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Abstract. Understanding the impact of climate change on
year-to-year variation of crop yield is critical to global food
stability and security. While crop model emulators are be-
lieved to be lightweight tools to replace the models, few
emulators have been developed to capture such interannual5

variation of crop yield in response to climate variability. In
this study, we developed a statistical emulator with a ma-
chine learning algorithm to reproduce the response of year-
to-year variation of four crop yields to CO2 (C), tempera-
ture (T ), water (W ), and nitrogen (N) perturbations defined10

in the Global Gridded Crop Model Intercomparison Project
(GGCMI) phase 2. The emulators were able to explain more
than 52 % of the variance of simulated yield and performed
well in capturing the year-to-year variation of global average
and gridded crop yield over current croplands in the base-15

line. With the changes in CO2–temperature–water–nitrogen
(CTWN) perturbations, the emulators could reproduce the
year-to-year variation of crop yield well over most current
cropland. The variation of R and the mean absolute error

was small under the single CTWN perturbations and dual- 20

factor perturbations. These emulators thus provide statistical
response surfaces of yield, including both its mean and in-
terannual variability, to climate factors. They could facilitate
spatiotemporal downscaling of crop model simulation, pro-
jecting the changes in crop yield variability in the future and 25

serving as a lightweight tool for multi-model ensemble sim-
ulation. The emulators enhanced the flexibility of crop yield
estimates and expanded the application of large-ensemble
simulations of crop yield under climate change.

1 Introduction 30

The impact of climate change on crop yield is an increas-
ing concern related to global food security (Kinnunen et al.,
2020). Two distinct approaches have been used to evaluate
the impact of climate change on crop yield, process-based
crop models and statistical models. Process-based crop mod- 35

1



2 W. Liu et al.: The statistical emulators of GGCMI phase 2

els are reliable tools to project crop yields under future cli-
mate change but are computationally expensive (Jones et al.,
2017). In contrast, statistical models are lightweight tools
that can fit yield response to historical climate change (Li
et al., 2019b), but the relationship between climate factors5

and crop yield is based on the historical climate conditions
and their effects on crop yields, which can hardly be used
for future projection with new, unprecedented climate con-
ditions. Therefore, it is promising to develop tools that can
reduce the expense of computation and increase capacity for10

flexible future projections (Franke et al., 2020a).
Earlier studies have developed statistical emulators of

process-based crop model results to balance the advantages
and disadvantages of process-based crop models and statisti-
cal models. Those statistical emulators were initially devel-15

oped with “entire scenario” (simultaneous changes in climate
factors) simulation during historical or future periods. Emu-
lators have been developed for process-based crop models,
like APSIM (Shahhosseini et al., 2019), GEPIC (Folberth
et al., 2019), GWG (Xu et al., 2021), GAZE (Raimondo20

et al., 2021), and WOFOST (Tartarini et al., 2021), and used
to estimate historical crop yield. As an emulator trained by
historical simulations cannot project the crop yield in the fu-
ture, multiple crop model ensemble simulations in future cli-
mate scenarios have been used to calibrate emulators (Blanc,25

2017, 2020; Blanc and Sultan, 2015; Mistry et al., 2017; Ost-
berg et al., 2018). However, scenario-based future crop yield
projection is not a systematic perturbation of climate factors
(Franke et al., 2020a). For instance, scenario-based yield pro-
jection can only provide the simulated crop yield driven by30

simultaneous changes in climate factors. The dependency of
temperature and precipitation will be kept in scenarios such
that the impact of temperature and precipitation cannot be
clearly separated.

An alternative emulation based on a training dataset of35

“perturbed factors” was introduced, which offers advantages
compared to separate effects of crop yield drivers. Perturbed
factor emulation was first conducted with site-based crop
model simulations, which could estimate the yield across a
broad range of CO2, temperature, and water (Fronzek et al.,40

2018; Makowski et al., 2015; Pirttioja et al., 2015), but these
emulators were limited to the site level. To break the con-
straints of site-based simulation, the Global Gridded Crop
Model Intercomparison (GGCMI) phase 2 provided a sim-
ulation dataset across structured CO2–temperature–water–45

nitrogen (CTWN) perturbation cubes. This dataset offered
two major advantages: it allows for separating the effects
of different climatic factors and of nitrogen levels on crop
yields, and it allows distinguishing the climatological mean
and year-to-year variation of yields (Franke et al., 2020b).50

The phase 2 dataset was published to support the deriva-
tion of crop yield climate change “response surfaces”. Based
on the CTWN cubes, a statistical emulator has been devel-
oped, providing near-global-coverage multi-model emulators
of climatological mean yield projections from the GGCMI55

phase 2 ensemble by using a regression model with a third-
order polynomial basis function (Franke et al., 2020a). Due
to the focus on climatological mean yield, the aspect of year-
to-year variation of yield under CTWN perturbations has not
been fully analyzed or exploited in emulator design. 60

For climate change risk assessment, interannual yield vari-
ability (or the year-to-year variation of yield) is an important
metric of yield risk (Liu et al., 2021b) and food supply stabil-
ity (Liu et al., 2021a) but has been insufficiently addressed in
previous studies (Campbell et al., 2016). Large year-to-year 65

variation of crop yield can influence livelihoods of producers,
food prices (Hasegawa et al., 2021), and hunger (Janssens
et al., 2020) and even lead to political instabilities (Stern-
berg, 2011). Recently, year-to-year variation has been intro-
duced as a metric for climate change risk to global crop pro- 70

duction (Jägermeyr et al., 2021). Developing statistical em-
ulators that can reproduce the year-to-year variation of yield
from the CTWN cubes could therefore provide a powerful
tool for studies focusing on the risk of climate change im-
pact on yield. In this study, we exclusively aimed to develop 75

statistical emulators to reproduce year-to-year yield variation
with GGCMI phase 2 data.

