Arakawa (1997), 65

Arakawa and Lamb (1981), and Fjordholm et al. (2011) for
a comprehensive discussion of this issue. In general, to guar-
antee energy conservation in smooth regimes, it is desirable
to design high-order schemes adding a minimal amount of
numerical dissipation. 70

Numerical errors in the computation of the mechanical
energy may also lead to errors associated with the mixture
temperature obtained from the total mixture specific energy
and the kinetic energy computed from mass and momentum
equations. For this reason, in some cases, instead of the full 75

energy equation as presented above, it is preferable to solve
a simpler transport equation for the specific thermal energy
CvT :
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∂

∂t
(ρmhCvT )+

∂

∂x
(CvT ρmhu)+

∂

∂y
(CvT ρmhv)=

−

ns∑
is=1

(ρs,isCs,isT Ss,is)+CaρaTaEa+Cwvρwv,bTbEwv. (6)

We remark that in this equation we neglect heating associ-
ated with friction forces. This term can be important for some
applications where viscous forces are particularly large, for
example lava flows, but is negligible for the applications pre-5

sented in this work. It is also worth noting that the numerical
solution of Eqs. (2)–(4) and (6) does not guarantee that the to-
tal energy is conserved. In the following part of this section,
for simplicity, we use the temperature equation to demon-
strate the writing of the system of equations in a more com-10

pact form and in the description of the numerical schemes,
but for the applications presented in this work, the full en-
ergy equation is solved.

The quantities of solid particles and water vapour in the
flow vary in space and time because of sedimentation and en-15

trainment, respectively, and for this reason additional trans-
port equations for the mass of ns solid classes and the water
vapour are also considered:

∂αs,isρs,ish

∂t
+
∂
(
αs,isρs,ishu

)
∂x

+
∂
(
αs,isρs,ishv

)
∂y

=−ρs,isSs,is , is = 1, . . .,ns (7)
∂αwvρwvh

∂t
+
∂ (αwvρwvhu)

∂x
+
∂ (αwvρwvhv)

∂y

= ρwv,bEwv. (8)20

Introducing the vector of conservative variables

Q=
(
Q1, . . .,Q5+ns

)T
=



ρmh

ρmhu

ρmhv

ρmhCvT

ρs1αs1h
...

ρsnαsnh

ρwvαwvh


, (9)

it is possible to write the transport equations in the following
compact form:

Qt +F(Q)x +G(Q)y = S1(Q)+S2(Q)+S3(Q), (10)25

where the fluxes F and Q are

F(Q)=



ρmhu

ρmhu
2
+ ρmg

′ h2

2
ρmhuv

CvT ρmhu

αs,1 TS6ρs,1hu
...

αs,nρs,nhu

αwvρwvhu


,

G(Q)=



ρmhv

ρmhuv

ρmhv
2
+ ρmg

′ h2

2
Cvρmhv

αs,1ρs,1hv
...

αs,nρs,nhv

αwvρwvhv


. (11)

The source terms S1 and S2 associated with the topography
and the gravitational and friction forces are

S1(Q)=



0
−ρmg

′h ∂B
∂x

−ρmg
′h ∂B
∂y

0
0
...

0


, S2(Q)=



0
Fx
Fy
0
0
...

0


, (12) 30

and the source term S3 associated with sedimentation and
entrainment is

S3(Q)=



−

ns∑
is=1
[ρs,isSs,is ] + ρaEa+ ρwvEwv

−u
ns∑
is=1

(ρs,isSs,is)

−v
ns∑
is=1

(ρs,isSs,is)

−

ns∑
is=1

(ρs,isCs,isT Ss,is)+CaρaTaEa

−ρs,1Ss,1
...

−ρs,nSs,n
ρwvEwv



. (13)

Finally, it is possible to use the following equation to de-
scribe the temporal evolution of the topography: 35

∂B

∂t
=

ns∑
is=1

Ss,is . (14)

This equation assumes that sedimentation of particles imme-
diately results in an increase in deposit thickness, which is
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not always the case because particles in the basal layer that
forms at the bottom of the flow could be moved as a trac-
tion carpet or even re-entrained. For the applications to di-
lute PDCs presented in this work, Eq. (14) is not used, while
it is appropriate for other flows that can be modelled by the5

system of conservation of Eq. (10), for example for lahars or
more concentrated PDCs.

The model described by the equations above general-
izes that presented by de’ Michieli Vitturi et al. (2019) for
granular flows, where the mixture was treated as a single-10

phase granular fluid. In fact, by neglecting sedimentation
and entrainment terms and the transport equation for wa-
ter vapour, the gas–particle mixture behaves as a homoge-
neous phase with constant density and temperature. In addi-
tion, if we use the Voellmy–Salm friction rheology, the sys-15

tem of equations becomes equivalent to that presented in de’
Michieli Vitturi et al. (2019). This rheological model is avail-
able in IMEX_SfloW2D v2, together with a plastic rheol-
ogy (Kelfoun, 2011), a temperature-dependent friction model
(Costa and Macedonio, 2005) and a lahar rheology (O’Brien20

et al., 1993), largely increasing the range of applicability of
this version of the code.

It is important to remark that here, in comparison to
Shimizu et al. (2017b, 2019), we do not enforce a front con-
dition for the propagating flow, in terms of front velocity or25

the Froude number. As described in Marino et al. (2005),
this condition applies to channelized flows for a phase dur-
ing which, after an initial acceleration (such as for lock-
exchange experiments), the velocity of the front becomes
constant (and is then followed by a front deceleration). The30

code we present is mostly aimed at simulating 1D/2D flows,
for which we do not simulate the initial phase and, most
importantly, for which in radially spreading flows the front
velocity decreases because of the increasing radius. An al-
ternative approach, which allows a correct simulation of the35

behaviour of shocks without additional closure relations for
the front, has been proposed in Fyhn et al. (2019). This ap-
proach relies on a formulation of the momentum equation in
a non-conservative form, but at present it is applicable for 1D
shallow-water equations only, and further studies are needed40

to adapt it to the 2D formulation. The application of modified
finite-volume central-upwind schemes for non-conservative
terms, such as those proposed in Diaz et al. (2019), could pro-
vide a reliable framework for the implementation in IMEX-
SfloW2D of the approach described in Fyhn et al. (2019) in45

order to better simulate the constant velocity phase of chan-
nelized flows.

3 Constitutive equations for dilute turbulent currents

The system of conservation equations described by Eq. (10)
represents the set of partial differential equations governing50

the transient dynamics of the multiphase flow of interest,
but their physical and mathematical description is not com-

plete without some closure relations describing the properties
of the flow (density, sedimentation, entrainment, friction) as
functions of the conservative or primitive variables. These 55

relations are called constitutive equations, and they charac-
terize the different flows we can solve with the model. In
particular, in this section we describe the constitutive equa-
tions used to model dilute turbulent gas–particle currents. It
is important to remark that, with an appropriate choice of the 60

friction terms and the constitutive equations, the model can
be applied to a wider range of geophysical flows such as py-
roclastic avalanches or lahars.

3.1 Gas density

Densities of air and water vapour are computed using the 65

ideal gas law, expressed as a function of temperature and
pressure:

ρa =
P

Rsp,aT
, ρwv =

P

Rsp,wvT
. (15)

Here, P is the ambient pressure (Pa) and Rsp,a and Rsp,wv
are the specific gas constants for dry air and water vapour, 70

respectively. The specific gas constants are provided in the
code as user inputs, and more gas can be added, allow-
ing for the simulation of a mixture of any number of gas
components. We remark that we assume that density does
not change with changes in hydrostatic pressure within the 75

flow but only with changes in flow temperature (Bursik and
Woods, 1996; Shimizu et al., 2019).

3.2 Mixture density

Mixture density has already been introduced in Sect. 2, and
it is given by Eq. (1). 80

3.3 Air entrainment

In large-scale natural flows, entrainment of ambient fluid into
a gravity current can be significant, diluting the flow to the
point where it can become buoyant. As the flow propagates,
air is entrained at a rate which (i) is proportional to the mag- 85

nitude of the difference in velocity between the flow and
the stationary ambient and (ii) depends on the ratio of the
stabilizing stratification of the current (N2

=
g
ρ
1ρ
1z

, where
N is the Brunt–Väisälä frequency) to destabilizing velocity

shear (M2
=

(
1u
1z

)−2
, whereM is also called the Prandtl fre- 90

quency). This ratio is expressed by the Richardson number
(Cushman-Roisin and Beckers, 2011; Chow, 1959), and, fol-
lowing Bursik and Woods (1996), it is written here in the
following equivalent form:

Ri = g′h/(u2
+ v2)= (g1ρ)/[ρm(u

2
+ v2)], 95

where g′ is the reduced gravity. Written in this form, this
is essentially a ratio between potential and kinetic energies,
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with the numerator being the potential energy needed to en-
train the overlying buoyant fluid and the denominator being
the kinetic energy of the flow which causes this entrainment.

Thus, according to Morton et al. (1956), we take the volu-
metric rate of entrainment of ambient air into the flow due to5

turbulent mixing as

Ea = ε

√(
u2+ v2

)
, (16)

where ε, following Bursik and Woods (1996), is the entrain-
ment coefficient given by Parker et al. (1987):

ε =
0.075(

1+ 718Ri2.4
)0.5 . (17)10

We remark that, even if not implemented in the model, there
are other relationships available in the literature for the en-
trainment coefficient (Ancey, 2004; Dellino et al., 2019a).

