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Abstract 12 

Atmospheric aerosols have important impacts on air quality and the Earth-atmospheric energy 13 

balance. However, as computing power is limited, Earth system models generally use coarse spatial grids 14 

and parameterize finer-scale atmospheric processes. These parameterizations and the simulation of 15 

atmospheric aerosols are often sensitive to model horizontal resolutions. Understanding the sensitivities is 16 

necessary for the development of Earth system models at higher resolutions with the deployment of more 17 

powerful supercomputers. Using the Energy Exascale Earth System Model (E3SM) version 1, this study 18 

investigates the impact of horizontal grid spacing on the simulated aerosol mass budget, aerosol-cloud 19 

interactions, and the effective radiative forcing of anthropogenic aerosols (ERFaer) over the contiguous 20 

United States. We examine the resolution sensitivity by comparing the nudged simulation results for 2016 21 

from the low-resolution model (LR) and the regional refinement model (RRM). 22 

As expected, the simulated emissions of natural dust, sea salt, and marine organic matter are 23 

substantially higher in the RRM than in the LR. In addition, RRM simulates stronger aqueous-phase 24 

production of sulfate through the enhanced oxidation of sulfur dioxide by hydrogen peroxide due to 25 

increased cloud liquid water content. In contrast, the gas-phase chemical production of sulfate is slightly 26 

suppressed. The RRM resolves more large-scale precipitation and produces less convective precipitation 27 

than the LR, leading to increased (decreased) aerosol wet scavenging by large-scale (convective) 28 

precipitation. 29 

Regarding aerosol effects on clouds, RRM produces larger temporal variabilities of large-scale liquid 30 

cloud fractions than LR, resulting in increased microphysical cloud processing of aerosols (more 31 

interstitial aerosols are converted to cloud-borne aerosols via aerosol activation) in RRM. Water vapor 32 

condensation is also enhanced in RRM compared to LR. Consequently, the RRM simulation produces 33 

more cloud droplets, a larger cloud droplet radius, a higher liquid water path, and a larger cloud optical 34 

depth than the LR simulation. A comparison of the present-day and pre-industrial simulations indicates 35 
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that, for this contiguous United States domain, the higher resolution increases ERFaer at the top of the 36 

model by about 12%, which is mainly attributed to the strengthened indirect effect associated with 37 

aerosol-cloud interactions.  38 
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1 Introduction 39 

Atmospheric aerosols have played essential roles in the deterioration of air quality in recent decades, 40 

especially in rapidly developing countries (Li et al., 2019; Lim et al., 2020; Xiao et al., 2021). Besides 41 

directly degrading atmospheric visibility and with substantial impacts on human health (Apte et al., 2015; 42 

Wang et al., 2019), aerosols are also involved in the formation of other major atmospheric pollutants, 43 

such as ozone and nitrogen oxides (Perring et al., 2013; Pusede et al., 2015). In addition, atmospheric 44 

aerosols from natural and anthropogenic sources considerably affect the radiation balance of the Earth 45 

system. The present-day (PD) (the year 2014) anthropogenic aerosol effective radiative forcing (ERFaer) 46 

relative to the pre-industrial (PI) period (the year 1850) is estimated to range from -0.63 to -1.37 W m-2 47 

according to 17 Earth system models (ESMs) participating the Coupled Model Intercomparison Project 48 

Phase 6 (CMIP6) (Smith et al., 2020). Aerosols can modulate the earth-atmospheric energy balance via 49 

several pathways. Firstly, they directly scatter and absorb shortwave and longwave radiation. Secondly, 50 

they are involved in cloud formation by acting as cloud condensation nuclei (CCN) and ice nuclei, thus 51 

influencing cloud radiative forcing. Thirdly, light-absorbing aerosols depositing on snow and ice surfaces 52 

can change the snow and ice melting by absorbing more solar radiation, leading to changes in surface 53 

albedo and energy budgets (Qian et al., 2015). Aerosols can also indirectly affect the global energy 54 

budget by influencing the ocean biogeochemistry and terrestrial ecosystems (Hamilton et al., 2022; 55 

Jickells et al., 2005; Mahowald et al., 2017). 56 

Accurate simulation of atmospheric aerosols in ESMs is challenging due to complex physical and 57 

chemical processes (e.g., emissions, nucleation, coagulation, condensation, dry deposition, wet 58 

scavenging and resuspension, droplet activation, gas- and aqueous-phase chemistry, and radiation) and 59 

our incomplete understanding of these processes. Substantial parameterizations are designed to represent 60 

the aerosol lifecycle and its interactions with clouds and radiation in the Energy Exascale Earth System 61 

Model (E3SM) (Burrows et al., 2022; Wang et al., 2020) — a state-of-the-science ESM sponsored by the 62 
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United States (US) Department of Energy (DOE) for scientific and energy mission applications (Golaz et 63 

al., 2022; Golaz et al., 2019). However, these parameterizations are primarily developed and evaluated at 64 

ESM scales, and their performance at higher resolution is generally unclear. As the computing power 65 

continues to increase, future ESMs are expected to run at much higher resolutions (Caldwell et al., 2021; 66 

Dueben et al., 2020; Heinzeller et al., 2016). Therefore, it is crucial to understand the fidelity of these 67 

aerosol parameterizations and how the simulated aerosol lifecycle and aerosol effects on cloud and 68 

radiation will change as model resolution increases. These efforts are critical for parameter tuning and 69 

model development at high resolutions (Caldwell et al., 2019; Ma et al., 2014; Ma et al., 2015). 70 

Caldwell et al. (2019) and Feng et al. (2022) investigated the impacts of model horizontal resolutions 71 

on some aspects of the aerosol lifecycle in E3SM. However, both studies were based on simulations with 72 

global uniform resolutions, which will be computationally expensive when the model resolution increases 73 

further to convection-permitting. To reduce the computational cost and maintain high-resolution features, 74 

variable-resolution techniques with high-resolution grids in the region of interest transitioning to low-75 

resolution meshes in others have been widely applied in ESMs (Harris et al., 2016; Schwartz, 2019; 76 

Zarzycki et al., 2014). Tang et al. (2019) developed a regional refinement model (RRM) configuration for 77 

E3SM version 1 (E3SMv1) with high-resolution meshes (~25 km) over the contiguous US (CONUS) and 78 

low-resolution meshes (~100 km) in other areas. They found that RRM highly resembles the uniform 79 

high-resolution simulation in the refined region, indicating that RRM can be an effective and 80 

computationally efficient configuration for high-resolution model development. 81 

This study investigates the impact of horizontal grid spacing on aerosol mass budget, aerosol-cloud 82 

interactions, and ERFaer over the CONUS in 2016 using the RRM configuration. We compare E3SMv1 83 

simulations with a global uniform grid spacing of ~100 km (hereafter referred to as the low-resolution 84 

