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Abstract 31 

Understanding the impact of climate change on year-to-year variation of crop yield is 32 

critical to global food stability and security. While crop model emulators are believed 33 

to be lightweight tools to replaces the raw models, few emulators have been developed 34 

to capture such interannual variation of crop yield in response to climate variability. In 35 

this study, we developed a statistical emulator with machine learning algorithm to 36 

reproduce the response of year-to-year variation of four crop yield to CO2 (C), 37 

temperature (T), water (W) and nitrogen (N) perturbations defined in the Global 38 

Gridded Crop Model Intercomparison Project (GGCMI) phase 2 experiment. The 39 

emulators were able to explain more than 52% variance of simulated yield and 40 

performed well in capturing the year-to-year variation of global average and gridded 41 

crop yield over current croplands in the baseline. With the changes in CTWN 42 

perturbations, the emulators could well reproduce the year-to-year variation of crop 43 

yield over most current cropland. The variation of R and the mean absolute error was 44 

small under the single CTWN perturbations and dual factor perturbations. These 45 

emulators thus provide statistical response surfaces of yield, including both its mean 46 

and interannual variability, to climate factors. They could facilitate spatiotemporal 47 

downscaling of crop model simulation, projecting the changes in crop yield variability 48 

in the future, and serving as a lightweight tool of multi-model ensemble simulation. The 49 

emulators enhanced the flexibility of crop yield estimates and expanded the application 50 

of large-ensemble simulation of crop yield under climate change. 51 

1. Introduction 52 

The impact of climate change on crop yield is an increasing concern of global food 53 

security (Kinnunen et al., 2020). Two distinct approaches have been used to evaluate 54 

the impact of climate change on crop yield, process-based crop models and statistical 55 

models. Process-based crop models are reliable tools to project crop yields under future 56 
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climate change but computationally expensive (Jones et al., 2017). In contrast, 57 

statistical models are lightweight tools that could fit yield response to historical climate 58 

change (Li et al., 2019b) but the relationship between climate factors and crop yield is 59 

based on the historical climate conditions and their effects on crop yields, which can 60 

hardly be used for future projection with new, unprecedented climate conditions. 61 

Therefore, it is promising to develop tools that can reduce the expense of computation 62 

and increase capacity for flexible future projections (Franke et al., 2020a). 63 

 64 

Earlier studies have developed statistical emulators of process-based crop model results 65 

to balance the advantages and disadvantages of process-based crop models and 66 

statistical models. Those statistical emulators were initially developed with “entire 67 

scenarios” (simultaneous changes in climate factors) simulation during historical or 68 

future periods. Emulators have been developed for process-based crop models, like 69 

APSIM (Shahhosseini et al., 2019), GEPIC (Folberth et al., 2019), GWG (Xu et al., 70 

2021), GAZE (Raimondo et al., 2021), and WOFOST (Tartarini et al., 2021), and used 71 

to estimate historical crop yield. As the emulator trained by historical simulation could 72 

not project the crop yield in the future, multiple crop model ensemble simulation in 73 

future climate scenarios were used to calibrate emulators (Blanc, 2017, 2020; Blanc 74 

and Sultan, 2015; Mistry et al., 2017; Ostberg et al., 2018). However, the scenario-75 

based future crop yield projection is not a systematic perturbation of climate factors 76 

(Franke et al., 2020a). For instance, the scenario-based yield projection can only 77 

provide the simulated crop yield driven by simultaneous changes in climate factors. The 78 

dependency of temperature and precipitation will be kept in scenarios, such that the 79 

impact of temperature and precipitation cannot be clearly separated. 80 

 81 

An alternative emulation based on “perturbated factors” training dataset was introduced, 82 

which offers advantages to separate effects of crop yield drivers. The perturbated factors 83 

emulation was first conducted on site-based crop model simulations, which could 84 

estimate the yield across a broad range of CO2, temperature and water (Fronzek et al., 85 
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2018; Makowski et al., 2015; Pirttioja et al., 2015) but these emulators were limited to 86 

the site-level. To break the constrain of site-based simulation, the global gridded crop 87 

model intercomparison (GGCMI) phase 2 provided a simulation dataset across 88 

structured CO2-Temperature-Water-Nitrogen (CTWN) perturbation cubes. This dataset 89 

offered two major advantages: it allows for separating the effects of different climatic 90 

factors and of nitrogen levels on crop yields, and to distinguish the climatological-mean 91 

and year-to-year variation of yields (Franke et al., 2020b). The phase 2 dataset was 92 

published to support the derivation of crop yield- climate change “response surfaces”. 93 

Based on the CTWN cubes, a statistical emulator has been developed providing near-94 

global-coverage multi-model emulators of climatological-mean yield projections from 95 

the GGCMI Phase 2 ensemble by using a regression model with a third-order 96 

polynomial basis function (Franke et al., 2020a). Due to the focus on climatological-97 

mean yield, the aspect of year-to-year variation of yield under CTWN perturbations has 98 

not been fully analyzed or exploited in emulator design.  99 

 100 

For climate change risk assessment, interannual yield variability (or the year-to-year 101 

variation of yield) is an important metric of yield risk (Liu et al., 2021b) and food supply 102 

stability (Liu et al., 2021a) but has been insufficiently addressed in previous studies 103 

(Campbell et al., 2016). Large year-to-year variation of crop yield can influence 104 

livelihoods of producers, food prices (Hasegawa et al., 2021), hunger (Janssens et al., 105 

2020) and even lead to political instabilities (Sternberg, 2011). Recently, year-to-year 106 

variation has been introduced as a metric for climate change risk on global crop 107 

production (Jägermeyr et al., 2021). Developing statistical emulators that can reproduce 108 

the year-to-year variation of yield from the CTWN cubes could therefore provide a 109 

powerful tool for studies focusing on the risk of climate change impact on yield. In this 110 

study, we aimed exclusively to develop statistical emulators to reproduce year-to-year 111 

yield variation with GGCMI phase 2 experiment data. 112 
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2. Data and Methods 113 