2 Data and methods

2.1 Data

The input and output data for the simulation of global grid- 80

ded crop yield were obtained from the GGCMI phase 2
dataset, which includes gridded crop yield projections at 0.5◦

longitudinal–latitudinal resolution for maize, spring wheat,
winter wheat, and rice (Franke et al., 2020b). The input data
for the process-based simulations in GGCMI phase 2 in- 85

cluded data for climate, soil, atmospheric CO2 concentration,
and nitrogen fertilizer application rates. Baseline (1980–
2010) climate inputs were used from the AgMIP Modern-
Era Retrospective Analysis for Research and Applications
(AgMERRA) forcing dataset, including daily maximum and 90

minimum temperatures, precipitation, and solar radiation
(Ruane et al., 2015). Systematic perturbations were con-
ducted in each grid cell with seven temperature levels (from
−1 to+6 K in 1 K intervals, with+5 K skipped), nine precip-
itation levels (from −50 % to +30 % in 10 % intervals, with 95

−40 % skipped; the Winf precipitation level presents simula-
tions under fully irrigated conditions), four CO2 concentra-
tion levels (360, 510, 660, and 810 ppm), and three nitrogen
levels (10, 60, and 200 kgha−1). Simulations were repeated
for two adaptation strategies, i.e., no adaptation in cultivars 100

(A0) and adaptation by maintaining growing season length
(A1). A total of 12 global gridded crop models (GGCMs)
were then forced with each of these perturbations of the
original reanalysis weather data. We selected 10 of 12 crop
models in the GGCMI phase 2 experiment for construct- 105

ing the emulators. These were APSIM-UGOE, CARAIB,
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Table 1. GGCMs included in emulation. Each model offers the same set of CTWN simulations across four crops.

GGCMs Maize Winter wheat Spring wheat Rice

APSIM-UGOE
√ √ √ √

CARAIB
√ √ √ √

EPIC-IIASA
√ √ √ √

EPIC-TAMU
√ √ √ √

GEPIC
√ √ √ √

LPJ-GUESS ×
√ √

×

LPJmL
√ √ √ √

ORCHIDEE-crop
√ √

×
√

pDSSAT
√ √ √ √

PEPIC
√ √ √ √

∗ LPJ-GUESS omits maize and rice, and ORCHIDEE-crop omits spring wheat (denoted by ×).

EPIC-IIASA, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL,
ORCHIDEE-crop, pDSSAT, and PEPIC (Table 1). PROMET
and JULES were not included as they used different climate
inputs.

The GGCMs used a national and subnational crop calen-5

dar based on Sacks et al. (2010), Portmann et al. (2010), and
environment-based extrapolations (Elliott et al., 2015). The
crop calendar was used to determine the window to calcu-
late the climatic predictors and grid-specific growing season
length. The current global harvested area for identifying cur-10

rently used cropland was obtained from the spatial produc-
tion allocation model (SPAM), whose spatial resolution was
10 km. The soil type data were obtained from the Harmo-
nized World Soil Database (Nachtergaele et al., 2009).

2.2 Methods15

Our study focused on the development and evaluation of em-
ulators, which involves the following steps: (1) defining the
predictors used to train the emulators, (2) preparing the pre-
dictors with climatic and non-climatic data, (3) training and
cross-validating the emulators with a machine learning al-20

gorithm, and (4) evaluating the performance of emulators
(Fig. 1).

2.2.1 Definition and preparation of predictors

All the predictors were computed or adapted from the
GGCMs’ input and output datasets. The climatic predictors25

were defined at two timescales, growing season (GS) and
monthly (MON) (Table 2). The growing season average tem-
perature, total precipitation, and average solar radiation were
able to explain the variation of climatological mean yield
of GGCMI phase 2 (Franke et al., 2020a). To improve the30

capacity of emulators to reproduce the year-to-year varia-
tion of crop model yield, daily variability and extremes of
climate factors during the growing seasons were considered
here. The variations of temperature, precipitation, and solar
radiation during the growing seasons were calculated with35

the standard deviation of their daily values in each growing
season, which represents the intensity of the daily fluctuation
of weather. Additionally, heat and drought were selected to
be the extreme climate predictors, which were quantified by
extreme degree days (EDDs, cumulative temperature that ex- 40

ceed the high temperature threshold, Lobell et al., 2012) and
maximum consecutive dry days (CDDs, maximum length of
consecutive days without precipitation, Troy et al., 2015) be-
cause the negative effect of these two extremes can be shown
by current GGCM (Heinicke et al., 2022). Other climate ex- 45

tremes, like excessive wetness, were not used because the
GGCM failed to show the negative effect (Li et al., 2019a;
Liu et al., 2022).

The monthly predictors only consisted of monthly aver-
age values. The monthly average temperature, total precipi- 50

tation, and average solar radiation were harmonized accord-
ing to the specific planting date. The number of months was
determined with the crop-specific maximum growing season
length over the global cropland defined by GGCMI phase 2.
For winter and spring wheat, we prepared the climatic pre- 55

dictors over 10 and 8 months after sowing. For maize and
rice, climatic predictors over 8 and 7 months after sowing
were used, respectively.