The Richardson number is important not only for the en-
trainment of ambient air, but also because the value Ri = 115

represents a critical threshold between subcritical (Ri > 1)
and supercritical (Ri < 1) regimes, i.e. between a regime
where flow velocity is slower than the speed with which grav-
ity waves propagate (wave celerity) and a velocity where flow
velocity is faster than wave celerity. Thus, the Richardson20

number is important also when boundary conditions are pre-
scribed. We remark that at an inlet it is not possible to pre-
scribe all the flow variables for subcritical flows because the
dynamics are also controlled by downstream conditions.

3.4 Water vapour entrainment25

The entrainment of water vapour resulting from the interac-
tion of the flows with water is modelled following the ideas
presented in Dufek et al. (2007). A series of experiments have
shown that the amount of heat transfer is governed by the rate
of particle sedimentation onto the water surface. At the water30

surface, steam is produced around the particles and ingested
into the flow, but as particles sink deeper into the water, the
steam produced condenses and is no longer available to be
ingested into the flow. Thus, only a fraction of the thermal
energy lost by the particles deposited by the flow over water35

contributes to the “effective” steam production. The coeffi-
cient γis,wv represents the fraction of thermal energy from
the particles of class is lost by the flow which results in the
production of water vapour entrained in the flow. Thus, it is
null when the current travels over land and between 0 and 140

when the current travels over water. As shown in Dufek et al.
(2007), as a first-order approximation, 10 % of the thermal
energy of the particles is partitioned and is available to pro-
duce steam (γis,wv = 0.1), and smaller particles have greater
steam production rates (γis,wv > 0.1).45

The rate of water vapour production associated with this
process is obtained with a balance of the rate of thermal en-
ergy lost by the particles and that necessary to produce the

steam:

ρwv,bEwv [Cl(Tb− Tl)+Lw]

=

ns∑
is=1

γis,wv(ρs,isCs,isT Ss,is), (18) 50

where ρwv,b is the density of water vapour at boiling point,
Cl is the specific heat of liquid water, Tl is the temperature of
water, Tb is the boiling temperature and Lw is the latent heat
of vaporization.

3.5 Sedimentation 55

Sedimentation of particles from the flow is modelled as a
mass flux at the flow bottom and is assumed to occur at a
rate which is proportional to the particle settling velocity vs,
to the bulk density of particles in the flow and to a factor de-
pending on the total solid volume fraction (Bürger and Wend- 60

land, 2001), accounting for hindered settling phenomena:

Ss = αs · vs(ds)

(
1−

∑
αs

αmax

)n
, n > 1, (19)

where αmax is the maximum volume fraction of solids, which
generally occurs at fractions between 0.6 and 0.7, while n
is an empirical exponent (4.65 is a suitable value for rigid 65

spheres).
The particle settling velocity vs is a function of the particle

diameter ds and is given by the following non-linear equa-
tion:

v2
s (ds)CD(Re)=

4
3
dsg

(
ρs− ρa

ρa

)
. (20) 70

In the actual version of the code, the gas–particle drag
coefficient CD(Re) is given by the following relations, as
a function of the Reynolds number Re = dsvs

ν
(Lun and Gi-

daspow, 1994)TS7 :

Re > 1000, CD(Re)= 0.44; 75

Re ≤ 1000, CD(Re)=
24
Re

(
1+ 0.15Re0.687

)
.

ν is the kinematic viscosity coefficient of atmospheric air.
Equation (20) has an analytical solution in the limit of

coarse particles (Re > 1000),

vs(ds)=

√
4

3CD

(
ρs− ρa

ρa

)
dsg, (21) 80

and in the limit of very fine particles (Re� 1)TS8 ,

vs(ds)=
d2

s
18ν

(
ρs− ρa

ρa

)
g. (22)

In the intermediate regimes, Eq. (20) is solved numeri-
cally.
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The sedimentation model described by Eq. (19) represents
the loss of particles from the flow but does not necessar-
ily correspond to a deposition rate, i.e. the rate of accretion
of deposit thickness. This is true only when the ratio be-
tween the actual deposition and the sedimentation rate is high5

(& 5×10−3 according to Shimizu et al., 2019). In fact, there
may be processes at the deposition interface that mobilize or
even re-entrain the particles settling into the basal layer and
then onto the ground. Furthermore, in order not to add fur-
ther complexity, the adopted equation assumes a sedimenta-10

tion rate which does not take into account the turbulence,
which can keep the particles in suspension. A more com-
prehensive description of sedimentation based on the Rouse
number, representing a ratio of the particle settling veloc-
ity to the scale of turbulence, can be found in Dellino et al.15

(2019b, 2020) and Valentine (1987).

3.6 Friction model

Several friction models have been implemented in the nu-
merical code. For the applications presented in this work, a
simple model has been used, with the force being propor-20

tional to the square of flow velocity through a basal friction
coefficient f depending on terrain roughness:

F= (Fx,Fy)=−f ρm
√
(u2+ v2)(u,v). (23)

The friction factor typically has a value in the range 0.001–
0.02 (Bursik and Woods, 1996). This form is equivalent to25

the Voellmy–Salm model (Bartelt et al., 1999) when the con-
tribution of the basal Coulomb friction is neglected.

4 Numerical discretization

In this section we present the details of the numerical scheme
implemented to solve the system of Eq. (10). It is impor-30

tant to remark that different processes contributing to the dy-
namics of the flows of interest have different timescales, and
thus they require different numerical techniques. For this rea-
son, a splitting approach is adopted in the code to integrate
the following separately: (i) the advective, gravitational and35

frictional terms and (ii) the sedimentation and entrainment
terms.

The numerical solver for the solution of Eq. (10) (with-
out the sedimentation and entrainment terms represented by
S3) is based, as in de’ Michieli Vitturi et al. (2019), on40

an IMEXCE8 Runge–Kutta scheme, where the conservative
fluxes F and G and the terms represented by S1 are treated ex-
plicitly, while the stiff terms of the equations, represented by
S2, are discretized implicitly (Pareschi and Russo, 2005). The
use of an implicit scheme for friction terms allows for larger45

time steps and to properly model conditions such as initiation
and cessation phases, without the need for empirical thresh-
olds on the velocity or thickness of the flow. For the spatial
discretization of the fluxes, as in the first version of the code,

we adopt a central-upwind finite-volume method (Kurganov 50

et al., 2001; Kurganov and Petrova, 2007; de’ Michieli Vit-
turi et al., 2019; Biagioli et al., 2021) on co-located grids de-
rived from DEMs in Universal Transverse Mercator (UTM)
coordinates and thus on uniform grids of equally sized square
pixels. The central-upwind approach guarantees an accurate 55

description of the propagation of the dry–wet interface (front
of the flow) and the positivity of the solution.

We denote the vector of discretized values of the conser-
vative variables with Qj,k , where the first index refers to the
longitude and the second to the latitude. These values repre- 60

sent the average value of the conservative variables on each
computational cell and are associated with the cell centres
(see Fig. 1). Similarly, the discretized values of the topog-
raphy elevation Bj,k are saved at the cell centres. We also
use the superscripts E, W, N and S to denote the east, west, 65

north and south values of the variables inside a cell. Discon-
tinuities are allowed for in the numerical solution at the cell
interfaces. In fact, at the interface (j+ 1

2 ,k) we can have two
distinct values of the numerical solutions, QE

j,k and QW
j+1,k

(see Fig. 1). This is true also for the discretized topography. 70

From the set of conservative variables Q, a second set of vari-
ables, which we will call primitive variables, is derived:

P= (h,hu,hv,T ,hαs,1, . . .,hαs,ns ,hαwv,u,v). (24)

The full derivation of the primitive variables from the con-
servative variables is presented in the Appendix. We remark 75

that, following Kurganov and Petrova (2007), when the ve-
locities u and v are computed from the conservative variables
Q2 = ρmhu and Q3 = ρmhv, a desingularization is applied
to avoid large velocities that might arise because of the divi-
sion by very small values of thickness, as could occur close 80

to the flow front.
From the values of the primitive variables Pj,k at the cell

centres, the partial derivatives (Px)j,k and (Py)j,k are com-
puted, using opportune slope limiters (MinMod, Superbee or
van LeerCE9 ). Slope limiters are employed to mitigate the oc- 85

currence of excessive oscillations and unrealistic behaviour
that might arise during the solution of partial differential
equations through finite-volume methods, especially in prox-
imity to shocks and discontinuities. When prioritizing accu-
rate shock representation, the Superbee slope limiter can be 90

the best choice as it maintains sharper discontinuities but at
the cost of a tendency for smooth humps to become steeper
and squared with time. If preserving monotonicity and min-
imizing oscillations in smooth regions are more important,
then MinMod could be favoured. For a more detailed anal- 95

ysis of slope limiters and finite-volume methods, the reader
can refer to LeVeque (2002). Once the partial derivatives are
computed, the values at the internal sides of each cell inter-
face are reconstructed with a linear interpolation from the
cell centre values: 100
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Figure 1. Sketch of the numerical grid and conservative variable
indexing. The average value of the vector of conservative variables
on each computational cell is denoted by Qj,k and is associated
with the cell centre. The vectors QE

j,k
, QW

j,k
, QN

j,k
and QS

j,k
are

defined at the cell interfaces and represent the interface values of
the conservative variables. At each interface two interface vectors
are defined.

PE
j,k = Pj,k +

1x

2
(Px)j,k, PW

j,k = Pj,k −
1x

2
(Px)j,k,

PN
j,k = Pj,k +

1y

2
(Py)j,k, PS

j,k = Pj,k −
1y

2
(Py)j,k.

