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Abstract. This paper develops a calibration methodology of the artificial absorbing techniques typically used by

Fourier pseudo-spectral time-domain (PSTD) methods for geoacoustic wave simulations. Specifically, we con-

sider the damped wave equation (DWE) that results from adding a dissipation term to the original wave equa-

tion, the sponge boundary layers (SBL) that apply an exponentially decaying factor directly to the wavefields, and

finally, a classical split formulation of the Perfectly Matched Layer (PML). These three techniques belong to the5

same family of absorbing boundary layers (ABL), where outgoing waves and edge reflections are progressively

damped across a grid zone of NABL consecutive layers. The ABLs used are compatible with a pure Fourier for-

mulation of PSTD. We first characterize the three ABL with respect to multiple sets of NABL and their respective

absorption parameter for homogeneous media. Next, we validate our findings in heterogeneous media of in-

creasing complexity, starting with a layered medium and finishing with the SEG/EAGE 3-D Salt model. Finally,10

we algorithmically compare the three PSTD-ABL methods in terms of memory demands and computational cost.

An interesting result is that PML, despite outperforming the absorption of the other two ABLs for a given NABL

value, requires approximately double the computational time. The parameter configurations reported in this ar-

ticle, can be readily used for PSTD simulations in other test cases, and the ABL calibration methodology may be

applied to other wave propagation schemes.15
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1 Introduction

The Fourier Pseudo-Spectral Time-Domain (PSTD) method has been applied to wave propagation problems in,

e.g., electromagnetism Filoux et al. (2008), photonics Pernice (2008); Li et al. (2000), room acoustics Spa et al.

(2011), or outdoor acoustics Hornikx et al. (2010), among others. It is based upon replacing the spatial derivatives20

with their equivalent in the Fourier domain. If computed on Cartesian grids, the spatial accuracy order of PSTD is

proportional to the amount of grid nodes in each direction and wavefields can be accurately modelled with as few
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as two points per minimum wavelength, i.e. only limited by the Nyquist-Shannon theorem. The frugal require-

ments of the method made it popular in early applications to seismic modeling in the 1980’s, given the limited

computer memories available at the time. For example, we find Kosloff and Baysal (1982); Fornberg (1987, 1988);25

Etgen and Dellinger (1989); Daudt et al. (1989). Recent applications have focused on complex Earth models and

parallel implementations, see for instance Klin et al. (2010); Peng and Cheng (2016); Xie et al. (2016, 2018). PSTD

applications in geophysics are typically defined on unbounded domains or half-spaces, thus requiring effective

numerical methods to avoid reflections from the computational boundaries of the domain under study. This is a

restriction that can be found in all other numerical methods for wave propagation, but is more relevant for PSTD30

methods. The main reason is that Fourier transforms assume periodicity of wavefields at domain boundaries.

A decaying value of the variables towards zero at the boundaries is a possible solution that ensures periodicity.

However, if there are imperfections in such decay, strong numerical errors related with the Gibbs phenomenon

Fornberg (1998); Canuto et al. (1988) can manifest. Periodicity at artificial boundaries can be achieved, for ex-

ample, by means of absorbing boundary layers (ABL), where outgoing waves and edge reflections are gradually35

attenuated along several grid layers until reaching the domain’s boundary. Such ABL are characerized by the bal-

ance between the number of absorbing layers used before each boundary and the parameters chosen to control

the rate of the absorption, i.e. how abruptly the absorption increases at each layer of the ABL. Too strong an

aborption profile will result in reflected energy within the absorbing layers and too weak an absorption profile

will result in high-amplitude waves reaching the boundary and thus reflecting back into the domain.40

It is worth considering that ABL are not the only techniques used to absorb waves in numerical simulations. For

example, Reynolds- or Higdon-type absorbing boundary conditions (ABC) Reynolds (1978); Higdon (1986, 1987)

impose values on the variables directly at the boundary, usually splitting the wave equation into one-sided ver-

sions locally. Neverheless, such ABCs have not been adopted in PSTD methods, to our knowledge, and thus are

not part of this work.45

The first ABL technique that we will consider in the present work is the damped wave equation (DWE) Israeli

and Orszag (1981) that follows a simple analytical formulation by adding a dissipative term directly to the acous-

tic wave equation. Remarkably, the physical connotation of the damping term facilitates the formal analysis of

reflection and transmission coefficients at the ABL region for acoustic waves, and also enables similar formula-

tions and analyses of DWE for alternative propagation models. Such formulations and studies were undertaken50

in the pioneering work Kosloff and Kosloff (1986), that also presents an early DWE application to 2-D PSTD acous-

tic modeling. Recently, Spa et al. (2014) presented an analytical and numerical study on optimal damping pro-

files of DWE applied to PSTD acoustic wave propagation. Besides the aforementioned studies we have found no

literature analyzing DWE for PSTD. Additional studies using DWE for a variety of wave phenomena and finite

difference (FD) methods can be found in Israeli and Orszag (1981), Sochacki et al. (1987) and Bodony (2006).55

The second ABL technique that will be analyzed is the sponge boundary layer (SBL) proposed in Cerjan et al.

(1985). Here, the amplitude of wavefields are progressively attenuated by directly applying to them a damping
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factor of increasing value at the absorbing layers. This technique does not stem from a modified wave equation

and its underlying principles are unclear. Nevertheless, Cerjan et al. (1985) provided with a recomendation re-

garding ABL size and damping factor and, due to its simplicity, SBL has been widely used for PSTD applications60

Reshef et al. (1988); Fornberg (1998). There exist several applications to FD schemes as well, such as Bording

(2004); Dolenc (2006); Matsumoto et al. (2009). In particular, Bording (2004) proposes alternative optimal values

for SBL size and damping.

The third and last ABL analyzed are the Perfectly Matched Layer (PML). PML were introduced in electromag-

netism by Bérenger (1994, 1996) and rapidly became an absorbing method of choice in this field, see e.g. Chew65

and Weedon (1994); Kaufmann et al. (2008); Bérenger (2015). Following its success for electromagnetism, the

method was successfully adapted to seismic modelling (e.g., Chew and Liu (1996); Komatitsch and Tromp (2003);

Kristek et al. (2009)). The coupling of PML to PSTD methods starts with the pioneer work by Liu Liu (1998a) to

simulate acoustic wave propagation in heterogeneous media, followed by studies in similar and more general

rheologies Liu (1998b); Klin et al. (2010); Giroux (2012); Spa et al. (2014); Xie et al. (2016). The analytical, contin-70

uous, PML formulation results in a reflection-less interface between physical domain and ABL. However, upon

discretization, the discrete damping profiles reflect energy back to the domain and, more importantly, instabil-

ities arise. Therefore a problem-dependent optimization of PML parameters must be undertaken to find stable

and efficient discrete implementations. In the case of FD methods, some examples include Lisitsa (2000); Ko-

matitsch and Martin (2007); Kristek et al. (2009).75

In this work, we compare the characteristics of all three ABL methods mentioned above combined with PSTD

schemes. In Section 2, we present the mathematical formulation of the ABL methodologies under study, in the

framework of PSTD methods, as well as theoretical aspects specific to each of them. In Section 3, we perform a

calibration of ABL parameters in homogeneous media, by means of analyzing the energy absorbed and the ac-

curacy of seismic experiments for a massive simulation set. In Section 4 we use results from the calibration and80

analyze their validity for two different heterogeneous test cases. Finally, in Section 5, we introduce an analysis re-

garding the memory footprint and computational time required by each ABL technique in a realistic application.