The atmospheric CO2 concentration and the nitrogen ap-
plication rate were uniformly distributed predictors. All years 60

and grid cells were set at the same CO2 concentration and ni-
trogen application rate for each perturbation. Soil property
is an important temporally constant predictor, whose inter-
action with climate played an important role in yield simu-
lation and emulator development (Blanc, 2017). As the soil 65

parameter settings of each GGCM varied, we selected the
soil type at each grid to represent the spatial variation of soil
properties. There were 13 soil types, including heavy clay,
silty clay, light clay, silt clay loam, clay loam, silt, silt loam,
sandy clay, loam, sandy clay loam, sandy loam, loamy sand, 70

and sand. The most obvious difference across cultivars over
global croplands is the growing degree requirement to reach
maturity, which was determined by both mean climatology
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Table 2. Predictors of emulation. For rainfed yield emulators, we used all these predictors, but for fully irrigated yield emulators, the
precipitation predictors were not included. Full, GS, and MON were three strategies to develop emulators. Full: developing emulators with
all the climatic predictors; GS: developing emulators with climatic predictors during the growing season; MON: developing emulators with
climatic predictors on a monthly scale.TS1

Predictor abbreviations Descriptions References Full GS Mon Time

Temperature related predictors

GDDlow-high_GS Growing degree day during growing season
(winter wheat: low= 0 ◦C, high= 30◦C; spring
wheat: low= 5◦C, high= 30◦C; maize: low=8 ◦C,
high= 30◦C; rice: low= 10◦C, high= 35◦C)

Frieler et al. (2017);
Jägermeyr et al. (2020);
Lobell et al. (2012)

√ √
1

EDDhigh+_GS Extreme degree day during growing (winter and spring
wheat, maize: high= 30◦C; rice: high= 35◦C

Lobell et al. (2012)
√ √

1

Tmax_GSmean Average daily maximum temperature during growing
season

Zhu and Troy (2018)
√ √

1

Tmin_GSmean Average daily minimum temperature during growing
season

Zhu and Troy (2018)
√ √

1

Tmax_GSstd Standard deviation of daily maximum temperature dur-
ing growing season

Zhu and Troy (2018)
√ √

1

Tmin_GSstd Standard deviation of daily minimum temperature dur-
ing growing season

Zhu and Troy (2018)
√ √

1

Tmax_MONmean Harmonized monthly average daily maximum tempera-
ture (MON= 1–10 for winter wheat, MON= 1–8 for
spring wheat and maize, MON= 1–7 for rice, since
planting date)

Folberth et al. (2019)
Jägermeyr et al. (2020)

√ √
1

Tmin_MONmean Harmonized monthly average daily minimum tempera-
ture (MON= 1–10 for winter wheat, MON= 1–8 for
spring wheat and maize, MON= 1–7 for rice, since
planting date)

Folberth et al. (2019)
Jägermeyr et al. (2020)

√ √
1

Precipitation related predictors

Pre_GSsum Total daily precipitation during growing season Troy et al. (2015)
√ √

1

Pre_GSstd Standard deviation of daily precipitation during grow-
ing season

Zhu and Troy (2018)
√ √

1

CDD_GS Consecutive drought day (daily precipitation= 0) Troy et al. (2015)
√ √

1

Pre_MONsum Harmonized monthly total precipitation (MON= 1–10
for winter wheat, MON= 1–8 for spring wheat and
maize, MON= 1–7 for rice, since planting date)

Folberth et al. (2019)
Jägermeyr et al. (2020)

√ √
1

Solar radiation related predictors

SRAD_GSmean Average daily solar radiation during growing season Folberth et al. (2019)
√ √

1

SRAD_GSstd Standard daily solar radiation during growing season Folberth et al. (2019)
√ √

1

SRAD_MONmean Harmonized monthly average daily solar radiation
(MON= 1–10 for winter wheat, MON= 1–8 for spring
wheat and maize, MON= 1–7 for rice, since planting
date)

Folberth et al. (2019)
Jägermeyr et al. (2020)

√ √
1

Greenhouse gas concentration

CO2 CO2 concentration Franke et al. (2020a)
√ √ √

2

Non-climatic predictors

N Nitrogen fertilizer application Franke et al. (2020a)
√ √ √

2

Soil_type Soil type Blanc (2017)
√ √ √

3

GSL Growing season length Folberth et al. (2019)
√ √ √

3
The color of the row indicates that the predictors were included in the emulator. The column “Time” clarifies the spatiotemporal dynamics of predictors. The number 1 represents both
time- and space-variant predictors, 2 represents space-invariant predictors, and 3 represents time-invariant predictors.
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Figure 1. Overall framework of emulator development for GGCMs. Each GGCM–crop combination was calibrated as an emulator inde-
pendently. T : temperature, processed separately for daily maximum and minimum temperatures; P : precipitation; SRAD: solar radiation,
N: nitrogen; soil: soil properties. When developing irrigated yield emulator, precipitation-related predictors are excluded.

and cultivar traits. To reproduce the number of days from
planting date to maturity date given by GGCMI phase 2 crop
calendar input, we added a temporally constant growing sea-
son length as a predictor, i.e., a temporally constant growing
season length.5

As the purpose of emulator training is to develop a
lightweight tool for crop simulation, there has always been
a trade-off between the goodness of fit and the number of
predictors. Therefore, we considered three strategies of us-
ing our predictors. Strategy A uses all predictors (the Full10

model), which is expected to derive the best goodness of fit.
Strategy B uses only climatic predictors during the growing
season (the GS model), together with CO2 concentration, ni-
trogen application rate, site information, soil class, and grow-
ing season length. Strategy C uses only monthly average15

climatic predictors with other location-invariant predictors
(the MON model). In general, Strategy B uses the smallest
number of predictors, but those predictors need to be com-
puted from daily climate forcing. Strategy C only relays on
monthly climate data and is therefore the least costly strategy20

for data preparation. A comparison between the three strate-

gies would help us find a good balance between the predic-
tors used and overall goodness of fit of the emulators.