This choice for primitive variables allows prescription of
the boundary conditions at the cell interfaces in a natural way
because usually they are given in terms of flow thickness,5

volumetric flow rate, phases fractions and temperature or in
terms of their gradient. Having two different values at the two
sides of interfaces in a numerical method might seem coun-
terintuitive from a physical standpoint. However, these jumps
are a consequence of the mathematical discretization process10

used in the finite-volume method to approximate continuous
partial differential equations over discrete domains. In partic-
ular, having two values at the two sides of interfaces in finite-
volume methods is essential for properly describing and cap-
turing discontinuous solutions (LeVeque, 2002).15

Once the primitive variables at the interfaces are known
(either from the reconstruction or from the boundary con-
ditions at the boundary cells), we compute the correspond-
ing conservative variables QE

j,k , QW
j,k , QN

j,k and QS
j,k . Primi-

tive and conservative variables are then used to compute the20

fluxes F(P(·)j,k,Q
(·)
j,k) and G(P(·)j,k,Q

(·)
j,k) at the sides of the in-

terfaces. We observe that the set of primitive variables is re-

dundant, but this redundancy allows us to obtain a stable nu-
merical scheme. In particular, for the advective flux terms,
the advection velocity components are obtained from the 25

primitive variables, while the variables to advect are taken di-
rectly from the conservative variables. The use of this combi-
nation of reconstructed primitive and conservative variables
for the calculation of the fluxes, together with the application
of limiters, makes the numerical scheme stable, avoiding the 30

origin of large values of thickness and velocity. The fluxes at
the two sides of each interface are then used to compute the
numerical fluxes.

Following Kurganov and Petrova (2007), the numerical
fluxes in the x direction are given by 35

Hx

j+ 1
2 ,k
=

a+
j+ 1

2 ,k
F(PE

j,k,Q
E
j,k)− a

−

j+ 1
2 ,k

F(PW
j+1,k,Q

W
j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+

a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

(
QW
j+1,k −QE

j,k

)
, (25)

where the right- and left-going local speeds a+
j+ 1

2 ,k
and

a−
j+ 1

2 ,k
are estimated by

a+
j+ 1

2 ,k
=max

(
uE
j,k +

√
g′hE

j,k,u
W
j+1,k +

√
g′hW

j+1,k,0
)
, 40

a−
j+ 1

2 ,k
=min

(
uE
j,k −

√
g′hE

j,k,u
W
j+1,k −

√
g′hW

j+1,k,0
)
.

It is important here to remark that we have two local
speeds not because they are associated with the two differ-
ent sides of each interface but because one is for the left-
going characteristic speeds (on both sides) and the other for 45

the right-going speeds (on both sides).
In a similar way, the numerical fluxes in the y direction are

given by

Hy

j,k+ 1
2
=

b+
j,k+ 1

2
G(PN

j,k,Q
N
j,k))− b

−

j,k+ 1
2
G(PS

j+1,k,Q
S
j+1,k)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+

b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

(
QS
j+1,k −QN

j,k

)
, (26) 50

where the local speeds in the y direction, b+
j+ 1

2 ,k
and b−

j+ 1
2 ,k

,

are given by

b+
j,k+ 1

2
=max

(
vN
j,k +

√
g′hN

j,k,v
S
j,k+1+

√
g′hS

j,k+1,0
)
,

b−
j,k+ 1

2
=min

(
vN
j,k −

√
g′hN

j,k,v
S
j,k+1−

√
g′hS

j,k+1,0
)
.

The explicit computation of the term S1 requires the nu- 55

merical discretization of the spatial gradient of the topogra-
phy. The partial derivatives (Bx)j,k and (By)j,k are computed
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from the cell averages using the same slope limiter that is
used for h. Then, the topography is computed at the inter-
faces with a linear reconstruction, obtaining the values for
each cell:

BE
j,k = Bj,k +

1x

2
(Bx)j,k, BW

j,k = Bj,k −
1x

2
(Bx)j,k,5

BN
j,k = Bj,k +

1y

2
(By)j,k, BS

j,k = Bj,k −
1y

2
(By)j,k.

The implicit part of the IMEX Runge–Kutta scheme, as-
sociated with the integration of the friction terms, is solved
using a Newton–Raphson method with an optimum step size
control, where the Jacobian of the implicit terms is com-10

puted with an automatic complex-step derivative approxima-
tion (de’ Michieli Vitturi et al., 2019). The implicit treatment
of the friction terms, when dealing with strongly non-linear
rheologies, avoids many problems related to the proper stop-
ping condition of the flow without the need to introduce ar-15

bitrary thresholds. In addition, the automatic derivation of
the friction term allows for a simple implementation of addi-
tional rheological models, including formulations dependent
on any model parameter.

After each Runge–Kutta procedure, the sedimentation and20

air entrainment term are computed explicitly and the flow
variables and the topography at the centres of the computa-
tional cells are updated.

For large time steps, the explicit treatment of solid sedi-
mentation could lead to negative solid volumetric fractions in25

the flow, and for this reason the effective sedimentation rate
Ss,is TS9 is limited at each integration step in order to prevent
this occurrence:

Ss,is =min
[
Ss,is ,1t · (αs,ish)

]
.

The use of an explicit integration scheme for the terms of30

the equations containing spatial derivatives, with respect to
an implicit treatment, has the advantage that the solutions
of the discretized equations in each cell are decoupled with-
out the need to solve for a large linear system. The same
is true for the integration of the friction, sedimentation and35

entrainment terms. This allowed implementation of a paral-
lel strategy to advance in time the numerical solution of the
discretized equations, requiring almost no communication or
dependency between the processes. Thus, with a small effort,
the Fortran implementation of the code has been updated by40

parallelizing all the loops over the computational cells with
the Open Multi-Processing (OpenMP) programming model
for shared-memory platforms.

The schemes implemented for the numerical discretization
of the governing equations do not depend on the particular45

choice of the constitutive equation or on the friction force;
thus they apply also when the model is used to solve for dif-
ferent volcanic mass flows.

5 Numerical benchmarks

In this section we present applications of the model to 1D 50

and 2D problems. They provide some of the fundamental el-
ements for verification and validation of the numerical model
(following the terminology proposed by Oberkampf and Tru-
cano, 2002, and Esposti Ongaro et al., 2020), adding to
numerical benchmarks and validation tests previously pre- 55

sented by de’ Michieli Vitturi et al. (2019). The 1D bench-
mark tests are designed to demonstrate the capability of the
numerical scheme to describe the interaction of the flow of
obstacles in different regimes (subcritical, supercritical, tran-
sitional). Then, model results are compared with those pre- 60

sented in Engwell et al. (2016) for large ash flows to com-
pare the steady state produced by our 2D transient simula-
tions with that obtained with a 1D axisymmetric steady-state
model.

5.1 One-dimensional subcritical and transcritical flows 65

When dealing with flows where velocity and mixture den-
sity can experience large changes, it is important to have
a model which properly describes both subcritical (Ri > 1)
and supercritical (Ri < 1) regimes and the transition between
them. In the subcritical regime, flow is dominated by gravita- 70

tional forces, with greater thickness and lower velocities; for
supercritical flow it is the opposite, with thinner and faster
flow dominated by inertial forces. In addition, it is funda-
mental to have a model that is able to describe accurately
how the flow interacts with the topography under these dif- 75

ferent regimes. As shown in Woods et al. (1998) using both
laboratory experiments and theoretical models, when a flow
interacts with a topographic barrier such as a ridge, the flow
thickness and velocity can change in different ways depend-
ing on the height of the ridge and the flow speed (Houghton 80

and Kasahara, 1968). Under some circumstances, flows may
be partially blocked and produce upstream-propagating bores
resulting in increased sedimentation upstream of the barrier.
In other cases, the flow is able to overcome the ridge but with
a transition in flow regime and thus in the sedimentation pat- 85

tern.
Here, we present some numerical simulations reproduc-

ing literature benchmarks and showing the capability of the
numerical code to properly model the subcritical and super-
critical regimes and the transition between them. Follow- 90

ing Goutal (1997), Delestre et al. (2013) and Michel-Dansac
et al. (2016), we simulate a steady one-dimensional flow in
a 25 m domain with a parabolic bump on the bottom, where
the topography is given byCE10

B(x)=

{
0.2− 0.05(x− 10)2 when 8< x < 12,
0 elsewhere.

(27) 95

For the test cases presented in this section, no friction,
mass entrainment and sedimentation are considered. The
flow travels in the x direction (u > 0 m s−1, v = 0 m s−1),
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with constant density (for simplicity ρ = 1 kg m−3) and con-
stant temperature (energy equation is not needed). With these
assumptions, in the steady-state regime, we can derive from
Eqs. (2)–(3) the following simpler governing equations:

∂(hu)
∂x
= 0,

∂
∂x

(
hu2
+

1
2g
′h2
)
=−g′h ∂B

∂x
.

(28)5

By expanding the derivative on the left-hand side of the mo-
mentum equation, we obtain

u
∂u

∂x
+ g′

∂h

∂x
=−g′

∂B

∂x
, (29)

and, by substituting the expression of ∂u/∂x computed from
the mass equation, we have10 (

1−
u2

g′h

)
∂h

∂x
=−

∂B

∂x
, (30)

which, written in terms of the Richardson number Ri, gives(
1−

1
Ri

)
∂h

∂x
=−

∂B

∂x

or (1−Ri)
∂

∂x
(h+B)=

∂B

∂x
. (31)

According to these equations, the subcritical or supercritical
regime determines whether flow thickness h and free surface15

h+B increase or decrease as the fluid interacts with the to-
pography. It is also important to observe that in supercritical
flows (Ri < 1), upstream conditions fully determine the flow
immediately downstream, while in subcritical flows changes
in downstream conditions affect the flow upstream. From a20

numerical point of view, this is important when prescribing
flow boundary conditions because we can only prescribe all
flow variables at the inlet for supercritical flows. We remark
here that the test cases presented in this section are not meant
to be representative of real dilute PDC conditions, but they25

have been chosen to show the capability of the numerical
model to properly simulate different flow regimes and their
transitions.

