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Abstract. The nature and severity of climate change impacts vary significantly from region to region. Consequently, high-

resolution climate information is needed for meaningful impact assessments and the design of mitigation strategies. This 10 

demand has led to an increase in the application coupling of Empirical Statistical Downscaling (ESD) models to General 

Circulation Model (GCM) simulations of future climate. In contrast to dynamical downscaling, the Perfect Prognosis ESD 

(PP-ESD) approach has several benefits, including low computation costs, the prevention of the propagation of GCM specific 

errors, and high compatibility with different GCMs. Despite their advantages, the use of ESD models and the resulting data 

products is hampered by (1) the lack of accessible and user-friendly downscaling software packages that implement the entire 15 

downscaling cycle, (2) difficulties to reproduce existing data products and assess their credibility, and (3) difficulties to 

reconcile different ESD-based predictions for the same region. We address these issues with a new open-source Python PP-

ESD modeling framework pyESD. pyESD implements the entire downscaling cycle, i.e., routines for data preparation, 

predictor selection and construction, model selection and training, evaluation, utility tools for relevant statistical tests,  

visualization, and more. The package includes a collection of well-established mMachine lLearning algorithms and allows the 20 

user to choose a variety of estimators, cross-validation schemes, objective function measures, hyperparameter optimization, 

etc., in relatively few lines of code. The package is well documented, highly modular, and flexible. It allows quick and 

reproducible downscaling of any climate information, such as precipitation, temperature, wind speed, or even short-term 

glacier length and mass changes. We demonstrate the use and the effectiveness of the new PP-ESD framework by generating 

weather station-based downscaling products for precipitation and temperature in complex mountainous terrain in Southwest 25 

Germany. The application example covers all important steps of the downscaling cycle and different levels of experimental 

complexity. All scripts and datasets used in the case study are publicly available to (1) ensure the reproducibility and 

replicability of the modeled results, and (2) simplify learning to use the software package.  
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1 Introduction 

The impacts of anthropogenic climate change are far-reaching and spatially heterogeneous. Consequently, regional and local 

scale predictions of 21st century climate evolution are needed to help guide the design of adaptation measures, vulnerability 35 

assessments, and resilience strategies (Field and Barros, 2014; Weaver et al., 2013). General Circulation Models (GCMs) are 

well-established tools for simulating climate trends in response to different anthropogenic and natural forcings, such as 

atmospheric CO2 concentrations, land cover, and orbital changes. They are process-driven models, based on our understanding 

of atmospheric physics. They are commonly used to predict future trends of climate change by prescribing predicted future 

forcings described by the Representative Concentration Pathways (RCPs). RCPs are greenhouse gas concentration scenarios 40 

that quantify the radiative forcing of plausible demographic and technological developments, and anthropogenic activities 

(Meinshausen et al., 2011; Pachauri et al., 2014). While GCMs can produce usefulaccurate estimates of many climate system 

elements on the global and synoptic scale (such as circulation patterns), mesoscale atmospheric processes, clouds, and specific 

climate variables like precipitation are still relatively poorly represented (e.g., Steppeler et al., 2003). Moreover, GCM 

simulations are affected by systematic biases on the local and regional scale due to their coarse resolutions and model 45 

parameterization (e.g., Errico et al., 2001). These can lead to inaccurate predictions on the spatial scales that are relevant for 

regional climate change impact assessments, such as studies investigating the impacts on the hydrological cycle (Boé et al., 

2009), mountain glaciers (Mutz et al., 2015; Mutz and Aschauer, 2022), air quality (e.g., Colette et al., 2012) and agricultu re 

(e.g., Shahhosseini et al., 2020). Therefore, GCM-based predictions are downscaled by performing dynamical downscaling or 

statistical downscaling, with Empirical Statistical Downscaling (ESD) being one type of the statistical downscaling (Murphy, 50 

2000; Schmidli et al., 2007; Wilby and Dawson, 2013). 

Dynamical downscaling involves the nesting of Regional Climate Models (RCMs) into coarse-resolution GCM simulations to 

produce higher resolution regional estimates. While RCMs allow an easy exploration of physical processes leading to the 

predicted climate, they are computationally costly. Furthermore, slight changes in the model domain and boundary conditions 

require the repetition of the whole process, thereby limiting their application in many climate impact studies (e.g., Giorgi and 55 

Mearns, 1991; Xu et al., 2019). ESD is computationally less costly and implicitly considers local conditions, such as 

topography and vegetation, without the need to parameterize them explicitly. It is widely used for climate change impact 

studies and relies on establishing empirical transfer functions to relate large-scale atmospheric variables (predictors) to a local-

scale observation (predictand). ESD models can be directly coupled to GCMs (e.g. Mutz et al., 2021) or RCMs (e.g., Sunyer 

et al., 2015; Laflamme et al., 2016; Jakob Themeßl et al., 2011) in a one-way coupling or pipeline with no feedback into the 60 

climate models. ESD can be broadly categorized into Perfect Prognosis (PP) and Model Output Statistics (MOS) approaches 

(Maraun and Widmann, 2018; Marzban et al., 2006). MOS uses simulated predictors from the GCM or RCM to find the 

transfer function and generate a predictand time series with bias corrections (e.g., Sachindra et al., 2014; Wilby et al., 1998). 

Therefore, the MOS-ESD transfer functions are specific to a particular GCM or RCM and not easily transferable to other 

models. In contrast, the PP-ESD approach is GCM- and RCM-agnostic: ESD models are obtained from observational data for 65 



3 

 

both the predictand and predictors, and can therefore be coupled to any GCM or RCM (e.g., Hertig et al., 2019; Mutz et al., 

2021; Ramon et al., 2021; Tatli et al., 2004). Therefore, this paper, and the software package presented in it, focuses primarily 

on the PP-ESD approach.  

The PP-ESD modeling framework consists of four critical steps to establish and evaluate the empirical transfer functions that 

constitute an ESD model (e.g., Maraun et al., 2010; Maraun and Widmann, 2018): (1) The first step involved the selection and 70 

construction of predictors. The selection of the most informative and relevant predictors generally increases the performance 

and robustness of the PP-ESD models. Preliminary predictor selection should be guided by knowledge of the atmospheric 

dynamics that govern a specific regional climate. This selection may be refined using statistical dependency measures such as 

correlation analysis (e.g., Wilby et al., 2002; Wilby and Wigley, 2002), regularization regression (e.g., Hammami et al., 2012), 

stepwise multi-linear regression (e.g., Mutz et al., 2021) and decision tree selection (e.g., Nourani et al., 2019). The selected 75 

predictors should be able to explain most of the predictand’s variability and must be represented well by the GCMs (Maraun 

and Widmann, 2018; Wilby et al., 2004). (2) The second step involves the selection of the learning algorithms (i.e., the learning 

model used for training the ESD model). These range from classical regressions and analog models, including parametric and 

non-parametric models (Gutiérrez et al., 2013; Zorita and Storch, 1999; Lorenz, 1969), to advanced Machine Learning (ML) 

algorithms (e.g., Sachindra et al., 2018; Xu et al., 2020). The various techniques vary in complexity, scalability, interpretability, 80 

and underlying assumptions. For example, classical regressions and analog models allow better interpretations of the simulated 

results, and are usually simpler to implement. On the other hand, several ML algorithms have the ability to capture more 

complex links between predictors and predictand, and do not require an explicit assumption of the distribution of observational 

data during the optimization process (Jordan and Mitchell, 2015; Raissi and Karniadakis, 2018). The choice of the optimal PP-

ESD training technique depends on the predictand variable (e.g., precipitation and temperature), length of the observational 85 

records, spatiotemporal variability, spatial coherence, regional setting, and the temporal stationarity of the transfer functions. 

(3) The third step involves the actual training and validation of the PP-ESD models, and (4) the final step is the PP-ESD model 

evaluation.  

The high demand for climate change information on the regional and local scale has led to the widespread use of ESD methods 

and an overwhelming body of research to sort through in order to select the most suitable technique for a specific problem. In 90 

the past, Generalized Linear Models (GLMs) (e.g., Fealy and Sweeney, 2007), regularization models (e.g., Li et al., 2020), 

Bayesian regression models (Das et al., 2014; e.g., Zhang and Yan, 2015), Support Vector Machines (SVM) (e.g., Chen et al., 

2010; Ghosh and Mujumdar, 2008), Artificial Neural Networks (ANNs) (e.g., Sachindra et al., 2018; Vu et al., 2016; Xu et 

al., 2020), homogeneous (e.g., Random Forest) and heterogeneous (e.g., Stacking) ensemble learning models (e.g., Massaoudi 

et al., 2021; Pang et al., 2017; Zhang et al., 2021), and others have been used to construct PP-ESD models and downscale 95 

climate information. However, there is no universal protocol to help choose a robust model for a specific region and climate 

variable (Gutiérrez et al., 2019), thus making the selection of the most suitableed learning algorithm challenging. Moreover, 

the recent increase in ML algorithms and platforms (e.g., programming languages and software) exacerbates the problem by 

creating an even wider range of PP-ESD techniques without well-defined protocols. These have shifted the focus toward the 
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establishment of standardized user-friendly tools that would resolve most of the issues related to the development of PP-ESD 100 

models. Such tools exist in various forms and tackle a certain aspect of the inherent ESD modeling complexities to ensure fast 

and efficient climate impact-related studies. For example, the R-package esd, developed and maintained by the Norwegian 

Meteorological Institute (MET Norway), comprises many utility functions for data retrieval, manipulation and visualization, 

commonly used statistical tools, and implementations of GLM and regression techniques for generating ESD models (Benestad 

et al., 2015a). Moreover, an interactive web-based downscaling tool developed as part of the EU-funded ENSEMBLES project 105 

(van der Linden and Mitchell, 2009) provides an end-to-end framework through data access, computing resources and ESD 

model alternatives (Gutiérrez et al., 2012). The decision support tool sdsm (Wilby et al., 2002) provides auxiliary downscaling 

routines like predictor screening, regression, model evaluation, and visualization for near-surface weather variables on a daily 

scale. Most recently, the climate analysis tool Climate4R has been extended with statistical downscaling functionalities 

(downscaleR) that provide a wide range of MOS and PP techniques (Bedia et al., 2020). While these tools provide specialist 110 

solutions, there is no single tool or modeling framework that provides a wide range of contemporary (and commonly used) 

algorithms and implements all downscaling steps (i.e., predictors selection and construction, learning algorithm selection, 

training and validation of ESD models, GCM-ESD model coupling, model evaluation, visualization, and relevant statistical 

tools). Moreover, there is no user-friendly ESD tool written in a widely used programming language like Python, which would 

remove barriers for the use of ESD techniques in research and teaching. Many of the Python-based tools currently available 115 

are primarily designed for bias correction in MOS downscaling, and extending these tools to the PP-ESD framework would 

diversify the publicly available downscaling tools (e.g., xclim (Bourgault et al., 2023), ibicus (Spuler et al., 2023), 

CCdowncaling (Polasky et al., 2023)). A complete, user-friendly, robust and efficient open-source downscaling framework 

would contribute significantly to climate change impact assessment studies by (a) empowering researchers through accessible 

software and easy switches between alternative methods, (b) allowing for efficient updating of predictions in a consistent 120 

modeling framework, (c) increasing the transparency and reproducibility of results, and by (d) removing barriers in teaching 

in order to familiarize future generations of researchers with the ESD approach.  