2.1 Data 114 

The input and output data for the simulation of global gridded crop yield were obtained 115 

from the GGCMI phase 2 experiment dataset, which includes gridded crop yield 116 

projections at 0.5° longitudinal/latitudinal resolution for maize, spring wheat, winter 117 

wheat, and rice (Franke et al., 2020b). The input data for the process-based simulations 118 

in GGCMI Phase 2 included data of climate, soil, atmospheric CO2 concentration, and 119 

nitrogen fertilizer application rates. Baseline (1980-2010) climate inputs were used 120 

from the AgMIP Modern-Era Retrospective Analysis for Research and Applications 121 

(AgMERRA) forcing dataset, including daily maximum and minimum temperatures, 122 

precipitation, and solar radiation (Ruane et al., 2015). Systematic perturbations were 123 

conducted in each grid cell with seven temperature levels (from -1 K to +6 K in 1K 124 

interval, with +5K skipped), nine precipitation levels (from -50% to +30%, in 10% 125 

interval, with -40% skipped, the Winf precipitation level is simulation under fully 126 

irrigated condition), four CO2-concentration levels (360, 510, 660, and 810 ppm), and 127 

three nitrogen levels (10, 60, and 200 kg/ha). Simulations were repeated for two 128 

adaptation strategies, i.e. no adaptation in cultivar (A0) and adaptation by maintaining 129 

growing season length (A1). Twelve GGCMs were then forced with each of these 130 

perturbations of the original reanalysis weather data. We selected 10 of 12 crop models 131 

in the GGCMI phase 2 experiment for constructing the emulators. These were APSIM-132 

UGOE, CARAIB, EPIC-IIASA, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, 133 

ORCHIDEE-crop, pDSSAT, and PEPIC (Table 1). PROMET and JULES were not 134 

included as they used different climate inputs. 135 

 136 

The GGCMs used a national and subnational crop calendar for crops that is based on 137 

Sacks et al (2010), Portmann et al (2010), and environment-based extrapolations 138 

(Elliott et al., 2015). The crop calendar was used to determine the window to calculate 139 
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the climatic predictors and grid-specific growing season length. The current global 140 

harvested area for identifying currently used cropland was obtained from the spatial 141 

production allocation model (SPAM) whose spatial resolution was 10km. The soil type 142 

data was obtained from the Harmonized World Soil Database (Nachtergaele et al., 143 

2009). 144 

 145 

Table 1 GGCMs included in emulation. Each model offers the same set of CTWN simulations across 146 

four crops. 147 

GGCMs Maize Winter wheat Spring wheat Rice 

APSIM-UGOE √ √ √ √ 

CARAIB √ √ √ √ 

EPIC-IIASA √ √ √ √ 

EPIC-TAMU √ √ √ √ 

GEPIC √ √ √ √ 

LPJ-GUESS × √ √ × 

LPJmL √ √ √ √ 

ORCHIDEE-crop √ √ × √ 

pDSSAT √ √ √ √ 

PEPIC √ √ √ √ 

* LPJ-GUESS omits maize and rice, and ORCHIDEE-crop omits spring wheat (denoted by “×”) 148 

2.2 Methods 149 

Our study focused on the development and evaluation of emulators, which contains the 150 

following steps: 1) defining the predictors used to train the emulators; 2) preparing the 151 

predictors with climatic and non-climatic data; 3) training and cross validating the 152 

emulators with machine learning algorithm; and 4) evaluating the performance of 153 

emulators (Figure 1). 154 

 155 
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 156 

Figure 1 Overall framework of emulator development for GGCMs. Each GGCM-crop combination was 157 

calibrated as an emulator independently. T: temperature, processed separately for daily maximum, and 158 

minimum temperatures, P: precipitation, SRAD: solar radiation, N: nitrogen, Soil: soil properties. When 159 

developing irrigated yield emulator, the precipitation-related predictors are excluded. 160 

2.2.1 Definition and preparation of predictors 161 

All the predictors were computed or adapted from the GGCMs’ input and output 162 

datasets. The climatic predictors were defined at two time-scales, growing season (GS) 163 

and monthly (MON) (Table 2). The growing season average temperature, total 164 

precipitation and average solar radiation were able to explain the variation of 165 

climatological mean yield of GGCM phase2 (Franke et al., 2020a). To improve the 166 

capacity of emulators in reproducing the year-to-year variation of crop model yield, 167 

daily variability and extremes of climate factors during the growing seasons were 168 

considered here. The variation of temperature, precipitation and solar radiation during 169 

the growing seasons were calculated with the standard deviation of their daily values in 170 

each growing season, which represents the intensity of daily fluctuation of weather. 171 

Additionally, the heat and drought were selected to be the extreme climate predictors, 172 

which was quantified by extreme degree day (EDD, cumulative temperature that exceed 173 
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the high temperature threshold, Lobell et al., 2012) and maximum consecutive dry days 174 

(CDD, maximum length of consecutive days without precipitation, Troy et al., 2015), 175 

because the negative effect of these two extremes could be shown by the current GGCM 176 

(Heinicke et al., 2022). Other climate extremes, like excessive wetness, was not used 177 

because the GGCM failed to show the negative effect (Li et al., 2019a; Liu et al., 2022). 178 