By integrating Eq. (30) with the additional condition of
constant volumetric flux, as expressed by the first part of30

Eq. (28), we also have, in the case of a regular solution, the
following Bernoulli equation:CE11

(hu)2

2g′h2 +h+ z= Const, (32)

which gives a relation between the topography elevation and
the flow height. Using Eq. (32), in the cases of supercritical35

or subcritical flows without regime transitions, it is possible
to obtain the following implicit equation for the flow depth
(Delestre et al., 2013):

h(x)3+

(
B(x)−

(h0u0)
2

2g′h2
0

)
h(x)2+

(h0u0)
2

2g′
= 0, (33)

where h0 and u0 are the flow thickness and velocity at the 40

inlet and outlet of the domain, respectively.
The first test case is a flow where at the left boundary of

the domain an influx with h= 1 m and u= 10 m s−1 is pre-
scribed, resulting in a supercritical regime (Ri < 10−2). As
previously stated, the supercritical conditions at the inlet are 45

consistent with the two boundary conditions assigned. For
this simulation, as for the other simulations presented in this
section, the domain is partitioned with 1000 uniform cells,
and a linear reconstruction of the primitive variables with
a minmod limiter has been used. For this supercritical test, 50

the solution at t = 0 is initialized with a constant thickness
corresponding to the inlet value and with zero velocity. The
solution at t = 120 s, when a steady state is reached, is pre-
sented in terms of the flow free surface (Fig. 2a, orange line)
and flow velocity (Fig. 2b). In this supercritical condition, the 55

fluid thickens and slows as it passes over the top of the obsta-
cle, reaching its minimum speed at the crest (x = 10 m). The
slope of the free surface follows the slope of the obstacle,
increasing before the crest and then decreasing in elevation.
The higher the Richardson number, the smaller the effect of 60

topography on flow thickness and on velocity, with the free
surface mimicking the slope of the topography.

The second test case is a simulation of a subcritical regime.
In this case an influx of 4.42 m2 s−1 is prescribed at the left
boundary, while a flow thickness of 2 m is fixed at the outlet. 65

It is important to observe that here, in contrast to the previ-
ous case, we cannot prescribe both flow thickness and veloc-
ity at the inlet because of the subcritical condition. Also for
this case, the solution in the domain is initialized at t = 0 s
with a constant thickness corresponding to the outlet value 70

and with zero velocity. The numerical solution at t = 120 s,
corresponding to a steady state, is presented in the bottom
panelCE13 of Fig. 2. In this case, the fluid thins and acceler-
ates as it crosses the top of the obstacle, reaching its maxi-
mum speed and minimum thickness at the crest. Accordingly 75

with the second part of Eq. (31), the free surface also de-
creases where the bottom slope is positive, while it increases
after reaching the bottom crest. For both the first two test
cases, we also computed the analytical solutions by means
of the Bernoulli equation (Eq. 33), and the values are plotted 80

with dotted black lines in Fig. 2, showing a good correspon-
dence with the numerical solutions (solid lines).

The interaction of a flow with an obstacle can also lead to
a steady solution, with a transition in the flow regime (tran-
scritical flow). The steady-state conditions investigated here 85

for these transonic (with and without shock) test cases are
similar to those obtained in laboratory experiments presented
in Fig. 4a of Woods et al. (1998), which showed that the de-
posit is weakly affected by the presence of the ridge and the
regime transition. If the flow is subcritical upstream and it 90

undergoes a sufficient increase in velocity and decrease in
thickness as it ascends towards the crest, a smooth transition
from subcritical to supercritical flow can occur. This transi-
tion is shown in the top panels of Fig. 3, representing the
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Figure 2. Thickness (a, c) and velocity (b, d) profiles in one-dimensional flows over a bump. SteadyCE12 numerical solutions for supercritical
and subcritical flows are shown with solid lines in the top and bottom panels, respectively. The dotted black lines in each panel represent the
analytical solutions, computed by solving Eq. (33).

flow free surface at t = 120 s for a flow with an influx of
1.53 m2 s−1 prescribed at the left boundary and a thickness
of 0.66 m fixed at the outlet, when the flow is subcritical. In
fact, when the flow becomes supercritical, no boundary con-
dition can be prescribed at the outlet, and the outlet thickness5

is an outcome of the simulation (here h= 0.4 m). For this
simulation, the solution in the domain is initialized at t = 0 s
with a constant free surface corresponding to the outlet sub-
critical value and with zero velocity. Also in the case of tran-
scritical flow without shock, it is possible to express, from10

the Bernoulli equation (Eq. 32)CE14 , the water height as the
solution of a cubic equation (Delestre et al., 2013):

h(x)3+

(
B(x)−

(h0u0)
2

2g′h2
C
−hC−BM

)
h(x)2

+
(h0u0)

2

2g′
= 0, (34)

where h0 and u0 are the flow thickness and velocity at the
inlet or outlet of the domain, respectively; BM is the maxi-15

mum topography elevation; and hC is the corresponding flow
thickness, which can be computed analytically as (Delestre,
2010)

hC =

(
h0u0√
g′

)2/3

.

The analytical solution of the Eq. (34) is reported in the top20

panels of Fig. 3 with a dotted black line.
Under certain conditions, the flow, after an initial thinning

and acceleration over the obstacle, can suddenly thicken and

decelerate with a shock in correspondence to a flow regime
transition. This transition from a rapid, supercritical flow to 25

a slow, subcritical flow, called a hydraulic jump, is shown
in Fig. 3, bottom panelCE15 , representing the flow free sur-
face at t = 120 s for a flow with an influx of 0.18 m2 s−1 pre-
scribed at the left boundary and a thickness of 0.33 m fixed
at the outlet. Following Delestre et al. (2013), flow thickness 30

for the transcritical flow with shock is given by the solution
of

h(x)3+

(
B(x)−

(h0u0)
2

2g′h2
C
−hC−BM

)
h(x)2+ (h0u0)

2

2g′ = 0,

x < xshock;

h(x)3+

(
B(x)−

(h0u0)
2

2g′h2
0

)
h(x)2+ (h0u0)

2

2g′ = 0,

x > xshock;

(h(x)u(z))2
(

1
h1
−

1
h2

)
+

g′

2 (h
2
1−h

2
2)= 0,

(35)

TS10where BM is the maximum topography elevation; h0 and
u0 are the flow thickness and velocity at the outlet of the do- 35

main, respectively; hC is the corresponding flow thickness;
and h1 and h2 are the flow thicknesses upstream and down-
stream of the shock, respectively. The location of the shock
xshock is found from the last part of Eq. (35), which is the
Rankine–Hugoniot’s condition (LeVeque, 2002). The analyt- 40

ical solution of Eq. (35) is plotted in the bottom panels of
Fig. 3 with a dotted black line, showing the accuracy of the
numerical solver in the prediction of the shock location and
amplitude for both flow thickness and velocity.

In addition to the literature test cases described above, 45

aimed at reproducing steady-state flows for different regimes,
we present here another test case showing the temporal evo-
lution of a flow with a steady inlet condition, where the in-
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Figure 3. Flow thickness (a, c) and velocity (b, d) profiles in one-dimensional flows over a bump. Steady numerical solutions for transcritical
flows without and with shock are shown with solid lines in the top and bottom panels, respectively. The dotted black lines in each panel
represent the analytical solutions, computed by solving Eqs. (34) and (35).

teraction with an obstacle results in the transition from a sub-
critical to supercritical regime, and the backward propagation
of a hydraulic jumpCE16 . The boundary conditions (inlet and
outlet) are based on the configurations described in Khezri
(2014) and Putra et al. (2019), and, as for the previous tests,5

we assume a constant density (ρ = 1 kg m−3) and neglect
friction, mass entrainment and sedimentation. The computa-
tional domain is 10 m long (discretized with 1000 cells), and
the inlet flow velocity and thickness are fixed to 0.74 m s−1

and 0.14 m, respectively. The same values are used for the10

initial conditions up to 8 m from the inlet, while no flow is
present beyond this distance. At a distance of 9 m from the
inlet, a 0.1 m high wall is present, represented by a disconti-
nuity in the topography:

B(x)=

{
0, x ≤ 9m;
0.1, x > 9m. (36)15

For this test case, no analytical solutions are available.
Some snapshots of the first 40 s of the simulation are shown
in Fig. 4, with the flow thickness in the left panels and the
velocity in the right panels. When the flow front reaches
the wall, flow thickness increases and its velocity decreases,20

with a transition from a supercritical to subcritical regime.
The transition zone propagates backward, similarly to a tidal
bore. At the same time, due to an increase in flow thickness,
part of the flow overcomes the obstacle and propagates be-
yond it. This behaviour is similar to that illustrated in Woods25

et al. (1998), their Fig. 9, for a large ash flow interacting with
a ridge. While they interpreted the bore as a reflected part
of the flow, which can carry fine-grained material back up-

stream, the right panels of Fig. 4 show that flow velocity is
always positive. This means that, for the simulation presented 30

here, the increase in flow thickness propagating upstream is
due not to a negative flow velocity or a flow reflection but
to the backward propagation of the hydraulic jump. At later
stages (not shown here) a steady state is reached, with the
flow being subcritical before and supercritical after the wall. 35

A similar behaviour can be expected when a supercritical
PDC reaches a sufficiently high topographic obstacle. This,
because of the transition to a subcritical regime, would result
in an increased sedimentation rate before the obstacle.