Finally, in Section 6, we present our concluding remarks and future work.

2 The Fourier PSTD method and ABL types

The Fourier PSTD method can be considered a particular case of finite differences (FD) on Cartesian grids where85

spatial derivatives are substituted with differentiation in the spectral (Fourier) domain. This means that any spa-

tial derivative requires a forward and inverse Fourier transform for the direction differentiated. By multiplying the

variable in the spectral domain by (ιk)n we obtain the n-th derivative of the variable, with ι the imaginary unit

and k the wave number. In the particular case of the linear wave equation, or constant-density acoustic wave

equation, two formulations are popular. On one hand the first-order velocity-pressure formulation, also known90
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as Euler formulation, in absence of forcing terms, reads

∂p

∂t
=−ρc2∇∇∇ ·v+ s, (1)

ρ
∂v

∂t
=−∇∇∇p, (2)

where p is pressure, v the particle velocity, ρ the density (taken constant and homogeneous), c the wave speed

and s a known source term. On the other hand the second-order equation where the only variable is pressure,95

which reads

∂2p

∂t2
= c2∆p+

∂s

∂t
, (3)

where ∆ is the Laplacian operator. The parameter c= c(x,y,z) can vary spatially and the variables p= p(x,y,z, t)

and v = v(x,y,z, t) can also evolve in time. The source term s= s(x,y,z, t) will be omitted in the following. We

restrict our analysis to sources that are bounded in space and time and differentiable.100

The Euler formulation tends to be less memory efficient than the second-order formulation, because it requires

more spatial variables to be stored and differentiated, but is well suited to some numerical applications where

first derivatives are relevant. This is the case, for example, of the classical split PML formulation that depends on

directional derivatives of both the pressure and velocity fields. Other ABL such as DWE and SBL do not require

additional differentiation and thus can be solved directly using the second-order formulation.105

In the following we will use Cartesian regular grids, where all spatial differential operators employ forward and

inverse 1-D Fast Fourier Transforms (FFT) along each Cartesian direction. We will consider constant time and

spatial sampling, δt and δ, respectively. Hence we discretize space and time according to (x,y,z, t)∼ (iδ,jδ, lδ,nδt)

and will use the triplet (i, j, l) to describe any point in the spatial grid, while using the n index to describe the time

step. Under the aforementioned discretization, the Laplacian operator applied to the variable p results in110

∆p|ni,j,l ≈F−1x
[
(ιkx)2Fx[p|n:,j,l]

]
+F−1y

[
(ιky)2Fy[p|ni,:,l]

]
+F−1z

[
(ιkz)

2Fz[p|ni,j,:]
]
, (4)

where F and F−1 denote the 1-D discrete Fourier Transform and its inverse, respectively, and the subindex in-

dicates the direction of transformation. Furthermore k = (kx,ky,kz) is the wavenumber vector, ι=
√
−1 and the

: symbol refers to the indexes affected by the transforms. Our computational domains may be either fully un-

bounded or a half space. In the former case ABLs apply to all six faces of the domain whereas in the latter five115

faces require ABLs and at the top face a free-surface condition is applied. In all examples in this work we will use

second-order explicit time stepping based upon finite-differencing the time derivatives. Higher-order in time

versions of PSTD can be found in Spa et al. (2020), which could be applied to the ABLs described here with some

modifications.

2.1 Generalizations of the Absorbing Boundary Layers120

All ABLs considered in the following will be presented using a unified representation of the grid. We will assume

that the computational domain includes both grid points of the physical domain and grid nodes of the absorbing
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layers. The grid of the physical domain has size (Nx,Ny,Nz) and we will consider NABL nodes added at each of

the six faces of the domain as absorbing boundary layers. Furthermore, an additional node at the boundary of

the computational domain is added, whose variable value is forced to zero at each time step. It is important to125

remark that these extra nodes are essential to avoid the Gibbs phenomenon at the edges of the spatial mesh. Note

that spectral derivatives require imposing periodicity to the spatial distributions, therefore in this way, we ensure

spatial periodicity in any direction of the mesh.

Figure 1. A vertical cross section of the computational mesh, along a y grid plane, where d is shown in a grey colored scale.

Finally, black dots are nodes where pressure is forced to have a value 0.

Figure 1 illustrates a 2D slice of such a grid. The area inside the dashed line is the physical domain and the

outside grid nodes belong to the absorbing layers and boundary. In the following we will consider that the extent130

of source terms is confined to the physical domain. Each grid node within the absorbing layers has a character-

istic distance to the physical domain named d where di,j,l =
√

(dxi,j,l)
2 + (dyi,j,l)

2 + (dzi,j,l)
2 and dβi,j,l is the distance

in grid nodes from (i, j, l) to the closest node of the main grid in the β ∈ {x,y,z} direction. In the figure, the gray

scale represents the value of d at each point of the boundary layers. The definition of suitable absorption param-

eters for each ABL that depend explicitly on d, and become zero inside the main grid (i.e. when d= 0) allows all135

ABL formulations in the following to use a global updating scheme. In other words, the same scheme is applied

equally to all grid points in the computational domain, regardless of them being part of the physical domain or

the absorbing layers. There remains a last issue in order to solve the wave equation in the computational do-

main from parameters of the physical domain: The velocity c(x,y,z) is only defined within the physical domain.

However we need to assign a velocity value to each node in the computational domain in order to solve the wave140

equation. We choose in the following a direct continuation strategy where all absorbing-layer nodes take their
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velocity value from the closest physical-domain grid-node velocity value. For a homogeneous model this result

in the whole computational domain sharing the c value of the physical domain.

2.2 The damped wave equation (DWE)

The DWE is derived from the linear wave equation (3) by adding a dissipative term that depends on the first-order145

temporal derivative of the acoustic pressure, and reads

∂2p

∂t2
+σ

∂p

∂t
= c2∆p, (5)

where σ = σ(x,y,z) is the coefficient of the damping term.