(LR) simulations) to the RRM simulations using the same configuration as Tang et al. (2019) with higher 85 

resolution (~25km) meshes over CONUS. Our findings provide insights into aerosol parameterization 86 

development and their dependence on model horizontal resolution. The paper is organized as follows. 87 
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Section 2 describes the E3SMv1 model and the simulation configurations. Section 3 discusses the impacts 88 

of increasing resolution on 1) the natural aerosol sources, 2) the aerosol wet scavenging, 3) the aerosol 89 

chemical production, 4) the aerosol-cloud interactions, and 5) ERFaer, where apparent discrepancies are 90 

found between the LR and RRM simulations. Finally, the study is summarized in Section 4. 91 

2 Model setup 92 

2.1 E3SMv1 model description 93 

Aerosol processes are primarily represented in the E3SM Atmosphere Model version 1 (EAMv1) 94 

(Rasch et al., 2019), which uses the High-Order Methods Modeling Environment (HOMME) Spectral 95 

Element dynamical core (Dennis et al., 2012). The dynamical core and the physics parametrizations are 96 

computed on cubed-sphere grids with data stored at Gauss-Lobatto-Legendre (GLL) nodes. The EAMv1 97 

standard low-resolution configuration has 30 spectral elements per cube face (ne30) and 4 GLL nodes per 98 

spectral element (np4), corresponding to a horizontal grid spacing of ~100 km. The model has 72 vertical 99 

layers with a vertical resolution of ~20 m near the surface and a vertical resolution higher than 200 m 100 

below 1.5 km, and the model top reaches up to ~60 km (≈ 0.1 hPa). The model uses an updated version of 101 

the Zhang and McFarlane (1995) (ZM) deep convection scheme with a modified dilute plume calculation 102 

(Neale et al., 2008), the Cloud Layers Unified By Binormals (CLUBB) scheme for turbulence, shallow 103 

convection, and stratiform clouds (Bogenschutz et al., 2013; Golaz et al., 2002; Larson et al., 2002; Xie et 104 

al., 2018), the version 2 of the Morrison and Gettelman (2008) (MG2) 2-moment cloud microphysics 105 

scheme with a classical-nucleation-theory-based ice nucleation parameterization (Hoose et al., 2010; 106 

Wang et al., 2014), the revised version of the four-mode version of the Modal Aerosol Module (MAM4) 107 

(Liu et al., 2016; Wang et al., 2020), and the Rapid Radiative Transfer Model for GCMs (RRTMG) 108 

(GCM: general circulation model) (Iacono et al., 2008; Mlawer et al., 1997). 109 
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MAM4 considers seven aerosol species: mineral dust, sea salt, marine organic matter (MOM), black 110 

carbon (BC), primary organic matter (POM), secondary organic aerosol (SOA), and sulfate (SO4) (Wang 111 

et al., 2020). Dust emission is parameterized as a function of surface wind speed, soil erodibility, friction 112 

velocity, and a friction velocity threshold following the scheme of Zender et al. (2003) in the land 113 

component of E3SMv1. The emissions of sea salt and MOM are estimated from sea spray fluxes, which 114 

are parameterized as a function of surface wind speed and sea surface temperature (Burrows et al., 2022). 115 

Emissions of other aerosol species and precursor gases are prescribed using CMIP6 emission datasets 116 

(Hoesly et al., 2018; Van Marle et al., 2017). The physical properties (including the size distribution, 117 

density, and hygroscopicity) of the seven aerosol species are summarized in Burrows et al. (2022). 118 

MAM4 represents aerosol particles in four modes with distinct size properties: Aitken mode, 119 

accumulation mode, coarse mode, and primary carbon mode (Burrows et al., 2022; Liu et al., 2016; Wang 120 

et al., 2020). The primary carbon mode is specified for freshly emitted BC, POM, and MOM, the aging of 121 

which is treated explicitly ¾ a feature different from the three-mode version of MAM (MAM3) (Liu et 122 

al., 2012). The Aitken mode consists of sea salt, MOM, SOA, and SO4, while all seven species can exist 123 

in accumulation and coarse modes. MAM4 assumes that aerosol species are internally mixed within each 124 

mode but externally mixed across different modes. Aerosol particles in each mode can suspend in the air 125 

(i.e., interstitial aerosols) or exist in cloud droplets (i.e., cloud-borne aerosols). The evolution of aerosol 126 

particles involves many physical and chemical processes, such as emissions, nucleation, coagulation, 127 

condensation, convective transport, activation, dry deposition, wet scavenging, resuspension, and gas-128 

phase and aqueous chemistry. More details of these processes and their interactions with radiation and 129 

cloud microphysics are described in Liu et al. (2012), Liu et al. (2016), Wang et al. (2020), and Zhang et 130 

al. (2022a). 131 

EAMv1 has been evaluated against observations and other ESMs in Xie et al. (2018), Rasch et al. 132 

(2019), and Golaz et al. (2019). The simulation of aerosol properties and ERFaer have been evaluated in 133 

Table S1 and Figures S1-S2, Wang et al. (2020), Burrows et al. (2022), Feng et al. (2022), and Zhang et 134 
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al. (2022a). Our investigation focuses on comparing LR and RRM simulations, and the known model 135 

biases, such as the dry biases over the Great Plains of the US, the Amazon region, and Southeast Asia 136 

(Xie et al., 2018) and the cold bias between the 1950s and the 2000s (Golaz et al., 2019), are not expected 137 

to affect the overall model sensitivity to the resolution change. 138 

2.2 E3SMv1 LR and RRM simulations 139 

In addition to the standard LR E3SMv1 simulation with a globally uniform resolution of ~100 km 140 

for EAMv1 and the land component, we conduct an RRM simulation following the configuration of Tang 141 

et al. (2019) with a relatively high-resolution mesh (~25 km) over the CONUS for the atmospheric and 142 

land components (Figure 1). The simulation period is from October 1, 2015, to January 1, 2017, with the 143 

first three months as model spin-up (Zhang et al., 2022a). The component set used in the simulations 144 

comprises the coupling of an active atmospheric component — EAMv1, an active land component 145 

(version 4.5 of the Community Land Model — CLM4.5) (Oleson et al., 2013), a simplified active sea ice 146 

component, and a data ocean model with prescribed historical sea surface temperature and sea ice 147 

fractions (Hurrell et al., 2008). 148 

The atmospheric and land initial conditions in the LR simulation are derived from an earlier 149 

E3SMv1 simulation, which has reached equilibrium. The RRM initial conditions are regridded from those 150 

of the LR simulation to exclude the potential impact of distinct initial conditions on the simulation results. 151 