5.2 Radial ash flow 40

In this section we apply the new model to reproduce results
presented in Engwell et al. (2016) for large dilute flows pro-
ducing coignimbrite columns. Thus, in comparison to the test
cases of the previous section, we model a mixture of gas and
solid particles, here with a diameter of 100 µm. Solid sed- 45

imentation and atmospheric air entrainment are also mod-
elled, resulting in a mixture for which temperature and den-
sity change during the transport. Engwell et al. (2016) used
a steady-state 1D model with radial symmetry, and here we
want to reproduce the steady condition with transient 2D 50

simulations. To be consistent with the assumptions of En-
gwell et al. (2016) and to obtain a steady state, we do not
consider any modification of the topography associated with
the sedimentation of solid particles. In this way, with a steady
source, it is possible to reach a steady condition and a steady 55

radial profile.
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Figure 4. Thickness (left) and velocity (right) profiles for a one-dimensional subcritical flow with a backward-propagating hydraulic jump.

The use a steady-state numerical code, as done by Engwell
et al. (2016), restricts the study to supercritical flows, and in
this section we present numerical simulations for supercriti-
cal conditions only. As discussed for the previous example,
subcritical and supercritical boundary conditions correspond5

to two different physical settings, and different boundary/-
source conditions are prescribed to model the different initial
regimes. In the supercritical regime, flow downstream of the
source is controlled by conditions upstream, and all the con-
servative variables must be fixed at the boundary inlet. This10

is the case for the two axisymmetric simulations presented
in Figs. 5 and 6, where the initial Richardson numbers are
0.1 and 0.9, respectively. For both simulations the inlet con-

ditions are given at R = 2000 m, with the initial thickness
fixed at h= 2000 m, the initial gas mass fraction at 0.2, the 15

initial temperature at T = 900 K and the friction coefficient
at 0.001. The initial velocities are computed from the other
variables and the Richardson number, resulting in an initial
radial velocity of 93.32 m s−1 for Ri = 0.9 and 279.98 m s−1

for Ri = 0.1. A 20 km by 20 km computational domain, dis- 20

cretized with 100 m size cells, is used for the two simulations.
For both simulations, when the mixture becomes buoyant in a
computational cell (due to entrainment and heating of atmo-
spheric air and particle sedimentation), the mass is removed
from that cell, while the solution is not computed for the cells 25

that are fully inside the area defined by R < 2000 m. The two
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figures show the flow solution at t = 200 s, when a steady
condition for both radial flows is reached. In the left panels
a 3D view of the flow thickness is presented. The colour of
the free surface represents flow thickness, clearly showing
a lower thickness for the simulation with initial Ri = 0.9.5

When using Cartesian grids to model axisymmetric flows, it
is not obvious that the output of the simulation would pro-
duce the correct results in terms of radial symmetry of the
flow front. In fact, while the inlet velocity is given analyti-
cally at the lateral surface of the inlet cylinder, i.e. at a dis-10

tance of 2000 m from the point (0,0), the boundary condi-
tions are prescribed numerically at the faces of the computa-
tional cells, which can be at different distances. For this rea-
son, a correction of the velocity accounting for this discrep-
ancy is applied to each inlet face. Model results, as shown15

in the left panels, highlight that this correction, coupled with
the second-order discretization in space implemented in the
model, correctly produces axisymmetric flows.

Plots of thickness and velocity along a radial section are
shown in the right panels of Figs. 5 and 6, for the initial20

Richardson numbers of 0.1 and 0.9, respectively. These re-
sults can be compared with those presented in Engwell et al.
(2016), their Fig. 3, where the same initial parameters have
been used. For both initial conditions, model solutions show
a decrease in flow thickness immediately after the source25

which is more pronounced for the largest value of Ri. Then,
after approximately 3.5 km from the source, thickness in-
creases again. These two different trends are due to the super-
position of the thinning associated with the radial spreading
and the thickening associated with atmospheric air entrain-30

ment, the first being more important close to the source and
the second at greater distances (see also Calabrò et al., 2022).
The velocity profiles of the two simulations present larger
differences in the absolute values than the thickness, mostly
because of the initial velocities associated with the differ-35

ent Richardson numbers. At the maximum runout distances,
which are comparable for the two simulations, this results in
a residual momentum for the simulation with Ri = 0.1 being
almost twice that for the simulation with Ri = 0.9, as shown
also by Engwell et al. (2016).40

An advantage of a transient model, with respect to a steady
one, is that the simulation can provide information on the
propagation of the flow and the time needed to reach the max-
imum runout. Figure 7 shows the runout (solid green line)
and the area invaded by the flow (dashed blue line) versus45

time for the two simulations presented above. In both simu-
lations, we observe an almost linear increase in the area in-
vaded with time, up to the time at which the maximum runout
is reached. For the simulation with initial Ri = 0.1, and thus
with a larger flow velocity, the maximum runout is reached at50

t = 28 s, while for the simulation with initial Ri = 0.9, it is
reached at t = 79 s. Furthermore, we remark that only a tran-
sient model can simulate the modifications of the topography
associated with the sedimentation of solid particles because
of the intrinsic transient nature of this process.55

6 PDCs over water: the Krakatau case study

Here we present an application of the model to the Krakatau
volcano, with inputs informed by the 1883 eruption. This
simulation highlights the capability of the model to treat the
interaction of the flow with topography, the presence of hy- 60

draulic jumps, and the vaporization and entrainment of water.
The Krakatau volcanic system is notorious for eruptive be-

haviour that interacts with the seas of the surrounding Sunda
Strait. In 1883, an eruption produced PDCs that propagated
more than 40 km across the sea (Carey et al., 1996), im- 65

pacting populations on the coastlines of Sumatra and Java
(Simpkin and Fiske, 1983) and potentially playing a role in
the formation of devastating tsunamis that led to the deaths
of > 36 000 people (Maeno and Imamura, 2011). Here, we
test the flow model on real topography and investigate topo- 70

graphic effects on the flow regime and the transition from
supercritical to subcritical flow. In addition, we show the ef-
fect of ingestion of seawater in the form of water vapour into
the flows.

We test the flow over a water model formulation using 75

the contemporary (i.e. representing recent topography rather
than that in 1883) 30 m SRTM Void Filled DEM (USGS
EarthExplorer, downloaded July 2021) of the area around
the Krakatau volcanic complex and the Sunda Strait (Fig. 8).
We assume that all cells with an elevation of zero are wa- 80

ter. Model inputs were informed using information from
the 1883 eruption from the published record and from field
analysis of eruption deposits. An initial flow temperature of
773 K (500 ◦C) was used based on results from Mandeville
et al. (1994). However, the simulations are aimed not at repli- 85

cating the eruption but at giving insight into the model appli-
cation and the possible dynamics of these flows. We point
out that we do not simulate here the collapse of the explosive
column but only the dilute flow generated by the entrainment
of atmospheric air and the collapse of the column. Thus, the 90

initial conditions of the simulation refer to the source con-
ditions of the radially spreading dilute flow. An initial flow
radius of 2 km, flow Richardson number of 0.7 and mass
flow rate of 1010 kg s−1 were used. The initial density is
40 kg m−3. Initial flow thickness (≈ 310 m) and radial veloc- 95

ities (≈ 65 m s−1) were calculated from these parameters. A
particle class of 100 µm was used, and the gamma coefficient
(γis,wv) was set to 0.86. This value was not constrained by
observations but selected from an ensemble of simulations
to better highlight some features of the flow (large entrain- 100

ment of water vapour, hydraulic jumps, transient dynamics).
Flow parameters were analysed along a number of transects
(Fig. 8), which have different topographic profiles relating to
the islands around the volcano (Fig. 9). A probe location is
used to show how flow properties at a given location change 105

with time.
The source condition of the simulated PDC mimics the

initial radial spreading generated by a column collapse; the
flow then quickly interacts with the nearby Krakatau islands
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Figure 5. Supercritical flow with initial Ri = 0.1. The solution is computed only for the cells of the computational domain outside (fully or
partially) R = 2000 m. The colour of the free surface represents flow thickness.

Figure 6. Supercritical flow with initial Ri = 0.9. The solution is computed only for the cells of the computational domain outside (fully or
partially) R = 2000 m. The colour of the free surface represents flow thickness.

of Sertung, Rakata and Panjang. The flow overtops the prox-
imal islands of Sertung and Panjang, but it is directed around
the much taller island of Rakata, with the flow fronts merg-
ing downstream on the far side of the island (Fig. 8). The
flow runout at 360 and 1320 s varies along the different tran-5

sects (Figs. 10 and 11), with runout considerably less along
transects 5 and 6 than the other transects, related to the more
variable topographic elevation along these transects (Fig. 9).
Flow temperature shows a gradual decrease with distance
from the source along most transects. The temperature drops10

to 300 K along transect 5 at 360 s and transect 6 at 1320 s.
This reflects that at these times, there is no flow at these lo-
cations, and the temperature is that of the ambient.

In general, the simulated flow develops larger thicknesses
at the head (Figs. 10, 11), followed by a thinner body. These15

changes are related to variations in the Ri number and air

entrainment (Figs. 10, 11). In comparison to trends seen in
Figs. 5 and 6 and results shown by Bursik and Woods (1996),
Calabrò et al. (2022), and Shimizu et al. (2019, 2023), the
trends do not show an initial decrease in thickness with dis- 20

tance. This is the result of the large volume of water vapour
entrained into the flow, as shown in Fig. 11f. Numerical
model results using smaller values for the γis,wv coefficient
(Supplement Fig. S1TS11 ) show a decrease in flow thickness
with distance from the source. Flow thickness considerably 25

increases upstream of topographic barriers, such as the is-
lands of Sertung (transect 2) and Panjang (transect 1), which
are within a couple of kilometres of the source. This increase
is the result of the formation of backward-propagating hy-
draulic jumps, marking the transition from supercritical flows 30

with Richardson numbers of less than 1 to subcritical flow.
Downstream of topographic barriers, when the flows are ca-
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Figure 7. Runout (solid green line) and area invaded (dashed blue line) versus time for a simulation with initialRi = 0.1 (a) andRi = 0.9 (b).