We use the standard second-order and central FD approximations for both temporal derivatives in (5). Fur-

thermore, we split the discrete acoustic pressure into Cartesian projections, i.e.,150

p|n+1
i,j,l = px|n+1

i,j,l + py|n+1
i,j,l + pz|n+1

i,j,l , (6)

where these acoustic projections px|n+1
i,j,l , py|n+1

i,j,l and pz|n+1
i,j,l , are updated according to

px|n+1
i,j,l =

σi,j,lδt− 2

σi,j,lδt + 2
px|n−1i,j,l +

4

σi,j,lδt + 2
px|ni,j,l +

2(ci,j,lδt)
2

σi,j,lδt + 2
F−1x

[
(ιkx)

2Fx
[
p|n:,j,l

]]
,

py|n+1
i,j,l =

σi,j,lδt− 2

σi,j,lδt + 2
py|n−1i,j,l +

4

σi,j,lδt + 2
py|ni,j,l +

2(ci,j,lδt)
2

σi,j,lδt + 2
F−1y

[
(ιky)

2Fy
[
p|ni,:,l

]]
,

pz|n+1
i,j,l =

σi,j,lδt− 2

σi,j,lδt + 2
pz|n−1i,j,l +

4

σi,j,lδt + 2
pz|ni,j,l +

2(ci,j,lδt)
2

σi,j,lδt + 2
F−1z

[
(ιkz)

2Fz
[
p|ni,j,:

]]
. (7)155

We first update the acoustic projections by solving (7) and then compute the acoustic pressure at time tn+1 by

means of (6), that results in an explicit time-marching method. Where σi,j,l = 0, the scheme reduces to a classical

second-order in time explicit PSTD scheme for the second-order wave equation. In practical terms, DWE is ap-

plied to unbound wave propagation problems by assuming a zero σ inside the physical domain slowly increasing

its value as we approach the boundary. The larger the value of σ the higher the absorption, although too steep160

a spatial change in σ can lead to artificial reflections. Here, we consider a linear variation of σ with respect to

distance to the main grid of physical simulation, namely

σi,j,l = σ0
di,j,l
NABL

, (8)

We remark that we have found the dimensionless quantity σ0δt better for the characterization of DWL absorption

than σ0, hence when calibrating DWL we will use (NABL,σ0δt) tuples to characterize different experiments for a165

fixed physical domain. Finally, it is worth to mention that there exist other profiles that perform better, see for

instance Spa et al. (2014) that they suggest order 3 and 4 polynomial absorbing profiles. However, in this analysis,

we chose a linear profile because we prefer to focus on both, the calibration methodology and the design of the

numerical experiments, rather on studying specific absorbing profiles of each method.
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2.3 The sponge boundary layer (SBL)170

Our second ABL under study is the SBL technique presented by Cerjan in Cerjan et al. (1985). The main formula-

tion is based upon the second-order wave equation for pressure p, but also requires its temporal derivative ṗ as

an auxiliary dependent variable. The reason for this requirement is that part of the damping is applied directly

on ṗ. As a consequence, in PSTD we adopt a temporal staggered sampling of p and ṗ, so that both variables are

computed with central differences of δt step. The time marching algorithm consists on a two-step scheme, where175

ṗ is computed at the temporal half step n+1/2, for a subsequent computation of p at the full step n+1. Similar to

DWE, we also split both dependent variables into three Cartesian projections, and each projection is computed

independently. The scheme starts with a first step

ṗx|
n+ 1

2

i,j,l = µi,j,l · ṗx|
n− 1

2

i,j,l +µi,j,l · c2i,j,lδt · F−1x
[
(ιkx)

2Fx
[
p|n:,j,l

]]
,

ṗy|
n+ 1

2

i,j,l = µi,j,l · ṗy|
n− 1

2

i,j,l +µi,j,l · c2i,j,lδt · F−1y
[
(ιky)

2Fy
[
p|ni,:,l

]]
,180

ṗz|
n+ 1

2

i,j,l = µi,j,l · ṗz|
n− 1

2

i,j,l +µi,j,l · c2i,j,lδt · F−1z
[
(ιkz)

2Fz
[
p|ni,j,:

]]
, (9)

where µi,j,l is a space-dependent absorption parameter, defined below, whereas the second step reads

px|n+1
i,j,l = µi,j,l

[
px|ni,j,l + δt · ṗx|

n+ 1
2

i,j,l

]
,

py|n+1
i,j,l = µi,j,l

[
py|ni,j,l + δt · ṗy|

n+ 1
2

i,j,l

]
,

pz|n+1
i,j,l = µi,j,l

[
pz|ni,j,l + δt · ṗz|

n+ 1
2

i,j,l

]
. (10)185

Equations (9) and (10), followed by the step given by Eq. (6), result in an explicit time-marching scheme. In the

present work we follow Cerjan et al. (1985), to define values of µi,j,l as follows

µi,j,l = e−(µ0·di,j,l)2 , (11)

where µ0 is SBL’s dimensionless absorbing parameter. We will explore (NABL,µ0) tuples for a fixed physical do-

main in upcoming sections. It is important to mention that this profile is neither polynomial nor dependent on190

NABL. As we mentioned in the previous subsection, we do not focus our attention on particular profiles, but

rather on a methodology to calibrate the main parameters. Definitely there should be a dependence between

the parameter and NABL. However, as our methodology always analyzes tuples of NABL and the parameter, such

dependence loses relevance, at least for our purposes.

2.4 The Perfectly Matched Layer (PML)195

The PML’s formulation, Bérenger (1994), requires first derivatives of the absorbed variables, in our case: pressure

p and velocity v. The first-order Euler formulation of the wave equation (2) involves all directional spatial deriva-

tives required by the PML implementation, thus it is natural to adopt this formulation for PML. The PSTD-PML
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method is a two-step time-staggered marching algorithm, that first updates the particle velocity components,

vx|
n+ 1

2

i+ 1
2 ,j,l

=
1

1 +αxi,j,lδt

(
vx|

n− 1
2

i+ 1
2 ,j,l
− δt
ρ
· F−1x

[
ιkxFx

[
p|n:,j,l

]])
,200

vy|
n+ 1

2

i,j+ 1
2 ,l

=
1

1 +αyi,j,lδt

(
vy|

n− 1
2

i,j+ 1
2 ,l
− δt
ρ
· F−1y

[
ιkyFy

[
p|ni,:,l

]])
,

vz|
n+ 1

2

i,j,l+ 1
2

=
1

1 +αzi,j,lδt

(
vz|

n− 1
2

i,j,l+ 1
2

− δt
ρ
· F−1z

[
ιkzFz

[
p|ni,j,:

]])
, (12)

to finally compute the values of each projection of the acoustic pressure,

px|n+1
i,j,l = (1−αxi,j,lδt) · px|ni,j,l− ρc2i,j,lδt · F−1x

[
ιkxFx

[
vx|

n+ 1
2

:,j,l

]]
,

py|n+1
i,j,l = (1−αyi,j,lδt) · py|

n
i,j,l− ρc2i,j,lδt · F−1y

[
ιkyFy

[
vy|

n+ 1
2

i,:,l

]]
,205

pz|n+1
i,j,l = (1−αzi,j,lδt) · pz|ni,j,l− ρc2i,j,lδt · F−1z

[
ιkzFz

[
vz|

n+ 1
2

i,j,:

]]
. (13)

Together with equation (6) we have a complete updating scheme. Above, the space-dependent parameter ααα=

(αx,αy,αz) is the vector quantity that controls PML absorption. Contrary to DWE or SBL, whose absorption de-

pends, locally, only on the nodal distance to the main grid, in PML the outward direction from the physical do-

main is equally relevant. Similar to DWE (see eq. 8), we define a linear increase ofααα components up to a maximum210

absorbing value α0, i.e.