Here, we introduce a new PP-ESD framework that addresses the gaps highlighted above. It is a thoroughly tested, heavily 

documented, efficient, and user-friendly open-source Python Empirical Statistical Downscaling (pyESD) package. pyESD 

adopts an Object Oriented Programming (OOP) style and treats the predictand data archives (e.g., the weather station) as 125 

objects with many functionalities and attributes relevant to ESD modeling. It is flexible with regards to the training dataset 

and predictand variable. For example, pyESD’s predecessors were successfully applied for the prediction of local temperatures 

(Mutz et al., 2021) and glacier mass balance (Mutz and Aschauer, 2022) in South America. Here, we additionally demonstrate 

its capabilities in downscaling precipitation in complex terrain in Southwest Germany. pyESD comprises a collection of 

utilities and methods for data preparation, predictor selection, data transformation, predictor construction, model selection and 130 

training, evaluation, statistical testing, and visualization. Unlike the existing packages, pyESD also includes common machine 

learning algorithms (i.e., different estimators, cross-validation schemes, objective function measures, hyperparameter 

optimizers, etc.) that can be experimented with in a few lines of code.  
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In the first part of this paper (Section 2), we provide detailed descriptions of the model structure and the theoretical background 

for the implemented methods. In the second part (Section 3), we demonstrate the package’s functionalities with an illustrative 135 

case study for a hydrological sub-catchment in mountainous terrain in Southwest Germany. Here, we walk the reader through 

a typical downscaling process with pyESD. More specifically, we generate station-based downscaling products for 

precipitation and temperature changes in response to different RCPs. When discussing downscaling-related tasks, we list the 

corresponding pyESD routines as italicized function names. We only use publicly available data for a set of weather stations 

to ensure the reproducibility and replicability of the results (see Section 3). Moreover, all the scripts used for the case study 140 

are provided and can be easily adapted to suit the researcher’s focus. We discuss the application example in Section 4 and 

conclude with a summary and important remarks in Section 5.  

2 Model structure 

The PP-ESD downscaling cycle involves technical and laborious steps that must be carefully addressed to ensure the robustness 

and accuracy of local-scale climate predictions. The pyESD package implements all these steps in an efficient modeling 145 

pipeline for an easier workflow. In this section, we describe this workflow (Fig. 1) along with the main features of the package. 
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Fig. 1: The main features and workflow of PP-ESD implemented in the pyESD package (highlighted in red dash line box). The 150 
weather station and reanalysis datasets are used to select the robust predictors for model training and validation. The trained PP-
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ESD model is then coupled to GCMs simulations forced with different scenarios to predict the local-scale future estimates that can 

be used for climate change impact assessment (not included in the pyESD package). 

2.1 Data structure and preprocessing  

PP-ESD modeling requires (1) predictand data from weather stations or other observational systems, (2) reanalysis datasets 155 

for the construction of predictors, and (3) GCM or RCM output for the construction of simulated predictors if the PP-ESD 

models are used for downscaling simulated climates. To understand the workflow demonstrated in later sections, the reader 

needs to be aware of few important package design choices related to data structure and preprocessing:  

• The package adopts the OOP paradigm and treats every predictand data archive (e.g., weather station or glacier) as 

an object. Since the current version of the package focuses only on station-based downscaling, we will henceforth 160 

describe it only as the weather station object. The package accepts the (for weather stations typical) Comma Separated 

Values (CSV) file format. These files contain the predictand time series, such as a temperature record, as well as 

weather station attributes like the weather station’s name, ID, and location. The read_station_csv from 

pyESD.weatherstation module initiates each weather station as a separate object using the StationOperator that 

features all the other functionalities. The weather station object is associated with at least one predictand dataset (i.e., 165 

the values of at least one climate variable recorded at that particular station). Furthermore, the initialized object 

includes all attributes and methods required for the complete downscaling cycle. For instance, the package adopts the 

fit and predict framework of the scikit-learn python package (Pedregosa et al., 2011) that can be directly applied to 

the weather station object.  

• The data needed for predictor construction is read from files in the network Common Data Form (netCDF) format 170 

with the xarray toolkit (Hoyer and Hamman, 2017). Due to the size of these datasets and the computations required 

to construct the predictors, the memory demand can be very high, and repeating this step every time a new model is 

trained or applied becomes computationally very costly. This problem is circumvented by storing the constructed 

predictors for each weather station stored in pickle files. At next runtime, these can quickly be read (or unpacked) to 

reduce the computational costs and facilitate faster experimentation with the package.  175 

• Since reanalysis datasets, climate model output, and weather station data are provided by different data centers and 

have varied structures and attributes, it is well outside the scope of our project to write and include a unified data 

processing function for all. Instead, the pre-processing functions of the current version of pyESD are written for state-

of-the-art, representative and publicly available datasets. More specifically, they work with weather station data from 

the German Weather Service (Deutscher Wetterdienst, DWD) and the ERA5 reanalysis product (Hersbach et al., 180 

2020). These preprocessing functions are provided as part of the package utilities (pyESD.data_preprocess_utils) and 

can easily be adapted to work for the researchers’ preferred datasets. The functions will be expanded in the future to 

allow experimentation with other popular datasets and assess the sensitivity of ESD model performance to the choice 

of reanalysis datasets (e.g., Brands et al., 2012).  
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2.2 Predictor selection and construction  185 

The PP-ESD approach is highly sensitive to the choice of predictors and learning models (Maraun et al., 2019; Gutiérrez et 

al., 2019). Moreover, since PP-ESD models are empirical in nature, the predictors serve as proxies for all the relevant physical 

processes and must be informative enough to account for the local predictand variability (Huth, 1999, 2004; Maraun and 

Widmann, 2018). Therefore, the selection of potential predictors should be informed by our knowledge of the atmospheric 

dynamics that control the climate variability of the study area. For example, synoptic-scale climate features, such as 190 

atmospheric teleconnection patterns, control much of the regional-scale climate variability. It is therefore recommended to 

consider these as potential predictors. Statistical techniques, such as methods for feature selection or dimension reduction, may 

then be applied to reduce the list of physically relevant potential predictors to a smaller selection of predictors that have a  

robust statistical relationship with the predictand. These steps contribute to the performance of the models and also resolve 

some of the issues related to multicollinearity and overfitting (e.g., Mutz et al., 2015). The pyESD package adopts three 195 

different wrapper feature selection techniques that can be explored for different models: (1) Recursive feature elimination 

(Chen and Jeong, 2007), (2) Tree-based feature selection (Zhou et al., 2021), and (3) Sequential feature selection (Ferri et al., 

1994). The methods are included in pyESD.feature_selection as RecursiveFeatureElimination, TreeBasedSelection, and 

SequetialFeatureSelection, respectively. Furthermore, classical filter feature selection techniques, such as correlation analyses, 

are also included as a method of the weather station object. 200 

Predictors are typically constructed by (1) computing the regional means of a physically relevant climate variable, or (2) by 

constructing index time series for relevant synoptic-scale climate phenomena. The package allows the user to consider a few 

important aspects for each type of predictor: 

1. The area over which the climate variable is averaged can significantly affect model performance. In complex terrain 

with high-frequency topography, for example, choosing a smaller spatial extent may result in the predictor having a 205 

higher explanatory power. Therefore, a radius (with a default value of 200 km) around the weather station may be 

defined by the user to determine the size of the area used for the computation of the regional means.  

2. EOF analysis is a well-established tool for capturing atmospheric teleconnection patterns and reducing high-

dimensional climate datasets to index time series that represent the variability of prominent modes of synoptic-scale 

climate phenomena (Storch and Zwiers, 2002). The current version of pyESD includes functions for the extraction of 210 

EOF-based index time series for dominant extra-tropical teleconnection patterns in the Northern Hemisphere 

(pyESD.teleconnections). More specifically, it allows the computation of index values for the North Atlantic 

Oscillation (NAO), East Atlantic (EA), Scandinavian (SCAN), and East Atlantic/Western Russian (EAWR) 

oscillation patterns (e.g., Boateng et al., 2022). It will be expanded to consider Southern Hemisphere patterns in future 

versions. 215 

After the selection and construction of predictors, their raw values can be transformed before model training. For instance, the 

MonthlyStandardizer implemented in the pyESD.standardizer can be used to remove the seasonal trends in each predictor by 
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centering and scaling the data. Such transformation can reduce biases toward high-variance predictors, ensure generalization, 

and improve the representation of predictors constructed from GCM output (e.g., Bedia et al., 2020; Benestad et al., 2015b). 

Principal component analysis (PCA) is another transformation tool included in the package (pyESD.standardizer.PCAScaling). 220 

It can be applied to (a) reduce the raw predictor values to information that is relevant to the predictand, and (b) prevent 

multicollinearity-related problems during model training (e.g. Mutz et al., 2015).  

2.3 Learning Models 

The empirical relationship between local predictand and large-scale predictors is often complicated due to the complex 

dynamics in the climate system. However, ML algorithms have been demonstrated to perform well in extracting hidden 225 

patterns in climate data that are relevant for building more complex transfer functions (e.g., Raissi and Karniadakis, 2018).  

Specifically, neural networks have been explored for downscaling climate information due to their ability to establish a 

complex and nonlinear relationship between predictand and predictors (e.g., Nourani et al., 2019; Gardner and Dorling, 1998; 

Vu et al., 2016). Moreover, Support Vector Machine (SVM) models have been used to capture the links between predictors 

and predictand by mapping the low-dimensional data into a high-dimensional feature space with the use of kernel functions 230 

(e.g. Anandhi et al., 2008; Tripathi et al., 2006). Previous studies have also applied multi-model ensembles due to their ability 

to reduce model variance and capture the distribution of the training data (e.g., Xu et al., 2020; Massaoudi et al., 2021; Gu  et 

al., 2022).  

Selecting the most appropriate model or algorithm for a specific location or predictand can be challenging, because one needs  

to consider many case-specific factors like data dimensionality, distribution, temporal resolution, and explainability. This 235 

problem is exacerbated by the lack of well-established frameworks for climate information downscaling (Gutiérrez et al., 

2019). The pyESD package addresses this challenge with the implementation of many ML models that are different with regard 

to their theoretical paradigms, assumptions and model structure. The implementation of commonly used models in the same 

package allows researchers to experiment with different learning models, and to replicate and update their research based on 

emerging recommendations for specific predictands and geographical locations. The implementation of statistical and ML 240 

models in pyESD mainly relies on the open-source scientific framework scikit-learn tool (Pedregosa et al., 2011). In the 

following subsections, we briefly explain the principles behind the ML methods that are included in the pyESD package. 

2.3.1 Regularization regressors 

Regularization models are penalized regression techniques that shrink the coefficients of uninformative predictors to improve 

model accuracy and prediction interpretability (Hastie et al., 2001; Tibshirani, 1996; Gareth et al., 2013). The coefficients of 245 

non-robust predictors are set to zero by minimizing the absolute values of regression coefficients or minimizing the sum of 

squares of the coefficients. The former is referred to as L1 regularization and adopted by the Least Absolute Shrinkage and 

Selection Operator (LASSO) method. The latter is referred to as L2 regularization and adopted by the Ridge regression method. 
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The regularization term (R) and the updated cost function for a linear equation of 𝑝 independent variables or predictors, 𝑋𝑖  are 

defined as: 250 

𝑅(𝛽) = ∑|𝛽𝑖|

𝑝

𝑖=1

 (1)  

for L1 regularization, and  

𝑅(𝛽) = ∑ 𝛽𝑖
2

𝑝

𝑖=1

 (2) 

for L2 regularization. Therefore, the updated cost function is defined: 

𝑐𝑜𝑠𝑡 =  ∑ (𝑦𝑗 − ∑ 𝑋𝑖𝑗𝛽𝑖

𝑝

𝑖=1

)

2

+ 𝜆𝑅(𝛽),

𝑛

𝑗=1

 (3) 255 

where 𝜆 is the tuning parameter that controls the severity of the penalty defined in Eqs. (1) and (2), and 𝛽𝑖 are the coefficients. 