Figure 8. Snapshots of simulation SA4_0003, where a grain size of 100 µm, a MFRCE17 of 109 and a gamma coefficient (γis,wv) of 0.86
was used. Each image represents a different time step in the simulation. The red marker shows the probe location at 9338081N, 552669ECE18

(UTM). The topographic elevation for each transect is shown in Fig. 9.

pable of overcoming the obstacle, they transition back from
thick, subcritical to thin supercritical flows. The most ex-
treme variation in Richardson numbers occurs along tran-
sect 5 at 1320 s, with a high Richardson number upstream of
Rakata, a topographic barrier to the flow and a peak down-5

stream of the island as the flow converges. This peak in
Richardson number is due to a large decrease in velocity,
which results in an increased loss of particles and there-

fore a decrease in the solid volume fraction within the flow
(Fig. 10d). 10

Downstream of Rakata (transect 5), the flow thickness
at 1320 s is highly variable, showing multiple peaks and
troughs not directly associated with any variation in topog-
raphy. These thickness variations are the result of the for-
mation of von Kármán vortices that formed in the wake of 15

the topographic high on the island of Rakata, to the SE of
the source (Fig. 11). Variations in the Richardson number
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Figure 9. Topographic profiles of transects shown in Fig. 8a. Note the vertical exaggeration of the y axis. Transect 3 is the only transect that
does not show variation in elevation along the flow runout; all other transects cross one of the many islands in the Sunda Strait.

Figure 10. Variation in flow parameters with distance at 360 s after flow initiation for simulation SA4_0003, along transects shown in Fig. 8.
Markers above panel (b) show the location of topographic barriers for each transect. The Richardson number with distance for transect 5 is
shown in the inset.
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Figure 11. Variation in flow parameters with distance at 1320 s after flow initiation for simulation SA4_0003, along transects shown in
Fig. 8. Markers above panel (b) show the location of topographic barriers for each transect. The Richardson number with distance for
transect 5 is shown in the inset.

Figure 12. Variation in deposit thickness, rate and dynamic pressure
at the probe location shown in Fig. 8.

for some transects match those shown in 1D simulations pre-
sented earlier in the paper (Fig. 4), whereby the transition
from super- to subcritical flow moves upstream through time.

This is shown particularly well for transect 6: at 360 s, the
transition is clearly visible at a distance of approximately 5

13 km from the source (Fig. 11), while at 1320 s, it is less
well defined and occurs approximately 2 km closer to the
source (Fig. 11). This transition is also evident when study-
ing the flow interactions with Sebesi, to the NE (Fig. 8):
the shape of the hydraulic-jump front changes from tightly 10

curved around the island at 360 s to a more elongate region at
600 s to a concave region bending back towards the Krakatau
Archipelago at 1320 s. In Fig. 8 the backward propagation of
the hydraulic jump is also evident when looking at the rela-
tive position of the transition region with respect to the red 15

marker. This marker represents the probe location at which
we sampled flow variables with time to show the effect of the
passing hydraulic jump on current characteristics. In Fig. 12a
we plot dynamic pressure and in Fig. 12b cumulative sed-
imentation and the sedimentation rate with time. These fig- 20

ures clearly show the arrival of the flow at 130 s. The dynamic
pressure also shows the passing of the hydraulic jump at ap-
proximately 600 s (as also shown in Fig. 8c). The dynamic
pressure shows a sharp decrease at approx. 1900 s, 100 s af-
ter source emission ends. Flow arrival at the probe location is 25

also shown in Fig. 12b, with an increase in flow thickness and



20 M. de’ Michieli Vitturi et al.: IMEX_SfloW2D v2

Figure 13. Variation in volume fraction of flow components along transects 1 and 3 at 360 and 1320 s after flow initiation.

the sedimentation rate. After arrival of the flow, the sedimen-
tation rate is almost constant, resulting in a linear increase in
deposit thickness with time, with no change associated with
the transition from supercritical to subcritical flow. The de-
cay in sedimentation rate associated with the cessation of the5

flow is much more gentle than that of dynamic pressure. Vari-
ations in flow characteristics also occur along transect 3. At
360 s, transect 3 (Fig. 10b) shows a sharp increase in thick-
ness at a distance of 16 km from the source that at later stages
develops into a backward-propagating hydraulic jump. Fig-10

ure 9 shows flat topography for this transect, but analysis of
Fig. 8 shows that the increase in thickness is related to the
flow interaction with the island of Sebesi.

Trends in deposit thickness closely follow those in solid
volume fraction: both decrease exponentially with distance15

from the source (Figs. 10 and 11). The solid volume frac-
tion and deposit thickness have slightly lower decay rates at
distances of less than 2 and 5 km for transect 1 and 2, respec-
tively, and more subtly at distances of approximately 5 km
for transect 4. These increases relate to locations where the20

flow is in a subcritical regime; i.e. the flow is thicker and has
higher Richardson numbers, equivalent to lower velocities.
These slightly higher values of the solid volume fraction and
consequently of sedimentation rates (see Eq. 19) are related
to flow interaction with topography, whereby the flow slows25

and thickens and has higher sedimentation upstream of bar-
riers. The solid volume fraction and deposit thickness trends

differ significantly for transect 5, which has large changes
in topographic elevation as it crosses the island of Rakata,
close to the source. Both profiles show the same decay as 30

seen in the other transects in the first couple of kilometres
from the source, before decreasing sharply and, at distances
of around 10 km from the source, showing a slight increase.
These trends can be explained by the flow interaction with
Rakata, which has a height of > 700 m (Fig. 9). The flow 35

is unable to overtop this barrier and instead flows around it,
converging downstream. The decrease to a zero solid volume
fraction and deposit thickness represents the sheltered part of
Rakata that the flow does not reach (Figs. 10 and 11).

Figures 10f and 11f show a general increase and then de- 40

crease in the water vapour volume fraction of the flow with
distance from the source. This is shown in greater detail in
Fig. 13, where the water vapour volume fraction is plot-
ted alongside the volume fractions of the other flow com-
ponents. For the γis,wv coefficient used in this simulation, 45

we can see that along both transects, the water vapour vol-
ume fraction can reach large values of up to almost 0.75. The
relative amounts of water vapour and atmospheric air also
vary as the flows interact with topography, with transect 1
showing a decrease in water vapour and an increase in en- 50

trained air as the flow travels over Panjang to the east. Tran-
sect 3 shows steady variations in water vapour and entrained
air, with the water vapour volume fraction quickly increas-
ing and entrained air decreasing in the first couple of kilome-
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tres. There is then a gradual decrease in the amount of water
vapour and an increase in entrained air over the next 15 km.
This is related to a decrease in temperature towards the flow
front, which results in lower thermal energy of the deposit-
ing particles available for seawater vaporization. The sharp5

decrease in water vapour and increase in air correspond to
the flow front. Transect 3 does not intersect any topography,
resulting in consistent trends with distance from the source
at 360 s. However, at 1320 s, some subtle variation in both
water vapour (a slight decrease) and the entrained air volume10

(a slight increase) fraction are seen between 10 and 15 km
from the source. This is the result of the changing shape of
the hydraulic jump that formed around the island of Sebesi.
Additional simulations were performed to show the effect of
the γis,wv coefficient ofCE19 flow characteristics, and relevant15

figures are available in the supplementary materialsTS12 .
A thorough discussion about the optimal choice of the rhe-

ological model and input parameters for PDCs, in particular
those over water, requires an extensive comparison with phe-
nomena and events at numerous volcanoes to accurately in-20

form input parameters and sufficient observations with which
to validate model results. More accurate measurements are
needed to achieve a better calibration of the model. This,
however, is beyond the scope of the present work.

7 Conclusions25

We have presented developments to the physical model
and the open-source numerical code IMEX_SfloW2D (de’
Michieli Vitturi et al., 2019). They consist of the general-
ization of the shallow-water equations to describe a polydis-
perse fluid–solid mixture, including terms for sedimentation30

and entrainment of solids and water vapour, transport equa-
tions for solid particles of different sizes, transport equations
for different components of the carrier phase, and an equa-
tion for temperature/energy. Constitutive equations allow us
to adapt the numerical code to solve different types of geo-35

physical mass flows (landslides, debris flows, lahars, snow
and rock avalanches, pyroclastic avalanches), and here we
have presented its application to the simulation of transient
PDCs. The model resolves the depth-averaged flow veloc-
ity and density and does not account for the effects of in-40

ternal flow stratification. In particular, it cannot be applied to
PDCs in which the basal, concentrated flow interacts with the
overlaying dilute ash cloud in a two-layer system (Shimizu
et al., 2019). It is therefore suited to describing PDC end-
members (either a concentrated pyroclastic avalanche or an45

inertial PDC). The numerical code has been tested to verify
its capability to describe both sub- and supercritical regimes,
as appropriate for large-scale, ignimbrite-forming eruptions.
The results of synthetic numerical benchmarks demonstrate
the robustness of the numerical code facing transcritical50

flows. Moreover, they highlight the importance of simulat-
ing transient in comparison to steady-state flows and flows

in 2D versus 1D currents. Finally, the example application to
the Krakatau volcano shows the capability of the numerical
model to face a complex natural case involving the propa- 55

gation of PDCs over the sea surface and across topographic
obstacles, showing the relevance, at a large scale, of non-
linear fluid dynamic features, such as hydraulic jumps and
von Kármán vortices. It is important to remark that, even if
the 2D applications presented here are for radially spreading 60

flows, the code is not restricted to these kinds of flows but
can be applied, with the proper inlet conditions, to any kind
of flow over a 2D topography.