αααi,j,l = α0
di,j,l
NABL

d̂i,j,l , (14)

where d̂ is the unit vector from (i, j, l) to the closest point in the physical domain’s grid, namely

d̂i,j,l =

(
dx

di,j,l
,
dy

di,j,l
,
dz

di,j,l

)
. (15)

Similar to DWL, we remark that we have found the dimensionless quantity α0δt to be better at characterizing215

PML absorption than α0, hence when calibrating PML we will use (NABL,α0δt) tuples to characterize different

experiments for a fixed physical domain.

Finally, we would like to mention that the velocity-pressure scheme (12) and (13) is stated on a staggered spatial

mesh, where shifting the spectral derivatives is critical to eliminate artifacts produced by the source generation,

as previously reported in Ozdenvar and McMechan (1996).220

2.5 Stability Bound and Dispersion Error

Before our application exercises, we briefly comment on the stability of PSTD and its dispersion properties. At

uniform grids and using second-order explicit time integration, a Von-Neumann analysis of PSTD in unbounded

acoustic media yields the following bound for conditional stability

S = max{ci,j,l}
δt
δ
≤ 2

π
√

3
, (16)225

8



In (16), S is the Courant-Friedrichs-Lewy (CFL) number. In the case of a homogeneous medium ci,j,l = c, this

theoretical analysis also leads to the following expression for dispersion errors

cnum
c

=
πδt

T sin
(
πδt
T

) . (17)

Above, cnum is the numerical wave speed and T is the period of the given plane wave used in the Von-Neumann

analysis. Thus, the spatial and temporal grid samplings must fulfill the inequality in (16) to guarantee stable230

simulations. However, the numerical accuracy of PSTD simulations is mainly driven by the dispersion errors

quantified by (17), which only depend on the time step. As a consequence, in practical PSTD applications, the

spatial step can be fixed to the largest value allowed by the Nyquist sampling limit, but the time step must be

taken much smaller than the one allowed by the stability bound, in order to control dispersion anomalies. In

other words, low-dispersive accurate PSTD simulations can be achieved using optimal S values, which are far235

below the limit established by Eq. (16). These Von-Neumann analytical results and suitable choices on space and

time resolution are reported in the broad literature on PSTD methods (e.g., Gazdag (1981); Fornberg (1998, 1987),

and also Spa et al. (2020) for a recent review).

The coupling of the ABL techniques presented above to a PSTD method does not alter the stability and disper-

sion properties of PSTD in lossless unbound acoustic media. The physical attenuation experienced by acoustic240

waves at any frequency along the ABL regions only reinforces the boundedness of the numerical solution and

thus favors the damping of short period oscillations induced by dispersion.

3 Calibration of ABL Parameters

In the previous Section we have written the formulations of all three ABL and remarked that two main param-

eters control absorption in each of them. Namely, the size of the absorbing layer NABL, which is a parameter245

shared by all ABLs, and a specific parameter that depends on each ABL, namely σ0, µ0 and α0 for DWE, SBL

and PML, respectively. In the case of DWL and PML the absorption parameters have dimension of inverse time,

thus in order to analyze absorption in a dimensionless framework we will use the tuples (NABL,σ0δt), (NABL,µ0)

and (NABL,α0δt) for DWE, SBL and PML, respectively. Our study aims at characterizing the absorption profiles,

namely absorption as a function of the tuples described above, of all three ABLs by means of experimentation. For250

homogeneous media, several authors have explored absorption parameter optimization through formal reflec-

tivity and transmission analyses, for a particular ABL technique. For instance, Israeli and Orszag (1981); Kosloff

and Kosloff (1986); Spa et al. (2014) formally study damping profiles in the case of DWE, while analyses on PML

parameterization for elastodynamics can be found in Chew and Liu (1996); Collino and Tsogka (2001). For seis-

mic wave propagation, Gao et al. (2017) compare the empirical performance of different absorbing techniques255

on acoustic heterogeneous test cases using Finite Difference methods.
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3.1 Methodology

Our characterization effort involves 1) finding appropriate tests for which a reference exists, 2) finding suitable

metrics that measure the absorption performance of the methods against the reference, 3) establishing absorp-

tion thresholds that classify the absorption and 4) for each classification and ABL, finding the parameter tuple260

that requires the least absorption nodes orNABL. We will refer to such tuple, for each ABL, as the optimal tuple. In

this sense optimality refers to reaching the desired absorption with the minimum possible number of grid points.

The first step to create an absorption measure is quantifying the total energy in the physical domain (not in-

cluding the ABL) at any given time sample. Thus, we define the following quantity which is proportional to the

(discrete) L2 norm,265

E|n =

Nx∑
i=1

Ny∑
j=1

Nz∑
l=1

(p|ni,j,l)2 , (18)

and the corresponding dimensionless proxy,

Ê|n =
E|n

max
n∈[0,Nt]

E|n
, (19)

where the energyE|n is normalized by the maximum energy value present in the problem. Another key ingredient

to create an absorption measure consists on building a proper reference signal, i.e. namely ÊREF . Let us assume270

that this signal can be constructed whether numerical simulations or analytical expressions. In any case, the

following quantity is defined,

∆Ê =

Nt∑
n=n0

∣∣∣ÊREF |n− Ê|n∣∣∣δt . (20)

Note that n0 can be any value within the discrete time interval and its value, as well as the computation of ÊREF ,

would be obtained depending on the specifications of the problem. For example, in problems where it is im-275

possible to characterize the energy via analytical expressions, we will use numerical simulations to compute the

reference solutions in the whole discrete time range, i.e. n0 = 0. In these cases, when the scenarios and the source

characterizations are complex, we will build reference solutions by considering simulations with large number of

ABL compared to the original simulation carried out to obtain Ê. This way, we ensure lower contributions due to

boundary reflexions getting an idea about the sensibility on the ABL implementation with respect to the number280

of absorbing nodes, NABL. In other words, ∆Ê provides information on the differences between two signals, the

computed signal, Ê and the reference signal, ÊREF . It means that low values of ∆Ê represent strong similarities

on both signals whereas high values of ∆Ê exhibit differences between them.