 179 

The monthly predictors only consisted of monthly average values. The monthly average 180 

temperature, total precipitation and average solar radiation were harmonized according 181 

to the specific planting date. The number of months was determined with the crop-182 

specific maximum growing season length over the global cropland defined by GGCMI 183 

phase2 experiment. For winter and spring wheat, we prepared the climatic predictors 184 

over 10 and eight months after sowing. For maize and rice, climatic predictors over 185 

eight and seven months after sowing were used, respectively. 186 

 187 

The atmospheric CO2 concentration and the nitrogen application rate were uniformly 188 

distributed predictors. All years and grid cells were set at the same CO2 concentration 189 

and nitrogen application rate for each perturbation. Soil property is an important 190 

temporally constant predictor, whose interaction with climate played important role in 191 

yield simulation and emulator development (Blanc, 2017). As the soil parameter 192 

settings of each GGCM varied, we selected the soil type at each grid to represent the 193 

spatial variation of soil properties. There were 13 soil types, including heavy clay, silty 194 

clay, light clay, silt clay loam, clay loam, silt, silt loam, sandy clay, loam, sandy clay 195 

loam, sandy loam, loamy sand, sand. The most obvious difference across cultivars over 196 

the global croplands is the growing degree requirement to reach maturity, which was 197 

determined by both mean climatology and cultivar traits. To reproduce the length of 198 

days from planting date to maturity date given by GGCMI phase2 crop calendar input, 199 

we added a temporal constant growing season length as a predictor, i.e. temporal 200 

constant growing season length.  201 

 202 
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As the purpose of emulator training is to develop a lightweight tool for crop simulation, 203 

there has always been a trade-off between the goodness-of-fit and the number of 204 

predictors. Therefore, we considered three strategies of using our predictors. “Strategy 205 

A” uses all predictors (the “Full” model), which is expected to derive the best goodness-206 

of-fit. “Strategy B” uses only climatic predictors during growing season scale (the “GS” 207 

model), together with CO2 concentration, nitrogen application rate and site information, 208 

soil class and growing season length. “Strategy C” uses only monthly average climatic 209 

predictors with other location-invariant predictors (the “Mon” model). In general, 210 

strategy B uses the smallest number of predictors, but those predictors need to be 211 

computed from daily climate forcing. Stagey C only relays on monthly climate data, 212 

and therefore is the least costly strategy for data preparation. A comparison between the 213 

three strategies would help us find a good balance between the predictors used and 214 

overall goodness-of-fit of the emulators. 215 

 216 

Table 2 Predictors of emulation. For rainfed yield emulators, we used all these predictors but for fully-217 

irrigated yield emulators, the precipitation predictors were not included. Full, GS and Mon were three 218 

strategies to develop emulators. Full: developing emulators with all the climatic predictors; GS: 219 

developing emulators with climatic predictors during growing season scale; Mon: developing emulators 220 

with climatic predictors during monthly scale. 221 

Predictor 

abbreviations 

Descriptions  References Full GS Mon Time 

Temperature related predictors     

GDDlow-high_GS 

Growing degree day during growing 

season (winter wheat: low=0°C, 

high=30°C; spring wheat: low=5°C, 

high=30°C; maize: low=8°C, 

high=30°C; rice: low=10°C, 

high=35°C)  

(Frieler et al., 2017; 

Jägermeyr et al., 

2020; Lobell et al., 

2012) 
   1 

EDDhigh+_GS 

Extreme degree day during growing 

(winter and spring wheat, maize: 

high=30°C; rice: high=35°C 

(Lobell et al., 2012) 

   1 

Tmax_GSmean 
Average daily maximum temperature 

during growing season 

(Zhu and Troy, 2018) 
   1 

Tmin_GSmean 
Average daily minimum temperature 

during growing season 

(Zhu and Troy, 2018) 
   1 
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Tmax_GSstd 
Standard deviation of daily maximum 

temperature during growing season 

(Zhu and Troy, 2018) 
   1 

Tmin_GSstd 
Standard deviation of daily minimum 

temperature during growing season 

(Zhu and Troy, 2018) 
   1 

Tmax_MONmean 

Harmonized monthly average daily 

maximum temperature (MON=1–10 for 

winter wheat, MON=1–8 for spring 

wheat and maize, MON=1–7 for rice, 

since planting date) 

(Folberth et al., 

2019) 

(Jägermeyr et al., 

2020) 

   1 

Tmin_MONmean 

Harmonized monthly average daily 

minimum temperature (MON=1–10 for 

winter wheat, MON=1–8 for spring 

wheat and maize, MON=1–7 for rice, 

since planting date) 

(Folberth et al., 

2019) 

(Jägermeyr et al., 

2020) 

   1 

Precipitation related predictors     

Pre_GSsum 
Total daily precipitation during growing 

season 

(Troy et al., 2015) 
   1 

Pre_GSstd 
Standard deviation of daily precipitation 

during growing season  

(Zhu and Troy, 2018) 
   1 

CDD_GS 
Consecutive drought day (daily 

precipitation=0) 

(Troy et al., 2015) 
   

1 

Pre_MONsum 

Harmonized monthly total precipitation 

(MON=1–10 for winter wheat, 

MON=1–8 for spring wheat and maize, 

MON=1–7 for rice, since planting date) 

(Folberth et al., 2019) 

(Jägermeyr et al., 

2020) 
   1 

Solar radiation related predictors     

SRAD_GSmean 
Average daily solar radiation during 

growing season 

(Folberth et al., 2019) 
   1 

SRAD_GSstd 
Standard daily solar radiation during 

growing season 

(Folberth et al., 2019) 
   1 

SRAD_MONmean 

Harmonized monthly average daily 

solar radiation (MON=1–10 for winter 

wheat, MON=1–8 for spring wheat and 

maize, MON=1–7 for rice, since 

planting date) 

(Folberth et al., 2019) 

(Jägermeyr et al., 

2020)    1 

Greenhouse gas concentration     

CO2 CO2 concentration (Franke et al., 2020a)    2 

Non-climatic predictors     

N Nitrogen fertilizer application (Franke et al., 2020a)    2 

Soil_type Soil type (Blanc, 2017)    3 
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GSL Growing season length (Folberth et al., 2019)    3 