2.2.2 Emulator training and validation

Training the emulator of a specific GGCM is to derive the 25

response relationship between input and output so that the
emulator can replicate the complex process of yield simula-
tion within the crop model. Emulation was trained by using
machine learning regression on the GGCMI-2 ensemble of
crop-specific simulated yield with all CTWN perturbations. 30

Each grid year and perturbation combination was regarded as
a sample in the fitting. We developed emulators of irrigated
and rainfed yield and in A0 and A1 scenarios separately.
Since the outputs of a GGCM outside current croplands were
not well examined, we trained the machine-learning-based 35

emulators only on currently used cropland, according to the
SPAM data for each crop separately.

The extreme gradient boosting (XGBoost) algorithm, a
highly efficient realization of the gradient boosting approach
that showed the best performance in recent machine learning 40

challenges (Chen and Guestrin, 2016), was used to train the
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emulators. Key parameters in XGBoost, including the learn-
ing rate (0.1), the number of estimators (4000), and the max-
imum tree depths (10), were tuned by a grid search along pa-
rameter dimensions based on the default parameter as a refer-
ence (Folberth et al., 2019). The goodness of fit of XGBoost5

was validated with the coefficient of determination R2
adjust:

R2
adjust = 1−

(n− 1)× (1−R2)

n− k
,

where n is the sample size of the validation set, and k is the
number of predictors.

Considering the spatiotemporal autocorrelation of simu-10

lated crop yield given by the GGCM, we now used a “held-
out years and regions” strategy for leave-one-out cross-
validation (Sweet et al., 2023). Specifically, all grid year sam-
ples are split into N folds. N is determined by the number
of Köppen–Geiger (KG) classes, which have more than 10015

grid cells with harvested areas. If there are too few harvested
areas in one KG class, it will not be included in the cross-
validation process. For each fold of emulator training and
validation, we withhold 10 % of years (the last 3 years) and
one entire KG class for validation, and the other grid year20

samples are used for training the emulator. We think selecting
continuous years for validation can avoid temporal autocor-
relation. If we randomly select 10 % of years, the correlation
between adjacent years still exists. Actually, any continuous
3 years are able to solve this problem such that we just use the25

last years according to Sweet et al. (2023). Emulators were
trained in Python3.8 with GPU (https://xgboost.readthedocs.
io/en/latest/python/index.html, last access: 15 August 2023).

2.2.3 Evaluation of the emulator

Emulator performance was evaluated by comparing the 30-30

year emulated yield with the 30-year simulated yield of the
GGCM. As we aimed at developing an emulator that could
replicate the year-to-year variation of yield, the correlation
coefficient (R), mean absolute error (MAE), and mean rela-
tive error (MRE) were used to evaluate the performance of35

emulators in the baseline and varied perturbations.

R =

∑n
i=1

(
YXGB,i −Y XGB

)(
YGGCM,i −Y GGCM

)√∑n
i=1
(
YXGB,i −Y XGB

)2
·
(
YGGCM,i −Y GGCM

)2
MAE=

∑n
i=1|YXGB,i −YGGCM,i |

n

MRE=
∑n

i=1|(YXGB,i −YGGCM,i)/YGGCM,i |

n

where n is the sample size of the validation set, YGGCM,i is40

the annual simulated yield of the GGCMs, YXGB,i is the an-
nual projected yield of the XGB algorithm, and Y XGB and
Y GGCM were the average XGBoost predicted and GGCM-
simulated yield, respectively.

3 Results 45

3.1 Goodness of fit of the emulator training

Overall, the emulator developed with the XGBoost algorithm
reproduced the variance of GGCM yield simulations well,
with adjusted R2 greater than 0.52 (Table 3). For most em-
ulators the adjusted R2 under a fully irrigated (Winf) sim- 50

ulation were greater than those under a rainfed simulation
(W). Under A0 and A1 scenarios (A0 denotes no adaptation
and A1 denotes adaptation of the growing season to regain
the original growing season length under warming scenarios
that otherwise lead to accelerated phenology and thus shorter 55

growing seasons), the adjusted R2 was comparable. For dif-
ferent crops, the performances of emulators developed for
winter and spring wheat were slightly better than those de-
veloped for maize and rice. Among the GGCMs, PEPIC’s
behavior can best be emulated by emulators, with the great- 60

est R2 values for all crops and scenarios. There are also
several GGCMs that are bit challenging for the XGB algo-
rithm to capture, i.e., winter wheat and rice simulation from
ORCHIDEE-crop, maize of pDSSAT, and spring wheat of
LPJmL, with R2 values ranging from 0.52 to 0.63. 65

The adjusted R2 of emulators developed with all pre-
dictors (Full model) was greater than those developed with
growing season predictors (GS model) and monthly predic-
tors (MON model) (Fig. 2). GS models suffered from a re-
duced number of predictors, and their adjusted R2 values 70

were 0.1–0.15 smaller than corresponding MON models.
Still, Full models had the largest adjusted R2 at the cost of
the largest number of predictors. For later usage of the emula-
tors, a trade-off must be made between the cost of preparing
predictors and model goodness of fit, and the MON model 75

could be a balanced choice as it required only monthly aver-
age weather conditions.