On the other side, for problems where the domain has a constant propagation velocity, c, and the energy is

injected by means of a source that is punctual and finite in time. If we know when the source stops injecting285
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energy and when the energy inside the physical domain must be zero (the time iteration n0), we can assume that

ÊREF |n = 0 for n≥ n0 and, therefore, we define,

ε= log(∆Ê) = log

(
Nt∑
n=n0

Ê|nδt

)
. (21)

Instead of Eq. (20) that would be a measure of similarity between two signals, ε represents the remanent energy

obtained due to the ABL approximation. In fact, it is worth pointing out that, under these conditions, the energy290

inside the physical domain at n≥ n0 should be null and, consequently, it means that Eq. (21) provides direct

information about the absorbing features of the ABL implementation. Note that, in the next section, the calibra-

tion of the ABL approximations has been done by using the ε definition through Eq. (21). This way, we are able to

measure the absorption performance of the three different methods under a same reference solution.

Moreover, It is important to highlight that the methodology for calibration of ABLs presented in this work is295

based upon three main components. Firstly, using representative models, secondly, establishing suitable metrics

for absorption and finally, reducing the calibration to two parameters. We are not adding any assumptions regard-

ing the underlaying PDEs used (linear acoustic waves, in our case). Similarly there are no assumptions tied to the

numerical method (pseudospectral time-domain, in our case). Nevertheless two modifications are foreseen for

broadening the applicability of the method. On one hand, in the case of using other physical models, we would300

need to modify Eq. (21) with an alternate energy proxy. On the other hand, in the case of using other numerical

methods, we may need to replace NABL with an alternative parameter that is a measure of the thickness of the

ABL with respect to the minimum wavelength. The actual results of the calibration, of course, would be different

for other PDEs and methods, but the calibration methodology is only expected to require the aforementioned,

minor, modifications.305

Finally mention that, for all scenarios in the following, the main grid remains identical and we modify only the

size of the ABL zone and its associated absorption parameter. We will always exploit the spatial discretization

characteristics of PSTD, thus using the coarsest grid possible at 2 points per minimum wavelength (ppw). All

sources used will be point sources in space and Ricker wavelets in time. All numerical experiments that follow

use our bespoke PSTD-ABL implementations using the g++ C compiler version 4.5.3.1-1, under -lm and -O3310

optimization flags, and linking the FFTW3 library version 3.3.4-2. All simulations have been performed by an

Intel Core i7-6820HK processor running at 2.70GHz under the Linux operating system.

3.2 Calibration for a homogeneous cube

We first consider a cube of size 500× 500× 500 m3 with a constant wave velocity ci,j,l = 2000 m·s−1, and place a

point source at the central location. The source time function is a Ricker wavelet with peak at 10 Hz, and hence a315

maximum frequency of ≈ 25 Hz, that excites a wavefield of minimum wavelength λmin ≈ 80 m. Note that we use

a regularization of Dirac’s delta function for the spatial component of point sources, which is a gaussian. In time
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we chose a Ricker wavelet which is the second derivative of a gaussian. We attempt, with this process to avoid

contributions beyond the Shannon-Nyquist sampling theorem.

We take a grid step of δ = 40 m and a temporal step of δt = 0.002 s, thus ensuring a stability number S = 0.1320

that is less than 30% of the stability limit. For this example, the wavefields leave the main grid at n0 = 208. This

specific value of n0 results from the maximum travel time from source to the corners of the domain (108 time

steps) and the time needed to finish injecting 95% of the energy from the source wavelet (100 time steps). After n0

the remaining energy in the domain comes from reflections at the ABL. As mentioned, we use Eq. (21) to measure

the absorbing perfomance of the ABL implementations.325

Next, we perform a numerical exploration of the NABL-absorption parameter pairs, using the samples in Ta-

ble 1. For each ABL, we vary bothNABL and their respective absorption parameter, thus resulting in 620 scenarios

per ABL.

Table 1. Sampling of the absorption parameters and absorbing layer size used for parameter exploration, for each ABL

NABL σ0δt (DWE) µ0 (SBL) α0δt (PML)

min 4 0.001 0.001 0.001

max 34 0.31 0.0414 0.61

increment 1 0.0163 0.0021 0.032

samples 31 20 20 20

(a) (b) (c)

Figure 2. The grey scale depicts ε as a function ofNABL and the absorbing parameters for (a) DWE, (b) SBL and (c) PML. Light

greys indicate better absorption. Notice the smaller number of absorbing layers (vertical axis) used by PML.

Figure 2 depicts ε values for the parameter ranges considered in Table 1 that include results for DWE (a), SBL

(b) and PML (c) techniques. In the case of PML we restrict the vertical axis to NABL ≤ 16 as this results in already330

sufficient absorption of wavefields. For all cases there is an increase of absorption with NABL and we have a

window of optimal absorption parameters which depends mildly onNABL. All ABL methods reach an absorption

performance of ε <−6 in the explored NABL range. PML is the most efficient technique because only requires

NABL = 16 to achieve this ε threshold. Alternatively, DWE reaches the same absorption using NABL = 32, while
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SBL employsNABL = 30. Both PML and DWE absorption improve consistently withNABL. Conversely, SBL seems335

less sensitive to increasing NABL and absorption seems to saturate after a given NABL value.

Table 2 shows, for several ε thresholds, which is the minimum NABL and coupled absorption parameter value.

In the threshold range −6< ε <−3.5, DWE and PML deliver comparable accuracy, but the former needs at least

twice the NABL value than the latter. Relative to DWE, SBL achieves same absorption for nearly similar NABL.

Finally, Figure 3 compares the time evolution of our energy proxy Ê|n for each ABL technique, for three ε thresh-340

old values given in Table 2. For each ABL technique, significant differences on the Ê magnitude among these three

curves are early observed, soon after n0 iterations. In the DWE and SBL cases, large differences of the absorption

efficiency persist during allNt = 1000 iterations, but slighter differences are observed in PML curves. In next sec-

tion, these three reference parameter sets will be exercised and compared, in ABL applications to heterogeneous

test cases.345

Table 2. Optimal pairs of NABL and associated ABL parameter found for each ε threshold.

DWE SBL PML

Accuracy NABL σ0δt NABL µ0 NABL α0δt

ε <−3 5 0.086 7 0.031 4 0.065

ε <−3.5 7 0.071 8 0.030 4 0.097

ε <−4 10 0.056 11 0.020 5 0.097

ε <−4.5 14 0.041 14 0.016 6 0.097

ε <−5 18 0.041 17 0.012 9 0.097

ε <−5.5 25 0.025 23 0.007 12 0.065

ε <−6 32 0.025 30 0.005 16 0.065

(a) (b) (c)

Figure 3. The time evolution of the energy proxy Ê|n in logarithmic scale for the (a) DWE, (b) SBL and (c) PML techniques.