*The colored the row denotes the predictors was included in the emulator. The column “Time” is defined 222 

to clarify the spatiotemporal dynamics of predictors: “1” represents both time and space variant 223 

predictors, “2” represents space invariant predictors, “3” represents time invariant predictors. 224 

2.2.2 Emulator training and validation 225 

Training the emulator of specific GGCM is to derive the response relationship between 226 

input and output, so that the emulator could replicate the complex process of yield 227 

simulation within the crop model. Emulation was trained by using machine learning 228 

regression on the GGCMI-2 ensemble of crop- specific simulated yield with all CTWN 229 

perturbations. Each grid-year-perturbation combination was regarded as a sample in the 230 

fitting. We developed emulators of irrigated and rainfed yield and in A0 and A1 231 

scenarios separately. Since the outputs of GGCM outside the current croplands were 232 

not well examined, we trained the machine learning based emulators only on currently 233 

used cropland, according to the SPAM data for each crop separately. 234 

 235 

The extreme gradient boosting (XGBoost) algorithm, a highly efficient realization of 236 

the gradient boosting approach that showed the best performance in recent machine 237 

learning challenges (Chen and Guestrin, 2016), was used to train the emulators. Key 238 

parameters in XGBoost, including the learning rate (0.1), the number of estimators 239 

(4000), and the maximum tree depths (10), were tuned by a grid search along parameter 240 

dimensions based on the default parameter as reference (Folberth et al., 2019). The 241 

goodness-of-fit of XGBoost was validated with the coefficient of determination R2
adjust. 242 

2
2 ( 1) (1 )

1adjust

n R
R

n k

−  −
= −

−
 243 

where n is the sample size of the validation set, k is the number of predictors. 244 

 245 

Considering the spatiotemporal autocorrelation of simulated crop yield given by 246 

GGCM, we now used a “held out years and regions” strategy for leave one-year-out 247 

cross-validation (Roberts et al., 2017; Sweet et al., 2023). Specifically, the all grid-year 248 
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samples are split into N folds. N is determined by the number of Köppen–Geiger (KG) 249 

classes, which have more than 100 grid cells with harvested areas. If there are too few 250 

harvested areas in one KG class, it will not be included in the cross-validation process. 251 

For each fold of emulator training and validation, we withhold 10% of years (the last 3 252 

years) and one entire KG class for validation, and the other grid-year samples are used 253 

for training the emulator. We think selecting continuous years for validation can avoid 254 

temporal autocorrelation. If we randomly select 10% of years, the correlation between 255 

adjacent years still exist. Actually, any continuous three years are able to solve this 256 

problem, such that we just use the last years according to the choice of (Sweet et al., 257 

2023). Emulators were trained in Python3.8 with GPU 258 

(https://xgboost.readthedocs.io/en/latest/python/index.html). 259 

2.2.3 Evaluation of emulator 260 

Emulator performance was evaluated by comparing the 30-year emulated yield with the 261 

30-year simulated yield of the GGCM. As we aimed at developing emulator that could 262 

replicate the year-to-year variation of yield, the correlation coefficient (R), mean 263 

absolute error (MAE) and mean relative error (MRE) were used to evaluate the 264 

performance of emulators in the baseline and varied perturbations.  265 

, ,1

2 2

, ,1

( )( )

( ) ( )

n

XGB i XGB GGCM i GGCMi

n

XGB i XGB GGCM i GGCMi

Y Y Y Y
R

Y Y Y Y

=

=

− −
=

−  −




 266 

, ,1
| |

n

XGB i GGCM ii
Y Y

MAE
n

=
−

=


 267 

, , ,1
| ( ) / |

n

XGB i GGCM i GGCM ii
Y Y Y

MRE
n

=
−

=


 268 

where n is the sample size of the validation set, YGGCM ,i  is the annual simulated yield 269 

of the GGCMs, YXGB,i  is the annual projected yield of the XGB algorithm, and Y XGB  270 

and Y GGCM  were the average XGBoost predicted and GGCM simulated yield, 271 

respectively. 272 

https://xgboost.readthedocs.io/en/latest/python/index.html
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3. Results 273 

3.1 Goodness-of-fit of the emulators training 274 

Overall, the emulator developed with XGBoost algorithm could well reproduce the 275 

variance of GGCM yield simulations, with adjusted R2 greater than 0.52 (Table 3). For 276 

most emulators the adjusted R2 under fully-irrigated (Winf) simulation were greater 277 

than those under rainfed simulation (W). Under A0 and A1 scenarios (The A0 denotes 278 

no adaptation and A1 denotes adaptation of the growing season to regain the original 279 

growing season length under warming scenarios that otherwise lead to accelerated 280 

phenology and thus shorter growing seasons.), the adjusted R2 was comparable. For 281 

different crops, the performance of emulators developed for winter and spring wheat 282 

were slightly better than those developed for maize and rice. Among the GGCMs, 283 

PEPIC’s behavior can best be emulated by emulators, with greatest R2 values for all 284 

crops and scenarios. There are also several GGCM that is bit challenging for the XGB 285 

algorithm to capture, i.e. winter wheat and rice simulation from ORCHIDEE-crop, 286 

maize of pDSSAT, and spring wheat of LPJmL, with R2 values ranging from 0.52 to 287 

0.63.  288 

 289 

Table 3 Adjusted R2 of XGBoost derived from 10-fold cross validation with randomly selected samples 290 