3.2 Performance of emulators to capture the
year-to-year variation of GGCM yield in the
baseline 80

3.2.1 Performance of individual emulators at the global
scale

Over current global cropland, the emulator of each GGCM
could reproduce the year-to-year variation of global average
yield well in the baseline period (during 1981–2010) (Fig. 3). 85

All individual emulators captured the corresponding GGCM-
simulated yield, with scatter concentrated on the 1 : 1 line.
Different GGCM-simulated yield levels varied from 1.7 to
7.8 tha−1, but the performance of the emulators has not been
influenced. 90

https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
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Table 3. Adjusted R2 of XGBoost derived from 10-fold cross-validation with randomly selected samples.

GGCMs (A0) Winter wheat Spring wheat Maize Rice

Winf W Winf W Winf W Winf W

APSIM-UGOE 0.87 0.75 0.67 0.62 0.60 0.58 0.65 0.56
CARAIB 0.63 0.63 0.73 0.73 0.69 0.58 0.61 0.60
EPIC-IIASA 0.68 0.61 0.70 0.68 0.67 0.69 0.71 0.63
EPIC-TAMU 0.65 0.70 0.80 0.61 0.77 0.68 0.67 0.59
GEPIC 0.83 0.62 0.77 0.67 0.84 0.74 0.79 0.67
LPJ-GUESS 0.84 0.84 0.81 0.68 – – – –
LPJmL 0.63 0.69 0.59 0.68 0.65 0.73 0.65 0.64
ORCHIDEE-crop 0.59 0.56 – – 0.62 0.78 0.52 0.71
pDSSAT 0.63 0.60 0.69 0.65 0.55 0.51 0.63 0.58
PEPIC 0.80 0.78 0.90 0.75 0.85 0.75 0.79 0.71

GGCMs (A1) Winter wheat Spring wheat Maize Rice

Winf W Winf W Winf W Winf W

APSIM-UGOE 0.85 0.73 0.69 0.64 0.60 0.59 0.62 0.56
CARAIB 0.59 0.58 0.73 0.71 0.64 0.53 0.71 0.68
EPIC-IIASA – – – – – – – –
EPIC-TAMU 0.67 0.61 0.76 0.64 0.81 0.63 0.68 0.60
GEPIC 0.91 0.69 0.83 0.71 0.88 0.79 0.90 0.87
LPJ-GUESS 0.94 0.87 0.87 0.72 – – – –
LPJmL 0.69 0.71 0.57 0.68 0.71 0.79 0.61 0.60
ORCHIDEE-crop – – – – – – – –
pDSSAT 0.67 0.64 0.75 0.69 0.63 0.58 0.69 0.63
PEPIC 0.80 0.76 0.90 0.75 0.88 0.77 0.86 0.77

The “–” symbol denotes no GGCM simulation; Winf: irrigated condition; W : rainfed condition. A0 denotes no
adaptation, and A1 denotes cultivar adaptation to regain original growing season length under warming
scenarios.

3.2.2 Performance of individual emulators at the grid
scale

The overall performances of emulators at grid level were
good for most crop–GGCM combinations in the baseline.
The performances of each emulator over current global crop-5

land grids were plotted by using the scatter of MAE and R

(Fig. 4). The capacity of emulators to reproduce the wheat
yield simulated by GGCMs was better than that of maize and
rice. The median R values over current winter and spring
wheat harvested areas were greater than 0.7. The R of the10

EPIC-TAMU emulator and the LPJ-GUESS emulator were
relatively smaller than the other eight emulators developed
for winter and spring wheat, respectively. The median MAEs
over current winter and spring wheat harvested areas were
less than 0.4 and 0.3 tha−1 for winter and spring wheat em-15

ulators, respectively, and the MAEs of the pDSSAT emula-
tor and LPJmL emulator were relatively greater. Over cur-
rent maize harvested areas, the median R was greater than
0.6 and the median of MAE was less than 0.7 tha−1, except
the pDSSAT emulator. The median R values of emulators20

developed for rice were greater than 0.5, and the median
MAEs were less than 0.4 tha−1 over current rice harvested

areas, whereas the performances of the pDSSAT emulator
and CARAIB emulator were relatively worse.

3.2.3 Performance of multiple-emulator ensemble at 25

the grid scale

The multi-emulator ensemble median was able to reproduce
the year-to-year variation of gridded yield over current crop-
land in the baseline (C360T0W0N200) from 1981 to 2010.
The temporal correlation coefficients R between GGCM- 30

simulated and emulated yield time series over most current
harvested areas were greater than 0.7 (multi-model ensemble
median) (Fig. 5), and the uncertainty (standard deviation) of
R across emulators was smaller than 0.3 (Fig. S1 in the Sup-
plement). The mean absolute error (MAE) and mean relative 35

error (MRE) over most current harvested areas were mostly
smaller than 1 t a−1 TS2 and 30 %, respectively (Fig. S2 in the
Supplement). The spatial pattern of MRE for four crops all
showed a hotspot of large MRE in the Middle East, and for
maize the hotspot of large MRE was also found in southern 40

China (Fig. S2).

L
附注
TS2: The unit of yield is t ha-1 and the unit of MAE should be the same as that of yield.
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Figure 2. Adjusted R2 of emulators (10-fold cross-validation with randomly selected samples) with a different strategy used by the predictors.
All: Full model, GS: GS model, MON: MON model. Emulators for ORCHIDEE by spring wheat and LPJ-GUESS by maize and rice were
not fitted due to the lack of simulation by raw GGCMs.