ABL parameters are set as per Table 2.
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3.3 Accuracy analysis for geophysical imaging

In addition to sheer energy absorption it is important to analyze the impact of our different ABL in practical

imaging applications. As a simple yet representative test, we analyze a reverse time migration (RTM) case in a ho-

mogeneous model with a single source and receiver. In reverse-time migration (see e.g., Claerbout et al. (1985))

an image, or reflectivity map, of the subsurface is obtained by means of two seismic simulations. A forward sim-350

ulation propagates the source wavelet signal through the domain of interest, whereas a backward simulation

propagates the data recorded in the field for that same source, reverted in time. By correlating the wavefields

of forward and (time-reversed) backward simulations we generate the image of the subsurface, which indicates

regions of impedance in the subsurface that may have generated the observed data. RTM has the advantage over

other imaging modalities of supporting completely heterogeneous 3D velocity models, as well as incorporating355

all finite-frequency phenomena associated with acoustic waves, such as multiple reflections or scattering. On

the other hand it is costly in terms of computation (it relies on simulations) and inherits all inaccuracies of the

wavefield simulation algorithms (e.g. imperfect boundaries) which may result in artifacts in the image. A calibra-

tion exercise frequent to imaging, and specifically to RTM, is known as impulse response image, see for instance

Claerbout et al. (1985); Ng (2007). In an impulse response a single-source image is generated by placing a single360

hypothetical receiver at the same location as the source. The receiver may include several well known pulses,

which when imaged into the domain of interest, result in patterns that can be analyzed to assess how accurate

images can be obtained at different, e.g. depths or frequencies. For a homogeneous-model impulse response,

there is no preferred origin for the reflections, which are imaged as concentric half-spheres of finite width cen-

tered at the source/receiver locus. Furthermore, the amplitude of the resulting image is independent on energy365

spread, and thus any disagreement between the expected and modelled image is due to modelling errors. In our

case, we choose to investigate the vertical image column of the impulse-response image that contains the source

(and receiver). For such simple configuration it is easy to obtain an exact solution to the problem, and hence

we can use a time-frequency analysis Kristekova et al. (2006) to check the quality of our image. Time-frequency

analysis typically refers to temporal signals. As in our case the image exists in the spatial domain, we can refer to370

an analogous space-wavenumber analysis.

We use the same model, grid steps δ and δt, and wavelet as in Section 3.2 with the following exceptions: the do-

main size is enlarged to 4×4×4 km3, and the source is placed at (2,2,0) km. A receiver is located at the same point

as the source. The data signal, in this impulse response study, contains three pulses, equal in shape to the source

wavelet, but with peaks at 1, 2 and 3 seconds, respectively (see Figure 4 (a)). Given the homogeneous velocity375

2000 m·s−1, the data is mapped in the image as three concentric half-spheres centered at the source/receivers

location and with radii 1, 2 and 3 km, respectively, see Figure 4. These particular radii are the distances compati-

ble with acoustic reflectors generating the data (i.e. three wiggles, at 1, 2 and 3 s). In order to assess the accuracy
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Figure 4. (a) Reflectivity image (in greyscale) from an impulse response in homogeneous media, with the receiver data in

horizontal and a close-up of the exact image column in vertical. (b) Example of image column results compared to the exact

reference (top) and the envelope and phase errors between them (bottom). The discrete sum of the error curves results in EM

and PM respectively.

of the ABLs, we use the same ABL parameterizations obtained in Section 3.2 (see Table 2) and we measure both

envelope (EM) and phase (PM) misfits with respect to the reference solution.380

Table 3. Envelope Misfits (EM) and Phase Misfits (PM) obtained when using the three ABL techniques under different ε accu-

racy thresholds. Both EM and PM are dimensionless quantities.

DWE EM PM SBL EM PM PML EM PM

ε <−3 0.2073 0.0930 ε <−3 0.1622 0.0701 ε <−3 0.1995 0.0727

ε <−3.5 0.1599 0.0919 ε <−3.5 0.1310 0.0498 ε <−3.5 0.1443 0.0563

ε <−4 0.1233 0.0705 ε <−4 0.1180 0.0460 ε <−4 0.1236 0.0494

ε <−4.5 0.1190 0.0674 ε <−4.5 0.1106 0.0444 ε <−4.5 0.123 0.0478

ε <−5 0.1184 0.0653 ε <−5 0.1146 0.0448 ε <−5 0.1175 0.0464

ε <−5.5 0.1309 0.0672 ε <−5.5 0.1147 0.0443 ε <−5.5 0.1149 0.0454

ε <−6 0.1234 0.0669 ε <−6 0.1134 0.0448 ε <−6 0.1146 0.0452

Table 3 presents the results in terms of EM and PM with respect to the absorption configurations found in

Table 2. As expected, and further validating the findings of Section 3.2, for high ε thresholds the misfits EM and

PM are small. Both errors decrease monotonically for PML, whereas misfits delivered by SBL and DWE show

some oscillations in the range −6< ε <−5. In all cases, we find SBL performing slightly better than both DWE

and PML, and in the case of highest absorption ε <−6, its performance is comparable to PML for both PM and385
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EM metrics. We can thus conclude that the parameterization pairs obtained in the previous sections result in

better image accuracy as the absorption of the ABLs increases, i.e., as the ε threshold decreases.

As an additional comparison, we compute the same impulse response exercise using an algorithm popular in

geophysical imaging: finite-differences with 8th order in space, 2nd order in time and using δ = 20 m and δt =

0.003454 s. In this case we obtain EM∼ 0.14 and PM∼ 0.07 when using 2nd order Higdon paraxial ABCs. Both390

numbers can be matched, and improved, by using the algorithms presented here. Notice that the spatial grid of

this alternative scheme is considerably larger that the one used with the PSTD method presented in this study,

due to the higher points per wavelength needed in finite-difference schemes.

4 Validation of ABL parameters in heterogeneous media

The Earth’s subsurface is largely heterogenous across many scales. In such environments wavefields become395

more complex, involving scattering, reflections and refractions, among other phenomena. As a consequence, a

generalized calibration of ABLs is not possible, as all models are fundamentally different from each other. Our

goal when studying ABLs in heterogeneous media is assessing whether their fundamental behaviour remains,

i.e. absorption increases steadily with NABL, and if our calibration results, which were obtained for homogenous

models, are also useful for heterogenous models. We remark that we will use a direct continuation strategy to400

populate velocity values at the absorbing layers, as defined in the first subsection of Section 2.

4.1 Three-layered Medium

First, we consider a 3D cuboid physical domain involving three flat layers of wave speeds 2000, 4000 and 6000

m·s−1, respectively. The central layer is 1320 m thick, being the top and bottom layers both half-spaces. The

source parameters and the size of the domain is the same as in Section 3.2. However, in this test case, the Ricker405

point source is located 1300 m above the first material interface, and therefore inside the top layer, but still central

in the other two directions. We run simulations for Nt = 5000 iterations, for a total simulation time of 10 s.