GGCMs (A0) 
Winter wheat Spring wheat Maize Rice  

Winf W Winf W Winf W Winf W 

APSIM-UGOE 0.87 0.75 0.67 0.62 0.60 0.58 0.65 0.56 

CARAIB 0.63 0.63 0.73 0.73 0.69 0.58 0.61 0.60 

EPIC-IIASA 0.68 0.61 0.70 0.68 0.67 0.69 0.71 0.63 

EPIC-TAMU 0.65 0.70 0.80 0.61 0.77 0.68 0.67 0.59 

GEPIC 0.83 0.62 0.77 0.67 0.84 0.74 0.79 0.67 

LPJ-GUESS 0.84 0.84 0.81 0.68 - - - - 

LPJmL 0.63 0.69 0.59 0.68 0.65 0.73 0.65 0.64 

ORCHIDEE-crop 0.59 0.56 - - 0.62 0.78 0.52 0.71 

pDSSAT 0.63 0.60 0.69 0.65 0.55 0.51 0.63 0.58 

PEPIC 0.80 0.78 0.90 0.75 0.85 0.75 0.79 0.71 

GGCMs (A1) Winter wheat Spring wheat Maize Rice  
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Winf W Winf W Winf W Winf W 

APSIM-UGOE 0.85 0.73 0.69 0.64 0.60 0.59 0.62 0.56 

CARAIB 0.59 0.58 0.73 0.71 0.64 0.53 0.71 0.68 

EPIC-IIASA - - - - - - - - 

EPIC-TAMU 0.67 0.61 0.76 0.64 0.81 0.63 0.68 0.60 

GEPIC 0.91 0.69 0.83 0.71 0.88 0.79 0.90 0.87 

LPJ-GUESS 0.94 0.87 0.87 0.72 - - - - 

LPJmL 0.69 0.71 0.57 0.68 0.71 0.79 0.61 0.60 

ORCHIDEE-crop - - - - - - - - 

pDSSAT 0.67 0.64 0.75 0.69 0.63 0.58 0.69 0.63 

PEPIC 0.80 0.76 0.90 0.75 0.88 0.77 0.86 0.77 

“-”: No GGCM simulation; Winf: irrigated condition; W: rainfed condition. The A0 denotes no 291 

adaptation and A1 denotes cultivar adaptation to regain original growing season length under warming 292 

scenarios. 293 

 294 

The adjusted R2 of emulators developed with all predictors (“Full model”) was greater 295 

than those developed with growing season predictors (“GS model”) and monthly 296 

predictors (“MON model”) (Figure 2). GS models would suffer from reduced number 297 

of predictors and their adjusted R2s were 0.1~0.15 smaller than corresponding MON 298 

models. Still, Full models had the largest adjusted R2 at the cost of the largest number 299 

of predictors. For later usage of the emulators, a trade-off must be taken between cost 300 

of preparing predictors and model goodness-of-fit, and the “MON model” could be a 301 

balanced choice as it required only monthly average weather conditions.  302 

 303 
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 304 

Figure 2 Adjusted R2 of emulators (10-fold cross validation with randomly selected samples) with 305 

different strategery of predictors. All: “Full model”, GS: “GS model”, MON: “Mon model”. Emulators 306 

for ORCHIDEE by spring wheat, and LPJ-GUESS by Maize and Rice were not fitted due to the lack of 307 

simulation of raw GGCM. 308 

3.2 Performance of emulators to capture the year-to-year variation of GGCM 309 

yield in the baseline 310 

3.2.1 Performance of individual emulators at the global scale 311 

Over current global cropland, the emulator of each GGCM could well reproduce the 312 

year-to-year variation of global average yield in the baseline period (during 1981–2010) 313 

(Figure 3). All individual emulators could capture the corresponding GGCM simulated 314 

yield, with scatters concentrated in the 1:1 ratio line. Different GGCM simulated yield 315 

levels varied from 1.7 to 7.8 t/ha but the performance of emulators has not been 316 
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influenced. 317 

 318 

Figure 3 Emulator performance to reproduce the year-to-year variation of global average yield (1981 – 319 

2010) over current cropland. As ORCHIDEE-crop has not simulated yield under C360T0W0N200, we 320 

used the C360T0W10N200 as the baseline. Each point with the same color is yield in 30 year. R is 321 

correlation coefficient and MAE is mean absolute error. 322 

3.2.2 Performance of individual emulators at grid scale 323 

The overall performances of emulators at grid level were good for most crop-GGCM 324 

combinations in the baseline. The performance of each emulator over current global 325 

cropland grids were plotted by using scatter of MAE and R (Figure 4). The capacity of 326 

emulators in reproducing the wheat yield simulated by GGCMs was better than that of 327 

maize and rice. The median R over current winter and spring wheat harvested areas 328 

were greater than 0.7. The R of the EPIC-TAMU-emulator and the LPJ-GUESS-329 

emulator were relatively smaller than other eight emulators developed for winter and 330 

spring wheat, respectively. The median MAEs over current winter and spring wheat 331 

harvested areas were less than 0.4 t/ha and 0.3 t/ha for winter and spring wheat 332 

emulators, respectively, and the MAEs of the pDSSAT-emulator and LPJmL-emulator 333 

were relatively greater. Over current maize harvested areas, the median R was greater 334 

than 0.6 and the median of MAE was less than 0.7 t/ha, except pDSSAT-emulator. The 335 

median R of emulators developed for rice were greater than 0.5, and the median MAE 336 
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were less than 0.4 t/ha over current rice harvested areas, whereas the performances of 337 

pDSSAT-emulator and CARAIB-emulator were relatively worse. 338 

 339 
Figure 4 Correlation coefficient (R) and mean absolute error (MAE) over current cropland in the baseline 340 

(C360T0W0N200). As the ORCHIDEE-crop has not simulated yield under C360T0W0N200 341 

perturbation, we used the C360T0W10N200 as the baseline. The dot denotes the median and the error 342 

bar denotes the interquartile range from all grid cells in which the crop is grown according to the 343 