The package features implementations of the LASSO and Ridge regression using a cross-validation (CV) scheme with random 

bootstrapping to iteratively optimize 𝜆. These are included as LassoCV and RidgeCV, respectively. The optimization of the 

cost function in Eqs. (3) is usually based on the coordinate descent algorithm to fit the coefficients (Wu and Lange, 2008). The 

pyESD package also includes an implementation of LassoCV that uses a less greedy version of the optimizer (LassoLarsCV). 260 

It is computationally more efficient by using the least angle regression (Efron et al., 2004) for fitting the coefficients. 

2.3.2 Bayesian Regression 

Bayesian regression employs a type of conditional modeling to obtain the posterior probability (𝑝) of the target variable (𝑦), 

given a combination of predictor variables (𝑋), regression coefficients (𝑤) and random variable (𝛼) estimated from the data 

(Bishop and Nasrabadi, 2006; Neal, 2012). In its simplest form, the normal linear model, the predictand 𝑦𝑖  (given the predictors 265 

 𝑋𝑗), follows a Gaussian distribution 𝑁(𝜇, 𝜎). Therefore, to estimate the full probabilistic model, 𝑦𝑖  is assumed to be normally 

distributed around  𝑋𝑖𝑗𝑤: 

𝑝(𝑦𝑖  | 𝑋, 𝑤, 𝛼) = 𝑁(𝑦𝑖  | 𝑋𝑖𝑗𝑤, 𝛼) (4) 

This approach also permits the use of regularizers in the optimization process. The Bayesian Ridge regression procedure 

(BayesianRidge) estimates the regression coefficients from a spherical Gaussian and L2 regularization (Eqs. (2)). The 270 

regularizer parameters (𝛼, 𝜆) are estimated by maximizing the log marginal likelihood under a Gaussian prior over 𝑤 with a 

precision of 𝜆−1 (Tipping, 2001; MacKay, 1992): 

 

𝑝(𝑤|𝛼) = 𝑁(𝑤 | 0, 𝜆−1Ι𝑝) (5) 

This means that the parameters (𝛼, 𝜆, 𝑤 in Eqs. (4) and (5)) are estimated jointly in the calibration process. The Automatic 275 

Relevance Determination regression (ARD) is an alternative model included in the package. It differs from BayesianRidge in 
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estimating sparse regression coefficients and using centered elliptic Gaussian priors over the coefficients 𝑤  (Wipf and 

Nagarajan, 2007; Tipping, 2001). Previous studies have used sparse Bayesian learning (Relevance Vector Machine (RVM)) 

for downscaling climate information (e.g., Das et al., 2014; Ghosh and Mujumdar, 2008). 

2.3.3 Artificial Neural Network 280 

The MultiLayer Perceptron (MLP) is a classical example of a feedforward ANN, meaning that the flow of data through the 

neural network is unidirectional without recurrent connections between the layers (Gardner and Dorling, 1998; Pal and Mitra, 

1992). MLP is a supervised learning algorithm that consists of three layers (i.e., an input, hidden, and output layer) connected 

by transformation coefficients (weights) using non-linear activation such as the hyperbolic function. More specifically, the 

learning algorithm with one hidden layer for the training sets (𝑋1, 𝑦1), (𝑋2, 𝑦2), ……, (𝑋𝑛 , 𝑦𝑛) where 𝑋𝑖𝜖𝑅𝑛, and 𝑦𝑖𝜖{0,1}, 285 

can be defined as: 

𝑓(𝑋) = 𝑊2𝜃(𝑊1
𝑇𝑋 + 𝑏1) + 𝑏2, (6) 

where 𝜃 is the activation function, and 𝑏1, 𝑏2 are the model biases added to the hidden and output layer. The weights connecting 

the layers are optimized with the backpropagation algorithm (Hecht-Nielsen, 1992; Rumelhart et al., 1986) with a mean 

squared error loss function. Moreover, the L2 regularization (Eqs. (2)) method is applied to avoid overfitting by shrinking the 290 

weights with higher magnitudes. Therefore, the optimized squared error loss function is defined as: 

𝐿𝑜𝑠𝑠(�̂�, 𝑦, 𝑊) =
1

2
‖�̂� − 𝑦‖2

2 +
𝛼

2
‖𝑊‖2

2, (7) 

where the 
𝛼

2
‖𝑊‖2

2 is the L2 penalty that shrinks the model complexity. Often, the derivative of the loss function with respect 

to the weights is determined until the residual error of the model is satisfactory. The stochastic gradient descent algorithm 

(Bottou, 1991; Kingma and Ba, 2014) is used as a solver for updating the weights (defined in Eqs. (6)) in a maximum number 295 

of iterations until a satisfactory loss (Eqs. (7)) is achieved. Moreover, the choice of the parameters, such as the size of hidden 

layers, activation function, and learning algorithm, is relevant to the performance of the model (Diaz et al., 2017). The 

exhaustive search algorithm with CV bootstrapping is a simple and efficient method for parameter optimization (Pontes et al., 

2016) and therefore included in the pyESD package (GridSearchCV). 

2.3.4 Support Vector Machine 300 

The Support Vector Regression (SVR) uses the principles of SVM as a regression technique. The learning algorithms are based 

on Vapnik–Chervonenkis (VC) theory and empirical risk minimization that is designed to solve linear and non-linear problems. 

This is achieved by applying kernel functions to map low dimensional data to higher or even infinite dimensional feature space 

(Vapnik, 1999; Cristianini and Shawe-Taylor, 2000). In principle, the model creates a hyperplane in a vector space containing 

groups of data points. This hyperplane is a linear classifier that maximizes the group margins. Given finite predictor and 305 

predictand data points (𝑋1, 𝑦1), (𝑋2, 𝑦2), ……, (𝑋𝑛, 𝑦𝑛) where 𝑋𝑖𝜖𝑅𝑛, and 𝑦𝑖𝜖𝑅, the regressor can be defined as: 

𝑓(𝑋, 𝑤) = 𝑤𝑇𝜙(𝑋) + 𝑏, (8) 
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where the support vectors 𝑤 and model bias 𝑏 are the optimal parameters that minimize the cost function in Eqs. (9). 

𝑐𝑜𝑠𝑡 =
1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖),

𝑛

𝑖=1

 (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑦𝑖 − 𝑓(𝑋𝑖 , 𝑤) ≤ 𝜀 + 𝜉𝑖 , 𝑓(𝑋𝑖 , 𝑤) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖}, 310 

where 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1 … 𝑛, are the slack variables (the upper and lower training errors) subject to the error tolerance of 𝜀 that 

prevents overfitting. 𝐶  represents a regularization term that determines the balance between minimal loss and maximal 

margins. The cost function in Eqs. (9) is solved using Lagrange's formula (Balasundaram and Tanveer, 2013) to obtain the 

optimized function: 

𝑓(𝑋) = ∑(𝛼𝑖 − �̂�𝑖)𝜙(𝑋𝑖 , 𝑋𝑗) + 𝑏,

𝑛

𝑖=1

 (10) 315 

where, 𝛼𝑖, �̂�𝑖 are Lagrange multipliers, and 𝜙(𝑋𝑖 , 𝑋𝑗) is the kernel function which implicitly maps the training vectors in Eqs. 

(8) into a higher dimensional space. The SVR method of the pyESD package includes linear, polynomial, sigmoid, and 

Gaussian radial basis functions (RBF) kernels (Hofmann et al., 2008). Moreover, the degree of regularization (C) and the 

coefficient of the kernels (gamma) is given a range of values, so that the hyperparameter optimization algorithm can determine 

the best model. Due to the expensive nature of SVR, the package uses a randomized search algorithm in a CV setting for the 320 

hyperparameters optimization (Bergstra and Bengio, 2012). However, hyperparameters optimization algorithms, such as 

Bayesian and grid search (Snoek et al., 2012; Pontes et al., 2016; Bergstra et al., 2011) methods, are also provided as 

alternatives. Previous downscaling projects have taken advantage of the SVR method due to its ability to map data into higher 

dimensional space and exclude outliers from the training process (Ghosh and Mujumdar, 2008; Chen et al., 2010; Sachindra 

et al., 2018; Anandhi et al., 2008; Tripathi et al., 2006). 325 

2.3.5 Ensemble Machine Learning 

Each ML technique is associated with challenges that arise from the method’s limitations and underlying assumptions. These 

have to be considered carefully in the evaluation of the resulting downscaling product. Some of these challenges can be 

overcome by an integration of different ML models for a specific task (Dietterich, 2000; Zhang and Ma, 2012). Integrated ML 

models have been suggested to outperform single ML models in downscaling climate information (e.g. Liu et al., 330 

2015).  Ensemble models typically use different ML algorithms (base learners) to extract information from the training data, 

then use a second set of ML algorithms (meta learners) that learn from the first and combine the individual predictions into an 

ensemble. Ensemble models can be categorized by (a) the selection of base learners, and (b) the method of combining the 

individual predictions from the base learners. Here, we summarise the more prominent ensemble models that are included in 

the pyESD package.  335 

Bagging 
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The bagging ensemble models consist of ML algorithms that generate several instances of base learners using random subsets 

of the training data, and then aggregate the information for the final estimates (Breiman, 1996; Quinlan, 1996). Such algorithms 

integrate randomization into the learning process and thereby often ensure the reduction of the variance of the individual base 

learners (e.g., decision trees). Moreover, the bagging techniques constitute a simple way to improve model performance 340 

without the need to adapt the underlying base algorithm. Since bagging works well with complex algorithms like decision 

trees, we also consider tree-based ensembles for the pyESD package. More specifically, we include implementations of the 

Random Forest (RandomForest) and Extremely Randomized Tree (ExtraTree) methods in addition to classical Bagging.  

The RandomForest algorithm builds multiple independent tree-based learners. The trees can be constructed with the full set of 

predictors or a random subset. Each tree is constructed from a random sample of the training data in a bootstrapping process 345 

(Breiman, 2001). The algorithm uses the remaining training data (i.e. out of bag data) to estimate the error rate and evaluate 

the model’s robustness. In contrast, the ExtraTree algorithm considers the discriminative thresholds from each predictor rather 

than the subset of predictors (Geurts et al., 2006). This usually adds more weight to the variance reduction and slightly improves 

the model bias. Tree-based ensembles are particularly suitable for establishing a nonlinear relationship between predictors and 

predictand (e.g. Pang et al., 2017; He et al., 2016).  350 

Boosting  

In recent years, boosting models have also been applied for the downscaling of climate information (e.g. Fan et al., 2021; 

Zhang et al., 2021). Boosting models are meta-estimators that are built sequentially from multiple base learners with the 

primary objective of reducing the model bias and variance. In principle, the method ‘boosts’ the weaker base learner (i.e., 

estimators that perform only slightly better than random guessing) by converting them into strong ones in an iterative process. 355 

The technique assumes that the base learning model is distribution-free (Schapire, 1999) and iteratively improves the weaker 

base learners by applying weights to the training data through the adjustment of the input points with prediction errors from 

the previous prediction (Schapire, 2003; Schapire and Freund, 2013). There are many boosting algorithms due to the many 

possible methods of weighting the training data and tuning the weaker base learners. In the pyESD package, we include (1) 

Adaptive boosting (Adaboot), (2) Gradient Tree Boosting (GradientBoost) with a gradient boosting algorithm by Friedman 360 

(2001), and (3) Extreme Gradient Boosting (XGBoost). A brief summary of each is provided below:  

1. The Adaboost algorithm is a well-established model for improving the accuracy of weak base learners (Freund and 

Schapire, 1997). The model is adaptive in the sense that the training data are sequentially adjusted based on the 

previous performance of the weaker model. The model uses a weighted majority vote (or sum) to combine the 

individual prediction from the weaker learners and produce a robust final prediction. The implemented version uses 365 

a decision tree algorithm as the base estimator to develop the boosted ensemble predictions.  