In Figure 5, we show the evolution of our energy proxy Ê|n during the simulation time. We observe Ê|n di-

minishing for all cases after the first approximately 1000 iterations. The rate at which Ê|n is reduced afterwards

depends on the ABL and the threshold used. We remark that the ABLs are parameterized following Table 2. Con-410

sistent with previous observations in Figure 3 for homogenous media, lower ε thresholds result in better absorp-

tion. In addition, if we focus on long-term absorption (i.e. at iteration 5000 or Ê|5000), DWE at ε <−6 reaches the

smallest energy proxy values among all methods and configurations, whereas PML delivers small energy proxy

values regardless of the parameter configuration chosen. DWE appears to be the most sensitive ABL to parameter

changes, having the largest difference between best and worse absorption among all methods tested.415
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(a) (b) (c)

Figure 5. The time evolution of the energy proxy Ê|n in logarithmic scale for the three-layered test using (a) DWE, (b) SBL and

(c) PML. ABL parameters are set as per Table 2.

4.2 The SEG-EAGE Salt Model

As a final and more realistic scenario, we use the 3-D SEG/EAGE Salt 3D model (see, e.g., Yoon et al., 2003) and test

our ABL for a modelling exercise. This model has been extensively used for benchmarking exercises in geophysics

because it includes features typically observed in the subsurface. The model dimensions are (7.5,7.5,3.6) km, and

we locate a point source at (xs,ys,zs) = (3.75,3.75,0) km. In this model, the wave speed varies from 1500 m·s−1420

at the top water layer, to 4200 m·s−1 inside the salt body (see Figure 6). We add an ABL to each boundary of the

physical model resulting in an unbounded domain. We remark that we are not adding a free surface condition to

be compatible with the calibration exercise of the previous sections which also were unbounded. As in previous

experiments, we use a Ricker source wavelet with a maximum frequency of 25 Hz and adapt the grid spacing to

δ = 30 m to accomodate the model’s minimum velocity. Similarly, the time discretization is δt = 0.002 s, which425

results in a maximum stability number S = 0.28. In this test case, PSTD simulations last for 4 s, i.e., they involve

Nt = 2000 time iterations. In order to quantify the absorption for such a complex model we need to run several

Figure 6. A vertical cross section, along the z-x plane located at y = 6800 m, of the 3D SEG/EAGE Salt velocity model. The white

(high-velocity) part is a salt body.
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configuration of ABLs and compare to a reference. To construct such reference solution, we use the PSTD simu-

lation that employs PML using the parameters associated with maximum absorption in Table 2 and NABL = 120.

Absorption for each ABL is next quantified using this reference. As illustration, Figure 7 compares the wavefield

at time step 430 (t=0.86s) obtained when using the best DWE configuration reported in Table 2 with the reference430

solution. Specifically, snapshot at the left side uses DWE with σ0δt = 0.0025 and NABL = 32, whereas snapshot at

the right side uses the reference PML configuration. The central figure shows the difference between these two

snapshots at this time step. Most differences appear from a reflected wavefront by the top ABL in simulations

using DWE. As the PSTD algorithm and simulation parameters are identical, i.e., time and grid stepping, these

differences arise from the less effective absorption achieved by DWE.435

Figure 7. Snapshots of pressure at t= 0.86 seconds using DWE with σ0δt = 0.025 and NABL = 32 at the top left and PML with

α0δt = 0.065 and NABL = 120 at the top right. The bottom image shows their difference (p̂ref |n− p̂|n)2 in logarithmic scale.

We run simulations using all 3 ABLs using all absorption parameter pairs reported in Table 2, and compute the

corresponding errors using the metric defined in (20) for n0 = 0 and the reference solution based on PML. The

results are reported in Table 4 for all cases. For each ABL, errors steadily diminish with lower ε thresholds, i.e., as

we sequentially employ the optimal parameters pairs given in Table 2. This is a remarkable result, as it confirms

the results from Section 3.2, i.e., we can use the calibration parameters obtained from a homogeneous case and440

observe improvements in absorption in a complex heterogeneous case. Results in Table 4 are also consistent

18



with the absorption improvements achieved by using the three parameter choices employed in the previous

three-layered medium test. Finally, please notice that under the same ε threshold, most PML errors in Table 4 are

smaller than those reported by SBL, while DWE delivers the larger errors. However, the slightly lower efficiency

of DWE compared to SBL might be related to this particular SEG-EAGE model, and results can be reversed in a445

different seismic scenario, as already observed in the three-layered test (see Figure 5).

Table 4. Errors ∆Ê computed on the SEG/EAGE 3D Salt model using the absorption parameter pairs reported in Table 2.

NABL σ0δt DWE NABL µ0 SBL NABL α0δt PML

5 0.086 0.0515 7 0.031 0.0419 4 0.130 0.1083

7 0.071 0.0291 8 0.030 0.0228 4 0.097 0.0277

10 0.056 0.0142 11 0.020 0.0106 5 0.097 0.0077

14 0.041 0.0083 14 0.016 0.0060 6 0.097 0.0028

18 0.041 0.0037 17 0.012 0.0036 9 0.097 0.0023

25 0.025 0.0033 23 0.007 0.0019 12 0.065 0.0013

32 0.025 0.0013 30 0.005 0.0010 16 0.065 0.0010

5 Comments on the Computational Times of ABL techniques

In this section, we discuss on the computational times obtained for our different ABLs coupled with PSTD acous-

tic wave simulations. Of course, observations in terms of compute time are less objective measures, because

times are affected by the algorithm design, compilation optimization, coding skills and libraries employed, hence450

we do not suggest that our findings are universal. Nevertheless, we will start our analysis with two theoretical as-

pects or considerations. Finally, we remark that for all methods, we solve the complete absorbing equation for

each grid node, only using non-zero values for the absorbing parameters inside the absorbing layers.

First we consider the memory footprint of PSTD using the three ABLs. As formulated in Section 2, our three

ABLs require storage of 7 3D arrays. Each array covers the computational domain of size (Nx + 2NABL)(Ny +455

2NABL)(Nz + 2NABL). In particular, DWE uses px|n+1, py|n+1, pz|n+1, px|n, py|n, pz|n, p|n, SBL uses px|n+1, py|n+1,

pz|n+1, ṗx|n+1, ṗy|n+1, ṗz|n+1,p|n and PML uses px|n+1, py|n+1, pz|n+1, vx|n+1/2, vy|n+1/2, vz|n+1/2, p|n.

Lastly we consider the amount of operations required per time update. Both DWE and SBL compute a single

1D spectral derivative of p|n along each coordinate, while PML computes an additional differentiation for each

velocity component. Therefore, DWE and SBL benefit from the second-order linear wave equation formulation460

and require half the number of Fourier transforms than the PML-based algorithm, which relies upon the first-

order Euler formulation. Although the previous theoretical discussion considers the same number of absorbing
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Figure 8. Computational time of all ABLs at different grids, characterized by their total number of nodes.