Anthropogenic and biomass-burning emissions of BC, POM, and SO4 and precursor gas sulfur dioxide 152 

(SO2) are from the CMIP6 emission inventory (Feng et al., 2020; Hoesly et al., 2018). Notably, we use 153 

the emission data in 2014 instead of in 2016 due to the data availability of CMIP6. Dimethyl sulfide 154 

(DMS) emissions in 1850, 2000, and 2100 are estimated from a coupled model simulation with a detailed 155 

representation of DMS formation in the seawater (Wang et al., 2018). We obtain the DMS emissions in 156 

2014 through linear interpolation of the emissions in 1850, 2000, and 2100. The 3-D SOA production 157 

rates (implemented similarly to emissions) are derived from the simulation from Shrivastava et al. (2015). 158 
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Besides the PD LR and RRM simulations, we run two corresponding simulations with PI aerosol 159 

emissions to calculate ERFaer. The PI simulation configurations are the same as the corresponding PD 160 

simulations except that emissions of BC, POM, SO4, SO2, DMS, and SOA (production) in 1850 are used 161 

in the PI simulations. 162 

 We apply nudging globally in the LR and RRM simulations, which differs from Tang et al. (2019), 163 

which used nudging only on the low-resolution meshes but not the high-resolution grids in CONUS. We 164 

follow the nudging strategy from Zhang et al. (2014) and Sun et al. (2019), which demonstrated that a 165 

simulation with constraint horizontal winds could reproduce the evolution characteristics of the observed 166 

weather events and the model’s long-term climatology. In addition, it has been corroborated that nudged 167 

simulations with a relatively short simulation period (e.g., one year) can reproduce the annual mean 168 

changes in aerosol burdens and optical depths caused by anthropogenic aerosols in the E3SM 169 

Atmospheric Model Intercomparison Project (AMIP) simulations (Zhang et al., 2022a). The short nudged 170 

simulations also have a similar estimate of ERFaer as the AMIP-type free-running simulations (Zhang et 171 

al., 2022a). Moreover, by constraining the large-scale circulation, nudging helps suppress the noises 172 

caused by the chaotic response to model changes and facilitates the comparison between the LR and RRM 173 

simulations. Similarly, nudging is also used to estimate ERFaer, as recommended by previous studies 174 

(Kooperman et al., 2012; Sun et al., 2019; Zhang et al., 2014). In short, nudging helps increase the signal-175 

to-noise ratio and identify the impact caused by regional refinement more quickly. In our simulations, the 176 

horizontal winds are nudged toward the European Centre for Medium-Range Weather Forecasts 177 

Reanalysis v5 (ERA5) (Hersbach et al., 2020) with a relaxation time of 6 hours (Zhang et al., 2022b). To 178 

avoid the errors caused by vertical interpolation-extrapolation from ERA5 to E3SM vertical levels, we 179 

don’t apply nudging for model levels below 950 hPa and above 10 hPa. 180 

Several parameters differ between the E3SMv1 standard LR and CONUS RRM default 181 

configurations. For example, the time step for most physical processes and the coupling between physics 182 

and dynamics is 30 minutes in the LR configuration. In comparison, CONUS RRM uses a time step of 15 183 
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minutes. Many physical processes are sensitive to the time step and parameter setting (Wan et al., 2015; 184 

Wan et al., 2021; Zhao et al., 2013). Our sensitivity tests show substantial differences in the aerosol mass 185 

and energy budgets even outside of the refined region when the respective default configurations are used 186 

in the LR and RRM simulations, which is mainly attributed to their distinct physical time steps (not 187 

shown). Therefore, it would be better to keep the tuning parameters and time step the same between the 188 

LR and RRM simulations to isolate the regional refinement effect (horizontal resolution sensitivity), as 189 

recommended by earlier studies (Caldwell et al., 2021; Ma et al., 2015). Therefore, for the LR simulation, 190 

we use the time step of 15 minutes and the parameter setting from the default CONUS RRM 191 

configuration. With such changes, LR shares the same configuration as RRM, except for regional 192 

refinement around CONUS (Figure 1) and resolution-relevant input files (e.g., topography and nudging-193 

prescribed wind fields). As expected, the results are very close between the LR and RRM simulations in 194 

the low-resolution (~100 km) areas (not shown), facilitating our subsequent investigation of the impacts 195 

of regional refinement on the aerosol mass budget and the aerosol forcing over CONUS. 196 
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 197 
Figure 1. E3SMv1 RRM domain (spectral elements) in (a) an orthographic projection and (b) a cylindrical 198 
equidistant projection. (a) and (b) show the boundaries of spectral element grids. The red rectangle in (b) outlines 199 
the region we focus on in the following analyses, referred to as the RRM region. 200 

3 Results and Discussions 201 

We focus our analysis on the refined region, as outlined by the red box in Figure 1b (hereafter 202 

referred to as the RRM region), and the annual mean simulation results in 2016 unless stated otherwise. 203 
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The LR and RRM simulation results have been regridded to 1° ´ 1° to facilitate their comparison unless 204 

otherwise indicated. 205 

3.1 Aerosol natural sources 206 

Table 1 summarizes the annual mean sources and burdens of the seven aerosol species in the RRM 207 

region from the LR and RRM simulations. We find the largest relative differences in the sources and mass 208 

burden of the natural wind-driven aerosols between the RRM and LR simulations. With higher horizontal 209 

resolution, the RRM simulation produces more dust (154%), sea salt (13%), and MOM (10%) emissions 210 

than LR. The dust emission enhancement by RRM is concentrated in several inland regions with high 211 

dust emissions, especially in the Mohave and Sonoran deserts (referred to as Region 1) and the northern 212 

North American Prairie (referred to as Region 2) (Figures 2a and 2b). In comparison, the increases in sea 213 

salt and MOM emissions mainly occur around the coastal lines (Figures 2c-2f). That dust emissions 214 

increase with finer model resolutions has been identified in earlier studies (Caldwell et al., 2019; Feng et 215 

al., 2022; Ridley et al., 2013), which attributed the increase to more frequent occurrences of strong winds 216 

in high-resolution simulations. Dust emissions are nonlinearly correlated with surface winds and are 217 

particularly sensitive to strong winds (Zender et al., 2003). We find larger (11.2%) annual mean surface 218 

wind speeds and more frequent strong winds in Region 1 in the RRM simulation compared to the LR 219 

simulation (Figures 3c and 3d), which can explain the dust emission increase in Region 1 under regional 220 

refinement (Figure 2b). However, in Region 2, the annual mean surface wind speeds differ slightly (2.2%) 221 

between the RRM and LR simulations. Besides, the probability density functions (PDFs) of wind speed in 222 