2. The GradientBoost algorithm considers the boosting process as a numerical optimization problem that minimizes a 

loss function in a stage-wise additive model by adding weaker learners using a gradient descent procedure. This 

generalization allows the tuning of an arbitrary differentiable loss function which can be selected based on a specific 

problem. Specifically, in pyESD, squared errors are used in the minimization of the loss function.  370 
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3. The XGBoost, a recent extension of the GradientBoost algorithm, is designed to reduce computational time and 

improve model performance (Chen and Guestrin, 2016). The model uses regularization terms to penalize the final 

weights and prevent overfitting. The algorithm also uses shrinkage and column subsampling techniques to avoid 

overfitting. Moreover, the model can handle sparse data by using a sparsity-aware split function.  

Stacked Generalization 375 

The Stacked Generalization method (or ‘stacking’) has previously been used for the downscaling of climate information, and 

showed improved prediction robustness over singular models (e.g., Massaoudi et al., 2021; Gu et al., 2022). It is designed to 

enhance prediction accuracy and generality by taking advantage of the mutual complementarity of the base-model predictions. 

The approach was introduced by Wolpert (1992), and demonstrated for regression tasks and unsupervised learning by Breiman 

(1996) and Leblanc and Tibshirani (1996), respectively. In principle, the following process is implemented: In the first step, 380 

the training data and base models, referred to as level-0 data and level-0 models by Wolpert (1992), are used to generate the 

first set of predictions. Then a meta-learning model (level-1 generalizer) is used to optimally combine the previous predictions 

(level-1 data) into final estimates. Lastly, the method applies a cross-validation technique and generates new ‘stacked’ datasets 

for a final learning step. Generally, the performance of stacked generalization is constrained by the attributes used to generate 

the level-1 data, and the type of algorithm used for higher-level learning (Ting and Witten, 1999). We consider these limitations 385 

by providing a wide range of models that can be used as the level-0 models and the level-l generalizer. The base-learners can 

be selected from the different ML models presented in the previous sections. The reader is advised that previous studies (e.g., 

Reid and Grudic, 2009) suggest the use of a more restrictive model like LassoCV and ExtraTree as the meta-learner to prevent 

overfitting. 

2.4 Model training 390 

The process of training and testing the PP-ESD models is the most critical stage in the downscaling procedure, since it 

determines much of the robustness of the final models, as well as the accuracy of the predictions they generate. The process 

typically involves the following steps: (1) The observational records are separated into training and testing datasets. (2) The 

training datasets are used to establish the transfer functions that make up the PP-ESD models. (3) The trained models are then 

evaluated on the independent testing datasets (Section 2.5). In the model training process, hyperparameter optimization 395 

techniques (e.g., GridSearchCV) are used to fine-tune the transfer function parameters, such as regression coefficients, to 

optimize model performance. Cross-validation (CV) techniques are applied to split the whole training dataset into smaller 

training and validation data sections and allow the assessment and iterative improvement of the model parameters during 

training while also preventing overfitting.  In this category of techniques, the k-fold framework is the most used for climate 

information downscaling models. It partitions the training data into k equally sized and mutually exclusive subsamples, which 400 

are also referred to as folds (Stone, 1976; Markatou et al., 2005). More specifically, for each iteration step, one fold is used for 

model validation, and the remaining k-1 folds are used for model training. The leave-one-out CV technique (Lachenbruch and 

Mickey, 1968) is an alternative and has been used for the development of ESD models (e.g., Gutiérrez et al., 2013). Cross-
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validation techniques rely on the fundamental assumption of independent and identically distributed (i.i.d) data. They, 

therefore, treat the data as a result of a generative process that has no memory of previously generated samples (Arlot and 405 

Celisse, 2010). The assumption of i.i.d might not be valid for time series data (e.g., Bergmeir and Benítez, 2012) due to seasonal 

effects, for example. To circumvent this problem, monthly-bootstrapped resampling and time-series splitters are included in 

the pyESD package. The pyESD.splitter module contains all CV frameworks available for model training, including the k-fold, 

the leave-one-out, and other CV schemes. The validation metrics used for optimizing the model parameters include the 

coefficient of determination (R2) (Eqs. (11)), Root Mean Squared Error (RMSE) (Eqs. (13)), Mean Absolute Error (MAE) 410 

(Eqs. (14)), and others that are summarized in Section 2.5. The final values for the validation metrics, which reflect the model 

performance during training, are arithmetic means of the individual values for each iteration. In this paper, we refer to them as 

CV performance metrics (i.e., CV R2, CV RMSE, and CV MAE). 

2.5 Model evaluation  

In the process of downscaling climate information, best practice involves the use of stringent model evaluation schemes with 415 

independent data outside the training data range (Wilby et al., 2004). Retaining a section of the data as a testing dataset (Section 

2.4) is recommended if longer records (e.g., ≥ 30 years) are available. It allows (a) a completely independent evaluation of the 

trained model’s performance, and (b) an assessment of the sensitivity of the model to the chosen training dataset. In the case 

of time series, the latter can provide insights into the model’s sensitivity to the calibration period and the temporal stationarity 

of the model’s transfer functions. If the records are short (e.g., < 30 years), the CV metrics (Section 2.4) can be used, albeit 420 

with caveats, as non-ideal estimates for the model’s performance (e.g., Mutz et al., 2021). For the remainder of this section, 

however, we will assume that longer records and completely independent testing datasets are available. 

The PP-ESD model is evaluated on the basis of the model’s predictions �̂� and the observed values 𝑦. In pyESD, the following 

performance metrics are implemented: 

1. The coefficient of determination (R²) represents the fraction of the predictand’s observed variance that can be 425 

explained by the predictors. It can be seen as a measure of how well the model predicts the unseen data (Wilks, 2011). 

The R² for the predicted values �̂�𝑖  in relation to the observed data 𝑦𝑖  for i=1,..., n samples is defined as: 

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (11) 

where �̅� is the mean of the observed data, ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1  is the sum of squared residuals (SSR) and ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1  is 

the total sum of squares (SST). R² can range from -∞ to 1, where 1 is the best possible score and negative values are 430 

indicative of an arbitrary, worse model. An R² value of 0 is indicative of a model that would always predict the �̅�. In 

this case, the model represents no improvement over simply using the mean �̅� as a model. 

2. Pearson's correlation coefficient (PCC) evaluates the linear correlation between the model predictions 𝑦𝑖  and observed 

data 𝑥𝑖. The PCC of 1 indicates a perfect positive correlation, -1 indicates a perfect anti-correlation, and 0 indicates 

no correlation between the predicted and observed values. The PCC for n samples is defined as: 435 
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𝑃𝐶𝐶𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 (12) 

 where the �̅� and �̅� are the means of the 𝑥𝑖  and 𝑥𝑖  values respectively. 

3. The root mean squared error (RMSE) estimates the mean magnitude of error between the predictions and 

observations. The RMSE is given in the physical units of the observed data and not standardized. Smaller values 

indicate better model performance. The RMSE for predictions �̂�𝑖  and observations 𝑦𝑖  of n samples is calculated as: 440 

𝑅𝑀𝑆𝐸(𝑦, �̂�) = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (13) 

4. The mean absolute error (MAE) is a scale-dependent accuracy measure that also provides information on the errors 

between the predictions and observed. The MAE is estimated as the sum of absolute errors normalized by the sample 

size (𝑛). The MAE is calculated as: 

𝑀𝐴𝐸(𝑦, �̂�) =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (14) 445 

2.6 GCM-ESD coupling and local-scale predictions 

The developed and tested PP-ESD model can finally be coupled to coarse-scale climate information. If the PP-ESD model was 

developed with the intention to downscale predictions of future climate change, the next logical step is to couple it to GCM 

simulations forced with different greenhouse gas concentration scenarios. Since PP-ESD is the bias-free downscaling 

alternative to MOS-ESD, PP-ESD models may be coupled to all GCMs, provided that the predictors are adequately represented 450 

by the GCMs. This condition may be alleviated to an extent by standardizing the simulated predictor (Bedia et al., 2020). An 

analysis of the distribution similarity between the observed and simulated predictors can be conducted to test the assumption 

of representation. For example, the Kolmogorov-Smirnov (KS) test, which is implemented as part of the pyESD package 

utilities, is a non-parametric statistical hypothesis test that can be used to evaluate the null hypothesis (𝐻0) that the observation-

based predictors and simulated predictors are of the same theoretical distribution.  455 

The first step in ESD-GCM coupling is to utilize the GCM output to recreate the predictors used in the training of the ESD 

model. This may involve anything from constructing simple temperature regional means to reconstructing multivariate indices 

for more complex climate phenomena. In the case of index-based predictors such as NAO, EA, SCAN, and others, the 

simulated indices are reconstructed by projecting the pressure anomalies of the GCM onto the EOF loading patterns of the 

predictors (e.g., Mutz et al., 2015). This ensures that the physical meaning of the index values is maintained. The ESD model 460 

then takes these simulated predictors as input and generates local-scale predictions according to the model’s transfer functions. 

The added value of the resulting downscaling product can be evaluated by comparing the downscaled values to the raw outputs 

of different GCMs and RCMs. Finally, the high-resolution local-scale predictions can be used to drive climate change impact 
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assessment models to predict flood frequency (e.g., Padulano et al., 2021; Hodgkins et al., 2017), agricultural changes (e.g., 

Mearns et al., 1996), changes in water resources (e.g., Dau et al., 2021), and more. 465 

3 Illustrative case study: Neckar Catchment 

We demonstrate the complete downscaling workflow and highlight most of the functionalities of the pyESD package in an 

illustrative case study. The study uses the PP-ESD approach and is set in the Neckar catchment, a hydrological catchment in 

Southwestern Germany that consists of complex mountainous terrain with topographic elevations between 200 to 1000 m 

above sea level (Fig. 2). The region is climatically complex, since local climates are influenced by atmospheric teleconnection 470 

patterns (e.g., NAO, EA, and SCAND), orographic effects (e.g., Kunstmann et al., 2004), and the Mediterranean climate 

(Bárdossy, 2010; Ludwig et al., 2003). The catchment experiences maximum precipitation (80 - 120 mm/month) and 

temperature (15 - 18 °C) in the summer months (Fig. 3). The catchment serves as a water supply for drinking and agricultural 

activities (Selle et al., 2013). We use this catchment for our case study, because (a) it is a suitable region to test the strengths 

and limitations of the pyESD downscaling package, and (b) generating 21st century climate change estimates can contribute to 475 

regional climate impact assessments and adaptation. 
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Fig. 2: Weather station locations and elevations in the Neckar catchment. The red circles represent temperature stations (ID 

corresponds to Table 1b) and the black circles represent precipitation stations (ID corresponds to Table 1a). The colormap shows 

the elevation and delineates the extent of the catchment. 480 
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Fig. 3: Long-term (1958 - 2020) monthly means of (a) precipitation and (b) temperature, averaged over all stations in the catchment. 