Table 5. Relative computing time τ with respect to the reference solution for the experiment 1 in Section 4.2. All ABL parame-

ters follow ε thresholds in Table 2. Average, minimum and maximum times are included in the last three columns, respectively.

Method ε <−3 ε <−3.5 ε <−4 ε <−4.5 ε <−5 ε <−5.5 ε <−6 τ̂ τmin τmax

DWE 0.0287 0.0549 0.0214 0.0627 0.0652 0.0961 0.0542 0.0547 0.0214 0.0961

SBL 0.0611 0.0557 0.0234 0.0399 0.0541 0.0821 0.0451 0.0516 0.0234 0.0821

PML 0.1329 0.1327 0.0778 0.1162 0.1285 0.0613 0.0906 0.1057 0.0613 0.1329

layers for all methods, we must recall that in Sections 3.2 and 4 we have consistently observed that PML requires

about half the absorbing layers NABL than either DWE or SBL for the same absorption. Nevertheless, given the

usual size of geophysical domains, which are much larger than the number of layers considered in ABLs (i.e.465

Nx,Ny,Nz >>NABL) this aspect does not result in a substantial advantage for PML in terms of memory or com-

putational time.

Following the theoretical discussion, we have measured computational times for our PSTD code using the

three ABLs for different grid sizes. In Figure 8, we present the computational times of 28 different grids using the

setup of the experiment 1 in Section 4. The total number of nodes in the grid is defined as (Nx + 2NABL)(Ny +470

2NABL)(Nz + 2NABL) and NABL ranges from 4 to 31. Three different conclusions can be drawn from the figure:

1) computational cost increases, on average, with grid size, as expected; 2) PML is approximately taking twice as

long than either SBL or DWE for the same grid size and 3) there is an important variability in compute cost from
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the average trend, of about 15-20% with respect to the average value. The variability is very similar for all three

ABLs at a single grid, hence stems from the node count and not other specific aspects of the different ABLs. This475

last result can be surprising when compared to other computational methods such as finite-differences or finite-

elements, but stems from the complex heuristics of modern FFT and DFT implementations, as will be further

discussed later in this section. We remark that we use the FFTW3 library version 3.3.4-2 in our study.

To further expand our cost analysis we present results for our experiments in Section 4 comparing computa-

tional times for several ABL configurations relative to those obtained at the reference domain. Such relative time480

metric is referred to as τ . In Table 5 we show relative times for all parametric cases, as well as their average τ̂ and

both minimum and maximum, i.e. τmin and τmax, respectively, among all parameterizations used. In the Table,

we observe that average times τ̂ for PML are about twice that of τ̂ for the other two ABL approaches, as expected

from our previous analysis and consistent with Figure 8. For increasing absorption ranges in Table 5, we require

NABL to be larger for all ABL. Although in other seismic modelling methods this would result in a consistent485

increase in compute time, this is not the case for PSTD. Compute times are rather spread and do not increase

monotonically with respect to ε thresholds. The explanation for this result, consistently with what is observed in

Figure 8, is the following: Novel FFT libraries rely on different factorizations and algorithms in order to optimize

time to solution, for each node count. This results in FFTs that are very fast but also highly susceptible to signif-

icant variations as a function of the sample/node count. We rely on FFTW3 in our case, but similar behaviour490

is observed in other contemporary FFT libraries (see, e.g. Khokhriakov et al., 2018, for an example using Intel

MKL) and should be considered normal for PSTD or other Fourier-based methods. As a final recommendation,

given the small value of NABL with respect to the main grid dimensions in geophysical applications, it might be

beneficial to test different NABL values to reduce computational cost while keeping similar absorption.

6 Conclusions495

In this work, we have reviewed and compared the three main ABL methodologies available in the context of PSTD

simulations for acoustic wave propagation. Specifically, the damped wave equation (DWE), the sponge bound-

ary layer (SBL) proposed in Cerjan et al. (1985), and a classical split perfectly matched layer (PML) formulation,

have been developed and their algorithms outlined. The three ABL are relevant because they allow us to keep

a pure Fourier pseudospectral scheme, without hybrid approximations at the boundaries. Absorption of DWE,500

SBL and PML is controlled by the number of layers NABL and a single parameter specific to each formulation,

i.e., σ0δt, µ0 and α0δt for DWE, SBL and PML, respectively. We have performed a calibration study on a simple

homogeneous medium, extracting optimal configurations (i.e., those with minimum boundary size NABL) for a

series of energy absorption thresholds. To that goal, such configurations have been tested in a series of exercises

of different heterogeneity distributions and complexity. We have established that configurations that resulted505

in high absorption in our calibration, which involved a cube with homogeneous properties and just measured

21



reflected energy, allow us to: 1) obtain better quality in a seismic imaging exercise, both in terms of phase and

amplitude 2) achieve better absorption also in a three-layered model, despite the change in space/time sampling

required by the heterogeneity and the more complex wavefields involved such as reflections and refractions and

3) accomplish better absorption in a complex 3D heterogeneous case. Hence, we can conclude that the config-510

urations obtained in our simple calibration study lead to increased quality of results for all cases tested. Such

configurations are meant to be guidelines for modelling or imaging practitioners which can then be specialized

to fit their accuracy needs.

Comparing the three ABLs with each other is a complex issue. On one hand, DWE and SBL have very similar

formulations and behave similarly in terms of NABL for a given absorption threshold and computational cost.515

On the other hand, PML requires fewer boundary layers for the same absorption level at the price of a higher

overall computational cost, approximately double than DWE and SBL. Among these ABL methods, SBL presents

less sensitivity to the increment of NABL.

To assess absorption performance, we have introduced a dimensionless measure proportional to the total

acoustic energy in the seismic volume, and use its magnitude in the calibration of ABL parameters. This energy520

proxy is consistent with the reflected energy that we qualitatively observe in all test scenarios, and therefore, we

recommend it for similar studies of absorbing methods. The methodology to calibrate ABLs in this work could be

applied to other wave equations such as the elastic wave equation or anisotropic wave equation. We do not ex-

pect the same calibration values to hold across all the equations, but the methodology should reveal the optimal

values for each case. This will be subject of future work.525

We remark that compute times increase with grid size, but not in a steady or monotonic behaviour, as a result

of using modern FFT libraries. Therefore varying the absorption of ABLs by means of larger NABL values does,

unintuitively, not necessarily result in increased computational time. Therefore, compute times are not strictly

predictable other than PML being significantly more expensive in terms of compute time than either DWE or

SBL.530

Code and data availability. Computer codes to run all three test cases are readily available at the Zenodo site https://doi.org/

10.5281/zenodo.8113480 along with a README file to guide code compilation and execution. The input dataset for the EAGE

SEG-SALT test case is available at the Zenodo site https://doi.org/10.5281/zenodo.7821703.
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