Region 2 are similar between the two simulations (Figures 3c and 3e), as well as the PDFs of friction 223 

velocity (not shown), indicating that surface winds and friction velocities alone cannot explain the dust 224 

emission enhancement in the RRM simulation. In addition to surface winds and friction velocity, soil 225 

moisture can also influence dust emissions by improving the friction velocity threshold (Namikas and 226 

Sherman, 1997; Zender et al., 2003). Therefore, high soil moisture may inhibit saltation and thus reduce 227 
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dust emissions. We find lower (-7.1%) volumetric soil water content in the surface layer in Region 2 in 228 

the RRM simulation than in the LR simulation (Figure 3b), which is consistent with the dust emission 229 

increase in the region by RRM (Figure 2b). The reduced surface soil water content in Region 2 is likely 230 

related to less precipitation (-3.0%) in the RRM simulation compared to the LR simulation (Figure 4c). 231 

Table 1. Total annual mean sources and burden in the RRM region for the seven aerosol species 232 

 
Sources Burden 

RRM / Tg yr-1 LR / Tg yr-1 Relative diff1 / % RRM / Tg LR / Tg Relative diff / % 

Dust 22.3 8.79 154 0.126 0.0910 39 
Sea salt 39.4 34.9 13 0.0875 0.0782 12 
MOM 0.192 0.175 10 0.00114 0.00104 9.8 

BC 0.268 0.268 0.0030 0.00446 0.00446 -0.050 
POM 1.15 1.15 0.022 0.0287 0.0286 0.30 
SOA 2.70 2.68 0.72 0.0859 0.0857 0.26 
SO4

2 1.74 1.69 2.8 0.0216 0.0215 0.41 
1𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑓𝑓 = (𝑅𝑅𝑀 𝐿𝑅⁄ − 1) × 100%. 233 
2SO4 is represented in the mass of sulfur (TgS y-1 for sources and TgS for burden). Besides direct anthropogenic 234 
emissions of SO4, other SO4 sources include gas-aerosol exchange, aqueous-phase production (aqueous-phase 235 
chemistry and cloud water uptake), and new particle formation. 236 

As mentioned above, sea salt and MOM emissions are related to surface wind speed and sea surface 237 

temperature (Burrows et al., 2022; Liu et al., 2012). We attribute the increased sea salt and MOM 238 

emissions in the RRM simulation to enhanced surface wind speeds at the finer model resolution, as shown 239 

in Figure 3a. In addition, since sea salt and MOM are only emitted over the ocean, the distinct land-ocean 240 

boundaries may also partially contribute to the discrepancies in sea salt and MOM emissions between the 241 

RRM and LR simulations. 242 
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 243 
Figure 2. Left column: spatial distributions of annual mean sources of (a) dust, (c) sea salt, and (e) MOM from the 244 
LR simulation. Right column: the same as the left column but for the absolute differences between the RRM and LR 245 
simulations (RRM-LR). The green and black boxes in (b) highlight two subregions with substantial changes in dust 246 
emissions when applying regional refinement. Region 1 is around the Mohave and Sonoran deserts, and Region 2 is 247 
in the northern North American Prairie. 248 

 249 
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 250 
Figure 3. Spatial distributions of the relative differences in annual mean (a) 10-m wind speed from the E3SMv1 251 
atmospheric component (U10), (b) surface-layer volumetric soil water content (H2OSOI), and (c) 10-m wind speed 252 
used in the dust emission parameterization (U10_Dust) between the RRM and LR simulations (RRM-LR). The 253 
green and black boxes in (a), (b), and (c) are the same as those in Figure 2b. (d, e) Probability density functions 254 
(PDFs) of U10_Dust in (d) Region 1 and (e) Region 2. The black lines are for the LR simulation, while the red lines 255 
are for the RRM simulation. U10_Dust on native model grids with an output frequency of 15 minutes is used to 256 
derive the corresponding PDF. Notably, U10_Dust is slightly different from U10, which considers the convective 257 
gustiness effect. 258 
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3.2 Aerosol wet scavenging by convective vs. large-scale precipitation 259 

In the RRM region, wet scavenging is the primary sink for most aerosol species in both simulations 260 

except for dust and sea salt, the sinks of which are dominated by dry deposition. To understand the impact 261 

of horizontal grid spacing on aerosol wet scavenging, it is necessary first to investigate how precipitation 262 

differs between the LR and RRM simulations. 263 

Figure 4 evaluates the LR and RRM simulated precipitation against the observational Stage IV data. 264 

Stage IV is a radar-based precipitation product with rain-gauge bias adjustment and has a native 265 

resolution of 4 km (Lin and Mitchell, 2005). We regrid the Stage IV data to 1° ´ 1° for comparison with 266 

our simulation results. Both simulations can capture the observed east-west precipitation gradient in the 267 

US east of the Rocky Mountains. The spatial correlation coefficient between the LR simulation and Stage 268 

IV is 0.52, similar to that between RRM and Stage IV. Moreover, most observed precipitation events in 269 

the central-eastern US (red box in Figure 4d) are well simulated by the LR and RRM simulations 270 

according to the Hovmöller diagrams of meridionally averaged daily precipitation rates in Figure 5, which 271 

is attributed to the appropriate nudging strategy applied to the simulations. However, apparent dry biases 272 

are found near the coastal areas of the southern US in the LR simulation (Figure 4e). By producing more 273 

precipitation than the LR simulation around the US coastal areas, RRM can reduce the dry bias in the 274 

southern coastal regions. However, its precipitation is still much lower than observed (Figure 4f). Minor 275 

dry biases are also found in the northern Great Plains in both simulations. The model dry biases in the 276 

southern and northern Great Plains may be due to the limitation of E3SM in predicting extreme 277 

precipitation events, such as mesoscale convective systems (Feng et al., 2021; Wang et al., 2021), which 278 

is the dominant precipitation contributor in the Great Plains (Li et al., 2021). A noticeable improvement 279 

of the RRM simulation compared to the LR simulation is the production of more frequent heavy 280 

precipitation (> 7.6 mm h-1), which is mainly attributed to the intensification of large-scale precipitation 281 