3.3 Performance of emulators to capture the
year-to-year variation of GGCM yield in the
CTWN cube

3.3.1 Performance of individual emulators at the global
scale5

The agreement of year-to-year variation of global average
yield between simulation and emulation was consistent with
changes in CTWN cubes over present cropland (Fig. 6). Un-
der varied CTWN perturbations, the emulator could repro-
duce the year-to-year variation of global mean yield from10

1981 to 2010 well. Even when the temperature perturbation
reached+6 K, the emulator was still able to capture the year-
to-year variation of global mean yield. Similarly, when the
precipitation was less than the baseline by 50 %, the year-
to-year variation of emulated global mean yield was well15

matched with those of GGCM simulations. Additionally, fer-
tilization with elevated CO2 concentrations and nitrogen ap-
plication have been well reproduced by the emulator. Simi-
lar capacity to reproduce the annual global mean yield was
also found in other emulators (Tables S1 and S2 in the Sup-20

plement). Even under concurrent warm and drought condi-

tions, i.e., T + 6 K and W − 50 %, the year-to-year variation
of global mean yield could be well reproduced by the emula-
tor (Fig. S3 in the Supplement).

3.3.2 Performance of individual emulators at the grid 25

scale under single perturbation

To illustrate the performance of individual emulators in re-
producing annual yield variation, we selected the LPJmL-
A0 emulator as an example. The R–MAE scatter plots of
LPJmL-A0 illustrate the response of gridded accuracy to var- 30

ied perturbations of CTWN (Fig. 7). The changes in the ac-
curacy of emulators under single CTWN perturbations were
small, with the largest differences in spring wheat for mod-
ifications in the CO2 (C) and nitrogen (N) dimensions. The
overall accuracy could be kept at a high level, with greater 35

R and smaller MAE. Under temperature perturbations, the
median R values of emulators for four crops were greater
than 0.7, and the range of R values was smaller than 0.2.
The median MAEs of emulators for four crops were less than
0.55, and the variation of median MAEs was smaller than 0.2 40

from +1 to +6 K perturbations. For precipitation perturba-
tions, the median R values of emulators for four crops were
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Figure 3. Emulator performance in reproducing the year-to-year variation of global average yield (1981–2010) over current cropland. As
ORCHIDEE-crop has not simulated yield under C360T0W0N200, we used the C360T0W10N200 as the baseline. Each point with the same
color is yield in 30 years. R is the correlation coefficient and MAE is the mean absolute error.

Figure 4. Correlation coefficient (R) and mean absolute error (MAE) over current cropland in the baseline (C360T0W0N200). As
ORCHIDEE-crop has not simulated yield under C360T0W0N200 perturbation, we used the C360T0W10N200 as the baseline. The dot
denotes the median and the error bar denotes the interquartile range from all grid cells in which the crop is grown according to SPAM 2010
data.
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Figure 5. Multi-model ensemble median R in the baseline over current cropland. R: correlation coefficient between simulated and emulated
yield time series of each GGCM from 1981 to 2010.

greater than 0.85; meanwhile, the difference of median R

values across varied precipitation perturbations was smaller
than 0.1. The median MAEs of emulators for four crops was
smaller than 0.3, and the range of median MAEs variation
was as small as 0.06. The median R values and MAEs of5

emulators for four crops under CO2 concentration perturba-
tions and nitrogen perturbations were comparable to those
under temperature and precipitation perturbations, except for
spring wheat. Although the performance of the spring wheat
emulator under CO2 and nitrogen perturbations was not as10

good as other crops, the median R values were still greater
than 0.75, and the median MAEs were smaller than 0.6. Sim-
ilar patterns of other emulator performances under single per-
turbations at the grid scale are shown in Tables S1 and S2.

3.3.3 Performance of multiple-emulator ensemble at15

the grid scale under single perturbation

When looking at the ensemble of multiple emulators, the Rs
and MAEs under CTWN cubes was not divergent obviously
(Figs. 8 and 9).

Under temperature perturbations, the range of model en-20

semble median Rs across multiple emulators was smaller
than 0.2, and the range of median MAEs was as small as
0.4 tha−1. For precipitation perturbation, the difference in
median Rs was less than 0.03, and the changes in median
MAEs were less than 0.1 tha−1. Under the perturbation of25

CO2 concentration, the emulators for winter wheat, maize,
and rice showed greater median R values which ranged from
0.89 to 0.98. The variation of median MAEs was smaller
than 0.09 tha−1. The median R values of the emulator for

spring wheat, however, tended to substantially decline under 30

810 ppm perturbation, and the median MAEs tended to in-
crease simultaneously. Similarly, for nitrogen perturbation,
the range of median R values was less than 0.27, and the
range of median MAEs was smaller than 0.3 tha−1, except
for emulators of spring wheat and rice. The declined R and 35

increased MAE were caused by the reduction of valid sample
size from the GGCM output yield under CO2 and nitrogen
perturbations (Figs. S4 and S5 in the Supplement).