SPAM2010 data. 344 

3.2.3 Performance of multiple emulators ensemble at grid scale 345 

The multi-emulators ensemble median was able to reproduce the year-to-year variation 346 

of gridded yield over current cropland in the baseline (C360T0W0N200) from 1981 to 347 

2010. The temporal correlation coefficient R between GGCM simulated and emulated 348 

yield time series over most current harvested areas were greater than 0.7 (multi-model 349 

ensemble median) (Figure 5), and the uncertainty (standard deviation) of R across 350 

emulators was smaller than 0.3 (Figure S1). The mean absolute error (MAE) and mean 351 

relative error (MRE) over most current harvested areas were mostly smaller than 1 t/a 352 

and 30%, respectively (Figure S2). The spatial pattern of MRE for four crops all showed 353 

a hotspot of large MRE in the Middle East, and for maize the hotspot of great MRE was 354 

also found in the southern China (Figure S2).  355 



18 

 

  356 

Figure 5 Multi-model ensemble median R in the baseline over current cropland. R: correlation coefficient 357 

between simulated and emulated yield time series of each GGCM from 1981 to 2010. 358 

3.3 Performance of emulators to capture the year-to-year variation of GGCM 359 

yield in the CTWN cube 360 

3.3.1 Performance of individual emulators at the global scale 361 

The agreement of year-to-year variation of global average yield between simulation and 362 

emulation was consistent with changes in CTWN cube over present cropland (Figure 6). 363 

Under varied CTWN perturbations, the emulator could well reproduce the year-to-year 364 

variation of global mean yield from 1981 to 2010. Even when the temperature 365 

perturbation reached +6K, the emulator was still able to capture the year-to-year 366 

variation of global mean yield. Similarly, when the precipitation was less than baseline 367 

by 50%, the year-to-year variation of emulated global mean yield was well matched 368 

with those of GGCM simulation. Additionally, the fertilizations of elevated CO2 369 

concentration and nitrogen application have been well reproduced by emulator. Similar 370 

capacity in reproducing the annual global mean yield was also been found in other 371 

emulators (Table S1 & Table S2). Even under the concurrent warm and drought 372 

condition, i.e. T+6K and W-50%, the year-to-year variation of global mean yield could 373 
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be well reproduced by emulator (Figure S3). 374 

 375 

Figure 6 Performance of one exemplary emulator (LPJmL-A0) in reproducing the year to year variation 376 

of global mean yield from 1981 to 2010 under varied individual CTWN perturbations. Each point with 377 

the same color is yield in one year. The performances of other emulators are similar to LPJmL-A0, which 378 

can be referred in the Table S1 and Table S2. 379 

3.3.2 Performance of individual emulators at the grid scale under single 380 

perturbation 381 

To illustrate the performance of individual emulators to reproduce annual yield 382 

variation, we selected the LPJmL-A0 emulator as an example. The R-MAE scatter plots 383 

of LPJmL-A0 illustrated the response of gridded accuracy to varied perturbations of 384 

CTWN (Figure 7). The changes in accuracy of emulators under single CTWN 385 

perturbations were small with largest differences in spring wheat for modifications in 386 

the CO2 (C) and nitrogen (N) dimensions. The overall accuracy could be kept on the 387 

high level, with greater R and smaller MAE. Under temperature perturbations, the 388 
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median Rs of emulators for four crops were greater than 0.7, and the range of Rs was 389 

smaller than 0.2. The median MAEs of emulators for four crops were less than 0.55, 390 

and the variation of median MAEs was smaller than 0.2 from +1 to +6K perturbations. 391 

For precipitation perturbations, the median Rs of emulators for four crops were greater 392 

than 0.85, meanwhile the difference of median Rs across varied precipitation 393 

perturbations was smaller than 0.1. The median MAEs of emulators for four crops was 394 

smaller than 0.3, and the range of median MAEs variation was as small as 0.06. The 395 

median Rs and MAEs of emulators for four crops under CO2 concentration 396 

perturbations and nitrogen perturbations were comparable to those under temperature 397 

and precipitation perturbations, except for spring wheat. Although the performance of 398 

spring wheat emulator under CO2 and nitrogen perturbations was not as good as other 399 

crops, the median Rs was still greater than 0.75 and the median MAEs were smaller 400 

than 0.6. Similar pattern of other emulators’ performances under single perturbations at 401 

grid scale are shown in the Table S1 and Table S2. 402 
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 403 

Figure 7 R-MAE scatter of the exemplary emulator (LPJmL-A0) under varied single CTWN 404 

perturbations. Each dot denotes the median of R or MAE over current cropland, the error bar denotes the 405 

interquartile range. R: correlation coefficient, MAE: mean absolute error. More details of other emulators 406 

can refer to Table S1 and S2. 407 

3.3.3 Performance of multiple emulators ensemble at the grid scale under single 408 

perturbation 409 

When looking at the ensemble of multiple emulators, the Rs and MAEs under CTWN 410 

cubes was not divergent obviously (Figure 8, Figure 9).  411 

 412 

Under temperature perturbations, the range of model-ensemble median Rs across 413 

multiple emulators was smaller than 0.2, and the range of median MAEs was as small 414 

as 0.4t/ha. For precipitation perturbation, the difference in median Rs was less than 0.03, 415 

and the changes in median MAEs was less than 0.1t/ha. Under the perturbation of CO2 416 
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concentration, the emulators for winter wheat, maize and rice showed a greater median 417 

Rs which ranged from 0.89 to 0.98. The variation of median MAEs was smaller than 418 

0.09t/ha. The median Rs of emulator for spring wheat, however, tended to decline under 419 