(Figure 6), consistent with the results from Caldwell et al. (2019). More frequent heavy precipitation can 282 
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partially alleviate the “too frequent, too weak” problem in low-resolution E3SM simulations (Caldwell et 283 

al., 2019). However, our result contradicts Tang et al. (2019), which found more light precipitation but 284 

less heavy precipitation as model horizontal resolution increases. It may be because Tang et al. (2019) 285 

didn’t apply nudging to their low-resolution and RRM simulations, and precipitation varied much 286 

between the two simulations. 287 

 288 
Figure 4. (a-c) Spatial distributions of annual mean total precipitation rates (large-scale and convective) for the (a) 289 
LR and (b) RRM simulations and (c) their differences (RRM-LR). The green and black boxes in (c) are the same as 290 
those in Figure 2b. (d-f) Spatial distributions of annual mean precipitation from Stage IV and the precipitation bias 291 
of the LR and RRM simulations against Stage IV. The regional mean biases of the LR and RRM simulations are 292 
0.004 mm h-1 and 0.010 mm h-1 compared to Stage IV with a regional mean precipitation of 0.107 mm h-1. It is 293 
noteworthy that the data quality of Stage IV is poor over the open ocean and the western US due to limited radar 294 
coverage. The Hovmöller diagram in Figure 5 is based on the red box in (d). 295 
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 296 
Figure 5. Hovmöller diagrams of meridionally averaged daily precipitation rates in the red box of Figure 4d for (a) 297 
Stage IV, (b) the LR simulation, and (c) the RRM simulation in 2016. The centered pattern correlation coefficient 298 
between LR and Stage IV is 0.28, the same as that between RRM and Stage IV. The root-mean-square errors of LR 299 
and RRM are 5.3 mm day-1 and 5.5 mm day-1, respectively, against Stage IV. 300 
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 301 
Figure 6. Probability density functions (PDFs) of (a) convective and (b) large-scale precipitation rates in the RRM 302 
region for the LR (black lines) and RRM (red lines) simulations. Precipitation on native grids with an output 303 
frequency of 15 minutes is used to calculate the corresponding PDF. 304 

In addition to affecting total precipitation rates, the model resolution notably changes the partitioning 305 

between large-scale precipitation (that is computed by the MG2 cloud microphysics parameterization) and 306 

deep convective precipitation (that is computed by the ZM deep convection parametrization). As model 307 

resolution increases, more precipitation can be resolved, which leads to an increase in large-scale 308 

precipitation and a decrease in convective precipitation (Figures 7a and 7b) (Tang et al., 2019). 309 

In E3SMv1, aerosol wet removal by large-scale and convective precipitation is comprised of in-310 

cloud scavenging, which involves the activation of interstitial aerosol particles (IAPs) and the subsequent 311 
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removal of cloud-borne aerosol by precipitation, and below-cloud scavenging accounting for the removal 312 

of IAPs by precipitation via impaction and Brownian diffusion (Liu et al., 2012; Wang et al., 2013). In-313 

cloud scavenging is the dominant process for all aerosol species in the RRM region, accounting for ~80% 314 

of the wet removal of sea salt and dust and more than 98% of the other aerosol species. 315 

EAMv1 uses two different parameterizations to treat aerosol wet scavenging by large-scale clouds 316 

and deep convective clouds. Here, “large-scale clouds” refer to clouds represented by the CLUBB and 317 

MG2 parameterizations, and “deep convective clouds” refer to clouds represented by the ZM deep 318 

convection parameterization. In large-scale clouds, aerosol activation is parameterized as a function of 319 

subgrid vertical velocity (Wsub), aerosol properties, and environmental conditions (Abdul-Razzak and 320 

Ghan, 2000). The first-order loss rates of aerosol are computed by multiplying a solubility factor by the 321 

first-order loss rate of cloud water, which is computed as a function of cloud fraction, cloud water, and 322 

precipitation production rate profiles (Barth et al., 2000; Rasch et al., 2000). In deep convective clouds, 323 

the cloud-borne aerosol mixing ratios are computed by multiplying interstitial aerosol mixing ratios by 324 

the prescribed convective-cloud activation fractions, which depend on aerosol modes and species to 325 

represent the hygroscopicity (Liu et al., 2012; Wang et al., 2013). The solubility factor is a tunable 326 

parameter, and the model uses different solubility factors for large-scale and deep convective clouds (Liu 327 

et al., 2012; Wang et al., 2013). 328 

Therefore, the change in the partitioning between large-scale and deep convective precipitation 329 

should make a difference in aerosol wet removal. Taking SO4 as an example, Figures 7c and 7d show a 330 

significant increase in in-cloud scavenging of SO4 by large-scale precipitation but a noticeable decrease 331 

by deep convective precipitation in the RRM simulation compared to the LR simulation. The changing 332 

patterns of in-cloud scavenging by large-scale and deep convective precipitation are consistent with the 333 

changes in the corresponding type of precipitation rates. Figure 8 summarizes the relative differences in 334 

regional mean large-scale and deep convective in-cloud scavenging of different aerosol species in the 335 
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RRM region between the RRM and LR simulations. Due to the increase in large-scale precipitation (28%) 336 

and the decrease in deep convective precipitation (-16%) in the RRM region, the large-scale in-cloud 337 

scavenging increases and the deep convective in-cloud scavenging reduces for all aerosol species but dust 338 

in the RRM simulation compared to the LR simulation. Dust exhibits a different response because dust 339 

emission is 154% higher in the RRM simulation than in the LR simulation. With the significant increase 340 

of dust emission and loading in the atmosphere in the RRM simulation, the wet removal of dust by both 341 

large-scale and deep convective clouds are higher than that in the LR simulation, even though the deep 342 

convective precipitation rate is lower. 343 

 344 
Figure 7. (a, b) Spatial distributions of the relative differences in annual mean (a) large-scale and (b) convective 345 
precipitation between the RRM and LR simulations. (c-d) same as (a) and (b) but for in-cloud scavenging of SO4 by 346 
(c) large-scale and (d) convective precipitation. 347 
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 348 
Figure 8. Relative differences in annual regional mean large-scale and convective precipitation and in-cloud 349 
scavenging of different aerosol species by large-scale and convective precipitation between the RRM and LR 350 
simulations. “Pcp” refers to precipitation, and “SS” denotes sea salt. 351 

3.3 Aerosol chemical production 352 

As expected, anthropogenic aerosol emissions (e.g., BC, POM, and SOA) prescribed by offline 353 

emission inventories are almost the same between the RRM and LR simulations. However, the SO4 354 

source in the RRM simulation is 2.8% higher (Table 1). MAM4 considers four source terms for sulfate 355 

aerosol. Two primary sources of SO4 are gas-aerosol exchange and aqueous-phase production (Figure 356 

S3), which contribute to 31% and 63%, respectively, in the RRM region. The other two minor source 357 
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terms are (1) direct emission of sulfate aerosol and (2) new particle formation (NPF) (Figure S3), 358 

accounting for about 5% and 1% of the total source. Figures 9a and 9c show the spatial distributions of 359 