3.3.4 Performance of multiple emulators at grid the
scale under dual perturbations 40

The performance of emulators was influenced by changes in
simultaneous perturbations in two different CTWN dimen-
sions (dual perturbations). The emulators performed well
over most current cropland, but at extreme increases in T

and reductions in W (Fig. 10), the emulators could represent 45

the GGCMI-simulated year-to-year variation only on sub-
stantially smaller shares of the current cropland. The frac-
tion of current areas with R greater than 0.8 was the highest
in the baseline but decreases under warmer and drier con-
ditions. The fraction was reduced to less than 40 % under 50

the compound T +6 K and W −50 % perturbation, which il-
lustrates the poor capacity of the emulator under compound
hot–dry conditions. However, the fraction of harvested areas
with MAE smaller than 0.5 tha−1 did not vary much across
T +W perturbations (Fig. 11). The performances of emu- 55

lators under dual perturbations for wheat were better than
those for maize and rice. The fraction of maize and rice har-
vested area with R greater than 0.8 was relatively smaller
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Figure 6. Performance of one exemplary emulator (LPJmL-A0) in reproducing the year-to-year variation of global mean yield from 1981 to
2010 under varied individual CTWN perturbations. Each point with the same color is yield in 1 year. The performances of other emulators
are similar to LPJmL-A0, which can be seen Tables S1 and S2.

than that of wheat. The maize harvested area with MAE
smaller than 0.5 tha−1 was smaller than other crops. Among
the three GGCMs with the full range of CTWN perturba-
tions, the fraction of harvested area with high accuracy for
the LPJmL emulator and the pDSSAT emulator was more5

than EPIC-TAMU emulator.

4 Discussion

4.1 Emulator trained to capture year-to-year variation
in crop yield

Our emulator was designed to reproduce the year-to-year10

variation of crop yield. Therefore, the annual yield was the

target variable in emulator fitting. To capture the year-to-year
crop yield variation well, the climatic predictors were divided
into growing season average, daily variation, and climatic ex-
tremes to capture the possible drivers of yield variation. Pre- 15

dictor engineering referred to the existing knowledge com-
piled in crop models that year-to-year variation of crop yield
is associated with growing season temperature and precipita-
tion (Ray et al., 2015), extreme heat (Iizumi and Ramankutty,
2016), and drought (Heinicke et al., 2022). Temperature and 20

precipitation have been confirmed to be the dominant drivers
of crop yield variability (Schauberger et al., 2016). More-
over, the interaction between soil type and climate was con-
sidered in our emulator design. Although CO2 concentration
and soil type were not regarded as important contributors to 25
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Figure 7. R–MAE scatter of the exemplary emulator (LPJmL-A0) under varied single CTWN perturbations. Each dot denotes the median
of R or MAE over current cropland, and the error bar denotes the interquartile range. R: correlation coefficient, MAE: mean absolute error.
More details of other emulators can be seen in Tables S1 and S2.

yield variability, their interaction with climate could also in-
fluence the yield variability (Kadam et al., 2014). The role of
soil type has been revealed by previous emulators fitted by
multivariate regression; the average effect of temperature and
precipitation differed greatly depending on soil type (Blanc,5

2017). Compared with the emulator designed to reproduce
the climatological mean yield, our emulator is more suitable
to project changes in yield variability (Liu et al., 2021b).

We developed the emulators with one statistical relation-
ship for each crop between GGCM-simulated yield and pre-10

dictors for all grids over global land. Each grid cell repre-
sents a sample in the soil–climate–fertilizer continuum, and
the training data have no lateral relationships. However, the
response of simulated crop yield to climate change was spa-
tially heterogeneous, which mainly depends on the cultivars.15

Therefore, one statistical relationship between yield and cli-
matic predictors was not fully appropriate for each grid. In

response, we used the length of growing season, a repre-
sentative predictor of cultivar characteristics, to adjust the
global statistical relationship to each grid. Therefore, pre- 20

dictors contained both temporal varied and constant vari-
ables. The temporally varied predictors were climatic vari-
ables which mainly played a role in reproducing the annual
yield variation, and the temporally constant predictors were
non-climatic variables, like growing season length, that de- 25

lineated the spatial distinction of crop yield response to cli-
mate. Compared with region-specific emulator development,
combining the temporally varied and constant predictors was
more concise and could profit from a broader range of data
in the training set. 30
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Figure 8. Correlation coefficient (R) of the multiple-emulator ensemble under varied TW perturbations. The line denotes the median of R

over current cropland, and the shaded area denotes the range of median R over current cropland across emulators.

4.2 Potential application of the emulators performing
well in related fields

The good performance over most grid cells indicated the po-
tential capacity of emulators in spatiotemporal downscaling,
projecting annual yield in the future, and multi-model ensem-5

ble simulation.
The emulator could be used to conduct spatiotemporal

yield downscaling because of the good performance of in-
dividual emulators in reproducing the annual crop yield vari-
ation in the baseline. As the emulator in this study was devel-10

oped with a regression-based machine learning technique by
using all the grid year data points, the emulation is not limited
to the spatial resolution of the training data. The emulator can
be applied to any point with information on the predictors
and can produce yield projections as finely resolved as the15

forcing input. From the aspect of time series of yield, the raw

GGCM data include empty values (NaN – not a number) in
some year and grid cell data points, which may be caused by
the lack of regional data for calibration. The vacancy of yield
time series in some grids could be imputed by the emula- 20

tor (Folberth et al., 2019), similar to studies which generated
spatiotemporally continuous gridded crop yield data (Chen
et al., 2022; Iizumi et al., 2014).