810ppm perturbation substantially and the median MAEs tended to increase 420 

simultaneously. Similarly, for nitrogen perturbation, the range of median Rs was less 421 

than 0.27, and the range of median MAEs was smaller than 0.3t/ha, except for emulators 422 

of spring wheat and rice. The declined R and increased MAE were caused by the 423 

reduction of valid sample size from the GGCM output yield under CO2 and nitrogen 424 

perturbations (Figure S4 & Figure S5). 425 

 426 

Figure 8 Correlation coefficient (R) of multiple emulators ensemble under varied TW perturbations. The 427 

line denotes the median of R over current cropland, and the shaded area denotes the range of median R 428 

over current cropland across emulators.  429 
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 430 

Figure 9 Mean absolute error (MAE) of multiple emulators ensemble under varied CTWN 431 

perturbations. The line denotes the median of R over current cropland, and the shaded area denotes 432 

the range of median R over current cropland across emulators.  433 

3.3.4 Performance of multiple emulators at grid scale under dual perturbations 434 

The performance of emulators was influenced by changes in simultaneous perturbations 435 

in two different CTWN dimensions (dual perturbations). The emulators performed well 436 

over most of current cropland but at extreme increases in T and reductions in W (Figure 437 

10), the emulators could represent the GGCMI-simulated year-to-year variation only on 438 

substantially smaller shares of the current cropland. The fraction of current areas with 439 

R greater than 0.8 was the highest in the baseline but decreases under warmer and drier 440 

conditions. The fraction reduced to less than 40% under compound T+6K and W-50% 441 
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perturbation, which illustrated the poor capacity of emulator under compound hot-dry 442 

conditions. However, the fraction of harvested areas with MAE smaller than 0.5 t/ha 443 

did not vary much across T+W perturbations (Figure 11). The performance of emulators 444 

under dual perturbations for wheat were better than those for maize and rice. The 445 

fraction of maize and rice harvested area with R greater than 0.8 was relatively smaller 446 

than that of wheat. The maize harvested area with MAE smaller than 0.5 t/ha was 447 

smaller than other crops. Among the three GGCMs with full range of CTWN 448 

perturbations, the fraction of harvested area with high accuracy for LPJmL-emulator 449 

and pDSSAT-emulator was more than EPIC-TAMU-emulator. 450 

 451 

Figure 10 Fraction of harvested areas with high correlation coefficient (R > 0.8) under varied T+W 452 

perturbations. Example of EPIC-TAMU-A0, LPJmL-A0 and pDSSAT-A0 emulator because only these 453 

three GGCMs contain full range of CTWN perturbations for all four crops. 454 
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 455 

Figure 11 Fraction of harvested areas with low mean absolute error (MAE<0.5 t/ha) under varied T+W 456 

perturbations. Example of EPIC-TAMU-A0, LPJmL-A0 and pDSSAT-A0 emulator because these three 457 

GGCMs contain full range of CTWN perturbations for all four crops. 458 

4. Discussion 459 

4.1 Emulator trained to capture year-to-year variation in crop yield 460 

Our emulator was designed to reproduce the year-to-year variation of crop yield. 461 

Therefore, the annual yield was the target variable in emulator fitting. To capture the 462 

year-to-year crop yield variation well, the climatic predictors were divided into growing 463 

season average, daily variation and climatic extremes to capture the possible drivers of 464 

yield variation. The predictors engineering referred to the existing knowledges 465 

compiled into crop models that year-to-year variation of crop yield is associated with 466 

growing season temperature and precipitation (Ray et al., 2015), extreme heat (Iizumi 467 

and Ramankutty, 2016) and drought (Heinicke et al., 2022). The temperature and 468 

precipitation have been confirmed to be the dominant drivers to crop yield variability 469 
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(Schauberger et al., 2016). Moreover, the interaction between soil type and climate was 470 

considered in our emulator design. Although CO2 concentration and soil type were not 471 

regarded as important contributors to yield variability, their interaction with climate 472 

could also influence the yield variability (Kadam et al., 2014). The role of soil type has 473 

been uncovered by previous emulator fitted by multivariate regression that the average 474 

effect of temperature and precipitation differed greatly depending on soil type (Blanc, 475 

2017). Compared with the emulator designed to reproduce the climatological mean 476 

yield, our emulator is more suitable to project the changes in yield variability (Liu et 477 

al., 2021b). 478 

 479 

We developed the emulators with one statistical relationship for each crop between 480 

GGCM simulated yield and predictors for all grids over global lands. Each grid cell 481 

represents a sample in the soil-climate-fertilizer continuum, and the training data have 482 

no lateral relationships. However, the response of simulated crop yield to climate 483 

change was spatially heterogeneous, which mainly depends on the cultivars. Therefore, 484 

one statistical relationship between yield and climatic predictors was hard to be fully 485 

appropriate for each grid. In response, we used the length of growing season, a 486 

representative predictor of cultivar characteristics, to adjust the global statistical 487 

relationship to each grid. Therefore, predictors contained both temporal varied and 488 

constant variables. The temporal varied predictors were climatic variables which 489 

mainly played the role in reproduce the annual yield variation, and the temporal 490 

constant predictors were non-climatic variables, like growing season length, delineated 491 

the spatial distinction of crop yield response to climate. Compared with region-specific 492 

emulator development, combining the temporal varied and constant predictors was 493 

more concise and could profit from a broader range of data in the training set. 494 

4.2 Potential application of the well performed emulators in related fields 495 

The good performance over most grid cells indicated the potential capacity of emulators 496 

in spatiotemporal downscaling, projecting annual yield in the future and multi-model 497 
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ensemble simulation. 498 