SO4 production via the two major pathways from the LR simulation, generally consistent with the 360 

distributions of precursor gases (sulfuric acid gas vapor (H2SO4) and SO2 in Figures S4a and S4b) with 361 

one peak in the northeastern US and another peak around southwestern Texas. The RRM simulation 362 

generally produces more SO4 via aqueous-phase production (6.2% on average over the RRM region) but 363 

less via gas-aerosol exchange (-3.0%) than the LR simulation (Figures 9b and 9d). Figures 9e-9f show 364 

that increasing resolution leads to significantly lower (-13.3%) NPF of SO4. 365 

SO4 production via gas-aerosol exchange and NPF positively correlates with the H2SO4 366 

concentration (Liu et al., 2012). We find a lower (-5.5%) H2SO4 concentration in the RRM than in the LR 367 

(Figure S5a), which can explain the reduction of SO4 production via gas-aerosol exchange and NPF 368 

(Figure S3). The source of H2SO4 is the oxidation of gas-phase SO2 by hydroxyl radical (OH) (Figure S3). 369 

In our E3SMv1 configuration, OH concentrations are prescribed, and the reaction rate constants of SO2 370 

and OH are similar between the RRM and LR simulations (not shown). Therefore, the H2SO4 production 371 

is dominated by the gas-phase SO2 concentration, which shows a reduction (-2.3%) in the RRM compared 372 

to the LR (Figure S5b). The sources of gas-phase SO2 include direct emissions and the oxidation of DMS 373 

by OH and nitrate radical (NO3) (Figure S3). DMS and SO2 emissions are read from emission inventories, 374 

and the reaction rate constants of DMS + OH and DMS + NO3 are close between the RRM and LR 375 

simulations. Therefore, the gas-phase SO2 source is similar between the two simulations, and we need to 376 

understand the sinks of gas-phase SO2 to explain the general reduction of gas-phase SO2 concentrations in 377 

the RRM simulation. 378 
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 379 
Figure 9. Left column: spatial distributions of annual mean SO4 sources from (a) gas-aerosol exchange, (c) aqueous-380 
phase production, and (e) NPF in the LR simulation. Right column: the same as the left column but for the relative 381 
differences between the RRM and LR simulations. 382 

We find that dry and wet deposition cannot explain the general reduction of gas-phase SO2 383 

concentrations in the RRM compared to the LR (not shown). Another major sink of gas-phase SO2 is the 384 

oxidation of SO2 by hydrogen peroxide (H2O2) and ozone (O3) to form SO4 via aqueous-phase chemistry 385 

(Figures 10c, 10e, and S3). Another process to produce SO4 in the aqueous-phase chemistry module of 386 

E3SMv1 is the cloud water uptake of H2SO4 (Figures 10a and S3). All three pathways are related to large-387 

scale cloud liquid water content (LWC) (LWC at 700 hPa shown in Figure S4c). The RRM simulation 388 

generally produces a larger LWC than the LR simulation (700 hPa shown as an example in Figure S5c). 389 

Therefore, the cloud water uptake of H2SO4 is enhanced in the RRM simulation (Figures 10b and S3). 390 



 25 

The aqueous-phase oxidation of SO2 by H2O2 and O3 would also be expected to increase with higher 391 

LWC in the RRM simulation. However, we find a slight reduction (-1.2%) in SO4 production via the O3 392 

pathway (Figure 10f). In contrast, the H2O2 pathway is enhanced by 17.0% in the RRM simulation 393 

compared to the LR simulation (Figure 10d). 394 

The H2O2 and O3 pathways differ in two aspects. First, the O3 concentrations are prescribed, while 395 

the H2O2 concentrations are prognostic in our E3SMv1 configuration (Figures S3 and S4e). Second, the 396 

O3 pathway is highly sensitive to the pH of the cloud water (proton (H+) concentrations at 700 hPa shown 397 

in Figure S4d), while the H2O2 pathway is hardly affected by pH (Seinfeld and Pandis, 2016). We find 398 

that the gas-phase H2O2 concentrations are generally slightly higher in the RRM than the LR (Figure S5e), 399 

even though the improved H2O2 pathway should consume more H2O2 under regional refinement. The 400 

budget analysis (not shown) indicates that the reduction of the gas-phase H2O2 wet removal in the RRM 401 

simulation contributes to the slightly enhanced H2O2 concentrations (Figures S3, S4f, and S5f). The 402 

reduced wet removal is related to decreased net rain production (mainly convective) used in the wet 403 

deposition parameterization of gas species (not shown). Notably, the oxidation of SO2 by H2O2 releases 404 

H+ into cloud water (Figure S3). With increased H2O2 concentrations, we expect higher H+ concentrations 405 

([H+]) in large-scale clouds in the RRM simulation than in the LR simulation, as shown in Figure S5d. 406 

Slightly higher [H+] (lower pH) would suppress the aqueous-phase oxidation of SO2 by O3 significantly 407 

(Seinfeld and Pandis, 2016). These results explain why the O3 pathway is suppressed slightly even though 408 

LWC increases in the RRM simulation compared to the LR simulation. 409 

In short (Figure S3), higher LWC leads to more SO4 production via cloud water uptake and the 410 

aqueous-phase oxidation of SO2 by H2O2. However, the oxidation of SO2 by O3 is slightly suppressed due 411 

to the combination of larger LWC and lower pH. Finally, the total aqueous-phase SO4 production is 412 

enhanced in the RRM, which consumes more SO2 and leads to lower gas-phase SO2 concentrations 413 

compared to the LR. 414 
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 415 
Figure 10. Left column: spatial distributions of annual mean SO4 aqueous-phase productions through (a) cloud water 416 
uptake, (c) the H2O2 oxidation pathway, and (e) the O3 oxidation pathway in the LR simulation. Right column: the 417 
same as the left column but for the relative differences between the RRM and LR simulations. It is noteworthy that 418 
the aqueous-phase production occurs in large-scale clouds. 419 

3.4 Aerosol-cloud interactions 420 

Aerosol activation in large-scale clouds is parameterized consistently with droplet nucleation. In 421 