The error bars are the standard deviations that represent inter-station variability. The maximum precipitation and temperature in 

the catchment are recorded in the summer season (JJA). 

In this case study, we apply pyESD to predict local temperature and precipitation changes for 22 weather stations located in 485 

the catchment (Table 1), and demonstrate the package’s flexibility by performing experiments with the different modeling 

alternatives. We show most of the PP-ESD steps required for generating robust downscaling products. These steps include (1) 

predictor selection and construction, (2) model selection, training, and cross-validation, (3) model evaluation, and (4) 

generating future predictions through ESD-GCM coupling (see Section 3.2 for details). We note that the focus of the case 

study lies more on demonstrating the pyESD workflow and functionality, and less on detailed discussions of the downscaled 490 

results and their implications. In order to allow readers to reproduce and learn from this application example, we only use 

public and freely available datasets (see Section 3.1 for more details about the data). Moreover, all scripts used in this study 

(i.e. data preprocessing, modeling and visualization scripts) are provided in the supporting material. 
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Table 1: IDs (specific to this study), names, coordinates and elevation (m) for weather stations recording (a) precipitation and (b) 495 
temperature. 

ID (a) Name Longitude Latitude Elevation 

1 Baltmannsweiler-Hohengehren 9.45 48.76 457 

2 Boll Bad 9.62 48.64 423 

3 Eschbronn-Mariazell 8.47 48.19 716 

4 Fellbach 9.27 48.81 280 

5 Goeppingen-Jebenhausen 9.63 48.69 368 

6 Haigerloch-Weildorf 8.77 48.37 524 

7 Hechingen 8.98 48.38 518 

8 Heubach Ostalb 9.94 48.80 450 

9 Horb-Betra 8.66 48.41 544 

10 Klippeneck 8.75 48.11 973 

11 Lorch Kreis Ostalb-Waldhausen 9.64 48.78 296 

12 Metzingen 9.27 48.54 354 

13 Oberndorf Neckar 8.58 48.29 516 

14 Rosenfeld-Bickelsberg 8.69 48.29 676 

15 Stoetten 9.86 48.67 734 

16 Stuttgart-Echterdingen 9.22 48.69 371 

17 Stuttgart (Schnarrenberg) 9.20 48.83 314 

18 Winterbach Rems-Murr-Kreis 9.47 48.80 240 

ID (b) Name Longitude Latitude Elevation 

1 Hechingen 8.98 48.38 518 

2 Klippeneck 8.75 48.11 973 

3 Lenningen-Schopfloch 9.53 48.54 758 

4 Murrhardt 9.57 48.97 344 

5 Rottweil 8.64 48.18 588 

6 Schwaebisch Gmuend-Strassdorf 9.80 48.78 415 

7 Stoetten 9.86 48.67 734 

8 Stuttgart-Echterdingen 9.22 48.69 371 

9 Stuttgart (Schnarrenberg) 9.20 48.83 314 
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3.1 Datasets 

3.1.1 Weather station data  

Monthly precipitation and temperature stations data from the German Weather Service (Deutscher Wetterdienst, DWD 500 

accessible from https://cdc.dwd.de/portal/) served as the predictand time series in this study. We considered all weather 

station records that (a) originated from measurements in the Quelle-Enz sub-catchment, (b) covered the time period of 1958 

to 2020, and (c) were at least 30 yearsa in length. Even though there is no well-established and universally valid 

recommendation for the minimum record length in an PP-ESD approach (e.g., Hewitson et al., 2014), we chose a conservative 

30a threshold to ensure the models can be evaluated with truly independent, retained data (see Section 2.5). The remaining 505 

weather stations are summarised in Table 1. These were loaded into predictand Station Objects (SO) as follows: 

1 from pyESD.Weatherstation import read_station_csv 

2 variable = "Temperature" #or 'Precipitation' 

3 SO = read_station_csv(filename, variable) 

 510 

from pyESD.Weatherstation import read_station_csv 

variable = “Temperature” or “Precipitation” 

SO = read_station_csv(filename, variable) 

3.1.2 Reanalysis datasets 

The ERA5 reanalyses products, produced and managed by the European Centre for Medium-Range Weather Forecasting 515 

(ECMWF), were used to construct the predictors in this study. ERA5 is based on historical records from various observational 

systems (e.g., oceans buoys, aircraft, weather stations) that are dynamically interpolated with numerical forecasting models in 

a four-dimensional variational (4D-Var) data assimilation scheme to generate global, homogeneous, spatially gridded datasets 

(Bell et al., 2021). It has a spatial resolution of approximately 31 km (or TL639) and is available as hourly data, covering 1950 

to the present day with 5-day lag of data availability (Hersbach et al., 2020). For this study, however, mean monthly values 520 

were used in the construction of potential predictors (Table 2). These are publicly available from the Copernicus Climate Data 

Store (CDS) (accessible at https://cds.climate.copernicus.eu). 

Table 2: Potential predictors considered for PP-ESD models and the frequency of their selection for (a) precipitation and (b) 

temperature stations (based on the final predictor selection method). 

 
Name Description (a) (b) 

1 t2m Near-surface temperature 8 8 

2 tp Total precipitation 18 9 

3 msl Mean sea level pressure 4 6 

https://cdc.dwd.de/portal/
https://cds.climate.copernicus.eu/#!/search?text=ERA5%20monthly%20single%20levels%26type%3Ddataset
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4 v10 Near-surface meridional wind  7 7 

5 u10 Near-surface zonal wind 10 7 

6 NAO North Atlantic Oscillation Index 9 5 

7 EAWR East Atlantic/Western Russian Oscillation Index 11 3 

8 SCAN Scandinavian Oscillation patterns  11 5 

9 EA East Atlantic patterns  10 4 

10 v_plev Meridional wind at pressure levels 250, 500, 700, 850, and 1000 (hPa 9, 7, 7, 10, 8 7, 3, 8, 5, 7 

11 u_plev Zonal wind at pressure levels 250, 500, 700, 850, and 1000 hPa 4, 9, 7, 6, 11 7, 5, 5, 5, 8 

12 r_plev Relative humidity at pressure levels 250, 500, 700, 850, and 1000 hPa 7, 8, 15, 7, 11 7, 4, 5, 5, 6 

13 z_plev Geopotential height at pressure levels 250, 500, 700, 850, and 1000 hPa 3, 6, 4, 6, 5 4, 6, 5, 7, 5 

14 t_plev Temperature at pressure levels 250, 500, 700, 850, and 1000 hPa 10, 9, 7, 7, 6 5, 5, 6, 8, 9 

15 d2m Near-surface dew-point temperature 6 5 

16 dtp Dewpoint temperature depression 7, 6, 13, 7, 11 4, 2, 2, 3, 1 

 525 

3.1.3 GCM simulations datasets 

For the ESD-GCM coupling, the predictors were reconstructed from an MPI-ESM (Max Planck Institute (MPI) Earth System 

Model (ESM)) GCM simulation that follows the protocols of the World Climate Research Programme’s (WCRP) Coupled 

Model Intercomparison Project phase 5 (CMIP5) (Taylor et al. 2012). We highlight that CMIP5 model output was chosen in 

this illustrative study to enable consistent comparison with previous regional climate models over the region and any GCM 530 

outputs (e.g., CMIP6) can be combined with pyESD. For the case study, we consider several simulations (accessible at 

https://cds.climate.copernicus.eu) forced with different RCPs scenarios (Moss et al. 2010) to predict the local-scale 

response to the plausible range of forcings. In order to highlight the added value of the downscaled product, the local-scale 

future estimates are compared to the coarser predictions of several GCMs (i.e., MPI-ESM, CESM1-CAM5 of the National 

Center for Atmospheric Research (NCAR) (Kay et al., 2015) and HadGE2-ES of the Hadley Centre of the UK Met Office 535 

(Collins et al., 2008)) and RCMs (CORDEX-Europe simulation with MPI-CSC-REMO2009 driven with boundary conditions 

from MPI-ESM). 

https://cds.climate.copernicus.eu/#!/search?text=ERA5%20monthly%20single%20levels%26type%3Ddataset
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3.2 Methods 

3.2.1 Predictor selection and construction 

The considered predictors must be large-scale climate elements that are both physically and empirically relevant to predicting 540 

the local-scale climate variability in the vicinity of the weather station. The physical relevance of considered predictors (Table 

2) is established through previous studies and general climatological merit. We then apply a monthly standardizer transformer 

to remove the seasonality trends and scale the individual predictors. The empirical relationship with the predictand is then 

evaluated with PCCs defined in Eqs. (12). Finally, first estimates of their predictive skills are obtained through the application 

of the package’s Recursive, Sequential, and TreeBased algorithms in a CV setting. These preliminary experiments are 545 

conducted to refine the selection of predictors further. After the predictor selection process,  each weather station and predictand 

is associated with a particular subset of predictors (Table 2) that are later used to train the final ESD model for the station 

(Section 3.2.2). 

The steps above are implemented with pyESD as follows:  

1. We create a list (predictors) of all considered predictors with physical relevance to the predictand. We then use the 550 

set_predictors method of the station object (SO) to read the data in the local directory (predictordir) and construct 

regional means with a defined radius of 200 km around the station location. These are regional means of relevant 

climate variables and serve as the simplest type of predictor. For the construction of indices for atmospheric 

teleconnection patterns (i.e., NAO, EA, SCAN, and EAWR), which serve as further predictors, the package 

automatically calls pyESD.teleconnections module if the pattern’s acronym is included in the list of predictors.  555 

1 predictors = ["t2m", "tp", "NAO",..., "nth predictor"] 

2 SO.set_predictors(variable, predictors, predictordir, 

radius=200) # radius in km 

 

2. We apply the monthly standardizer and then use the predictor_correlation method to estimate the PCC between the 560 

predictand and predictors.  