 499 

The emulator could be used to conduct spatiotemporal yield downscaling because the 500 

good performance of individual emulator in reproducing the annual crop yield variation 501 

in the baseline. As the emulator in this study was developed with a regression-based 502 

machine learning technique by using all the grid-year data points, the emulation is not 503 

limited to the spatial resolution of the training data. The emulator can be applied to any 504 

point with information on the predictors and can produce yield projections is as finely 505 

resolved as the forcing input. From the aspect of time series of yield, the raw GGCM 506 

data includes empty values (“NaN”) in some year-grid cell data points, which may be 507 

caused by the lack of regional data for calibration. The vacancy of yield time series in 508 

some grids could be imputed by the emulator (Folberth et al., 2019), similar to studies 509 

which generated spatiotemporal continuous gridded crop yield data (Chen et al., 2022; 510 

Iizumi et al., 2014).  511 

 512 

The emulator was able to project the annual yield in the future climate scenarios, which 513 

depends on the individual emulator performed well in reproducing annual yield under 514 

CTWN cubes. In contrast to many previous emulators developed with historical crop 515 

model simulations (Xu et al., 2021), our emulator could reproduce the CO2 fertilization 516 

effect which is an important forcing in future. The recently developed emulator based 517 

on GGCMI phase2 simulation under CTWN cubes could only project the 518 

climatological-mean yield because the target variable in emulation was the 519 

climatological-mean yield (Franke et al., 2020a). In contrast, our emulator can project 520 

the annual yield variation and is not constrained by the maximum warming considered 521 

in the GGCMI phase2 data set (T+6K), but by the maximum temperature within the 522 

training data set (warmest grid cell +6K), so that the applicability is broader (Müller et 523 

al., 2021).  524 

 525 

It is more efficient to conduct multi-model ensemble simulation with emulators than 526 
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GGCMs, as the emulators show good skill in reproducing GGCMs’ results and the 527 

emulators drastically reduce the computational time and memory requirement and 528 

expertise to operate process-based crop models. First, the input of multiple emulators 529 

was consistent and compatible but the inputs of raw GGCM were divergent and 530 

incompatible because the structure of input data and file format of each GGCM was 531 

designed independently. Second, the time-scale of emulator input was monthly or 532 

growing seasonal, which was less complex than daily inputs of GGCMs. Apart from 533 

the ensemble simulation, the multiple emulators could also be used to explore and 534 

disentangle the uncertainty across models.  535 

4.3 Uncertainties 536 

The weaknesses of machine learning algorithm and raw GGCM have brought some 537 

uncertainties into the emulators. The uncertainties induced by the machine learning 538 

algorithm was as follows: 539 

 540 

(1) When the climate factors went beyond the range of training data, the weakness of 541 

machine learning in out-of-sample prediction could bring great uncertainty. The 542 

emulator inputs should be capped by the range of training data. The limit of our 543 

emulator was the warmest grid under +6K perturbation. As there is polar amplification, 544 

the strongest warming mostly happens in cooler regions. Thus, the projected 545 

temperature exceeding training range would not be widespread over global croplands. 546 

 547 

(2) Although the emulators could reproduce the GGCM annual yield with high accuracy 548 

in most cases, there were cases that the machine learning algorithm did not show good 549 

reproduction skill. As the emulated function intended to smooth the response of 550 

simulated crop yield to climate, samples at the margins of training data tend to show 551 

lower emulator skill. The extreme conditions, i.e. +6K, -50% water, 810ppm, 10kgN/ha, 552 

show reduced R and increased MAE. Using the emulators to estimate annual crop yield 553 

under extreme perturbation conditions should conducted with caution and the additional 554 
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uncertainty induced by the emulators should be considered in the interpretation of 555 

results. 556 

 557 

(3) Last but not the least, as the emulators are intended as lightweight tools that could 558 

replicate the raw GGCMs, their capability in simulating crop yields is limited to the 559 

capability of the original GGCMs. This raises the issue that emulators are unlikely to 560 

show good performance in simulating crop yield responses to climate extremes, exactly 561 

like the raw GGCMs, which have shown poor performance in capturing the yield 562 

impact of heatwave and drought (Heinicke et al., 2022), and the lack of negative effect 563 

of excessive wetness (Li et al., 2019a). Resolving such a problem requires the 564 

improvement of raw GGCMs’ capability in simulating yield response to climate 565 

extremes, or statistical promotion of the GGCMs’ outputs under extreme weather events. 566 

5. Conclusion 567 

In this study, we developed the machine-learning based statistical crop yield emulators 568 

to reproduce the year-to-year variation of crop yield to perturbations in CO2 569 

concentration, temperature, water and nitrogen-application rate from the GGCMI phase 570 

2 archives. To examine the potential value of these emulators, we evaluated the 571 

performance of emulators at global and gridded scale under baseline, under single and 572 

dual perturbations. 573 

 574 

The results indicated that the performance of emulators was good enough to reproduce 575 

the year-to-year variation of global average crop yield in the baseline (R > 0.9), and the 576 

difference of accuracy between individual GGCM emulators were not large. Similarly, 577 

under single and dual perturbations, the capacity of emulators in reproducing the year-578 

to-year variation of global mean crop yield was not substantially changed. At gridded 579 

level, the performance of emulators over most of the current croplands in the baseline 580 

was still good in the sense that R was greater than 0.6 and MAE was smaller than 1 t/ha. 581 
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The performance of individual emulators was consistently good under single CTWN 582 

perturbations, without substantial changes in R and MAE. Similarly, the multiple 583 

emulators also performed well in reproducing the annual yield under single CTWN 584 

perturbations, and the most grid cells across the current cropland showed greater R and 585 

smaller MAE under simultaneous perturbations of T and W. The overall good capacity 586 

of emulators in reproducing the year-to-year variation of GGCM simulated crop yield 587 

indicated the role of emulators in spatiotemporal downscaling, crop yield projection 588 

and multi-model ensemble simulation. The emulators were able to boost the ability to 589 

assess crop yield failure risk under future climate change and help to better understand 590 

food stability and climate risk adaptation. 591 

  592 
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