EAMv1, most IAPs exist in accumulation and Aitken modes (Figures S6a and S6b). We find the aerosol 422 

activation in the RRM is, on average, enhanced by 13.7% (accumulation mode) and 5.8% (Aitken mode) 423 

compared to the LR (Figures 11a and 11b). Aerosol activation in large-scale clouds primarily occurs in 424 

two pathways. One is related to cloud expansion (i.e., increase in cloud fraction, which leads to aerosol 425 

activation) and shrinkage (i.e., decrease in cloud fraction, which leads to aerosol resuspension) in the 426 
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same grid box (hereafter referred to as the cloud-intermittency pathway) between model timesteps. The 427 

other refers to the activation of IAPs that are brought to the cloud base by updrafts (hereafter referred to 428 

as the updraft pathway) (Liu et al., 2012). We find that the cloud-intermittency pathway contributes to 429 

almost all the aerosol activation enhancement in Aitken mode but only about half of the enhancement in 430 

accumulation mode under regional refinement (not shown). The updraft pathway accounts for the other 431 

half of the enhancement in accumulation mode. The contrast RRM impacts on the updraft pathway 432 

between the accumulation and Aitken modes may be related to the distinct vertical profiles of IAPs from 433 

the two modes (Figure S6c). The cloud-intermittency pathway is parameterized as a function of Wsub, 434 

aerosol properties, and the change of large-scale liquid cloud fractions between two consecutive time 435 

steps (DLCLOUD) (Abdul-Razzak and Ghan, 2000; Zhang et al., 2022a). Positive DLCLOUD 436 

corresponds to cloud expansion, and negative DLCLOUD denotes cloud shrinkage. We do not find any 437 

noticeable differences in Wsub and aerosol properties between the RRM and LR simulations. However, 438 

|DLCLOUD| is considerably larger in the RRM, which indicates larger LCLOUD temporal variability 439 

(Figure 11c), resulting in increased microphysical cloud processing of aerosols and more aerosol 440 

activation via the cloud-intermittency pathway. The larger LCLOUD temporal variability is consistent 441 

with the larger relative humidity (RH) temporal variability in the RRM than in the LR (Figure 11d) 442 

(Golaz et al., 2002). 443 
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 444 
Figure 11. (a, b) Spatial distributions of the relative differences in the annual mean vertical-integrated IAP activation 445 
fluxes in large-scale clouds for (a) accumulation and (b) Aitken modes between the RRM and LR simulations. (c) 446 
Vertical profiles of the annual regional mean absolute temporal variabilities of large-scale liquid cloud fractions 447 
(|DLCLOUD|). |∆𝐿𝐶𝐿𝑂𝑈𝐷| = <𝐿𝐶𝐿𝑂𝑈𝐷!! − 𝐿𝐶𝐿𝑂𝑈𝐷!"<; t2 and t1 indicate two consecutive model time steps. The 448 
red line indicates the RRM simulation and the black line for the LR simulation. (d) the same as (c) but for relative 449 
humidity (RH). 450 

Enhanced aerosol activation results in higher droplet number concentrations (Nd) in the RRM 451 

compared to the LR (Figure 12a). Moreover, the CLUBB vertical-integrated cloud liquid water tendency 452 

(RCMTEND), which is dominated by water vapor condensation, is generally remarkably larger in the 453 

RRM simulation (Figure 12b), which leads to higher large-scale cloud liquid water path (LWP) and LWC 454 

(Figures 12c and S5c). Larger RCMTEND may also contribute to larger droplets at the cloud top in the 455 

RRM simulation (Re in Figure 12d; Re — grid-cell mean droplet effective radius at the top of liquid water 456 

clouds), even though Nd increases. With higher LWP and larger Re, cloud optical depth (COD) is also 457 

higher (Figure 12e). 458 
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 459 
Figure 12. Spatial distributions of the relative differences in annual mean (a) grid-cell mean vertical-integrated 460 
droplet number concentrations (Nd), (b) CLUBB vertical-integrated cloud liquid water tendency (RCMTEND), (c) 461 
grid-cell mean liquid water path (LWP), (d) grid-cell mean droplet effective radius at the top of liquid water clouds 462 
(Re), and (e) grid-cell mean cloud optical path (COD) between the RRM and LR simulations. It is noteworthy that 463 
Nd, RCMTEND, LWP, and Re are exclusively for large-scale clouds, while COD considers both large-scale and 464 
convective clouds but is dominated by large-scale clouds (not shown). The spatial distributions of Nd, RCMTEND, 465 
LWP, Re, and COD from the LR simulation are shown in Figure S7. 466 

3.5 Anthropogenic aerosol effective radiative forcing 467 

With considerable impacts on cloud properties, the regional refinement should also influence ERFaer. 468 

We use the Ghan (2013) method to decompose ERFaer into direct, indirect, and surface albedo effects. 469 

Figure 13 shows a stronger (more negative) anthropogenic aerosol shortwave indirect effect (-0.52 W m-2) 470 

and enhanced longwave indirect effect (0.21 W m-2) at the top of the model (TOM) in the RRM 471 

simulation compared to the LR simulation. The net (shortwave + longwave) indirect effect is 0.31 W m-2 472 

more negative in the RRM simulation compared to the LR simulation, which is about a 12% 473 
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enhancement. The total ERFaer at TOM is 0.27 W m-2 more negative in the RRM simulation, about a 12% 474 

enhancement compared to the LR simulation. We also find that the RRM simulation produces a 10% 475 

enhancement of ERFaer at the surface (Figure S8). 476 

 477 
Figure 13. (a) Spatial distribution of annual mean ERFaer at the top of the model (TOM) from the LR simulation. (c, 478 
e, g) Same as (a) but for ERFaer attributed to (c) aerosol indirect effect (longwave + shortwave), (e) aerosol 479 
longwave indirect effect, and (g) aerosol shortwave indirect effect. The right column is the same as the left but for 480 
the absolute differences between the RRM and LR simulations. 481 
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To understand the enhancement of ERFaer in the RRM experiment, we compare the production 482 

efficiencies of Nd, Re, LWP, and COD due to anthropogenic aerosols between the RRM and LR 483 

simulations (Figure 14). In Figure 14, the relative changes of Nd, LWP, and COD per relative change of 484 

CCN at 0.1% supersaturation (CCN0.1%) between the PD and PI simulations are generally larger in the 485 

RRM simulation, consistent with our earlier analysis of the enhanced aerosol activation in RRM. Because 486 

cloud properties are more sensitive to anthropogenic aerosols in the RRM, the RRM configuration 487 

produces stronger anthropogenic-aerosol-cloud interactions and ERFaer (Figure 13). 488 