SO.set_standardizer(variable, standardizer = MonthlyStandardizer(detrending=True, scaling=True)) 

3.2. df_corr = SO.predictor_correlation(variable, predictor_range, ERA5Data, fit_predictors=True, 

fit_predictand=True,  method="pearson") 

 565 

 

1 SO.set_standardizer(variable, standardizer = 

MonthlyStandardizer(detrending=True, scaling=True)) 

2 df_corr = SO.predictor_correlation(variable, 

predictor_range, ERA5Data, fit_predictors=True, 570 

fit_predictand=True,  method="pearson") 

 

Formatted: Font: Italic



24 

 

3. The final refinement of the predictor list is implemented as part of the fit method. We use the set_model method to 

define the ARD regressor, TimeSeriesSplitter CV setting, and call the fit method in a loop through the three types of 

selector methods. 575 

1 SO.set_model(variable, method="ARD", 

cv=TimeSeriesSplit(n_splits=10)) 

2 selector_methods = ["Recursive", "TreeBased", "Sequential"] 

3 for selector_method in selector_methods: 

4 SO.fit(variable, predictor_range, ERA5Data, 580 

fit_predictors=True, predictor_selector=True,  

selector_method = selector_method, select_regressor) 

 
SO.set_model(variable, method="ARD", cv=TimeSeriesSplit(n_splits=10)) 

selector_methods = ["Recursive", "TreeBased", "Sequential"] 585 

for selector_method in selector_methods: 

SO.fit(variable, predictor_range, ERA5Data, fit_predictors=True, predictor_selector=True,  selector_method = 

selector_method, select_regressor) 

3.2.2 Model training and validation  

Model training and validation is performed separately for each predictand and weather station. The models are trained in a CV 590 

setting for the period 1958-2010, and then assessed on independent retained data for the period 2011-2020. In the training 

process, we use 7 different methods before deciding on an estimator for the final model. These methods include at least one 

representative for each of the families of ML algorithms (see section 2.3) except SVR. We exclude SVR due to its high 

computational demands for optimization, and to ensure the easy reproducibility of the illustrative example on less powerful 

computers. We perform the initial model training and validation with the LassoLarsCV, ARD, MLP, RandomForest, XGBoost, 595 

Bagging and Stacking regressors using a KFold(n_splits=10) validation scheme for hyperparameter optimization. For the 

Stacking regressor, we use all the other regressors as base estimators (i.e., level-0 learners) and ExtraTree as the meta-learner. 

The final ESD model is then selected based on the CV metrics (i.e., CV R² and CV RMSE) of the individual models. 

The steps above are implemented with pyESD as follows: The models are trained with the fit method as described within 

Section 3.2.2. The cross_validate_and_predict method is applied to calculate the CV metrics and generate the predictions for 600 

the training period 1958-2010. The predict method is then used to generate predictions for the 2011-2020 period from the 

models trained in the 1958-2010 period. Finally, the evaluate method is used to obtain the model performance metrics based 

on the 2011-2020 predictions and retained data. The R², RMSE, and MAE (see section 2.5) are used as both CV and evaluation 

metrics in this study. The ERA5 reanalysis product is specified as the predictor dataset for all these methods. 

1 cv_score_1958to2010, predict_1958to2010 = 605 

SO.cross_validate_and_predict(variable, from1958to2010, 

ERA5Data) 
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2 predict_2011to2020 = SO.predict(variable, from2011to2020, 

ERA5Data) 

3 scores_2011to2020 = SO.evaluate(variable, from2011to2020, 610 

ERA5Data) 

 

3.2.3 Future prediction  

Future predictions are generated by coupling the final ESD models to GCM simulations for the 21st century. In the illustrative 

example, we use MPI-ESM simulations that were forced with greenhouse gas concentration scenarios RCP2.6, RCP4.5 and 615 

RCP8.5. This coupling is achieved as follows: The predictors selected during model training are reconstructed from the GCM 

output. These simulated predictors are standardized with the MonthlyStandardizer parameters obtained from the reanalysis 

predictors to ensure data homogenization. Prediction anomalies are calculated using the training period 1958-2010 as a 

reference. The resulting, RCP-specific 21st century prediction anomaly time series are then used to calculate the annual means 

(2020-2100), as well as the seasonal (DJF, MAM, JJA, SON) and annual 30a climatologies for the mid-century (2040-2070) 620 

and the end of the century (2070-2100). The predicted anomalies are then back-transformed to their respective absolute values 

for all stations and compared to the raw outputs of GCMs (i.e., CESM1-CAM5, HadGE2-ES, EURO-CORDEX, and MPI-

ESM; see Section 3.1.3) using the nearest grid point. In pyESD, a future prediction can be generated by using the predict 

method (Section 3.2.2) and specifying the GCM output as the predictor data source.  

The PP-ESD approach relies on the assumption that the predictors are well represented by the GCM. We therefore perform 625 

KS tests to evaluate the distribution similarity between GCM and ERA5 predictors for the datasets’ temporal overlap. The KS 

statistic lies within the 0-1 range, with lower values indicating greater distribution similarity. For our 2-sided tests, we reject 

the null hypothesis (𝐻0 = the datasets have identical underlying distributions) for in the case of p-values being smaller than 

0.05. We perform the test on the raw monthly time series, monthly anomalies and standardized anomalies in order to isolate 

the distributional differences of the first and second moments error propagation (Bedia et al., 2020). The KS_stat function 630 

implemented in the pyESD.utils module is used to test several of the informative predictors (such as tp, t2m, r850, u850, and 

v850).  

4.0 Results and Discussion  

In this section, we present and discuss the results of the illustrative case study. The discussion places more emphasis on the 

functionalities of the package than the climatological implications. Specifically, we discuss the results of the predictor selection 635 

step (Section 4.1), the training and validation of the model (Section 4.2), the final model performance (Section 4.3), and the 

future predictions generated through the ESD-GCM coupling (Section 4.4).  
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4.1 Predictor selection 

All implemented predictor selection methods demonstrated merit, and the correlation analyses revealed strong linear 

dependencies between the predictand variables and potential predictors (Fig. A1 and A2). For example, precipitation records 640 

are highly correlated (PCC ≥ 0.5) with large-scale total precipitation (tp), atmospheric relative humidity (r), and zonal winds 

velocity (u) up to mid-tropospheric level (i.e., 500 - 1000 hPa) (Fig. A1). The temperature records are highly correlated (PPC 

≥ 0.7) with near-surface temperature (t2m), atmospheric temperature (t on all levels), and dewpoint temperature depression 

(dtp) up to the mid-troposphere (Fig. A2). Both predictands also show a good correlation (PCC ≥ 0.25) with the indices of the 

atmospheric teleconnection patterns (i.e., NAO, EA, EAWR, and SCAN). The predictor selection methods (i.e., Recursive, 645 

TreeBased, and Sequential) perform similarly for all the precipitation and temperature stations (Fig. 4). More specifically, the 

three methods yield CV R² values of 0.5 to 0.75 (Fig. 4a), CV RMSE values of ≤ 25 mm/month (Fig. 4c) for precipitation, CV 

R² values of ≥ 0.95 (Fig. 4b), and CV RMSE values of 0.3 to 0.6 °C (Fig. 4d) for temperature stations. Since the methods did 

not show a significant difference in performance, the Recursive method was applied for the refinement of the set of predictors, 

since it allows more flexibility and a stepwise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021; 650 

Hammami et al., 2012; Li et al., 2020). The frequencies with which specific predictors were selected using the Recursive 

method are listed in Table 2. 
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Fig. 4: Cross-validation R² and RMSE for the predictor selection methods (Recursive (red), Tree-based (green), and Sequential 

(black)) for precipitation (a, c) and temperature (b, d) station records. The individual performed similarly well, suggesting that each 655 
of the implemented methods may be used to refine the list of potential predictors. 

The predictors tp and t2m were included for most of the precipitation and temperature station records, respectively. This 

indicates that variations in the larger-scale precipitation and temperature fields already explain much of the local-scale 

predictand variability in the vicinity of the weather stations. Many of the refined predictor sets also included indices of the 

NAO (9/18 precipitation stations, 5/9 temperature stations), SCAN (11/18 precipitation stations, 5/9 temperature stations), EA 660 

(10/18 precipitation stations, 4/9 temperature stations), and EAWR (11/18 precipitation stations, 3/9 temperature stations). 

This confirms the strong manifestation of Northern hemisphere atmospheric teleconnection patterns on the local-scale 

precipitation and temperature in the catchment (e.g., Bárdossy, 2010; Ludwig et al., 2003). Their exclusion from the other 

stations is likely due to the fact that their variability might already be captured by zonal and meridional wind speeds and 

synoptic pressure variables like geopotential height (z) and mean sea level pressure (slp) (Hurrell and Van Loon, 1997; Hurrell, 665 

1995; Barnston and Livezey, 1987; Maraun and Widmann, 2018). Relative humidity was selected as a predictor for most of 
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the precipitation stations. This is consistent with the results of many other studies (e.g., Gutiérrez et al., 2019; Hammami et 

al., 2012) and our physical understanding of it as a measure of humidity that takes saturation vapor pressure into consideration. 

4.2 Performance of individual estimators 

We experimented with seven different regressors before deciding on the regressor that would be used to establish the final 670 

ESD models (see section 3.2.2). A total of 126 precipitation and 63 temperature experimental models were generated with the 

seven regressors. Overall, most of the experimental models performed reasonably well with a mean CV R² of ≥ 0.5 for 

precipitation and ≥ 0.9 for temperature stations (Fig. 5). The MLP models, on the other hand, performed relatively poorly with 

CV R² values of ≤ 0.4 for precipitation and ≤ 0.9 for temperature. This is due to the fact that MLP model calibration require s 

longer records and a more complex architecture to capture most of the informative patterns in the training data. This study, 675 

however, uses a simplified architecture to make the results reproducible without higher computational requirements. The result 

can likely be improved with more data (e.g., by using daily values) and an increase in hidden layers (Section 2.2.3). The overall 

performance of the experimental models underlines the methods’ suitability for downscaling. 
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Fig. 5: Cross-validation R² and RMSE box plots comparing the experimental regressors' performance for all the precipitation (a, c) 680 
and temperature (b, d) stations. The red lines inside the box represent the median, the lower and upper box boundaries indicate the 

25th and 75th percentiles, and the lower and upper error lines show the 10th and 90th percentiles, respectively. The black plus 

marks show the outliers outside the range of the 10th and 90th percentile.  

Among the better performing precipitation models, the LassoLarsCV and ARD methods yielded the best results (CV R² = 0.55 

- 0.75, CV RSME = 20 - 23 mm/month), followed by the RandomForest and Bagging ensembles (CV R² = 0.48 - 0.70, CV 685 

RSME = 21 to 25 mm/month), and XGBoost ensemble regressor (CV R² = 0.39 - 0.65, CV RMSE = 22 - 27 mm/month). 

Stacking all experimental models into a meta-regressor also yields good results (CV R² = 0.45 - 0.7, CV RMSE = 20 - 26 

mm/month) despite the poor performance of the MLP regressors. Based on these results, the LassoLarsCV, ARD, 

RandomForest, and Bagging regressors were selected as the final base learner for the Stacking model. ExtaTree was chosen 



30 

 

as the final meta-learner to prevent overfitting issues by placing an additional discriminative threshold on all the base 690 

regressor's predictions (Geurts et al., 2006).  

The experimental temperature models showed similar patterns in performance, but performed better overall. The LassoLarCV 

and ARD emerge as the best-performing models (CV R² = 0.85 - 0.98, CV RMSE = 0.2 - 0.6 °C), followed by the 

RandomForest and Bagging regressors (CV R² = 0.8 - 0.96, CV RMSE = 0.3 - 0.7 °C), and the XGBoost and Stacking ensemble 

regressors (CV R² = 0.75 - 0.96, CV RMSE = 0.3 - 0.8 °C). Therefore, we also selected Stacking (with LassoLarsCV, ARD, 695 

RandomForest, Bagging) for the final temperature models, too. 

4.3 Performance of the final estimator  

Following the analysis of the seven experimental models (Section 4.2), the Recursive predictor selection method and Stacking 

learning model (with LassoLarsCV, ARD, RandomForest, and Bagging) were selected for the generation of the final ESD 

models. The models were trained on the 1958-2010 data in a CV setting, and evaluated on the retained data in the 2011-2020 700 

period. R², RMSE, and MAE were used as performance metrics for the CV setting and the final evaluation (Tables 3 and 4). 