In future versions of the code, we plan to adapt an ap-
proach similar to that presented for Newtonian laminar flows 65

in Biagioli et al. (2021), where the depth-averaged equations
have been modified to account for the vertical variation in
velocity and temperature. The proposed modifications were
implemented in the first version of IMEX-SfloW2D, and the
applicability of such approaches to velocity and particle con- 70

centration profiles for dilute pyroclastic density currents has
been shown in Keim and de’ Michieli Vitturi (2022). Further-
more, in order to extend the range of the applications of the
model and to allow for the numerical discretization of non-
conservative terms, such as those appearing in multi-layer 75

models and in approaches proposed in Fyhn et al. (2019) for
the simulation of the constant velocity phase of channelized
flows, we plan to implement the finite-volume schemes pro-
posed in Diaz et al. (2019) in the code. We also point out
that the present version of the code implements a rather sim- 80

plified model for particle settling velocity, and in the future
we plan to adopt more recent and accurate treatments for
its calculations. For simple spheres, as assumed here, there
are drag laws that avoid the jump in the Lun and Gidaspow
drag law (Clift and Gauvin, 1971; Haider and Levenspiel, 85

1989), which can result in numerical problems when velocity
is computed with an iterative numerical scheme. In addition,
the use of a drag law for spheres in the case of natural sed-
iments/volcanic particles is an important simplification that
can lead to overestimating the terminal velocity and hence 90

the sedimentation rate in the flow. We remark that the adop-
tion of more complex models (Ganser, 1993; Bagheri and
Bonadonna, 2016; Dioguardi et al., 2018) would also require
knowledge of additional parameters characterizing the shape
of the particles, which are not always easy to retrieve. 95

In conclusion, the depth-averaged model introduced in this
study offers a promising avenue for advancing probabilistic
volcanic hazard assessment. By providing a computationally
efficient alternative to traditional 3D models, it significantly
reduces the computational burden while still capturing, as 100

shown by the Krakatau application, essential aspects of vol-
canic flows. For instance, for the simulation of the Krakatau
case study for 1800 s, the code required 2 h of computational
time on a seventh-generation Kaby Lake Intel Core i7 pro-
cessor, which could be substantially reduced with a parallel 105

run on multiple cores. Moreover, the utilization of a high-
performance computing (HPC) system further amplifies the



22 M. de’ Michieli Vitturi et al.: IMEX_SfloW2D v2

potential of the depth-averaged model in probabilistic vol-
canic hazard assessment, enabling the execution of a large
number of simulations within a reasonable time frame. This
makes the model well-suited for practical applications where
timely hazard assessment is crucial.5

Appendix A: Derivation of depth-averaged governing
equations for variable density flows

In this part of the Appendix we present the derivation of
the depth-averaged momentum and energy equations. For the
sake of simplicity, we present the derivation by considering10

the ordinary gravity g, instead of the reduced gravity g′, with-
out friction terms. Furthermore, we present the derivation for
a flow over a 1D topography parallel to the x axis. In this
case, B = B(x, t) and h= h(x, t) are functions of x and t
only, and the velocity vector is v = (u,w), where u and w15

are the horizontal and vertical components, respectively (see
Fig. A1).

A1 Momentum equation

The momentum equation is derived by integrating the
Navier–Stokes equations in conservative form over the thick-20

ness of the flow and by applying appropriate boundary con-
ditions at the top (free surface) and the bottom (topography)
of the flow.

For a flow with no mass exchange with the surrounding en-
vironment and over an impermeable terrain constant in time25

( ∂B
∂t
= 0), the following kinematic conditions at the free sur-

face and at the flow bottom (Johnson, 1997) are usually em-
ployed:

∂(B +h)

∂t
= w(x,B +h, t)− u(x,B +h, t)

∂(B +h)

∂x

w(x,B, t)− u(x,B, t)
∂B

∂x
= 0.30

The first condition states that the (moving) free surface
must always be composed of fluid particles, i.e. that the free-
surface elevation changes at a rate equal to the velocity of the
flow in the direction perpendicular to the surface. The second
condition states that the fluid velocity directed perpendicular35

to a solid boundary must vanish on the boundary itself.
However, here we consider atmospheric air entrainment

and solid sedimentation, which affect both the topography
and the free-surface elevations. For this reason, the classical
equations presented above are modified in the following way:40

∂B

∂t
+ u(x,B, t)

∂B

∂x
−w(x,B, t)=

ns∑
is=1

Ss,is ,

∂(B +h)

∂t
+ u(x,B +h, t)

∂(B +h)

∂x
−w(x,B +h, t)= Ea.

In a 2D static Eulerian frame of reference (see Fig. A1),
the momentum equation for the horizontal component of the

Figure A1. Model variables for a 1D flow. B is the topography ele-
vation, h denotes flow thickness, and u and w are the horizontal and
vertical components at the point (x,z).

velocity for a generic fluid parcel at the point (x,z) and with 45

velocity (u,w), without shear stress and external forces, is
written in the following way (Anderson and Wendt, 1995,
Eq. 2.42a):

∂(ρmu)

∂t
+
∂(ρmu

2)

∂x
+
∂(ρmuw)

∂y
=−

∂p

∂x
. (A1)

If we integrate between B and B +h on both sides of the 50

equation, we can apply the Leibniz rule to the first term of
the vertically integrated momentum conservation equation,
obtaining

B+h∫
B

∂(ρmu)

∂t
dt =

∂

∂t

B+h∫
B

ρmudz+ ρmu(B)
∂B

∂t

− ρmu(B +h)
∂(B +h)

∂t
= 55

∂

∂t
(ρmhū)+ ρmu(B)

∂B

∂t
− ρmu(B +h)

∂(B +h)

∂t
,

where in the last equality we assumed that the density does
not vary with depth and where we denoted with ū the depth-
averaged horizontal velocity:

ū=
1
h

B+h∫
B

udz. 60

In a similar way, we apply the Leibniz rule to the integral
of the second term on the left-hand side of the momentum
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equation:

B+h∫
B

∂(ρmu
2)

∂x
dz=

∂

∂x

B+h∫
B

ρmu
2dz+ ρmu

2(B)
∂B

∂x

− ρmu
2(B +h)

∂(B +h)

∂x
=

∂(ρmh
¯u2)

∂x
+ ρmu

2(B)
∂B

∂x
− ρmu

2(B +h)
∂(B +h)

∂x
,

where we denote with ¯u2 the depth-averaged value of the5

square of the horizontal velocity as

¯
u2
=

1
h

B+h∫
B

u2dz.

For the integral of the last term on the left-hand side of the
momentum equation, we can apply the fundamental theorem
of calculus:10

B+h∫
B

∂ρmuw

∂z
dz= ρmu(B +h)w(B +h)− ρmu(B)w(B).

Thus, by summing the three terms, the integral of the left-
hand side of the momentum Eq. (A1) is

∂

∂t
(ρmhū)+

∂

∂x
(ρmh

¯
u2)+ ρmũ(B)

[
∂B

∂t
+ u(B)

∂B

∂x
−w(B)

]
−ρmũ(B +h)

[
∂(B +h)

∂t
+w(B +h)− u(B +h)

∂(B +h)

∂x

]
.

In the previous equation, we denoted with the symbol ũ15

the horizontal velocities at the bottom and at the free-surface
interfaces. It is important to observe that at each of these in-
terfaces we have two different velocities, one internal to the
fluid and one external, and ũ represents the velocity that con-
tributes to the change in the terrain elevation or in the free-20

surface elevation. The first one changes because of particle
sedimentation from the flow, so the velocity to consider is
that of the flow. Conversely, the free-surface elevation change
is associated with entrainment of atmospheric air, which we
assume still. For this reason, ũ(B+h)= 0, and the last term25

is neglected, resulting in a simpler form of the integral of the
left-hand side of the momentum equation:

∂

∂t
(ρmhū)+

∂

∂x
(ρmh

¯
u2)+ ρmu(B)

ns∑
is=1

Ss,is .

For the integral of the right-hand side of the momentum
equation (pressure term), we assume a hydrostatic pressure30

profile; i.e.

p(x,z, t)=

B+h∫
z

∂p (x,z, t)

∂z
dz= ρg (B +h− z) . (A2)

To integrate the pressure term, we again apply the Leibniz
rule to compute the term

B+h∫
B

∂p (x,z, t)

∂x
dz=

∂

∂x

B+h∫
B

p(x,z, t)dz+p(x,B, t)
∂B

∂x
35

−p(x,B +h, t)
∂

∂x
(B +h)=

∂

∂x

[
−ρmg

(B +h− z)2

2

]B+h
B

+ ρmgh
∂B

∂x

=−
∂

∂x

[
ρmg

h2

2

]
+ ρmgh

∂B

∂x
.

If we assume that the vertical variations in the horizon-
tal velocity are negligible, we can replace ū and ¯u2 with u 40

and u2, respectively, where u represents the depth-averaged
horizontal component of the velocity. With this assumption,
combining the expression obtained for the integral of the left-
and right-hand sides of the momentum equation, we obtain
the following equation: 45

∂

∂t
(ρmhu)+

∂

∂x
(ρmhu

2)=−ρmu

ns∑
is=1

Ss,is

+
∂

∂x

[
ρmg

h2

2

]
− ρmgh

∂B

∂x
. (A3)

In Eq. (A2), for the sake of simplicity, we neglect the con-
tribution of the atmospheric pressure inCE20 the hydrostatic
pressure by assuming that the pressure is null at the free sur-
face. When the contribution of the atmospheric pressure is 50

considered, we obtain an equation with the reduced gravity
instead of the ordinary gravity.