This result differs from Ma et al. (2015), which demonstrated that higher model resolutions would 489 

weaken the aerosol indirect effect. Ma et al. (2015) identified the increased droplet nucleation in 490 

simulations with higher resolutions, leading to a stronger first aerosol indirect effect, which is consistent 491 

with this study. However, their LWP response to anthropogenic aerosols weakens (lower LWP) as 492 

resolution increases, leading to reduced second aerosol indirect effect, in contrast to the larger LWP 493 

production efficiencies in our RRM simulation (Figure 14b). The discrepancies may be caused by 494 

different parameterizations of water vapor condensation to form cloud liquid water. The water vapor 495 

condensation is parameterized in CLUBB on the basis of joint PDFs of vertical velocity, temperature, and 496 

moisture in our simulations (Golaz et al., 2002), while it was calculated in CAM5 in Ma et al. (2015) 497 

using a saturation equilibrium adjustment approach (Park et al., 2014). The water vapor condensation 498 

parameterization affects not only LWP but also the subsequent aqueous-phase chemistry calculation 499 

discussed in Section 3.3. Therefore, it is necessary to evaluate the sensitivity of water vapor condensation 500 

to model resolutions when different parametrizations are used, as their resolution sensitivity can be very 501 

different. 502 

Our finding regarding the stronger aerosol indirect effect as resolution increases is also different 503 

from Caldwell et al. (2019), which found that the aerosol indirect effect changed only slightly from the 504 

low-resolution to high-resolution simulations. This discrepancy might be attributed to the fact that the 505 

model timesteps used in low- and high-resolution model simulations are very different in Caldwell et al. 506 
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(2019) but are kept the same in this study. Since model timestep can affect model aerosol and clouds, 507 

aerosol indirect effects can be affected. 508 

 509 
Figure 14. Spatial distributions of the relative differences in (a) "# $%&

"#$$'#."%
, (b) "# ()*

"#$$'#."%
, (c) "# +&

"# $$'#."%
, and (d) 510 

"#''
"# $$'#."%

 between the RRM and LR simulations. Here, ln 𝑥 denotes the relative change of x between the PD and PI 511 

simulations, i.e., ln 𝑥 = *&(,*-(
*-(

. Therefore, "# .
"# $$'#."%

 reflects the production efficiency of x by anthropogenic 512 
aerosols. 513 

4 Conclusions 514 

We investigate the impact of increasing model horizontal resolution on the aerosol mass budget and 515 

ERFaer over the CONUS in 2016 by comparing E3SMv1 LR and RRM simulations (Tables 1 and 2). The 516 

RRM simulation produces more dust, sea salt, and MOM emissions than the LR simulation due to larger 517 

surface wind speeds, more frequent strong surface winds, or drier soil. Besides influencing the natural 518 

aerosol sources, RRM also affects SO4 production from gas-aerosol exchange, aqueous-phase chemistry, 519 

and NPF (Table 2). The reduced SO4 production from gas-aerosol exchange and NPF by RRM is due to 520 

decreased gas-phase SO2 and H2SO4 concentrations in the RRM simulation. Enhanced aqueous-phase SO4 521 

production consumes more SO2 under regional refinement, leading to lower gas-phase SO2 522 
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concentrations. The improved aqueous-phase SO4 production is attributed to more cloud water uptake of 523 

H2SO4 and more oxidation of SO2 by H2O2 in large-scale clouds with higher LWC in the RRM 524 

simulation. In contrast, the oxidation of SO2 by O3 is slightly suppressed due to the lower pH of large-525 

scale clouds in the RRM simulation compared to the LR simulation, which is a consequence of slightly 526 

increased gas-phase H2O2 concentrations releasing more H+ through the oxidation of SO2 by H2O2. 527 

Table 2. Comparison of aerosol-relevant properties in the RRM region between the LR and RRM 528 
simulations 529 

  RRM LR Relative diff1 / % 

Precipitation / mm day-1 
Large-scale 1.55 1.21 27.5 

Convective 1.00 1.18 -15.6 

SO4 in-cloud scavenging / 
TgS yr-1 

Large-scale precipitation 0.982 0.856 14.7 

Convective precipitation 0.356 0.424 -15.9 

SO4 production / TgS yr-1 

Gas-aerosol exchange 0.515 0.531 -3.0 

Aqueous-phase production 1.13 1.06 6.2 

NPF 0.0182 0.0210 -13.3 

Aerosol activation / 105 m-2 
s-1 

Aitken mode 10.09 8.87 13.7 

Accumulation mode 2.22 2.09 5.8 

Nd / 1010 m-2  1.30 1.17 11.5 

Re / µm  1.56 1.45 7.7 

LWP / g m-2  33.0 30.7 7.3 

COD  5.14 4.86 5.6 

TOM ERFaer / W m-2 

Indirect shortwave -3.27 -2.74 19.1 

Indirect longwave 0.50 0.29 72.0 

Total indirect -2.76 -2.45 12.8 

Total (indirect + direct + albedo) -2.66 -2.38 11.5 
1𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑓𝑓 = (𝑅𝑅𝑀 𝐿𝑅⁄ − 1) × 100%. 530 

Increasing model horizontal resolution affects the partitioning between large-scale and convective 531 

precipitation (Table 2). With more resolved large-scale precipitation and less parameterized deep 532 
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convective precipitation, in-cloud scavenging of aerosols by large-scale (deep convective) precipitation 533 

generally increases (decreases) in the RRM simulation compared to the LR simulation. 534 

RRM enhances the activation of IAPs in large-scale clouds due to the larger temporal variability of 535 

LCLOUD in the RRM simulation compared to the LR simulation (Table 2). Enhanced aerosol activation 536 

leads to more cloud droplets. In addition, RRM enhances water vapor condensation, resulting in larger 537 

LWP and Re, which leads to larger COD. Since aerosol activation is stronger in the RRM simulation, 538 

cloud droplets, LWP, and COD are more sensitive to anthropogenic aerosols. Consequently, the 539 

anthropogenic aerosol indirect effect and ERFaer in the RRM are stronger than in the LR simulation (Table 540 

2). 541 

Although the study is limited to comparing the E3SMv1 LR (~100 km) and CONUS RRM (~25 km) 542 

simulations, the methodology shown in the study is helpful for future studies to investigate the potential 543 

impacts of model resolutions on the simulation results, as RRM is significantly less expensive 544 

computationally compared to the global high-resolution model. Some findings from this study may also 545 

apply to E3SM simulations at higher resolutions or even convection-permitting scales, such as the 546 

enhancement in natural aerosol emissions due to stronger winds, the partitioning between large-scale and 547 

convective precipitation and associated wet scavenging, and improved IAP activation in large-scale 548 

clouds. However, we must also emphasize that the aerosol mass budget and ERFaer are sensitive to model 549 

configurations and regional characteristics such as aerosol properties, land use and land cover, and 550 

climate. Aerosol and clouds in other regions can be very different. Furthermore, some resolution 551 

sensitivities may differ as model resolution advances to convection-permitting and subgrid-scale 552 

processes become more significant. Moreover, although nudging is applied in the study to minimize the 553 

impacts of large-scale circulations on aerosol properties as horizontal resolution changes, differences in 554 

meteorology still exist between the RRM and LR simulations (e.g., surface wind speed and precipitation). 555 

Therefore, the results above contain the meteorological effect, although the meteorological differences are 556 

also caused by the change in horizontal grid spacing. 557 
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Code availability 559 
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https://views.cira.colostate.edu/fed/QueryWizard/ (last access: May 26, 2022). 573 
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