The models’ performance was good overall, but varied notably between different stations. The prediction skill estimates were 

higher for temperature than for precipitation. For temperature (Table 4), the explained variance estimates (“Fit R²”) are in the 

range of 0.81-0.98 (μ=0.94), and CV R² are in the range of 0.84 to 0.98 (μ=0.93), whereas for precipitation (Table 3), the 

explained variance estimates are in the range of 0.58-0.84 (μ=0.71), and CV R² are in the range of 0.54-0.72 (0.65).  The 705 

accuracy measures display a similar discrepancy with CV RMSE of 0.3-0.6 °C (μ=0.42 °C) and CV MAE of 0.2-0.50 °C 

(μ=0.34 °C) for temperature, and CV RMSE of 20-24 mm/month (μ=21 mm/month) and CV MAE of 14-18 mm/month (μ=16 

mm/month) for precipitation. 

 

Table 3: Model performance metrics (i.e., R2, RMSE, and MAE) for all the precipitation stations. The final ESD models were trained 710 
in a CV setting on datasets from 1958-2010, and evaluated on independent, retained data from 2011-2020. 

ID Name (Fit) R² CV R² CV RMSE CV MAE R² RMSE MAE 

1 Baltmannsweiler-Hohengehren 0.71 0.67 20 15 0.63 22 18 

2 Boll Bad 0.70 0.69 21 15 0.60 24 19 

3 Eschbronn-Mariazell 0.74 0.69 20 16 0.59 23 18 

4 Fellbach 0.61 0.57 20 15 0.59 20 15 

5 Goeppingen-Jebenhausen 0.71 0.68 21 16 0.62 23 18 

6 Haigerloch-Weildorf 0.64 0.62 20 15 0.74 17 13 

7 Hechingen 0.63 0.61 20 15 0.74 17 13 
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8 Heubach Ostalb 0.78 0.65 24 18 0.65 25 21 

9 Horb-Betra 0.84 0.72 21 16 0.74 21 16 

10 Klippeneck 0.67 0.63 21 16 0.70 21 17 

11 Lorch Kreis Ostalb-Waldhausen 0.79 0.72 21 15 0.64 24 20 

12 Metzingen 0.79 0.61 20 16 0.64 20 16 

13 Oberndorf Neckar 0.75 0.71 23 17 0.66 28 22 

14 Rosenfeld-Bickelsberg 0.70 0.69 20 15 0.70 21 16 

15 Stoetten 0.75 0.72 23 17 0.68 25 20 

16 Stuttgart-Echterdingen 0.61 0.56 20 14 0.68 16 13 

17 Stuttgart (Schnarrenberg) 0.58 0.54 20 14 0.50 21 15 

18 Winterbach Rems-Murr-Kreis 0.72 0.66 20 15 0.61 23 18 

 

Table 4: Model performance metrics (i.e., R2, RMSE, and MAE) for all the temperature stations. The final ESD models were trained 

in a CV setting on datasets from 1958-2010, and evaluated on independent, retained data from 2011-2020. 

ID Name Train R² CV R² CV RMSE CV MAE R² RMSE MAE 

1 Hechingen 0.96 0.96 0.30 0.30 0.93 1.3 1.2 

2 Klippeneck 0.94 0.94 0.40 0.30 0.94 1.3 1.2 

3 Lenningen-Schopfloch 0.95 0.93 0.50 0.40 0.91 0.9 0.7 

4 Murrhardt 0.81 0.84 0.60 0.50 0.77 1 0.8 

5 Rottweil 0.94 0.92 0.50 0.40 0.92 1.1 1 

6 Schwaebisch Gmuend-Strassdorf 0.89 0.85 0.60 0.50 0.91 0.5 0.4 

7 Stoetten 0.98 0.98 0.30 0.20 0.94 1.4 1.4 

8 Stuttgart-Echterdingen 0.98 0.97 0.30 0.20 0.94 1.5 1.4 

9 Stuttgart (Schnarrenberg) 0.98 0.96 0.30 0.30 0.95 1.6 1.5 

 715 

The final model evaluation using independent, retained data from 2011-2020 yielded R2 values of up to 0.95, and average 

RMSE and MAE of ~ 1.0 °C for temperature, and R2 values of up to 0.74, average RMSE of 22 mm/month, and MAE of 17 

mm/month for precipitation. The discrepancy in temperature and precipitation model performance is unsurprising, since the 
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thermodynamics and atmospheric dynamics controlling precipitation variability are more difficult to represent (e.g., Shepherd, 

2014). Regardless, the overall performance speaks in favor of applying the study’s approach to downscale mid-latitude climate 720 

in complex terrain. Moreover, the models’ similar performance during CV and the final evaluation indicates that the models 

were not overfitted, and that the predictand-predictors relationships hold outside the observed period. Finally, it is worth noting 

that the Stacking regressor performed better than the individual base models, even when all the potential regressors of the 

initial experiments (Section 4.2) were stacked into a meta-regressor. Such improvements demonstrate the advantage of the 

ease-of-experimentation through a package like pyESD.  725 

We visualize a prediction example (Fig. 6) to (a) provide a less abstract presentation of these results, and (b) demonstrate the 

type of figure generated by the plotting utility functions in the pyESD.plot module. The figure depicts the predictions generated 

by the final ESD model for the Hechingen station. A station that records precipitation and temperature (station ID 7 and 1, 

respectively). The observed and predicted values for 2011-2020 are highly correlated, with PCCs of 0.85 (Fig. 6a) for 

precipitation and 0.97 (Fig. 6b) for temperature. The time series comparisons also demonstrate the models’ abilities to predict 730 

the variability of the observed values in both the training and testing period (Fig. 6 a and b). Prior to this study, PP-ESD models 

have not been directly applied to the weather stations in the catchment. However, our models are among the best performing 

for temperature and precipitation when we compare them to models from other studies across Europe (e.g., Gutiérrez et al., 

2019; Hertig et al., 2019; Schmidli et al., 2007). For instance, Gutiérrez et al., (2019) performed an intercomparison of 

statistical downscaling model performance for 86 stations across Europe using the MOS, PP, and WG methods. The Spearman 735 

correlation of the downscaled and observed values yielded R values in the range of ~ 0.0 - 0.7 (with many stations ≤ 0.5) for 

precipitation and 0.3 - 0.95 for temperature. These comparisons also underline the suitability of the pyESD methods for 

downscaling climate information even in complex, mountainous regions. 
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 740 

Fig. 6: Prediction example for the Hechingen station using the final regressor for precipitation (a, c) and temperature (b, d). The top 

panel (a-b) shows the linear relationship between the predictions and observed values, and the PCC (R value) for the testing data 

(bluered-colored circles). The bottom panel (c-d) shows the 1-year moving average of the observed (green, solid) and ERA5-driven 

predictions for the training period (blue, dash-dotted) and the testing period (red, dashed). 

4.4 Prediction of local responses to 21st century climate change 745 

The predictions of local precipitation and temperature responses to 21st century climate change were generated by coupling 

the final ESD models to MPI-ESM simulations forced with greenhouse gas concentration scenarios RCP 2.6, RCP 4.5, and 

RCP 8.5 (Section 3.2.3). The results are presented as deviations from the monthly long-term means of the training period (1958 

- 2010) and referred to as “anomalies” hereafter. The annual mean anomaly time series were computed with a 1 -year moving 

average with a centered mean (Fig. 7 and 9). 750 
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Fig. 7: Predicted regional annual means of the precipitation in response to (a) RCP 2.6 (black), (b) RCP 4.5 (red), and (c) RCP 8.5 

(blue). The solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding 

variability range (one standard deviation). The time series are smoothed with a 1-year moving average with a centered mean. 
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The precipitation predictions (Fig. 7) for RCP 8.5 (RCP 4.5) show a strong (weak) positive trend towards the end of the century. 755 

This trend is even more pronounced for the predicted temperatures (Fig. 9) in the catchment. The predicted precipitation 

changes vary greatly between weather stations. Furthermore, the RCPs change the magnitude, but not the pattern of the 

predictions for each station. For instance, stations that show an increase (decrease) in precipitation for the RCP 2.6, predict a 

greater increase (decrease) in response to RCP 4.5 and RCP 8.5. The annual and seasonal 30a end-of-century climatologies 

show an overall increase in precipitation in response to both RCP 2.6 and RCP 4.5 (Fig. 8) for most of the stations. The annual 760 

end-of-century climatologies deviate from the present-day (1958-2010) by ca. -5 to 20 mm/month for RCP 8.5 and ca ≤ 5 

mm/month for RCP 2.6. Overall, the ESD models predict a precipitation increase of ca. 10 - 20 % until the end of the century. 

Furthermore, the seasonal climatologies reveal a shift of maximum precipitation away from the summer season for some 

stations. Such shifts in seasonality and an overall decrease in summer precipitation have previously been predicted (e.g., Gobiet 

et al., 2014; Paparrizos et al., 2017; Feldmann et al., 2013). Prior to this study, no ESD-GCM based prediction of the 21st 765 

century precipitation changes have been developed for the weather stations of the catchment. However, the models’ predictions 

of the precipitation response to higher greenhouse gas concentration scenarios are comparable to coarser predictions by other  

studies using RCMs or ESD models (Feldmann et al., 2013; Kunstmann et al., 2004; Paparrizos et al., 2017; Lau et al., 2013). 

The precipitation predictions generated in this case study can be used further for climate impact assessments, such as 

assessments of the probability of flooding and drought across the hydrological catchment. The projected shifts in seasonality 770 

across the catchment represents potentially valuable information for agricultural planning. 
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Fig. 8: Observed precipitation (1958-210), and seasonal (i.e., spring (MAM), summer (JJA), autumn (SON), and winter (DJF)) and 

annual end-of-century (30-year) precipitation climatologies as a result of RCPs 2.6 (b), and RCP 8.5 (c) forcing. The brown (green) 

colors indicate a decrease (increase) in precipitation relative to the observed means (1958-2010). 775 

The predicted temperature anomalies (Fig. 9) reveal a strong (weak) positive trend for RCP 8.5 (RCP 4.5). The end-of-century 

climatologies reveal only moderate warming of ca. -0.5 to 1 °C for RCP 2.6, and significant warming (ca. 2 - 4 °C) for all 

seasons in response to RCP 8.5 (Fig. 10). More specifically, the investigated region is predicted to experience most warming 

(≥ 3 °C) in the summer season. There are few differences in predicted warming between the stations of the catchment. 

Generally, the estimated magnitude of warming towards the end of the century is in agreement with the IPCC report (Masson-780 

Delmotte et al., 2021) and other downscaled estimates (e.g., Kunstmann et al., 2004; Gutiérrez et al., 2019). The predicted 
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warming would likely implicate the societal and ecological systems, and stresses the need for efficient adaptation and 

mitigation strategies. 