The emulator was able to project the annual yield in the
future climate scenarios, which depends on the individual 25

emulator performing well in reproducing annual yield un-
der CTWN cubes. In contrast to many previous emulators
developed with historical crop model simulations (Xu et al.,
2021), our emulator could reproduce the CO2 fertilization
effect, which is an important forcing for the future. The re- 30

cently developed emulator based on GGCMI phase 2 simu-
lation under CTWN cubes could only project the climatolog-
ical mean yield because the target variable in the emulation
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Figure 9. Mean absolute error (MAE) of the multiple-emulator ensemble under varied CTWN perturbations. The line denotes the median of
R over current cropland, and the shaded area denotes the range of median R over current cropland across emulators.

was the climatological mean yield (Franke et al., 2020a). In
contrast, our emulator can project the annual yield variation
and is not constrained by the maximum warming considered
in the GGCMI phase 2 dataset (T +6 K), but by the maxi-
mum temperature within the training dataset (warmest grid5

cell +6 K), so that the applicability is broader (Müller et al.,
2021).

It is more efficient to conduct multi-model ensemble sim-
ulations with emulators than GGCMs, as the emulators show
good skill in reproducing GGCM results, and the emula-10

tors drastically reduce the computational time, memory re-
quirement, and expertise to operate process-based crop mod-
els. First, the input of multiple emulators was consistent and
compatible, but the inputs of raw GGCMs were divergent and
incompatible because the structure of input data and file for-15

mat of each GGCM were designed independently. Second,
the timescale of emulator input was monthly or growing sea-

sonal, which was less complex than daily inputs of GGCMs.
Apart from the ensemble simulation, the multiple emulators
could also be used to explore and disentangle the uncertainty 20

across models.

4.3 Uncertainties

The weaknesses of machine learning algorithms and raw
GGCMs have brought some uncertainties into the emulators.
The uncertainties induced by the machine learning algorithm 25

were as follows.

1. When the climate factors went beyond the range of
training data, the weakness of machine learning in out-
of-sample prediction could bring great uncertainty. The
emulator inputs should be capped by the range of train- 30

ing data. The limit of our emulator was the warmest grid
under +6 K perturbation. As there is polar amplifica-
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Figure 10. Fraction of harvested areas with a high correlation coefficient (R > 0.8) under varied T +W perturbations. Example of EPIC-
TAMU-A0, LPJmL-A0, and pDSSAT-A0 emulators because only these three GGCMs contain the full range of CTWN perturbations for all
four crops.

tion, the strongest warming mostly happens in cooler
regions. Thus, the projected temperature exceeding the
training range would not be widespread over global
croplands.

2. Although the emulators could reproduce the GGCM5

annual yield with high accuracy in most cases, there
were cases in which the machine learning algorithm
did not show good reproduction skill. As the emulated
function was intended to smooth the response of simu-
lated crop yield to climate, samples at the margins of10

training data tend to show lower emulator skill. Ex-
treme conditions, i.e., +6 K, −50 % water, 810 ppm,
10 kgNha−1 TS3 , show reduced R and increased MAE.
Using the emulators to estimate annual crop yield under
extreme perturbation conditions should be done with15

caution and the additional uncertainty induced by the
emulators should be considered in the interpretation of
results.

3. Last but not least, as the emulators are intended to be
lightweight tools that can replicate raw GGCMs, their20

capability to simulate crop yields is limited to the ca-

pability of the original GGCMs. This raises the issue
that emulators are unlikely to show good performance
in simulating crop yield responses to climate extremes,
exactly like the raw GGCMs, which have shown poor 25

performance in capturing the yield impact of heatwave
and drought (Heinicke et al., 2022), and the lack of neg-
ative effects of excessive wetness (Li et al., 2019a). Re-
solving such a problem requires the improvement of raw
GGCMs’ capability to simulate yield response to cli- 30

mate extremes or statistical promotion of the GGCMs’
outputs under extreme weather events.

5 Conclusion

In this study, we developed machine-learning-based statisti-
cal crop yield emulators to reproduce the year-to-year vari- 35

ation of crop yield in response to perturbations in CO2 con-
centration, temperature, water, and nitrogen application rate
from the GGCMI phase 2 archives. To examine the poten-
tial value of these emulators, we evaluated the performance
of emulators at the global and gridded scale under a baseline 40

with single and dual perturbations.

L
附注
TS3: The N is the abbreviation of Nitrogen. The unit of Nitrogen application rate is kg ha-1
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Figure 11. Fraction of harvested areas with low mean absolute error (MAE < 0.5 tha−1) under varied T +W perturbations. Example of
EPIC-TAMU-A0, LPJmL-A0, and pDSSAT-A0 emulators because these three GGCMs contain the full range of CTWN perturbations for all
four crops.

The results indicated that the performance of emulators
was good enough to reproduce the year-to-year variation of
global average crop yield in the baseline (R > 0.9), and the
difference in accuracy between individual GGCM emulators
was not large. Similarly, under single and dual perturbations,5

the capacity of emulators to reproduce the year-to-year varia-
tion of global mean crop yield was not substantially changed.
At the gridded level, the performance of emulators over most
of the current croplands in the baseline was still good in
the sense that R was greater than 0.6 and MAE was smaller10

than 1 tha−1. The performance of individual emulators was
consistently good under single CTWN perturbations, without
substantial changes in R and MAE. Similarly, multiple em-
ulators also performed well in reproducing the annual yield
under single CTWN perturbations, and most grid cells across15

the current cropland showed greater R and smaller MAE un-
der simultaneous perturbations of T and W . The overall good
capacity of emulators to reproduce the year-to-year variation
of GGCM-simulated crop yield indicated the role of emu-
lators in spatiotemporal downscaling, crop yield projection,20

and multi-model ensemble simulation. The emulators were
able to boost the ability to assess crop yield failure risk un-

der future climate change and help to better understand food
stability and climate risk adaptation.

Code and data availability. The Python function for crop model 25
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