A2 Derivation of energy equation for variable density
flows

In this part of the Appendix we present the derivation of 55

the depth-averaged total energy equation, under the same as-
sumption that led to the derivation of the depth-averaged mo-
mentum equation.

The desired equation is obtained by integrating over the
flow depth the total energy equation for a 2D flow without 60

shear stress (Anderson and Wendt, 1995, Eq. 2.64):

∂

∂t

[
ρm

(
e+

u2
+w2

2

)]
+
∂

∂x

[
ρm

(
e+

u2
+w2

2

)
u

]
+
∂

∂z

[
ρm

(
e+

u2
+w2

2

)
w

]
=−

∂(up)

∂x
−
∂(wp)

∂z
+wρmg,

where e = CvT is the internal energy of the flow.
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By using the Leibniz rule, the integral of the first term of
the left-hand side of the energy equation is

B+h∫
B

∂

∂t

[
ρm

(
e+

u2
+w2

2

)]
dz=

∂

∂t

B+h∫
B

[
ρm

(
e+

u2
+w2

2

)]
dz

+

[
ρm

(
e+

u2
+w2

2

)]
z=B

∂B

∂t
5

−

[
ρm

(
e+

u2
+w2

2

)]
z=B+h

∂(B +h)

∂t
.

Proceeding in a similar way, the second term can be writ-
ten as
B+h∫
B

∂

∂x

[
ρm

(
e+

u2
+w2

2

)
u

]
dz=

∂

∂x

B+h∫
B

[
ρm

(
e+

u2
+w2

2

)
u

]
dz10

[
ρm

(
e+

u2
+w2

2

)
u

]
z=B

∂B

∂x

−

[
ρm

(
e+

u2
+w2

2

)
u

]
z=B+h

∂(B +h)

∂x
.

For the integration of the third term of the left-hand side,
we apply the fundamental theorem of calculus:

B+h∫
B

∂

∂z

[
ρm

(
e+

u2
+w2

2

)
w

]
dz=15

[
ρm

(
e+

u2
+w2

2

)
w

]
z=B+h

−

[
ρm

(
e+

u2
+w2

2

)
w

]
z=B

.

If we assume that T , ρm and u do not vary with depth, then
we can write the left-hand side of the energy equation in the
following way:

∂

∂t

[
ρmh

(
e+

u2+w2

2

)]
+
∂

∂x

[
ρmh

(
eū+

u3+ uw2

2

)]
20

−

[
ρm

(
e+

u2
+w2

2

)]
z=B+h[

∂(B +h)

∂t
+ u(B +h)

∂(B +h)

∂x
−w(B +h)

]
+

[
ρm

(
e+

u2
+w2

2

)]
z=B

[
∂B

∂t
+ u(B)

∂B

∂x
−w(B)

]
.

As for the momentum equation, we observe that the terms
in the square brackets depending on the free-surface and to-25

pography elevation are associated with air entrainment and

particle sedimentation rates. Furthermore, it is important to
remark that air entrainment does not carry any kinetic energy
in the flow but only thermal energy, and both energies are
lost due to particle sedimentation. With this in mind, we can 30

rewrite the equation above in the following way:

∂

∂t

[
ρmh

(
e+

u2+w2

2

)]
+
∂

∂x

[
ρmh

(
eū+

u3+ uw2

2

)]

−ρaCaTaEa+

ns∑
is=1

[
ρs,is

(
Cs,isT +

u(B)2+w(B)2

2

)]
Ss,is .

We compute now the integral of the pressure and gravi-
tational terms. The first term on the right-hand side of the 35

energy equation can be integrated by applying the Leibniz
rule:
B+h∫
B

∂(up)

∂x
dz=

∂

∂x

B+h∫
B

p(x,z, t)u(x,z, t)dz

+p(x,B, t)u(x,B, t)
∂B

∂x

−p(x,B +h, t)u(x,B +h, t)
∂(B +h)

∂x
= 40

∂

∂x

B+h∫
B

p(x,z, t)u(x,z, t)dz+ ρmghu(B)
∂B

∂x
.

In the second equality, the last term on the left-hand side is
null because we assumed the hydrostatic pressure is null at
the free surface. In the equation above, the integral of the
product of the pressure and the horizontal velocity is com- 45

puted by approximating the horizontal velocity with ū and
by substituting p(z)= ρmg(B +h− z), obtaining

∂

∂x

B+h∫
B

p(x,z, t)ū(x, t)dz=

∂

∂x

u(x, t) B+h∫
B

ρmg(B +h− z)dz

= ∂

∂x

[
ρmgū

h2

2

]
.

The second pressure term on the right-hand side of the en- 50

ergy equation, when integrated over the flow depth, is
B+h∫
B

∂(wp)

∂z
dz= p(x,B +h, t)w(x,B +h, t)

−p(x,B, t)w(x,B, t)=−ρmghw(B +h).

This term, if we assume that the variations in the verti-
cal component of the velocity with flow depth are negligible, 55

cancels out with the integral of the work done by the gravita-
tional force:
B+h∫
B

wρmg = ρmghw̄.
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Now, if we sum all the terms, we have

∂

∂t

[
ρmh

(
e+

u2+w2

2

)]
+
∂

∂x

[
ρmh

(
eū+

u3+ uw2

2

)]

+
∂

∂x

[
ρmgū

h2

2

]
=−ρmghu(B)

∂B

∂x

− ρaCaTaEa+

ns∑
is=1

[
ρs,is

(
Cs,isT +

u(B)2+w(B)2

2

)]
Ss,is .

If we neglect the contribution of the vertical component5

of the velocity to the kinetic energy and we assume that the
horizontal velocity is constant (u(z)= ū), we have

∂

∂t

[
ρmh

(
e+

u2

2

)]
+
∂

∂x

[
ρmhu

(
e+

u2

2

)
+ ρmgu

h2

2

]
=

− ρmghu
∂B

∂x
+ ρaCaTaEa

−

ns∑
is=1

[
ρs,is

(
Cs,isT +

u(B)2+w(B)2

2

)]
Ss,is .10

By neglecting the vertical component of the velocity we
have a small error in the kinetic energy. For this reason, when
the equation for the total energy is solved and the tempera-
ture is computed from the total energy, a small error is also
present in the temperature.15

A3 Derivation of primitive variables from conservative
variables

The model solves for the following set of conservative vari-
ables:

Q=
(
Q1, . . .,Q5+ns

)
= (ρmh,ρmhu,ρmhv,ρmeh,

hρs1αs1 , . . .,hρsnαsn ,hρwvαwv). (A4)20

In order to evaluate the fluxes and the other terms
in the governing equations, we need to write, in
terms of

(
Q1, . . .,Q4+ns

)
, the primitive variable P=

(h,hu,hv,T ,αs1 , . . .,αns ,u,v), which completely defines
the state. In this part of the Appendix we describe the pro-25

cedure implemented in the code to compute these quantities
from the conservative variables.

First of all, mass fractions of solid phases and water vapour
are computed as

xs,is =
Q4+is

Q1
is = 1, . . .,ns xwv =

Q5+ns

Q1
, (A5)30

and these allow us to also obtain the mass fraction of air:

xa = 1−
nS∑
is=1

xs,is − xwv. (A6)

In this way, mass-averaged quantities of the averaged spe-
cific heat Cv can be written in the following way:

Cmix =

ns∑
is=1

xs,isCs,is + xwvCwv+ xaCa. (A7)35

Once the average specific heat is known, temperature can
be computed from the total specific energy, expressed byQ4,
in the following way:

hρmCvT =

[
Q4−

Q2
2+Q

2
3

2Q1

]

⇒ T =
1

Q1Cv

[
Q4−

Q2
2+Q

2
3

2Q1

]
. (A8)

From the temperature it is possible, through the equation 40

of state, to calculate the density of air (ρa =
P
RaT

) and water
vapour (ρwv =

P
RwvT

) and then the density of the mixture:

1
ρmix
=

ns∑
is=1

xs,is

ρs,is
+
xa

ρa
+
xwv

ρwv
. (A9)

Mixture density is used to compute flow thickness and vol-
ume fractions: 45

h=
Q1

ρmix
, αs,is =

xs,isρmix

ρs,is
, αwv =

xwvρmix

ρwv
,

αa =
xaρmix

ρa
. (A10)

Flow velocities are computed from the conservative vari-
ables. Here, as done in ...TS13 , a desingularization is applied
in order to avoid division by very small numbers and thus
velocities that are too large: 50

u=

√
2Q1Q2√

Q4
1+max(Q4

1,ε)

, v =

√
2Q1Q3√

Q4
1+max(Q4

1,ε)

. (A11)

Finally, volumetric fluxes hu and hv are not computed di-
rectly from the conservative variables but from the primitive
variables obtained from Eqs. (A10) and (A11):

hu= h · u, hu= h · v. (A12) 55

Code and data availability. The numerical code, benchmark tests
and documentation are available at https://github.com/demichie/
IMEX_SfloW2D_v2 (last access: 16 December 2022). Pre-
processing scripts (to change the grid resolution and the numerical
schemes) and post-processing scripts (to plot the solution variables 60

and to create animations) are also available. Furthermore, some of
the examples presented in this paper have a page description on
the model wiki (https://github.com/demichie/IMEX_SfloW2D_v2/
wiki, last access: 16 December 2022), where detailed information
on how to run the simulations is given. The digital object iden- 65

tifier (DOI) for the version of the code documented in this pa-
per is https://doi.org/10.5281/zenodo.7476737 (de’ Michieli Vitturi,
2022). TS14
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