 

Fig. 9: Predicted regional annual means of the temperature in response to (a) RCP 2.6 (black), (b) RCP 4.5 (red), and (c) RCP 8.5 785 
(blue). The solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding 

variability range (one standard deviation). The time series are smoothed with a 1-year moving average with a centered mean. 
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Fig. 10: Observed temperature (1958-210), and seasonal (i.e., spring (MAM), summer (JJA), autumn (SON), and winter (DJF)) and 

annual end-of-century (30-year) temperature climatologies as a result of RCPs 2.6 (b), and RCP 8.5 (c) forcing. The blue (red) colors 790 
indicate a decrease (increase) in temperature relative to the observed means (1958-2010). 
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The case study highlights the efficiency and robustness of the downscaling steps implemented in the pyESD package. However, 

as noted in previous sections, the accuracy of the predictions generated by a GCM-ESD model coupling relies on the predictors 

being adequately represented by the GCMs. KS tests were performed to evaluate this for the temporal overlap (1979-2000) 795 

between the ERA5 reanalysis product and the MPI-ESM GCM output (Section 3.2.3). The KS statistic lies within the 0-1 

range, with lower values indicating greater distribution similarity. For our 2-sided tests, we reject the null hypothesis (𝐻0 = the 

datasets have identical underlying distributions) for in the case of p-values being smaller than 0.05. Results from these tests 

show significant differences in the distribution of ERA5 and MPI-ESM when the raw monthly time series are considered, thus 

violating the assumptions of the PP-ESD approach. However, this issue does not persist for monthly standardized anomalies 800 

of precipitation and temperature (Fig. 11). Previous studies yielded similar results when using seasonal standardizers (Bedia 

et al., 2020) and principal component transformations (Benestad et al., 2015b), both of which are included in the pyESD 

package. 

 

Fig. 11: KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for precipitation (top 805 
panel) and temperature (bottom panel). The KS test was applied to raw values, anomalies (centered with zero means), and 

standardized anomalies with unit variance values (columns from left to right, respectively). The grid boxes with black cross stipplings 

represent low p values (p < 0.05), suggesting statistically significant differences in distribution between the ERA5 and MPI-ESM 

time series. 

4.5 Comparison of GCM and ESD-based predictions 810 

A comparison of the ESD-generated annual 20a climatologies for mid-century (2040-2060) and end of the century (2080-

2100) to the model output of GCMs and RCMs (i.e., EURO-CORDEX) reveal several differences. The GCMs (MPI-ESM and 

HadGEM2) predict ~ 20 mm/month (~ 30%) higher precipitation rates than the ESD models and RCMs. The ESD-based 
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precipitation predictions of this study are closest to the RCM estimates, albeit ~ ≥ 5 mm/month higher in magnitude for most 

of the stations (Fig. 12). The closeness of the ESD-based and RCM-based estimates underlines the added value of our ESD 815 

approach for downscaling precipitation. However, there are significant (~ 4 °C) differences between the ESD-based and RCM-

based temperature estimates (Fig. 13). The ESD-based temperature predictions were higher than those of the RCM, but lower 

than those of the GCM. Both the RCM and ESD models used boundary conditions from the same GCM (MPI-ESM). The 

RCM reduced the GCM temperatures by more (~ 8 °C) than the ESD models (~ 4 °C or less). This may be a reflection of both 

(a) the selection of GCM near-surface temperatures as predictors in the ESD models, and (b) the shrinking of regression 820 

coefficients when the ESD transfer functions are determined. 

 

Fig. 12: Comparison of 20a annual precipitation climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-

ESM (green), CESM5 (red), HadGEM2 (gold) and RCMs (i.e., and CORDEX (purple)) for RCPs 2.6 (a, b) and 8.5 (c, d). 
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 825 

Fig. 13: Comparison of 20a annual temperature climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-

ESM (green), CESM5 (red), HadGEM2 (gold) and RCMs (i.e., and CORDEX (purple)) for RCPs 2.6 (a, b) and 8.5 (c, d). 

5 Summary and Conclusion 

Contemporary climate change and its impacts increase the demand for high-resolution, regional and local-scale predictions. 

These can be generated in a most cost-effective way through the application of the PP-ESD (perfect prognosis empirical 830 

statistical downscaling) approach. The pyESD python package we introduce here is a well-developed tool and modeling 

framework for applying, and experimenting with, PP-ESD for any climate variable (e.g., precipitation, wind speed, and 

temperature). The package complements existing tools through the following key specialties and strengths: 
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1. The package is well-structured and designed in OOP style that treats the weather stations as objects with many 

functionalities attributes that cover all the PP-ESD modeling routines. As a result, all modeling steps can be executed 835 

on the initialized station objects with a few lines of code.  

2. The package is designed in a way that knowing its API (Application Programming Interface), which is introduced in 

the package’s extensive documentation, is sufficient to implement all downscaling steps. In other words, no advanced 

knowledge of Python (or programming) is required to use the package for research purposes. On the other hand, the 

package’s design is modular and flexible enough to allow advanced users to build on it or adjust it to their needs.  840 

3. The package implements different predictor selection techniques (i.e., Recursive, Tree-Based, and Sequential) that 

can be manually selected and experimented with. The package allows the user to include a variety of predictors, 

ranging from regional near-surface temperatures to and synoptic-scale teleconnection patterns. The package features 

many transformation techniques such as MonthlyStandardizer, PCAScalling, etc. that can be used to reduce biases 

towards specific predictors.  845 

4. The package includes a variety of machine learning techniques with different underlying principles and theorems. 

The package also features many ensemble models (Section 2.3), cross-validation schemes and hyperparameter 

optimization techniques that can easily be experimented with in a few lines of code. 

5. The package’s core modules are accompanied by utility functions for data pre-processing, post-processing and 

serialization for saving computational resources, visualization tools, and ESD-relevant statistical methods like EOF 850 

analysis, correlation and distribution similarity tests. 

We demonstrated some of the package's functionalities by developing and applying ESD models to generate precipitation and 

temperature predictions for a sub-hydrological catchment in complex mountainous terrain in southwestern Germany. The 

models’ performance was evaluated with different metrics and were found to perform well (e.g., R2 ≥ 0.7 for precipitation and 

R2 ≥ 0.9 for temperature). In order to ensure the reproducibility of the results and allow an easy practical entry for potential  855 

users, the application example uses publicly available datasets, and all the scripts used for this study are made available.  

Despite the promising results of the illustrative case study, the reader is informed of the following, important limitations: 

Generally, the PP-ESD approach to predictions relies on the assumption that the empirical relationships between predictor and 

predictand remain valid through time. While statistical downscaling models have successfully been used for past climate of 

the pre-industrial era (Reichert et al., 1999) and Last Glacial Maximum (Vrac et al., 2007), the merit of this assumption must 860 

be evaluated on a case-by-case basis. For example, geographical boundary conditions that affect the local climate, such as 

topography or vegetation cover, are only implicitly considered in the empirical transfer functions. The empirical relationship 

between predictors and predictand may break down if these boundary conditions change significantly (e.g., Mutz and 

Aschauer, 2022). Furthermore, the performance of PP-ESD models also depends on the accuracy of the GCMs they are coupled 

to. In our case study, the developed ESD models were coupled to a single, albeit well-established, GCM (MPI-ESM). However, 865 

we generally recommend the use of GCM ensembles to prevent biases towards a specific GCM. 
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The current version of the package includes all functions needed to develop, evaluate and apply station-based ESD models and 

generate predictions of local-scale climate change. Nevertheless, the package remains under active development to expand 

upon its functionality. Planned improvements include an extension of functions to make pyESD suitable for downscaling 

gridded datasets or satellite observations. The grid-based analysis would contribute to the design of spatial downscaling models 870 

(e.g., Chen et al., 2012; Jia et al., 2011). Moreover, we intend to expand the selection of machine learning techniques by 

including deep learning models that have been proven useful in downscaling (e.g., Baño-Medina et al., 2020; Quesada-Chacón 

et al., 2022). Finally, we intend to build a graphical, web-based interface to make the package more accessible and easy to use 

for researchers, students and people outside the scientific community. 

 875 

Appendix 

A: Supplementary results of the illustrative case study 

 

Fig. A1: Correlation between the precipitation predictand and the potential predictors listed in Table 2, expressed as PCCs. 



45 

 

 880 

Fig. A2: Correlation between the temperature predictand and the potential predictors listed in Table 2, expressed as PCCs. 
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Fig. A3: Observed precipitation (1958-210), and seasonal (i.e., spring (MAM), summer (JJA), autumn (SON), and winter (DJF)) and 

annual mid-century (30-year) precipitation climatologies as a result of RCPs 2.6 (b), and RCP 8.5 (c) forcing. The brown (green) 

colors indicate a decrease (increase) in precipitation relative to the observed means (1958-2010). 885 
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Fig. A4: Observed temperature (1958-210), and seasonal (i.e., spring (MAM), summer (JJA), autumn (SON), and winter (DJF)) and 

annual mid-century (30-year) temperature climatologies as a result of RCPs 2.6 (b), and RCP 8.5 (c) forcing. The blue (red) colors 

indicate a decrease (increase) in temperature relative to the observed means (1958-2010). 

 890 

Fig. A5: KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for relative humidity 

(top panel), zonal winds velocity (middle panel), and meridional winds velocity (bottom panel) on 850 hPa. The KS test was applied 

to raw values, anomalies (centered with zero means), and standardized anomalies with unit variance values (columns from left to 

right, respectively). The grid boxes with black cross stipplings represent low p values (p < 0.05), suggesting statistically significant 

differences in distribution between the ERA5 and MPI-ESM time series. 895 

Data Availability 

The study’s illustrative case study relies on publicly available datasets. More specifically, the precipitation and temperature 

datasets are accessible through the Climate Data Centre of the DWD (https://cdc.dwd.de/portal/). The sub-catchment datasets 

used in this study are interactively available through https://cdc.dwd.de/portal/202209231028/mapview and 

https://cdc.dwd.de/portal/202209231028/mapview  for precipitation and temperature stations, respectively. The ERA5 900 

reanalysis datasets can also be downloaded through Copernicus Climate Data Store (CDS) 

(https://doi.org/10.24381/cds.6860a573 for pressure level and https://doi.org/10.24381/cds.68d2bb30 for surface level 

variables). However, the processed weather stations and the serialized pickle files of the regional means of the predictors for 

all the stations are provided as part of the supporting material (https://doi.org/10.5281/zenodo.7767681). The MPI-ESM GCM 

https://cdc.dwd.de/portal/
https://cdc.dwd.de/portal/202209231028/mapview
https://cdc.dwd.de/portal/202209231028/mapview
https://doi.org/10.24381/cds.6860a573
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.5281/zenodo.7767681
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datasets used as simulated predictors can also be downloaded from the CDS by selecting the MPI-ESM-LR as the model for 905 

the AMIP, RCP 2.6, 4.5 and 8.5 experiments: https://doi.org/10.24381/cds.3b4b5bc9 pressure levels variables and 

https://doi.org/10.24381/cds.9d44a987 for surface variables. Moreover, the station-based downscaling estimates of future 

climate scenarios for all the stations are also included in the supporting material (https://doi.org/10.5281/zenodo.7767681).  

Code Availability 

The pyESD (version 1.0.1) software including the documentation website source files is available through many platforms: 910 

• Github: https://github.com/Dan-Boat/PyESD 

• Python package index (PyPI): https://pypi.org/project/PyESD/ 

• Zenodo (v1.0.1 release): https://doi.org/10.5281/zenodo.7767629    

 

 915 

Developer: Daniel Boateng, University of Tübingen 

Hardware requirements: general-purpose computer 

Programming language: Python (Version 3.7 or later) 

The installation of the package and its required dependencies are highlighted in the documentation website: https://dan-

boat.github.io/PyESD/. The usage of the package and its functionalities are also presented in the documentation. The control 920 

scripts of the study’s illustrative case study are also provided as part of the supporting material 

(https://doi.org/10.5281/zenodo.7767681) and also presented in the example section of the documentation. 
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